
J. Appl. Probab. 60, 465–478 (2023)
doi:10.1017/jpr.2022.56

EXPONENTIAL ERGODICITY FOR A CLASS OF MARKOV PROCESSES
WITH INTERACTIONS

JIANHAI BAO,∗ Tianjin University
JIAN WANG,∗∗ Fujian Normal University

Abstract

We establish exponential ergodicity for a class of Markov processes with interac-
tions, including two-factor type processes and Gruschin type processes. The proof is
elementary and direct via the Markov coupling technique.
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1. Introduction and main results

Let D ⊂R
m. For smooth functions b : D →R

m and γ : D ×R
n →R

n, consider the deter-
ministic dynamical system {

dXt = b(Xt) dt,

dYt = γ (Xt, Yt) dt.
(1.1)

The feature of this system is that although it consists of two components, the first component
is determined completely by itself. The interpretations of the model (1.1) can be explained in
at least the following two aspects. The first one arises from the point of view of ecological
systems. Regard Xt as the quantity of grass and Yt as the number of vegetarians at time t. Then,
(1.1) demonstrates that the quantity of grass is sufficient and does not change as the number
of vegetarians varies; however, the quantity of grass influences the increase in vegetarians.
The other aspect comes from the mathematical modelling of infectious diseases. For numerous
infections, e.g. measles, many newborn individuals might be immune to the disease since they
are protected by maternal antibodies (in particular, via the placenta and the colostrum). This
is termed ‘passive immunity’ in the literature. To describe this phenomenon in a mathemati-
cal framework, an extra M class is taken into consideration at the beginning of the classical
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SIR (susceptible–infectious–recovered) dynamics (see, e.g., [4, Chapter 2]), which leads to the
MSIR model (M = maternally derived immunity; see, e.g., [3]):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dMt = {p� − (μ + η)Mt} dt,

dSt = {(1 − p)� + ηMt − βStIt + γ It − μSt} dt,

dIt = {βStIt − (μ + δ + ν + γ )It} dt,

dRt = {νIt − μRt} dt,

where 0 ≤ p < 1 and �, μ, η, β, γ, δ, ν > 0. It is apparent that this MSIR model is a typical
example of (1.1).

Since the model (1.1) is often subject to environmental noise, it is natural to consider the
corresponding stochastic version,{

dXt = b(Xt) dt + σ (1)(Xt) dL(1)
t ,

dYt = γ (Xt, Yt) dt + σ (2)(Xt) dL(2)
t ,

(1.2)

where
(
L(1)

t
)

t≥0

(
resp.

(
L(2)

t
)

t≥0

)
is a k1-dimensional (resp. k2-dimensional) Lévy noise (includ-

ing the standard Brownian motion), σ (1) : D →R
m ⊗R

k1 and σ (2) : D →R
n ⊗R

k2 . Intuitively
speaking, (1.2) can be regarded as a class of stochastic differential equation (SDE) with simple
interactions.

Before we explain the focus of the current article, let us introduce two motivating examples
related to the SDE (1.2).

Example 1.1 (Two-factor type process.) Let
(
B(1)

t , B(2)
t

)
t≥0 be a standard two-dimensional

Brownian motion. For i = 1, 2 and γ ∈ {α, β} ⊂ (1, 2), let
(
L(i,γ )

t
)

t≥0 be a spectrally positive γ -

stable process with the Lévy measure νγ (dz) = Cγ z−(1+γ )1{z>0}dz, where Cγ := (γ
(−γ ))−1

and 
 is the Gamma function. We suppose that
(
B(1)

t , B(2)
t

)
t≥0,

(
L(1,α)

t
)

t≥0, and
(
L(2,β)

t
)

t≥0 are
mutually independent. Set R+ := [0, ∞). We consider the following process (Xt, Yt)t≥0 on
R+ ×R solving{

dXt = b(Xt) dt + θ1X1/2
t dB(1)

t + θ2X1/α
t− dL(1,α)

t , X0 = x ∈R+,

dYt = γ (Xt, Yt) dt + δ1X1/2
t dB(2)

t + δ2X1/β
t− dL(2,β)

t , Y0 = y ∈R,
(1.3)

where θ1, θ2, δ1, δ2 ≥ 0 with θ1 + θ2 > 0 and δ1 + δ2 > 0.

In particular, when b(x) = a − bx and γ (x, y) = c − dy, the corresponding SDE (1.3) has
a unique strong solution, and the associated process becomes a two-factor affine model; see,
e.g., [2].

Example 1.2 (Gruschin type process) Let (Xt, Yt)t≥0 be the process on R
m+n := R

m ×R
n

solving the following SDE:{
dXt = b(Xt) dt + dB(1)

t , X0 = x ∈R
m,

dYt = γ (Xt, Yt) dt + σ (Xt) dB(2)
t , Y0 = y ∈R

n,
(1.4)

where (Bt)t≥0 := (
B(1)

t , B(2)
t

)
t≥0 is an (m + n)-dimensional Brownian motion.
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In particular, when m = n = 1, b(x) = 0, γ (x, y) = 0, and σ (x) = |x|l for l > 0, the SDE (1.4)
is reduced into {

dXt = dB(1)
t ,

dYt = |Xt|l dB(2)
t ,

where
(
B(1)

t , B(2)
t

)
t≥0 is a two-dimensional Brownian motion. The generator of the process

(Xt, Yt)t≥0 solving this SDE is given by L = 1
2

(
∂11 + |x(1)|2l∂22

)
with x = (

x(1), x(2)
)
, where

∂ii, i = 1, 2, denotes the second-order gradient operator with respect to the ith component. The
associated semigroup is called the classical Gruschin semigroup on R

2 with order l > 0; see,
e.g., [19].

