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The Arithmetic of Genus Two Curves with
(4,4)-Split Jacobians

Nils Bruin and Kevin Doerksen

Abstract. In this paper we study genus 2 curves whose Jacobians admit a polarized (4, 4)-isogeny to a

product of elliptic curves. We consider base fields of characteristic different from 2 and 3, which we do

not assume to be algebraically closed. We obtain a full classification of all principally polarized abelian

surfaces that can arise from gluing two elliptic curves along their 4-torsion, and we derive the relation

their absolute invariants satisfy.

As an intermediate step, we give a general description of Richelot isogenies between Jacobians of

genus 2 curves, where previously only Richelot isogenies with kernels that are pointwise defined over

the base field were considered.

Our main tool is a Galois theoretic characterization of genus 2 curves admitting multiple Richelot

isogenies.

1 Introduction

Let k be a field and let C be a curve of genus 2 over k. Let J = Jac(C) be its Jacobian.

The abelian variety is called decomposable over k if J is isogenous over k to a product

of elliptic curves E1 × E2.

A genus 2 curve has a decomposable Jacobian if and only if there is a cover

φ1 : C → E1 to an elliptic curve E1. If we take φ1 to be optimal (minimal degree

would do), this gives rise to a complementary cover φ2 : C → E2 and an isogeny of a

special type

Φ : E1 × E2 → Jac(C),

which we call an optimal (n, n)-splitting (Definition 2.7). The construction is also

referred to as gluing E1 and E2 along their n-torsion, and specifying Φ is equivalent to

specifying a Weil-pairing inverting isomorphism α : E1[n] → E2[n].

There is a considerable literature on (n, n)-splittings, often in the language of el-

liptic subcovers and mainly dealing with algebraically closed base fields. The first

general examples for n = 2 were given by Legendre and Jacobi (1832). Later Bolza

(1887) considered n = 3 and n = 4 (see [16, pp. 477, 480]). In recent years, these re-

sults have been reconsidered and extended, mainly over an algebraically closed field.

For n = 2 see [6, Ch. 14], for n = 3 see [8, 17, 21, 22], and for n = 5 see [8, 18].

In this paper we are concerned with n = 4. We compare our results to Bolza’s [1]

in Appendix A. Our methods require that the covers and isogenies we consider be

separable, so we need our base field k not to be of characteristic 2. To simplify our
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computations we sometimes also assume that char(k) 6= 3 and that #k > 5, but this

is not essential for the methods we employ.

One significant advantage of considering optimal (n, n)-splittings rather than op-

timal degree-n covers φ : C → E is that the codomain of an (n, n)-splitting need not

be a Jacobian, which means that boundary cases can be treated more uniformly. Our

main result classifies all (4, 4)-splittings.

Theorem 1.1 Let J be a principally polarized abelian surface over a field k with

char(k) ∤ 6 and #k > 5. Then J admits an optimal (4, 4)-splitting

Φ4 : E1 × E2 → J

if and only if one of the following holds:

(i) J = Jac(C4), where C4 is a genus 2 curve admitting a model of the form given in

Appendix C

(ii) J = Jac(C ′
4) and E2 = E(D)

1 , where D = disc(E1), with

C ′
4 : Y 2

= −64bc
1

D3
X6 +

64

3
b

1

D2
X5 + 16bc

1

D2
X4 +

224

27
b

1

D
X3 + 4bc

1

D
X2 +

4

3
bX − bc,

(iii) J = E1 × E2 and there is a 3-isogeny E1 → E2,

(iv) J = E1/〈T2〉 × E1/〈T3〉, where E1 = E2 is an elliptic curve with E1[2](k) =

{0, T1, T2, T3}
(v) J = ℜk(

√
D)/k(E1/〈T2〉), where D = disc(E1) is a non-square, E1[2](k) = {0, T1}

and E1[2](k(
√

D)) = {0, T1, T2, T3} and E2 = E(D)
1 .

The model C ′
4 can be obtained as an appropriate specialization of a model for C4.

Combined with the degree 4 covers explained in Appendix A, this also shows that

if Jac(C4) is (4, 4)-split, then C4 admits an optimal elliptic subcover of degree 4. See

[14, Cor. 5.19] for the result for general n.

We use the model (C.1) to describe a birational model of the 2-dimensional locus

of optimally (4, 4)-split Jacobians in the moduli-space of curves of genus 2. The Igusa

invariants I2, I4, I6, and I10 (see [11]) of a genus 2 curve C classify the isomorphism

class of C over an algebraically closed field. They are homogeneous polynomials of

degrees 2, 4, 6, and 10 respectively in the coefficients of the defining polynomial for

a model of the genus two curve. This moduli-space is birational to affine 3-space, as

given by the absolute invariants of a genus two curve [12]:

(1.1) i1 = 144
I4

I2
2

, i2 = −1728
(I2I4 − 3I6)

I3
2

, i3 = 486
I10

I5
2

.

Theorem 1.2 The absolute invariants i1, i2, and i3 of a genus 2 curve with optimally

(4, 4)-split Jacobian satisfy an equation L, of weighted degree 90, where i1, i2, and i3

are given weights 2, 3, and 5 respectively.

The equation L is too large to reproduce on paper; it consists of 4574 monomials

with coefficients having up to 138 digits. We have therefore made a copy available

electronically (see [5]). The surface described by L is the Humbert surface of dis-

criminant 16 (see [13, Corollary 1.7]).
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Remark 1.3 In Appendix A we use Theorem 1.1 to verify a classic result by Bolza

[1]. We find that one of his equations has a sign error and that our family is birational

to his corrected family.

Our main tool is the observation that an optimal (4, 4)-splitting Φ4 factors as

E1 × E2

Φ2

//

Φ4

44A
Ψ

// J,

where Φ2 is a (2, 2)-splitting and Ψ is a polarized (2, 2)-isogeny. A description of

(2, 2)-split principally polarized abelian varieties is already available, and we classify

when they admit a further polarized (2, 2)-isogeny of the desired type.

In general, we have that both A and J are Jacobians. Polarized (2, 2)-isogenies

between Jacobians of genus 2 curves are known as Richelot isogenies.

Remark 1.4 We give a full arithmetic description of Richelot isogenies in Propo-

sition 4.3. Previous literature only considered the case where the kernel is pointwise

defined over the base field (see [6, 10, 24]).

The paper is laid out in the following way. In Section 2 we give relevant defini-

tions and background material on (n, n)-splittings of a principally polarized abelian

surfaces. In Section 3 we review the basic description of (2, 2)-splittings. Section 4

collects useful results on Richelot isogenies.

In Section 5 we relate (4, 4)-splittings to a principally polarized abelian surface A

admitting multiple polarized (2, 2)-isogenies. For a polarized (2, 2)-isogeny Φ : A →
B we write Φ

∗ : B → A for the (2, 2)-isogeny such that Φ
∗ ◦ Φ is multiplication by 2.

Section 6 considers the case A = Jac(C2) and relates the isogenies to Galois-theoretic

properties of the Weierstrass points of C2.

Theorem 1.5 Let k be a field of characteristic distinct from 2. The Jacobian of a genus

2 curve C : Y 2
= f (X) has two (2, 2)-isogenies over k if and only if the Galois group of

f (X) is contained in C2 × V4 ⊂ S6 or S̃3 = 〈(1, 3, 5)(2, 4, 6), (12)(36)(45)〉 ⊂ S6. In

the first case, Jac(C) has two isogenies Φ,Ψ such that Φ ◦ Ψ
∗ is a (4, 2, 2)-isogeny. In

the second case, it is a (4, 4)-isogeny.

In Section 7 we apply the results from Section 6 to derive a model for C2. As a

corollary, we obtain a model for the universal elliptic curve over X−
E (4), the modular

curve of elliptic curves with 4-torsion anti-isometric to E[4] (see Proposition 7.2).

Silverberg [23] already derived such formulas, but the ones we list may be of interest,

since they are shorter.

In Section 8 we combine results from Sections 4 and 7 to derive the model for C4

when both A and J are Jacobians. A finer analysis yields that C ′
4 can be obtained from

C4 as an appropriate limit and that the cases where both C4 and C ′
4 fail to provide a

model of a genus 2 curve correspond to surfaces J that are not Jacobians.
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2 Split Jacobians

This section introduces some terminology and reviews some basic facts. We believe

all results here are well known but were unable to locate a single source that stated

them in the desired form, so we gather them here for the convenience of the reader.

Definition 2.1 Let A be an abelian surface over a field k. We say that A is decom-

posable if there exist elliptic curves E1, E2 over k such that A is isogenous to E1 × E2

over k.

Lemma 2.2 Let C be a curve of genus 2 over a field k. If Jac(C) is decomposable, then

C admits a finite cover φ1 : C → E1 over k, where E1 is an elliptic curve.

Proof We write J = Jac(C). A k-rational divisor class of degree 1 gives rise to an

Abel-Jacobi map C →֒ J over k, which allows us to consider C as a subvariety of J.

In general, we can use the k-rational canonical class κ to define a morphism C → J,

which, over an algebraic closure k corresponds to γ : C(k) → Pic0(C/k), defined by

P 7→ [2P] − κ. Note that for P, Q ∈ C(k) we only have γ(P) = γ(Q) if [2P] =

[2Q], which implies that P, Q are Weierstrass points on C . Hence, the image of γ is

birational to C . Moreover, since for a Weierstrass point P we do have [2P] = κ, we

see that the identity 0 J ∈ J lies in the image of γ.

If J is decomposable, then there is an isogeny Φ : J → E1 ×E2 over k, where E1, E2

are elliptic curves over k. Let π1 : E1 × E2 → E1 be the projection on the first factor

and write Φ1 = Φ ◦ π1. We claim that j ◦ Φ1 is not constant. If it were, then γ(C)

would have to lie in the connected component of ker(Φ1) that contains 0 J . But that

is a 1-dimensional subgroup scheme of J, so cannot contain a singular model of a

curve of genus 2. It follows that φ = γ ◦ Φ1 : C → E1 is a non-constant morphism

between (complete, non-singular) irreducible curves and hence a finite cover.

The cover in Lemma 2.2 is far from unique, and the one that the proof constructs

is unlikely to be of minimal degree. This leads us to consider optimal covers, also

referred to as maximal [9] and minimal [13] covers.

Definition 2.3 We call a finite cover φ1 : C → E1 optimal if for any factorization

C
φ1→ E1 = C

φ ′

1→ D
ψ→ E1

we must have deg(φ ′
1) = deg(φ1) or deg(φ ′

1) = 1.

It is immediate that any finite cover ψ : C → E, where C is of genus 2 and E is an

elliptic curve, factors through some optimal cover φ1 : C → E1.

We follow Kuhn [17] and Frey–Kani [9]. We write n = deg(φ1). We will need our

maps to be separable, so we assume that char(k) ∤ n. We have the induced maps

φ∗
1 : E1 → J and φ1,∗ : J → E1.

The optimality of φ1 implies that φ∗
1 is injective and that E∗

2 := ker(φ1,∗) must be

connected and hence an elliptic curve. We write E∗
1 = φ∗

1 (E1).
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Since φ1,∗ ◦ φ∗
1 = n · idE1

, we see that E∗
1 ∩ E∗

2 = E∗
1 [n].

We write φ2,∗ : J → J/E∗
1 =: E2 for the projection. We follow Kuhn’s argument in

[17]. He assumes k is a number field, but his method generalizes. Kuhn proves that if

C has a degree 1 divisor class over k that is invariant under the hyperelliptic involu-

tion, then there is a cover φ2 : C → E2 of degree n for which φ2,∗ is the corresponding

push forward. Furthermore, he shows that if n is odd, then such a class exists. For

even n, he argues that the map, initially defined over an extension of k where C has

a Weierstrass point, actually descends to k. Note that the kernel of φ2,∗ is connected,

and hence φ2 is optimal. We call φ2 : C → E2 a complementary cover to the optimal

cover φ1 : C → E1.

The maps φ1, φ2 give rise to an isogeny

φ∗
1 + φ∗

2 : E1 × E2 → J,

where ∆ = ker(φ∗
1 + φ∗

2 ) is the graph of an isomorphism α : E1[n] → E2[n].
To characterize the nature of this isogeny, we recall some standard terminology

on principally polarized abelian varieties. We follow [19]. We recall that a polarized

abelian variety is an abelian variety A equipped with an isogeny λ : A → A∨, where

A∨ is the dual abelian variety of A, such that λ comes from an ample invertible sheaf

on Ak. If λ is an isomorphism, we say that (A, λ) is a principally polarized abelian

variety. A principal polarization induces, for each n prime to the characteristic, an

alternating non-degenerate, bilinear pairing eA[n] : A[n] × A[n] → µn, called a Weil

pairing.

The main result we need is [19, Proposition 16.8], which describes isogenies that

respect polarizations. Paraphrased, it yields the following lemma in our particular

situation.

Lemma 2.4 Let (A, λA) be a principally polarized abelian variety and let Φ : A → B

be an isogeny with ker(Φ) ⊂ A[n]. A necessary and sufficient condition for the existence

of a polarization λB : B → B∨ such that the diagram

A
nλA

//

Φ

²²

A∨

B
λB

// B∨

Φ
∨

OO

commutes, is that ker(Φ) is isotropic with respect to eA[n], which means that eA[n] re-

stricted to ker(Φ) × ker(Φ) is trivial.

If A is g-dimensional, then deg(nλA) = n2g . Since deg(Φ) = deg(Φ∨), a simple

degree calculation shows that λB is principal if and only if deg(Φ) = ng . The nonde-

generacy of eA[n] implies that in that case ker(Φ) is a maximal isotropic subgroup.

Definition 2.5 Let (A, λA) and (B, λB) be principally polarized abelian varieties of

dimension g. We say that an isogeny Φ : A → B is a polarized (n1, . . . , nr)-isogeny if

ker(Φ)(k) ≃ Z/n1Z × · · · × Z/nrZ and Φ
∨ ◦ λB ◦ Φ = nλA, where ng

=
∏r

i=1 ni .
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Using [19, Lemma 16.2] it is straightforward to check that if Φ : A → B is a polar-

ized (n, n) isogeny between principally polarized abelian surfaces (A, λA) and (B, λB),

then so is Φ
∨ : B∨ → A∨ between (B∨, λ−1

B ) and (A∨, λ−1
A ). Furthermore if λ ′ is an-

other polarization on B such that Φ
∨ ◦ λ ′ ◦ Φ = nλA, then λ ′

= λB. This can be

seen by observing that the Néron–Severi group of an abelian variety is torsion-free

or, more directly, if nλ ′
= nλB, then λ ′ − λB maps the connected variety A into a

finite variety, so it must be constant 0.

Lemma 2.6 Let C be a genus 2 curve, let φ1 : C → E1 be an optimal cover of degree

n and let φ2 : C → E2 be a complementary cover. Then φ∗
1 + φ∗

2 : E1 × E2 → J is a

polarized (n, n)-isogeny, with dual isogeny φ1,∗ × φ2,∗ : J → E1 × E2.

Proof The duality statement is immediate. To prove that the isogeny is polarized, we

just have to verify that

(φ1,∗ × φ2,∗) ◦ (φ∗
1 + φ∗

2 ) = (n idE1
× n idE2

)

which follows because φi,∗ ◦ φ∗
j = 0 and φi,∗ ◦ φ∗

i = n idEi
for (i, j) = (1, 2), (2, 1).

Finally, it is an (n, n)-isogeny because the kernel, being the graph of an isomorphism

E1[n] → E2[n], indeed has the structure E1[n](k) ≃ Z/nZ × Z/nZ.

We have

∆ = ker(φ∗
1 + φ∗

2 ) = {(P, α(P)) : P ∈ E1[n]}.

For ∆ to be maximally isotropic we need for all P, Q ∈ E1[n] that

1 = e(E1×E2)[n]

(
(P, α(P)), (Q, α(Q))

)
= eE1[n](P, Q)eE2[n]

(
α(P), α(Q)

)
,

which is precisely the case if α is an anti-isometry.

Definition 2.7 Let E1, E2 be elliptic curves and let A be a principally polarized

abelian surface. Suppose that Φ : E1 × E2 → A is a polarized isogeny. We say that Φ

is an optimal polarized (n, n)-splitting if ∆ = ker(Φ) is the graph of an anti-isometry

α : E1[n] → E2[n].

A principally polarized abelian surface A equipped with an optimal polarized

(n, n)-splitting is an optimally (n, n)-split principally polarized abelian surface.

Proposition 2.8 Let C be a genus 2 curve over a field k of characteristic 0. If Jac(C) is

decomposable, then for some n it admits an optimal (n, n)-splitting.

Proof Lemma 2.2 guarantees that there is a finite cover C → E ′
1, so there is an

optimal cover φ1 : C → E1 as well. Let n = deg(φ1). Lemma 2.6 shows that this gives

rise to a polarized (n, n)-isogeny E1 × E2 → Jac(C), and we have established that its

kernel is the graph of an anti-isometry.
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An (n, n)-splitting does not have to map to a Jacobian.

Proposition 2.9 An (n − 1)-isogeny φ : E1 → E2 gives rise to an optimal polarized

(n, n)-splitting

Φ : E1 × E2 → E1 × E2

( P , Q ) 7→ ( φ∗(Q) + P , φ(P) − Q ),

where φ∗ : E2 → E1 is the isogeny such that φ∗ ◦ φ is multiplication-by-(n − 1).

Proof Note that the restriction φ|E1[n] : E1[n] → E2[n] yields an anti-isometry. It is

straightforward to check that Φ ◦ Φ is multiplication-by-n and that ker(Φ) consists

of points (P, φ(P)), with P ∈ E[n], so the kernel of Φ is indeed that graph of an

anti-isometry.

3 (2, 2)-Split Jacobians

This is a brief description of (2, 2)-splittings. We believe the results presented here

are well known, but since the construction is central to the rest of the paper and the

proofs are simple, we have included them for the convenience of the reader. See also

[10] and [6, Ch. 14].

Lemma 3.1 Let k be a field with char(k) 6= 2 and let E1 : V 2
= f (U ) be an elliptic

curve over k, where f (U ) ∈ k[U ] is a monic square-free cubic. Specifying (E2, α), where

E2 is an elliptic curve over k and α : E1[2] → E2[2] is an anti-isometry is equivalent to

specifying a ∈ k ∪ {∞} with f (a) 6= 0 and d ∈ k× representing an element in k×/k×2

such that

E2 :

{
W 2

= −d f (U ) if a = ∞,

W 2
= d(U − a) f (U ) otherwise,

where 0E2
∈ E2(k) is the unique point with U (0E2

) = a and the anti-isometry is given

by α(0E1
) = 0E2

and α((u, 0)) = (u, 0) for any (u, 0) ∈ E1[2](k) \ {0E1
}.

Proof First note that any group scheme isomorphism α : E1[2] → E2[2] is auto-

matically both an isometry and an anti-isometry and that any scheme isomorphism

α ′ : E1[2] \ {0E1
} → E1[2] \ {0E1

} can be extended uniquely to an isometry.

We first prove that if α : E1[2] → E2[2] is a group scheme homomorphism, then

E2 and α can be represented as stated. Note that U : E1 → P1 represents the quo-

tient E1 → E1/〈−1〉 and that it is ramified over exactly U (E1[2]) = { f (U ) =

0} ∪ {∞}. Similarly, we have U ′ : E2 → E2/〈−1〉 and α induces a scheme iso-

morphism γ : { f (U ) = 0} → U ′(E2[2] \ {0E2
}. Since this is an isomorphism of

étale degree 3 subschemes of P1, it extends uniquely to an isomorphism P1 → P1.

Hence γ−1 ◦U ′ : E2 → P1 is a degree 2 cover ramified over { f (U ) = 0} and some

fourth point γ−1(U ′(0E2
)) = a (hence f (a) 6= 0). It follows that E2 admits a model

as stated and that α is a map as advertised.

Conversely, it is clear that as long as f (a) 6= 0, the model for E2 describes an

elliptic curve and α describes a scheme isomorphism E1[2] → E2[2] sending 0E1
to

0E2
, so it does define an anti-isometry.
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Theorem 3.2 Let k be a field with char(k) 6= 2. Let E1, E2 be elliptic curves given by

models

E1 : V 2
= f (U ) E2 : W 2

= d(U − a) f (U )

and let α : E1[2] → E2[2] be the isometry induced by the identification

U (E1[2] \ {0E1
}) = U (E2[2] \ {0E2

}).

If a 6= ∞, then the fiber product C2 = E1×P1
U

E2 is a curve of genus 2 admitting a model

C2 : Y 2
= f

(
1
d

X2 + a
)
,

where the double covers φ1 : C2 → E1 and φ2 : C2 → E2 are induced by the relations

U =
1
d

X2 + a, V = Y, W = XY.

Furthermore, the isogeny

φ∗
1 + φ∗

2 : E1 × E2 → Jac(C2)

is the (2, 2)-splitting corresponding to α.

Proof That C2 is a model of the fiber product of E1 and E2 over the U -line can be

verified immediately. If we establish that φ1 is an optimal cover and that φ2 is a

complementary cover, then Lemma 2.6 establishes that φ∗
1 + φ∗

2 is a (2, 2)-splitting.

Optimality follows because φ1 and φ2 are of prime degree. It follows that φ∗
1 : E1 →

Jac(C2) is injective.

To show that φ2 is complementary we need that φ2,∗ ◦ φ∗
1 = 0. But these are

maps that come from a fiber product, so we can compute the composition by taking

a divisor on E1, pushing it down to P1
U and pulling it back to E2. Since we map

through a P1, any degree 0 divisor must map into the principal class on E2, which

establishes that φ2,∗ ◦ φ∗
1 = 0.

It is straightforward to check that φ∗
1 + (φ∗

2 ◦ α) : E1[2] → Jac(C2) is zero and

hence that the kernel of φ∗
1 + φ∗

2 is indeed the graph of α.

Definition 3.3 Let E be an elliptic curve over a separable quadratic extension L/k.

We write ℜL/k(E) for the Weil restriction of scalars of E with respect to L/k, in the

sense of [2, §7.6].

For out purposes, it is sufficient to know that A = ℜL/k(E) is an abelian surface

over k that over L is isomorphic to E × Eσ , where σ is a non-trivial automorphism

of L over k. The product polarization on the latter descends to a k-rational principal

polarization on A.

Proposition 3.4 Let k be a field with char(k) 6= 2. Let E be an elliptic curve over k, let

d ∈ k× represent a class in k×/k×2, and let α : E[2] → E(d)[2] be the obvious isometry.

Let ∆ ⊂ E[2] × E(d)[2] be the graph of α. Then

(E × E(d))/∆ =

{
E × E if d is a square,

ℜk(
√

d)/k)(E) otherwise.
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Proof If d is square, Proposition 2.9 applies with n = 2 and we find the (2, 2)-

isogeny given by Φ : (P, Q) 7→ (P + Q, P − Q).

If d is not a square, the first case at least gives us a description of Φ over k(
√

d).

We just have to check that Φ descends to a morphism over k with the twisted Galois

actions on domain and codomain. Both (E×E(d))(k) and ℜk(
√

d)/k)(E)(k) are isomor-

phic to E(k) × E(k) as groups, but have twisted Galois actions. Let χd : Gal(k/k) →
{±1} be the quadratic character belonging to k(

√
d)/k. The Galois action on E(k) ×

E(k) corresponding to E × E(d) is

(P, Q)σ
= (Pσ, χd(σ)Qσ),

and the action corresponding to ℜk(
√

d)/k)(E) is

(P, Q)σ
=

{
(Pσ, Qσ) if χd(σ) = 1,

(Qσ, Pσ) if χd(σ) = −1.

We want to test that the isogeny Φ : E(k) × E(k) → E(k) × E(k) defined by (P, Q) 7→
(P + Q, P − Q) descends to k when we twist domain and codomain to E × E(d) and

ℜk(
√

d)/k)(E) respectively. So we must establish that (Φ(P, Q))σ
= Φ((P, Q)σ) for all

σ ∈ Gal(k/k), with the appropriately interpreted twisted action. It is immediate that

this is the case if (
√

d)σ
=

√
d. In the other case we verify that

(
Φ(P, Q)

)σ
= (P + Q, P − Q)σ

= (Pσ − Qσ, Pσ + Qσ)

=
(

Pσ + χd(σ)Qσ, Pσ − χd(σ)Qσ
)

= Φ
(

Pσ, χd(σ)Qσ
)

= Φ
(

(P, Q)σ
)
.

This confirms that the isogeny is indeed defined over k. It also shows that the product

polarization on E×E over k(
√

d) descends to a principal polarization on ℜk(
√

d)/k)(E)

over k such that Φ is a polarized (2, 2)-isogeny.

4 Polarized (2, 2)-Isogenies on Jacobians of Genus 2 Curves

The purpose of this section is to describe polarized (2, 2)-isogenies between Jacobians

of genus 2 curves. Such isogenies are called Richelot isogenies. After giving an explicit

description of the 2-torsion, we review the classical description of Richelot isoge-

nies over algebraically closed base fields, or more generally, base fields with sufficient

roots. Most of the material presented here is already known; see [4], [24, Ch. 8],

[6, Ch. 9], or [7, § 4]. The new contribution is Proposition 4.3, where we determine

the appropriate twist of the codomain for non-algebraically closed base fields.

Let k be a field of odd characteristic, let k be an algebraic closure of k, and let C be

a curve of genus 2 over k. Then C admits a model of the form

(4.1) C : Y 2
= f (X) = f6X6 + f5X5 + · · · + f1X + f0,
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where f (X) ∈ k[X] is a square-free polynomial of degree 5 or 6. If k has at least 6

elements, then we can assume that f6 6= 0. This excludes some curves over k = F3, F5

from our considerations. In fact, such curves have at least 4 rational Weierstrass

points, which forces the Galois structure of the kernel of Richelot isogenies defined

over k to be of the type that is already covered by the existing literature. Note that

( f6Y )2
= f 2

6 f (X) is also a model of C over k, so it is not a restriction to insist that the

leading coefficient be a cube. We assume that f6 = q3
2 for some q2 ∈ k.

First we describe Jac(C)[2] and its maximal isotropic subgroups. Let w1, . . . , w6

be the roots of f (X) in k. The Weierstrass points of C are exactly Ti = (wi , 0).

The non-zero two-torsion points in Pic0(C/k) are exactly the divisor classes T{i, j} =

[Ti − T j] = [T j − Ti], and the Weil-pairing is given by

(T{i, j}, T{k,l})2 = (−1)#{i, j,k,l}.

Let J = Jac(C). The maximal isotropic subgroups of J[2] are exactly of the form

{0, T{i1,i2}, T{i3,i4}, T{i5,i6}},

where the indices are given by a partition {{i1, i2}, {i3, i4}, {i5, i6}} of {1, . . . , 6}
into three disjoint pairs. For ease of notation, we assume that (i1, . . . , i6) =

(1, . . . , 6). This data corresponds to specifying a factorization

(4.2) F j(X) = q2X2 + q1, jX + q0, j = q2(X − w2 j−1)(X − w2 j)

such that

f (X) = F1(X)F2(X)F3(X).

We say that {F1(X), F2(X), F3(X)} ⊂ k[X] is a quadratic splitting of f . We say that

{F1(X), F2(X), F3(X)} is a quadratic splitting over k if it is stable under Gal(k/k). The

Fi(X) do not have to be individually defined over k.

Lemma 4.1 Let C be a curve of genus 2 over a field k of odd characteristic with #k > 5.

Suppose ∆ ⊂ Jac(C)[2] is a maximal isotropic subgroup scheme over k. Let L be the

coordinate ring of ∆ \ {0}. Then there is a quadratic polynomial Q(X) ∈ L[X] such

that C admits a model of the form

(4.3) C : Y 2
= f (X) = NormL[X]/k[X](Q(X)).

Conversely, for any cubic étale algebra L/k, any such representation gives rise to a max-

imal isotropic subgroup scheme ∆ ⊂ Jac(C)[2] with ∆ \ {0} = Spec(L).

Proof We choose a model of the form (4.1) with f6 = q3
2. We label the roots

w1, . . . , w6 of f (X) in k such that

∆(k) = {0, T{1,2}, T{3,4}, T{5,6}}

Let F j(X) be defined as in (4.2). The group Gal(k/k) acts by permutation

on {T{1,2}, T{3,4}, T{5,6}}, and the identification F j(X) 7→ T{2 j−1,2 j} is Galois-

covariant, so {F1(X), F2(X), F3(X)} is a quadratic splitting of f (X) over k. It follows
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that there is a polynomial Q(X) ∈ L(X) that maps to each of the F j under the three

k-algebra homomorphisms L → k. This yields that C is indeed of the form (4.3).

For the converse, note that the three images F j(X) of Q(X) under the three maps

L[X] → k[X] give rise to a quadratic splitting {F1(X), F2(X), F3(X)} of f (X) over k

and hence to a maximal isotropic subscheme ∆ ⊂ Jac(C)[2] over k with ∆ \ {0} =

Spec(L).

Next we describe the codomain of a Richelot-isogeny. Suppose ∆ ⊂ Jac(C)[2]

is a maximal isotropic subgroup scheme over k and let {F1(X), F2(X), F3(X)} be the

corresponding quadratic splitting. We will describe the principally polarized abelian

surface B = Jac(C)/∆ when it is a Jacobian itself. We define the determinant of the

quadratic splitting to be

(4.4) δ = det




q0,1 q1,1 q2

q0,2 q1,2 q2

q0,3 q1,3 q2




(see [24, p. 117] or [6, p. 89]). If δ = 0, then we say the quadratic splitting

{F1(X), F2(X), F3(X)} is singular. In this case B is a product of elliptic curves

over k. Otherwise, B is the Jacobian of a genus 2 curve over k, and we say

{F1(X), F2(X), F3(X)} is nonsingular.

For a nonsingular quadratic splitting, the following classical construction gives a

curve C̃1 such that B = Jac(C̃1) over k. Suppose {F1(X), F2(X), F3(X)} is nonsingu-

lar. Then for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) we define

Gi(X) = δ−1 det

(
d

dX
F j(X) d

dX
Fk(X)

F j(X) Fk(X)

)

It is straightforward to check that {G1(X), G2(X), G3(X)} ⊂ k[X] is again stable

under Gal(k/k). For d ∈ k∗, we consider the curve

(4.5) C̃d : dỸ 2
= g(X̃) = G1(X̃)G2(X̃)G3(X̃).

Lemma 4.2 If δ 6= 0, then the polynomial g is squarefree of degree 5 or 6.

Proof This follows by direct computation; see [24, p. 122].

We are now ready to review the Richelot isogeny. From [24, Theorem 8.4.11] or

[4, Section 3.1] we know that over k we have B = Jac(C̃1) and that the isogeny is

described by a Richelot correspondence defined by a curve Γd ⊂ C × C̃d over k given

by

Γd :





F1(X)G1(X̃) + F2(X)G2(X̃) = 0

F1(X)G1(X̃)(X − X̃) =
√

d ỸY

F2(X)G2(X̃)(X − X̃) = −
√

d ỸY.

The curve Γd covers both C and C̃d. The Richelot isogeny can be computed by taking

divisor classes on C , pulling back to Γd, and then pushing down to C̃d.
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There are two cases where it is easy to see for which twist d we have Jac(C̃d) = B.

First, if F1, F2, F3 ∈ k[X] and d = 1, then Γd is defined over k and hence B =

Jac(C̃1) over k.

Second, if F1 and F2 are quadratic conjugate, say over an extension k(
√

d),

then F3 is necessarily defined over k. Then the set of defining equations for Γd is

Gal(k/k)-stable, and hence Γd is defined over k. Since over k, the curves C̃d and Γd

are isomorphic to C̃1 and Γ1, it follows from the above discussion that Γd describes a

correspondence giving rise to an isogeny Jac(C) → Jac(C̃d) of the desired type. Note

that d = disc(L).

Proposition 4.3 Let C be a genus 2 curve as in (4.3). Let ∆ ⊂ Jac(C)[2] be the

maximal isotropic subgroup scheme over k with δ 6= 0 and ∆ \ {0} = Spec(L). Let

d = disc(L). Then Jac(C)/∆ = Jac(C̃d).

Proof The cases where Gal(k/k) acts non-transitively on ∆(k) \ {0} have been dealt

with above. For the general case we consider a generic model. We will prove it there

and all special cases follow by specialization.

We consider the field K = k(h0, h1, h2, qi, j) with i, j ∈ {0, 1, 2}, let

L = K[T]/(T3 + h2T2 + h1T + h0),

and let Q(X) ∈ L[X] be defined by

Q =

2∑

i, j=0

qi, jT
j Xi .

We now consider the curve C : Y 2
= f (X) = NormL[X]/k[X](Q(X)) over K.

We have that L/K is a cubic extension with Galois closure L(
√

d) over K. Using

the discussion above, we know that B = Jac(C̃d) over L. However, we know that B

itself is defined over K as a principally polarized variety, so B must be some twist of

Jac(C̃d) that trivializes over the cubic extension L. However, we have AutK (Jac(C̃d)) =

AutK (C̃d) = {±1}, so both only have quadratic twists. It follows that the twist must

be trivial.

Specialization now yields that for any curve C of the stated form, a polarization

preserving isomorphism Jac(C)/∆ ≃ Jac(C̃d) over k exists.

5 (4, 4)-Split Principally Polarized Abelian Surfaces

Let J be a principally polarized abelian surface with an optimal (4, 4)-splitting

Φ4 : E1 × E2 → J such that the kernel ∆4 ⊂ E1[4] × E2[4] is the graph of

an anti-isometry α4 : E1[4] → E2[4]. Since Ei[2] ⊂ Ei[4], we also have α2 =

α4|E1[2] : E1[2] → E2[2]. The subgroup ∆2 = ∆4 ∩ (E1 × E2)[2] is the graph of

α2, so we see that Φ4 factors through an optimal (2, 2)-splitting E1 × E2 → A =

(E1 × E2)/∆2. We use the principal polarizations to identify E1 × E2, A, J with their
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duals. We obtain the diagram

(5.1) E1 × E2

2λE1×E2

//

Φ2

²²

Φ4

¹¹

(E1 × E2)∨
2

// (E1 × E2)∨

A
λA

//

Ψ

²²

A∨
2

//________

Φ
∨

2

OO

A∨

Φ
∨

2

OO

J
λ J

// J∨

Ψ
∨

OO
Φ

∨

4

VV

in which we want to establish that with the addition of the dashed arrow, the dia-

gram is commutative. To lighten our notation, we avoid explicitly referring to the

polarizations as much as possible. To this end we introduce the shorthand notation

Ψ
∗

=λ−1
A ◦ Ψ

∨ ◦ λ J,

Φ
∗
2 =λ−1

E1×E2
◦ Φ

∨
2 ◦ λA,

Φ
∗
4 =λ−1

E1×E2
◦ Φ

∨
4 ◦ λ J.

Lemma 5.1 The isogeny Ψ : A → J is a polarized (2, 2)-isogeny. Furthermore,

ker(Ψ) ∩ ker(Φ∗
2 ) = {0}.

Proof It follows from [19, Lemma 16.2c] that for p, q ∈ (E1 × E2)[4], we have that

e(E1×E2)[4](p, q) = eA[2](Φ2(p),Φ2(q)). Hence we see that ker(Ψ) = Φ2(∆4) ⊂ A[2]

is maximal isotropic, so by Lemma 2.4 there is a principal polarization λ ′ : J → J∨

such that 2λA = Ψ
∨ ◦ λ ′ ◦ Ψ. It follows that

Φ
∨
2 ◦ Ψ

∨ ◦ λ ′ ◦ Ψ ◦ Φ2 = 4λE1×E2
= Φ

∨
4 ◦ λ J ◦ Φ4,

so the image of (λ ′ − λ J) ◦ Φ4 is contained in ker(Φ∨
4 ), which is finite. On the other

hand, Φ4 is surjective and J is connected, so λ ′ − λ J is constant and hence λ ′
= λ J .

This establishes that Ψ is indeed a polarized (2, 2)-isogeny.

In order to see that ker(Ψ) ∩ ker(Φ∗
2 ) = {0}, note that Φ2 is injective on

E1[2] × {0} and maps it onto ker(Φ∗
2 ), because Φ

∗
2 ◦Φ2 = 2. Since Ψ◦Φ2 is injective

on E1[4]×{0}, it follows that Ψ is also injective on Φ2(E1[2]×{0}) = ker(Φ∗
2 ). This

shows that ker(Ψ) ∩ ker(Φ∗
2 ) = {0}.

In fact, whether Ψ ◦ Φ is a (4, 4)-isogeny is completely determined by ker(Ψ) ∩
ker(Φ∗).

Lemma 5.2 Let A, B, and J be polarized abelian surfaces and suppose that Φ
∗ : A →

B and Ψ : A → J are polarized (2, 2)-isogenies. Then Ψ ◦ Φ : B → J is a polarized

(4, 4)-isogeny if and only if ker(Ψ) ◦ ker(Φ∗) = {0}. It is a (4, 2, 2)-isogeny if and only

if ker(Ψ) ∩ ker(Φ∗) ≃ Z/2Z, and it is a (2, 2, 2, 2)-isogeny if and only if ker(Ψ) =

ker(Φ∗).
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Proof It is immediate that Ψ◦Φ is a polarized isogeny. The nature of the isogeny can

be read off from the kernel, so we investigate what these isogenies do on the 4-torsion.

The isogenies we consider fit in the following commutative diagram.

B[4]
2

//

Φ ""EE
EE

EE
EE

B[4]
2

//

Φ ""EE
EE

EE
EE

B[4]

A[4]
2

//

Ψ ""EE
EE

EE
EE

Φ
∗

<<yyyyyyyy

A[4]

Φ
∗

<<yyyyyyyy

J[4]

Ψ
∗

<<yyyyyyyy

Each of B[4](k), A[4](k), and J[4](k) is isomorphic to (Z/4Z)4 as a Z-module. We

normalize the choice of basis such that the Weil pairing on each is given by

e(v, w) = vT




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 w.

The following are matrices that correspond to polarized (2, 2)-isogenies:

M =




2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1


 , M∗

=




1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2


 ,

N =




2 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1


 , N∗

=




1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2


 ,

where MM∗
= NN∗

= 2id. It is straightforward to check that ker(NM) ≃
(Z/4Z)×(Z/2Z)2 and that ker(MM) = (Z/4Z)2. Correspondingly, we find ker(N)∩
ker(M∗) ≃ (Z/2Z) and that ker(M) ∩ ker(M∗) = 0, so only the (4, 4)-isogeny gives

rise to trivially intersecting kernels.

It remains to check that these isogenies represent all possibilities. To that end,

we observe that a (2, 2) isogeny is determined up to isomorphism by its kernel, and

that there are 15 maximal isotropic subgroups in (Z/2Z)4. It is straightforward to

check that if we choose two such subgroups K1, K2, then there is a transformation

T ∈ Sp4(Z/2Z) such that (TK1, TK2) is one of

(
ker(M∗)[2], ker(M∗)[2]

)
,
(

ker(M∗)[2], ker(M)[2]
)
,
(

ker(M∗)[2], ker(N)[2]
)
.

This shows that by choice of basis, one can ensure that the isogenies considered are

indeed represented by the matrices given.
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Lemma 3.1 and Theorem 3.2 imply that if j(E1) 6= j(E2), then A = Jac(C2) for

some genus 2 curve C2. Similarly, we expect J to be a Jacobian outside some special

conditions. Remark 5.3 and Proposition 5.4 describe such special conditions. In fact,

Theorem 1.1 establishes that these describe all cases where J is not a Jacobian.

Remark 5.3 A 3-isogeny φ : E1 → E2 induces an anti-isometry α4 : E1[4] → E2[4].

By Proposition 2.9, we have J = E1 × E2 in this case.

If j(E1) 6= 0, then j(E2) 6= j(E1), so A = Jac(C2). The 3-isogeny −φ gives

rise to the same A, J but a different (4, 4)-splitting, so we find that C2 is a genus 2

curve that is a double cover of E1 and of E2 in 3 different ways; see also [10]. If

j(E1) = j(E2) = 0, we find that A is not a Jacobian.

Proposition 5.4 Let E be an elliptic curve with discriminant D. Suppose that E has a

rational point T1 ∈ E[2](k) of order two.

If D is a square, then E[2](k) = {0, T1, T2, T3} and E has three 2-isogenies φi : E →
E/〈Ti〉. The morphism

(5.2)
Φ : E × E → E/〈T2〉 × E/〈T3〉

( P , Q ) 7→ ( φ2(P + Q) , φ3(P − Q) )

is an optimal (4, 4)-splitting.

If D is not a square, then E[2](k(
√

D)) = {0, T1, T2, T3} and (5.2) descends to a

(4, 4)-splitting over k denoted by

Φ
′ : E × E(D) → ℜk(

√
D)/k

(
E/〈T2〉

)
.

Proof If E has square discriminant, then we know that the extension generated by

E[2](k) is either k or a cyclic cubic extension. The assumption that T1 ∈ E[2](k)

implies it is the former.

In this case, it is clear that Φ is an isogeny of degree 16, defined over k. To check

that Φ is an optimal (4, 4)-splitting, we determine ker(Φ)(k). Suppose that (P, Q) ∈
ker(Φ(k)). Then Q = P if 2P = 0 or 2P = T2, and Q = −P if 2P = T3 or

2P = T2 + T3.

We fix generators E[4](k) = 〈P2, P3〉 with 2P2 = T2 and 2P3 = T3. Then Q =

α(P) where α : E[4](k) → E[4](k) is defined by P2 7→ P2 and P3 7→ −P3. This is

indeed an anti-isometry.

If D is a non-square, then we can still define Φ over k(
√

D). The domain and

codomain of Φ
′ are isomorphic over k(

√
D) to those of Φ. Checking that Φ descends

to Φ
′ over k is a straightforward exercise in checking Galois actions.

6 2-Level Structure on Curves of Genus 2

The main result in this section is the proof of Theorem 1.5. We also discuss how the

result can be interpreted in terms of moduli spaces of genus 2 curves.

Proof of Theorem 1.5 Let C : Y 2
= f (X) be a curve of genus 2 over a field k of odd

characteristic and let J = Jac(C). Recall from Section 4 that J[2](k) can be repre-

sented by differences of Weierstrass points of C . It follows that the action of Gal(k/k)
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on J[2](k), which is through Sp4(Z/2Z), factors through the action on the 6 Weier-

strass points, which is through S6. This yields a homomorphism S6 → Sp4(Z/2Z)

and it is straightforward to check that it is an isomorphism.

We have also seen that maximal isotropic subgroups of J[2] correspond to

quadratic splittings of f (X). It is straightforward to check that S6 acts transitively

on the quadratic splittings of f (X). If J[2] has a polarized (2, 2)-isogeny over k, then

f (X) must have a Galois-stable quadratic splitting. We have

StabS6

(
{{1, 2}, {3, 4}, {5, 6}}

)
≃ (C2)3 ⋊ S3.

Furthermore, the remaining 14 quadratic splittings have two orbits under (C2)3 ⋊S3,

one of length 6 and one of length 8. If J[2] is to have two k-rational polarized

(2, 2)-isogenies then Gal(k/k) should act through the stabilizer subgroup of a rep-

resentative of one of those orbits. If we pick a stabilizer subgroup of the first orbit,

we obtain

C2 ×C4 =
〈

(12), (34)(56), (35), 46)
〉

stabilizing 3 quadratic splittings

(6.1)
{
{1, 2}, {3, 4}, {5, 6}

}
,
{
{1, 2}, {3, 5}, {4, 6}

}
,
{
{1, 2}, {3, 6}, {4, 5}

}

and for the second orbit we obtain

S̃3 = 〈(135)(246), (12)(36)(45)〉

stabilizing

(6.2)
{
{1, 2}, {3, 4}, {5, 6}

}
,
{
{1, 4}, {2, 5}, {3, 6}

}
,
{
{1, 6}, {2, 3}, {4, 5}

}
.

Combining this with Lemma 5.2 yields that (6.1) corresponds to isogenies that com-

bine to (4, 2, 2)-isogenies and that (6.2) corresponds to isogenies that combine to

(4, 4)-isogenies, completing the proof of Theorem 1.5.

Lemma 6.1 Let k be a field with char(k) 6= 2. Let Φ4 : E1 × E2 → J be an optimal

(4, 4)-splitting over k that factors through the (2, 2)-splitting Φ2 : E1×E2 → A. Suppose

that A = Jac(C2), where C2 is a curve of genus 2. Then C2 admits a model of the form

C2 : Y 2
= g(X) = f (X2) = c3X6 + c2X4 + c1X2 + c0

such that g(X) and f (X) have the same splitting field and Gal(g) is isomorphic to S̃3 as

a permutation group.

Proof By Theorem 3.2, the curve C2 admits a model of the given form, where V 2
=

f (U ) is a model of E1. It remains to prove that g(X) and f (X) have the same splitting

field.

Let L denote the splitting field of g and let K denote the splitting field of f . Then

K is an extension of k, and either L is a degree two extension of K or L = K. By

Theorem 1.5 we know that Gal(L/k) ≤ S̃3.
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The three kernels of the (2, 2)-isogenies that are fixed by S̃3 are given by the parti-

tionings in (6.2). A simple verification shows that S̃3 acts faithfully on each of these

kernels. In particular, if {0, T1, T2, T3} is the kernel of the polarized (2, 2)-isogeny

Jac(C2) → E1 × E2, then S̃3 has the canonical S3-action on {T1, T2, T3}. Thus, S̃3 has

the usual S3 action on the roots of f . It follows that f and g have the same splitting

field.

While the proof of and the condition given in Theorem 1.5 are Galois-theoretic,

specifying multiple (2, 2)-isogenies on Jac(C) amounts to specifying partial level

structure, so one expects that the structure of the result is reflected in covers of mod-

uli spaces as well. We will sketch how one can obtain such a formulation.

Let k be a field of characteristic different from 2. Any curve of genus 2 can be

obtained by specializing ( f0, . . . , f6) in the curve

C f : Y 2
= f (X) = f6X6 + f5X5 + · · · + f0

over k( f ) = k( f6, f5, . . . , f0). Similarly, any curve of genus 2 with all of its Weierstrass

points labelled can be obtained by specializing (w1, . . . , w6, f6) in the curve

Cw : Y 2
= f6(X − w1) · · · (X − w6)

over k(w) = k( f6, w1, . . . , w6). Of course, one can just forget a labelling to obtain a

curve C f from Cw. This allows us to express k(w) as a finite extension of k( f ) via

f5 = − f6(w1 + · · · + w6)

f4 = f6(w1w2 + w1w3 + · · · + w5w6)

...

f0 = f6w1 · · ·w6

In fact, k(w) is a splitting-field of f (X) over k( f ) and Gal(k(w)/k( f )) = S6. As we

observed in the proof of Theorem 1.5, k(w) is also the splitting field of Jac(C f )[2]

over k( f ). The fractional linear transformations on the X-line below C induce a

PGL2(k)-action on k( f ) and k(w). If we divide out by this action, we obtain a relation

with the function fields of the coarse moduli spaces M2 of curves of genus 2 and

M2(2) of curves of genus 2 with full level 2-structure on their Jacobians, which is an

Sp4(F2)-cover of M2

k(w) · /PGL2(k)

((QQQQQQQ

· /S6

²²

k(M2(2))

· /Sp4(F2)

²²

k( f )

· /PGL2(k)
((PPPPPPPPP

k(M2)
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k(w)

{{
{{

{{
{{

CC
CC

CC
CC

K2

CC
CC

CC
CC

K3

{{
{{

{{
{{

K1

k( f )

〈(1)〉

¦¦
¦¦

¦¦
¦

>>
>>

>>
>>

S̃3

::
::

::
:

C2 ×V4

¡¡
¡¡

¡¡
¡¡

(C2)3 ⋊ S3

S6

(C2)3 ⋊ S3 = 〈(12), (34), (56), (13)(24), (15)(26)〉
S̃3 = 〈(135)(246), (12)(36)(45)〉

C2 ×V4 = 〈(12), (34)(56), (35)(46)〉

Figure 6.1: Galois groups associated with intermediate 2-level structure

The subgroups identified in Theorem 1.5 give rise to intermediate fields K1, K2, and

K3 as depicted in Figure 6.1 and, by dividing out by PGL2(F2), to moduli spaces

between M2 and M2(2). One of the interesting phenomena here, which does not

occur for elliptic curves, is that there are two non-conjugate ways of specifying two

maximal isotropic subgroups of Jac(C)[2] and hence that there are multiple partial

level 2 structures that can be imposed on Jac(C)[2].

7 Bielliptic Genus 2 Curves with S3 as a Galois group

In Section 5 we saw that a (4, 4)-splitting E1 × E2 → J gives rise to a (2, 2)-splitting

E1×E2 → A, where A is a principally polarized abelian surface admitting two rational

polarized (2, 2)-isogenies with trivially intersecting kernels.

In this section, we give something close to a universal model for the genus 2 curve

C2 from Lemma 6.1. Since the corresponding moduli space of genus 2 curves is not

a fine moduli space (the space M2(2) is not even fine), a universal curve does not

exist. However, by allowing extra parameters, we can still give a family that covers

all possible C2 by specialization, similar to how any elliptic curve can be obtained by

specializing a general Weierstrass model Y 2 + a1XY + a3Y = X3 + a2X2 + a4X + a6.

Let k be a field of characteristic distinct from 2 or 3. Let C2 be a genus 2 curve

over k with a (2, 2)-split Jacobian and let E1 be a degree 2 subcover of C2. Then E1

has a model V 2
= f (U ) = U 3 + bU + c and Gal( f ), the Galois group of f , is a

subgroup of S3. In order to produce the family, we concentrate on the most general

case Gal( f ) = S3. We will argue later that other cases are also parametrized.
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By Theorem 3.2, the curve C2 admits a model Y 2
= g(X), where

g(X) = f
( X2

d
+ a

)
with a, d ∈ k.

Working in the extension k[U ]/( f (U )) = k[r], the polynomials f and g factor as

f (U ) = (U − r)
(

U 2 + rU + (r2 + b)
)

g(X) =
1

d3
(X2 + ad − rd)h(x),

where

h(X) = X4 + (dr + 2ad)X2 + d2(r2 + ar + a2 + b).

By Lemma 6.1, we know that g and f have the same splitting field. This means

that h must be reducible over k(r). Otherwise h would be irreducible, and we would

require a degree 4 extension over k(r) to split h. The following lemma gives a testable

condition.

Lemma 7.1 (Kappe and Warren [15]) Let h(x) = x4 + bx2 + d be a polynomial over

a field k of characteristic 6= 2 and let ±α, ±β be its roots. Then the following conditions

are equivalent:

(1) h(x) is irreducible over k;

(2) The following are not squares in k:

(i) b2 − 4d,

(ii) −b + 2
√

d, and

(iii) −b − 2
√

d.

We can use Lemma 7.1 to determine the conditions on a and d such that h fac-

tors as a product of two quadratics over k(r). In our case, the polynomial h will be

reducible over k(r) if one of the following is true:

(i) (dr + 2ad)2 − 4d2
(
r2 + ar + a2 + b

)
is a square in k(r), or

(ii) −(dr + 2ad) + 2d
√

r2 + ar + a2 + b is a square in k(r), or

(iii) −(dr + 2ad) − 2d
√

r2 + ar + a2 + b is a square in k(r).

In case (i), after simplification, we require −3r2 − 4b to be a square. Observe

that this is the discriminant of x2 + rx + (r2 + b) and hence occurs exactly when our

original polynomial f (x) splits over k(r). This contradicts Gal( f ) = S3, so we ignore

this possibility for now.

In the remaining two cases, we require r2 + ar + a2 + b to be a square in k(r). Let

t ∈ k(r) such that r2 + ar + a2 + b = t2. Since k(r) is a cubic extension of k, we can set

t = t2r2 + t1r + t0. It follows that

r2 + ar + a2 + b = (t2r2 + t1r + t0)2

= t2
2 r4 + 2t1t2r3 + (t2

1 + 2t0t2)r2 + 2t0t1r + t2
0

= (t2
1 + 2t0t2 − bt2

2 )r2 + (2t0t1 − 2bt1t2 − ct2
2 )r + (t2

0 − 2ct1t2).
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Equating coefficients, we obtain the system of three equations:

t2
1 + 2t0t2 − bt2

2 − 1 = 0

−a + 2t0t1 − 2bt1t2 − ct2
2 = 0

a2 + b − t2
0 + 2ct1t2 = 0

We obtain an affine variety in A4 with parameters b and c. This variety

has two components, interchanged by (a, t0, t1, t2) 7→ (a,−t0,−t1,−t2), which

can be found either using a primary decomposition of a polynomial ideal (e.g.,

PrimaryComponents in Magma [3]), or by eliminating variables (say a and t0) via

resultants and multivariate GCD, and a multivariate polynomial factorization. Each

component is a genus 0 curve in A4. Using for instance Magma, we can parametrize

this curve. Writing s for the parameter, we obtain

a =
s4 − 2bs2 − 8cs + b2

4(s3 + bs + c)
t0 =

−s4 − 6bs2 − 4cs − b2

4(s3 + bs + c)
(7.1)

t1 =
−s3 + bs + 2c

2(s3 + bs + c)
t2 =

−3s2 − b

2(s3 + bs + c)
.

For any s ∈ k, this parametrization gives a value for a such that r2 + ar + a2 + b

is a square in k(r). Using the parametrization, we can express the square root of

r2 + ar + a2 + b as

−3s2 − b

2(s3 + bs + c)
r2 +

−s3 + bs + 2c

2(s3 + bs + c)
r +

−s4 − 6bs2 − 4cs − b2

4(s3 + bs + c)
.

This allows us to evaluate the expressions in (ii) and (iii). In case (ii) we find that

−(dr + 2ad) + 2d
√

r2 + ar + a2 + b becomes

(
− 1

4(s3 + bs + c)

)
· d · F1,

where F1 =
(
6s3 + 2bs

)
r2−

(
6s3 + 2bs

)
r−

(
3s4 + 2bs2 − 12cs + 3b2

)
. This is a square

in k(r) if and only if

(7.2) d = −(s3 + bs + c) · ¤,

where ¤ represents a square in k. Using (7.1) and (7.2), we find that g(X) = f (X2/d+

a) has the same splitting field as f . The Galois group of g is indeed isomorphic to S3,

but its representation in S6 is S ′ ′
3 = 〈(123)(456), (23)(56)〉, which is not conjugate

to S̃3 from Section 6. Therefore, C : Y 2
= g(X) is not of the form predicted by

Lemma 6.1.

In case (iii), we find that −(dr + 2ad) − 2d
√

r2 + ar + a2 + b becomes

(
− 1

4(s3 + bs + c)

)
·d · F2,
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where F2 =
(
6s2 + 2b

)
r2 − (2s3 + 6bs + 8c)r− (s4 + 10bs2 −20cs + b2). This is a square

in k(r) if and only if

(7.3) d =
(
4b3 + 27c2

) (
s3 + bs + c

)
· ¤ = −D · f (s) · ¤,

where ¤ represents a square in k and D is the discriminant of f .

Using this parametrization, our hyperelliptic curve C2 is given by Y 2
= g(X)

where:

(7.4)

g =
1

(s3 + bs + c)3

(
1

(
4b3 + 27c2

)3
X6 +

3
(
s4 − 2bs2 − 8cs + b2

)

4
(
4b3 + 27c2

)2
X4

+
P(b, c, s)

16
(
4b3 + 27c2

)X2 +

(
s6 + 5bs4 + 20cs3 − 5b2s2 − 4bcs − b3 − 8c2

)2

64

)
,

and where P is given by

P = 3s8 + 4bs6 − 48cs5 + 50b2s4 + 128bcs3 + 4b3s2 + 192c2s2 − 16b2cs + 3b4 + 16bc2.

As desired, we find that g has the same splitting field as f and that Gal(g) ≃ S̃3 as

found in Section 6. The factorization for g over its splitting field is given in Appendix

B.

Let φ1 : C2 → E1 be the cover arising from (X,Y ) 7→ (U ,V ) = (X2/d + a,Y ). Let

Ψ : Jac(C2) → B be one of the other polarized (2, 2)-isogenies we have by construc-

tion on Jac(C2). Let

Es : W 2
= − disc( f ) · f (s) · (U − a) · f (U )

be the complementary curve and φ2 : C2 → Es the corresponding cover. It is straight-

forward to check that Ψ ◦ φ∗ : E1 → B is injective and hence that Φ4 = Ψ ◦ (φ∗
1 +

φ∗
2 ) : E1 × Es → B is an optimal (4, 4)-splitting of B. This means that the data we

have specified (s and Ψ) should also determine an anti-isometry αs : E1[4] → Es[4].

The ambiguity of choice in Ψ corresponds to the fact that if αs : E1[4] → Es[4] is an

anti-isometry, then so is −αs.

Let X−
E1

(4) be the completion of the moduli space of elliptic curves with prescribed

4-torsion structure anti-isometric to E1[4] modulo multiplication by (Z/4Z)×. This

is a cover of the j-line X(1), Galois over k, with

Autk(X−
E1

(4)/X(1)) = PSL2(Z/4Z),

so X−
E1

(4) → X(1) is a degree 24 cover.

On the open part of the s-line where the equation for Es defines an elliptic curve,

the map s 7→ Es provides a map from the s-line to X−
E1

(4). This map cannot be

constant, since a(s) is not constant in s, so we can interpret the s-line as a cover of

X−
E1

(4). It turns out to be an isomorphism, and Es provides a model of the universal

elliptic curve over X−
E1

(4). This provides an alternative construction to the one given

by Silverberg [23]. Our formulas are shorter.
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Proposition 7.2 Let b, c ∈ k such that 4b3 + 27c2 6= 0 and let

E : V 2
= f (U ) = U 3 + bU + c

be an elliptic curve. Let s be a parameter on P1 and consider

Es : W 2
= − disc( f )

(
4(s3 + bs + c)U − (s4 − 2bs2 − 8cs + b2)

)
f (U ),

with (U ,W ) = ( s4−2bs2−8cs+b2

4(s3+bs+c)
, 0) taken to be the identity element. Then Es is isomor-

phic to

Ẽs : y2
= x3 + a4x + a6 with

a4 = (4b3 + 27c2)2(s8b + 12s7c − 28/3s6b2 − 28s5bc − 14/3s4b3 − 84s4c2

+ 28/3s3b2c − 28/3s2b4 − 56s2bc2 − 44/3sb3c − 96sc3 + b5 + 20/3b2c2)

a6 = −(4b3 + 27c2)3(s12c − 8/3s11b2 − 22s10bc + 88/27s9b3 − 88s9c2 + 55s8b2c

− 176/9s7b4 − 308/9s6b3c − 176/9s5b5 − 176s5b2c2 − 649/9s4b4c

− 528s4bc3 + 88/27s3b6 − 704/9s3b3c2 − 704s3c4 + 154/9s2b5c

+ 352/3s2b2c3 − 8/3sb7 − 248/9sb4c2 − 64sbc4 − 5/3b6c

− 560/27b3c3 − 64c5)

with

j(Ẽs) =
256

4b3 + 27c2

(
3bs8 + 36cs7 − 28b2s6 − 84bcs5 − 14(b3 + 18c2)s4 + 28b2cs3

−28b(b3 + 6c2)s2 − 4c(11b3 + 72c2)s + 3b5 + 20b2c2

)3

(s6 + 5bs4 + 20cs3 − 5b2s2 − 4bcs − b3 − 8c2)4
.

The map s 7→ Es induces an isomorphism P1 → X−
E (4), and Ẽs provides a model of the

universal curve over X−
E (4). For s = ∞ we find that Ẽ∞ is isomorphic to the quadratic

twist E(D) of E by D = disc(E).

Proof The computation of the model Ẽs and its j-invariant are straightforward. It

establishes that s 7→ j(Es) induces a degree 24 cover P1 → X(1). We have already

established that s 7→ Es induces a cover P1 → X−
E1

(4). The map induced by s 7→ j(Es)

factors through j : X−
E1

(4) → X(1), which also has degree 24, so the first map must

be of degree 1 and hence an isomorphism.

The only point where the curve defined by Ẽs might not be immediately clear is for

s = ∞. However, we can consider the isomorphic model y2
= x3 + a4/s8x + a6/s12.

Then we find that

a4

s8

∣∣∣
s=∞

= (4b3 + 27c2)2b and
a6

s12

∣∣∣
s=∞

= −(4b3 + 27c2)3c,

which confirms that E∞ = E(D) with D = −16(4b3 + 27c2) = disc(E).
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Note that the description of Es is even shorter than that of Ẽs, but Es has the draw-

back of not being a Weierstrass-form and not specializing to an elliptic curve for

s3 + bs + c = 0. It does show very nicely where the denominator of j(Ẽs) comes from.

This denominator vanishes exactly when f ( s4−2bs2−8cs+b2

4(s3+bs+c)
) = 0.

Corollary 7.3 Let E1 : V 2
= U 3 + bU + c be an elliptic curve. The affine variety

P1
s \ {s6 + 5bs4 + 20cs3 − 5b2s2 − 4bcs − b3 − 8c2} parametrizes principally polarized

abelian surfaces Js together with a pair of optimal (4, 4)-splittings ±Φ4 : E1 × Es → Js.

Corollary 7.4 Let E be an elliptic curve over a field k with char(k) 6= 2. Let D be the

discriminant of E. Then there is an anti-isometry α4 : E[4] → E(D)[4].

Proof Apart from the proof by specialization that is part of Proposition 7.2, there is

also a Galois-representation theoretic way of proving Corollary 7.4. This is interest-

ing because it identifies how GL2(Z/4Z) permits such an anti-isometry. Let E be an

elliptic curve over a field k with discriminant D and let ρ : Gal(k/k) → Aut(E[4]) be

the mod 4 Galois representation. We have Aut(E[4]) ≃ GL2(Z/4Z). Let H be the

subgroup of elements that act via even permutation on the 2-torsion elements. Note

that D is also the discriminant of the 2-torsion algebra, so ρ−1(H) = Gal(k/k(
√

D)).

Consider

M =

(
1 2

2 −1

)
∈ GL2(Z/4Z)

and let αM : E[4] → E[4] be the corresponding automorphism. One can check that

{M,−M} is the unique conjugacy class of GL2(Z/4Z) of size 2 and that the central-

izer of M is H. It follows that αM is defined over k(
√

D). Furthermore, since

M

(
0 1

−1 0

)
MT

=

(
0 −1

1 0

)
,

we see that αM : E[4] → E[4] is an anti-isometry.

Now consider the quadratic twist E(D) of E. There is an isomorphism E → E(D)

defined over k(
√

D), which when restricted, yields an isometry α(D) : E[4] → E(D)[4].

The composition α(D) ◦ αM : E[4] → E(D)[4] is an anti-isometry. Furthermore, if

σ ∈ Gal(k/k) and σ(
√

D) = −
√

D, then σ(αM) = −αM and σ(α(D)) = −α(D).

Hence, σ(α(D) ◦ αM) = α(D) ◦ αM , so we see that E[4] and E(D)[4] are anti-isometric

over k.

In Sections 3 and 5, we already observed that the abelian variety A in (5.1) is gen-

erally a Jacobian, a sufficient condition being that j(E1) 6= j(E2). We now establish

that the model C2 : Y 2
= g(X) with g(X) as in (5.1) specializes to a genus 2 curve

such that A = Jac(C2) whenever A is a Jacobian.

Lemma 7.5 Let Φ4 : E1 × E2 → J be an optimal (4, 4)-splitting and let Φ2 : E1 ×
E2 → A be the induced (2, 2)-splitting as in (5.1). Suppose we have a model E1 : V 2

=

U 3 + bU + c. If A = Jac(C2), where C2 is some genus 2 curve, then for some s ∈ k we

obtain a model C2 : Y 2
= g(X) with g(x) as in (7.4). Conversely, any C2 of this form

admits a (2, 2)-splitting Φ2 and a further polarized (2, 2)-isogeny Ψ : Jac(C2) → J such

that Ψ ◦ Φ2 : E1 × E2 → J is an optimal (4, 4)-splitting.
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Proof An optimal (4, 4)-splitting is specified by an anti-isometry α4 : E1[4] →
E2[4]. It follows from Proposition 7.2 that E2 ≃ Es for some value of s ∈ k ∪ {∞}.

If s = ∞ or s3 + bs + c = 0, we have j(E1) = j(E2), and the induced isometry

E1[2] → E2[2] is the obvious one. In this case, A ≃ E1 × E1 or A ≃ ℜk(
√

d)/k(E1); see

Section 3. For all the other cases, the discriminant of the polynomial g(X) defined in

(7.4) is square-free as long as j(Es) 6= ∞.

For the converse, Jac(C2) admits an obvious (2, 2)-splitting Φ2 : E1 × E2 →
Jac(C2). Furthermore, there are two further (2, 2)-isogenies Ψ defined on Jac(C2)

by construction. Let φ1 : C2 → E1 be the corresponding double cover. It is straight-

forward to check that φ∗
1 (E1[2]) ∩ ker(Ψ) = 0 and hence that Ψ ◦ Φ2 is an optimal

(4, 4)-splitting.

8 A Model for Genus 2 Curves with (4, 4)-split Jacobian

The next step is to describe a model for a genus 2 curve C4 with a (4, 4)-split Jaco-

bian. From Section 5 we know that Jac(C4) is the image under a (2, 2)-isogeny of

a (2, 2)-split principally polarized abelian surface A, admitting three (2, 2)-isogenies

with pairwise trivially intersecting kernels. Whenever A = Jac(C2), Lemma 7.5 gives

us a model for C2. Section 4 provides an explicit description of (2, 2)-isogenies be-

tween Jacobians of genus 2 curves.

In this section, we will identify the (2, 2)-isogenies of Jac(C2) defined over k and

derive a description of the codomain if it is a Jacobian. This provides us with a de-

scription of C4 with (4, 4)-split Jacobian in case A = Jac(C2).

We consider all 15 different quadratic splittings as in Section 4 over k and see

which are defined over the base field. As expected, a computer calculation yields that

one of the quadratic splittings is singular. It is

{q2(X − w1)(X − w2), q2(X − w3)(X − w4), q2(X − w5)(X − w6)},

where wi are the roots of g over k[r, R] as listed in Appendix B and q3
2 = f6 is the lead-

ing coefficient of g. This singular splitting is due to the (2, 2)-isogeny Φ
∗
2 : Jac(C2) →

E1×E2. We also find that applying the Richelot correspondence (4.5) to the 14 gener-

ically non-singular quadratic splittings produces only two k-rational sextics, with the

remaining twelve defined over k̄, but not over k. The two quadratic splittings which

yield the k-rational sextics are

{q2(X − w1)(X − w6), q2(X − w2)(X − w3), q2(X − w4)(X − w5)} and(8.1)

{q2(X − w1)(X − w4), q2(X − w2)(X − w5), q2(X − w3)(X − w6)}.(8.2)

Notice that the singular quadratic splitting, together with the two quadratic split-

tings (8.1) and (8.2) come from the three partitionings that are fixed by S̃3, given by

(6.2).

Let G1 and G2 denote the sextics obtained by applying Richelot’s construction

(4.5) of f to the quadratic splittings (8.1) and (8.2), respectively. We find that

G2(X) = G1(−X), and therefore that both models are isomorphic. This reflects that
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E1 ×E2 has an extra automorphism [1]× [−1], so if Φ4 is an optimal (4, 4)-splitting,

then Φ4 ◦ ([1] × [−1]) is another one, with the the same codomain.

Proposition 4.3 allows us to select the right twist

C4 : Y 2
= DG1(X) = F(X) where D = disc( f ) = −4b3 − 27c2

(see Appendix C for F(X) with the extraneous factor f 2
6 removed). Looking at the

denominators and the discriminant of the sextic given in Appendix C, we find

disc(F) =
26

(
s3 + bs + c

)22 (
s6 + 5bs4 + 20cs3 − 5b2s2 − 4bcs − b3 − 8c2

)
(
4b3 + 27c2

)14 (
3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2

)18

and hence the following proposition.

Proposition 8.1 The model C4 : Y 2
= F(X) with F(X) as defined in Appendix C

describes a genus 2 curve unless one of the following holds:

(i) 4b3 + 27c2
= 0,

(ii) s6 + 5bs4 + 20cs3 − 5b2s2 − 4bcs − b3 − 8c2
= 0,

(iii) 3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2
= 0,

(iv) s3 + bs + c = 0,

(v) s = ∞.

Cases (i) and (ii) correspond to situations where either E1 or Es is not an elliptic curve.

Cases (iii) and (iv) correspond to (4, 4)-split principally abelian surfaces that are not

Jacobians, as described by Propositions 2.9 and 5.4 respectively.

If j(E1) 6= 0, then case (v) corresponds to a (4, 4)-splitting Φ : E1 × E(D)
1 → Jac(C ′

4),

where

C ′
4 : Y 2

= −64bc
1

D3
X6 +

64

3
b

1

D2
X5 + 16bc

1

D2
X4 +

224

27
b

1

D
X3 + 4bc

1

D
X2 +

4

3
bX − bc

is a curve of genus 2. If j(E1) = 0, then case (v) is part of case (iii).

Proof (i) In this case E1 is not an elliptic curve.

(ii) In Proposition 7.2 we have already seen that this relation implies j(Es) = ∞.

(iii) Let δ denote the determinant of the quadratic splitting (8.1). Then

Nk[r,R]/k(δ) =
(
4b3 + 27c2

)2 (
3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2

)2
,

and we know that if (4.4) vanishes, then the codomain of the (2, 2)-isogeny is a prod-

uct of elliptic curves over k. Proposition 8.2 explains this degeneracy.

(iv) If s3 + bs + c = 0, then (s, 0) ∈ E1[2] is a point of order two. Furthermore,

from (7.1) we have a(s) = ∞, so the (2, 2)-splitting Φ2 through which our (4, 4)-

splitting factors is known to be E1 × E1 → E1 × E1 or E1 × E(D)
1 → ℜk(

√
R)/k(E1),

depending on whether D = disc(E1) is a square or not. Since # SL2(Z/4Z) = 8 ·
# SL2(Z/2Z), there are 8 ways over k to extend a (2, 2)-isogeny to a (4, 4)-isogeny.

This also follows from the computation in the proof of Lemma 5.2, where one finds
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8 possible kernels for Ψ trivially intersecting ker(Φ∗). Since every value of s gives

rise to two (4, 4)-isogenies, we see that with s = ∞ and s3 + bs + c = 0, all possible

(4, 4)-splittings factoring through Φ2 must occur for these values of s. Proposition 5.4

describes six (4, 4) splittings of this type, so together with the two coming from s =

∞, these must be all.

(v) The model for C4 as presented does not specialize well for s = ∞, but the iso-

morphic model

C ′
4,s : (s3Y )2

= F(xs2)/s6

does if b 6= 0, and for s = ∞ we obtain C ′
4. Note that for generic s we have a

(4, 4)-splitting

Φ4 : E1 × Es → Jac(C ′
4,s),

where the kernel is the graph of an anti-isogeny E1[4] → Es[4] that is independent of

s. Since domain and codomain specialize well at s = ∞, so must the (4, 4)-isogeny.

If b = 0, we have j(E1) = 0 and we have a 3-isogeny E1 → E(D)
1 , so case (iii) applies.

Proposition 8.2 Let E and Es be the elliptic curves described in Proposition 7.2. The

relation 3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2
= 0 corresponds to the existence of a

3-isogeny φ : E → Es.

Proof Note that J1 = j(E) and J2 = j(Es) are rational functions in s, b, c. We

can express the given information in weighted homogeneous polynomial relations in

s, b, c with weights (1, 2, 3) and obtain

1728b3 − (b3 + 27c2/4) J1 = 0

N(b, c, s) − D(b, c, s) J2 = 0

3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2
= 0.

When we eliminate b, c, s from these equations, we are left with the classical modular

polynomial of level 3 in J1, J2. This means that there is a 3-isogeny φ : E → Es over

k. Indeed, in the light of Proposition 2.9 we expect to find (4, 4)-split surfaces of this

type that are not Jacobians. A priori, the fact that the j-invariants satisfy a modular

polynomial only tells us that E and Es are 3-isogenous over k. However, we know that

only one twist of Es has Es[4] anti-isometric to E[4] and similarly, only one twist of

Es can be 3-isogenous to E. From Proposition 2.9 we know they must coincide.

Furthermore, in general there are only 2 anti-isometries between E[4] and Es[4]

for 3-isogenous curves (otherwise E[4] would have extra automorphisms, requiring

the Galois representation to be small). This implies that the anti-isometries induced

by our parametrization of X−
E (4) must coincide with the ones from Proposition 2.9

generally and therefore also for any valid specialization of b, c, s.
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9 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 In Section 5 we established that a (4, 4)-splitting factors Φ4 as

E1 × E2

Φ2

//

Φ4

44A
Ψ

// J.

Let E1 : V 2
= U 3 + bU + C be a model for E1. If A is a Jacobian, then Lemma 7.5

provides a model for C2 such that A = Jac(C2) and if J is a Jacobian Jac(C4) as well,

then Section 8 shows that (C.1) provides a model for C4.

More generally, Corollary 7.3 describes that b, c, s together parametrize all J with

optimal (4, 4)-splitting. Proposition 8.1 analyzes all the degeneracies of C4 and iden-

tifies which correspond to the (4, 4)-splittings described by Propositions 5.4 and 8.2.

Together, these give the cases listed in Theorem 1.1.

Proof of Theorem 1.2 Recall that the moduli space of genus 2 curves is birational to

A3 and that (i1, i2, i3) as given in (1.1) give coordinates on that space.

Let X denote the surface inside A3 describing genus 2 curves with (4, 4)-split Ja-

cobians. This surface is the Humbert surface of discriminant 16, and it is irreducible

(see [13, Corollaries 1.6–1.8] and [20]).

Theorem 1.1 and Proposition 8.1 show that by specializing b, c, s we can generate

points on a Zariski-open part of X. In fact, if we set b = 1, the points we can gen-

erate still lie dense in X. By computing the Igusa invariants of C4 we obtain rational

functions i1(c, s), i2(c, s), i3(c, s) ∈ Q(c, s) such that the image of the rational map

A2
99K A3

(c, s) 7→
(

i1(c, s), i2(c, s), i3(c, s)
)

lies dense in X. The defining equations are too large to compute the image using

Gröbner bases or resultants. Instead, we will compute the image by interpolation.

Our strategy consists of three steps:

(1) Determine a candidate equation L(i1, i2, i3) = 0 to describe X;

(2) prove that X is contained in L(i1, i2, i3) = 0;

(3) observe that if the Zariski-closure of X is a proper subset of L(i1, i2, i3) = 0, then

X must lie on a surface of lower degree and derive a contradiction from that.

For (1), we guessed degree bounds with which to interpolate L and computed a

tentative version Lpi
(i1, i2, i3) (mod pi) via interpolation for 93 consecutive 6-digit

primes pi . For future reference, note that we found a unique solution to the system

for each prime pi .

We then used rational reconstruction to compute a tentative equation

L(i1, i2, i3) = 0 over Q . The equation of the surface is too large to reproduce

here: L contains 4574 monomials with coefficients of up to 138 digits. Note that

the information we computed should allow us to construct L (mod N), where

N =
∏93

i=1 pi ≈ 10600, so the coefficients we found in L are relatively tiny. This is a

strong indicator that we have computed something that indeed has intrinsic meaning
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over Q (at this point, basically what could go wrong is that our degree bound is too

low and that we very unluckily have picked interpolation points that happen to map

to points satisfying some lower degree equation as well).

For (2), we show that L(i1(c, s), i2(c, s), i3(c, s)) is identically zero in Q(c, s). The

expression L (i1(c, s), i2(c, s), i3(c, s)) = 0 gives rise, after clearing denominators, to a

polynomial p(c, s) of degrees at most 1800 and 4050 in c and s respectively. We need

to establish that p(c, s) = 0 as a bivariate polynomial. Expanding p(c, s) explicitly

is computationally infeasible, so instead we evaluate p(c, s) over a large number of

distinct values for c and s. For a fixed value s = s0, if we show that p(c, s0) = 0 at

1801 distinct values for c, then p(c, s0) is the zero polynomial on the line s = s0. If

we repeat this process on 4501 distinct lines s = si , then p(c, s) is in fact the zero

polynomial. This calculation was performed in parallel on multiple computers over

the course of several weeks.

For (3), note that we have now established that the Zariski-closure of X is indeed

contained in L(i1, i2, i3) = 0. Since X is irreducible (see [13, Corollary 1.8]), proper

containment implies that X must be described by an equation of strictly lower de-

gree. But then we would have found this lower degree equation in step (1) as well.

However, we found there that Lpi
was the unique equation below the guessed degree

bounds that interpolated the computed images. So X does not lie in a lower degree

surface.

A On a Classical Result by Bolza

An 1887 paper by O. Bolza [1] discusses hyperelliptic integrals that can reduce into

elliptic integrals by a fourth degree transformation. In the terminology of Section 2,

he computes a model of a genus 2 curve with a (4, 4)-split Jacobian. In this section

we relate his results to ours. The formulas given here are available electronically from

[5]. Bolza works over C. He gives a 3-parameter family of curves y2
= R(x), with

parameters λ, µ, ν, with a sign error in equation (A.1). Corrected, Bolza’s family is

given by:

C(λ,µ,ν) : y2
= R(x) = ν ′x6 − 6λν ′x5 + 3

(
4µν ′ + λµ ′) x4 + 2

(
λλ ′ + 5νν ′) x3

+ 3
(
4µ ′ν + λ ′µ

)
x2 − 6λ ′νx + ν,

where

λ ′
= −1

3
· 2λ2ν − λµ2 − µν

−ν2 + 3λµν − 2µ3
, µ′

=
1

9
· λ2µ + λν − 2µ2

−ν2 + 3λµν − 2µ3
,

ν ′
= − 1

27
· 2λ3 − 3λµ + ν

−ν2 + 3λµν − 2µ3
.

(A.1)

He also gives the variable substitutions that turn the hyperelliptic integrals into ellip-

tic integrals. In modern language, he gives the degree 4 maps from the curve C(λ,µ,ν)

to two elliptic curves. Since Bolza is only interested in curves over C, he does not care

https://doi.org/10.4153/CJM-2011-039-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-039-3


1020 N. Bruin and K. Doerksen

to determine the appropriate twist, but this is easily adjusted. With

z1 =
λx4 + 4λνx + 3µν

λx2 + 2λx + 3µλ−2ν
2

, z2 =
λ ′ + 4λ ′ν ′x3 + 3µ ′ν ′x4

x2(λ ′ + 2λ ′x + 3µ ′λ ′−2ν ′

2
x2)

we find that C(λ,µ,ν) covers the two curves

E1,(λ,µ,ν) : w2
1 = λR1(z1) = λ(λz1 − 2ν)

(
ν ′z3

1 − 3(9λ2ν ′ − 6µν ′ − λµ ′)z2
1

+ 12(9λνν ′ + 3µ ′ν + λ ′µ)z1 + 12ν(3µµ′ − λλ ′)
)

and

E2,(λ,µ,ν) : w2
2 = λ ′R2(z2) = λ ′(λ ′z2 − 2ν ′)(νz3

2 − 3(9λ ′2ν − 6µ ′ν − λ ′µ)z2
2

+ 12
(

9λ ′ν ′ν + 3µν ′ + λµ ′)z2 + 12ν ′(3µ ′µ − λ ′λ)
)
.

Checking this is straightforward by verifying that λR1(z1)R(x) and λ ′R2(z2)R(x) are

squares in Q(λ, µ, ν)(x).

In order to find the relation between Bolza’s family and the model (C.1), we put

E1,(λ,µ,ν) in short Weierstrass form V 2
= U 3 + bU + c, where

b = 3(ν2 − 3νµλ + 2µ3)2
(

2ν4µ − 5ν4λ2 + 2ν3µλ3 + 16ν3λ5 − ν2µ4

+ 10ν2µ3λ2 − 45ν2µ2λ4 − 6νµ5λ + 36νµ4λ3 − 9µ6λ2
)

c = (ν2 − 3νµλ + 2µ3)3
(
ν7 − 3ν6µλ − 10ν6λ3 − 10ν5µ3 + 84ν5µ2λ2 − 138ν5µλ4

+ 160ν5λ6 − 30ν4µ4λ + 68ν4µ3λ3 − 78ν4µ2λ5 − 288ν4µλ7 − 2ν3µ6

+ 30ν3µ5λ2 − 189ν3µ4λ4 + 738ν3µ3λ6 − 18ν2µ7λ + 198ν2µ6λ3 − 729ν2µ5λ5

− 54νµ8λ2 + 324νµ7λ4 − 54µ9λ3
)
.

We compute the linear transformation

U =
t1z2 + t2

t3z2 + t4

such that λ ′R2(z2) = d(U − a)(U 3 + bU + c),

where d is specified up to squares, and find

a =
(ν2 − 3νµλ + 2µ3)(2ν3λ − 3ν2µ2 − 4ν2λ4 + 2νµ3λ + 6νµ2λ3 − 3µ4λ2)

µλ − ν

d = 3(ν − µλ)(ν2 − 3νµλ + 2µ3)(ν2 − 6νµλ + 4νλ3 + 4µ3 − 3µ2λ2).

From

a =
s4 − 2bs2 − 8cs + b4

4(s3 + bs + c)
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one finds one rational choice:

s =
(ν2
− 3νµλ + 2µ3)(ν3λ + 3ν2µ2

− 18ν2µλ2 + 16ν2λ4 + 10νµ3λ− 15νµ2λ3 + 3µ4λ2)

ν − µλ
.

This shows that outside (ν − µλ)(ν2 − 3νµλ + 2µ3) = 0, Bolza’s family maps to

the family (C.1). The relation turns out to be birational: both (λ : µ : ν) and

(s : b : c) are naturally coordinates on weighted projective space P(1, 2, 3). The

formulae above express (b/s2, c/s3) as functions in (µ/λ2, ν/λ3). Via the appropriate

resultant computations and polynomial factorizations, we find

ψ(b, c, s) = 2b6 + 36b5s2 + 45b4cs + 72b4s4 + 45b3c2 + 36b3cs3 − 36b3s6

+ 297b2c2s2 − 378b2cs5 + 54b2s8 + 324bc3s − 81bc2s4

+ 324bcs7 + 216c4 − 324c3s3 + 891c2s6 − 27cs9

µ

λ2
=

(2b4 − 15b2cs + 30b2s4 + 9bc2 + 90bcs3 + 135c2s2 − 27cs5)ψ(b, c, s)

3(bs + c + s3)2(b2 − 6bs2 − 12cs − 3s4)2(4b3 + 27c2)

ν

λ3
=

−ψ(b, c, s)2

(bs + c + s3)2(b2 − 6bs2 − 12cs − 3s4)3(4b3 + 27c2)
.

This shows that outside some codimension one locus, the two families parametrize

the same curves up to twist. Note, however, that the formulas for a, b, c, d are of

weighted total degrees 13, 26, 39, 15 in (λ, µ, ν). That means that with appropriate

scaling, we can adjust the square class of d, so the two families really do parametrize

essentially the same curves.

B The Six Roots of the Defining Polynomial for C2

Let C2 be a genus 2 curve over k that is (2, 2)-isogenous to a genus 2 curve whose

Jacobian is optimally (4, 4)-split (see Lemma 6.1). Then C2 is a degree 2 cover of an

elliptic curve E1 that admits a model V 2
= f (U ) = U 3 + bU + c. A model for C2 is

given in (7.4):

f (U ) = (U − r)
(

U 2 + rU + (r2 + b)
)
.

Over k[r, R] := k[r][U ]/[U 2 − (−3r2 − 4b)], we have the factorization

f (U ) = (U − r)
(

U − R

2
+

r

2

)(
U +

R

2
+

r

2

)
.

Using our parametrization for a and d given in equations (7.1) and (7.3) respectively,

we can write down the factorization for g over k[r, R]:

g(X) = f6

6∏
i=1

(X − wi)

where

f6 =

( 1

− disc( f ) · f (s)

) 3

=
1

(
4b3 + 27c2

)3 (
s3 + bs + c

)3
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and

w1 =
1

2

( (
−3s2 − b

)
r2 + (−4bs − 6c) r − bs2 − 6cs + b2

)
R

w2 =
1

2

( (
3s2 + b

)
r2 + (4bs + 6c) r + bs2 + 6cs − b2

)
R

w3 =
1

2

( (
−3s2 − b

)
r2 + (2bs + 3c) r − bs2 + 3cs − b2

)
R

+
1

2

(
(−3bs − 9c) r2 +

(
9cs − 2b2

)
r − 4b2s − 6bc

)

w4 =
1

2

( (
3s2 + b

)
r2 + (−2bs − 3c) r + bs2 − 3cs + b2

)
R

+
1

2

(
(3bs + 9c) r2 +

(
−9cs + 2b2

)
r + 4b2s + 6bc

)

w5 =
1

2

( (
−3s2 − b

)
r2 + (2bs + 3c) r − bs2 + 3cs − b2

)
R

+
1

2

(
(3bs + 9c) r2 +

(
−9cs + 2b2

)
r + 4b2s + 6bc

)

w6 =
1

2

( (
3s2 + b

)
r2 + (−2bs − 3c) r + bs2 − 3cs + b2

)
R

+
1

2

(
(−3bs − 9c) r2 +

(
9cs − 2b2

)
r − 4b2s − 6bc

)
.

C A Representation for a (4, 4)-split Genus 2 Curve

Let E1 be an elliptic curve over k given by V 2
= U 3 + bU + c for scalars b and c and let

C4 be a genus 2 curve that is a degree 4 cover of E1. Then there exists a scalar s such

that a representation for C4 is given by Y 2
= F(X), where

F(X) =

(
s3 + bs + c

) (
27cs3 − 18b2s2 − 27bcs − 2b3 − 27c2

)
(
4b3 + 27c2

)3 (
3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2

)3
X6(C.1)

+
3
(
s3 + bs + c

)2 (
3s2 + b

)
(
4b3 + 27c2

)2 (
3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2

)3
X5

+
3
(
s3 + bs + c

)
E(b, c, s)

4
(
4b3 + 27c2

)2 (
3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2

)3
X4

+
−

(
s3 + bs + c

)2
G(b, c, s)

2
(
4b3 + 27c2

) (
3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2

)3
X3

+
−

(
s3 + bs + c

)
H(b, c, s)

16
(
4b3 + 27c2

) (
3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2

)3
X2
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+
3
(
s3 + bs + c

)2 (
3s4 + 6bs2 + 12cs − b2

)
J(b, c, s)

16
(
3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2

)3
X

+
−

(
s3 + bs + c

)
J(b, c, s)K(b, c, s)

64
(
3bs4 + 18cs3 − 6b2s2 − 6bcs − b3 − 9c2

)3

and where

E(b, c, s) = 9cs7 − 26b2s6 − 171bcs5 + 34b3s4 − 333c2s4 + 155b2cs3 − 6b4s2

+ 126bc2s2 + 7b3cs + 144c3s − 2b5 − 17b2c2

G(b, c, s) = 7s6 + 23bs4 + 68cs3 − 11b2s2 − 4bcs − 3b3 − 20c2

H(b, c, s) = 27cs11 + 6b2s10 + 585bcs9 − 402b3s8 + 2349c2s8 − 3330b2cs7 + 460b4s6

− 6156bc2s6 + 1410b3cs5 − 7776c3s5 + 140b5s4 + 4230b2c2s4 + 23b4cs3

+ 3024bc3s3 + 46b6s2 + 516b3c2s2 + 3024c4s2 + 5b5cs − 48b2c3s + 6b7

+ 85b4c2 + 288bc4

J(b, c, s) = s6 + 5bs4 + 20cs3 − 5b2s2 − 4bcs − b3 − 8c2

K(b, c, s) = 27cs9 − 54b2s8 − 324bcs7 + 36b3s6 − 891c2s6 + 378b2cs5 − 72b4s4

+ 81bc2s4 − 36b3cs3 + 324c3s3 − 36b5s2 − 297b2c2s2 − 45b4cs − 324bc3s

− 2b6 − 45b3c2 − 216c4.
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