The objective of this article is to seek verifiable conditions under which SDEs such as
(1.3) and (1.4) are exponentially ergodic. Ergodicity is the foundation for a wide class of limit
theorems and long-time behavior for Markov processes. In this setting, we will provide a (more
direct) strategy via the Markov coupling technique to prove the exponential ergodicity for a
class of Markov processes with interactions.

In the following two subsections, we state our main results for the exponential ergodicity
for the SDEs (1.3) and (1.4), respectively. For a more general result concerning the exponential
ergodicity for a class of Markov processes with interactions, see Section 2.1. For simplicity, we
call processes solving (1.3) and (1.4) two-factor type processes and Gruschin type processes,
respectively.

Given a distance-like function ρ : Rd ×R
d →R+ (i.e. ρ(x, y) is non-negative, symmetric

and lower semicontinuous on R
d ×R

d, and ρ(x, y) = 0 if only if x = y), the Wasserstein-type
quasi-metric on P

(
R

d
)
, the set of probability measures on R

d, is defined by

Wρ(μ, ν) = inf
π∈C(μ,ν)

∫
Rd×Rd

ρ(x, y) π (dx, dy), μ, ν ∈ P
(
R

d),
where C(μ, ν) stands for the couplings of μ and ν. If the distance-like function ρ satisfies the
triangle inequality in the weak sense, i.e. there exists a constant K > 0 such that

ρ(x, y) ≤ K
(
ρ(x, z) + ρ(z, y)

)
, x, y, z ∈R

d, (1.5)

then
(
P

(
R

d
)
,Wρ

)
is a complete space; see the proof of [6, Theorem 5.4] for more details. Let

P(t, (x, y), ·) be the transition probability kernel of the process (Xt, Yt) with the initial value
(x, y).

1.1. Two-factor type processes

We make the following assumptions.

Assumption 1.1. There are constants λ1, λ2 > 0 and r0 ≥ 0 such that, for all x, x̃ ∈R+,
(b(x) − b(̃x))(x − x̃) ≤ −λ1(x − x̃)21{|x−̃x|≥r0} + λ2(x − x̃)21{|x−̃x|<r0}.

Assumption 1.2. There are constants κ1, κ2 > 0 and κ3 ≥ 0 such that, for all x, x̃ ∈R+ and
y, ỹ ∈R,

(γ (x, y) − γ (̃x, ỹ))(y − ỹ) ≤ −κ1(y − ỹ)2 + κ2|(x − x̃)(y − ỹ)| + κ3(y − ỹ)21{|y−̃y|≤κ3}. (1.6)
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468 J. BAO AND J. WANG

Theorem 1.1. Under Assumptions 1.1 and 1.2, the SDE given by (1.3) has a unique strong
solution (Xt, Yt)t≥0, and the process (Xt, Yt)t≥0 is exponentially ergodic in the sense that there
exist a unique invariant probability measure μ on R+ ×R and a constant η > 0 such that,
for all x ∈R+, y ∈R, and t > 0, WV

(
P(t, (x, y), ·), μ

) ≤ C0(x, y) e−ηt, where C0(x, y) > 0 is
independent of t, and

V(x, x̃, y, ỹ) := 1{κ3>0,x 
=̃x} + |x − x̃| + |y − ỹ| ∧ |y − ỹ|2, x, x̃ ∈R+, y, ỹ ∈R,

with κ3 ≥ 0 given in (1.6).

When b(x) = a − bx with a ≥ 0 and b > 0, and γ (x, y) = c − dy with c ∈R and d > 0, the
exponential ergodicity in terms of the total variation norm for (Xt, Yt)t≥0 solving (1.3) (in
this case the process (Xt, Yt)t≥0 is the so-called two-factor affine process) was investigated in
[2, 11] via the Meyn–Tweedie approach, and in terms of the L1-Wasserstein-type distance was
studied in [1] by employing the coupling argument (see [8] for the corresponding results for
general affine processes). The novelty of Theorem 1.1 is twofold.

First, (1.3) is universal and incorporates all the frameworks in [1, 2, 11]. Under Assumption
1.1, the drift term b(x) satisfies the dissipative condition only for large distances. Meanwhile,
under Assumption 1.2, the mapping γ (x, y) may also be dissipative for large distances (when
κ3 > 0) with respect to the second variable. Hence, all the frameworks in [1, 2, 11] satisfy
Assumptions 1.1 and 1.2. Therefore, to some extent, Theorem 1.1 improves the corresponding
results in [1, 2, 11]. In particular, Theorem 1.1 can yield the exponential ergodicity of the
process (Xt, Yt)t≥0 both in terms of the total variation norm (with respect to the first marginal)
and the L1-Wasserstein-type distance (when the distance between the second components is
large). Note that, according to Theorem 1.1, the process (Xt, Yt)t≥0 determined by

⎧⎨⎩dXt = (aXt − bX3
t ) dt + θ1X1/2

t dB(1)
t + θ2X1/α

t− dL(1,α)
t ,

dYt = (cXt + γ0(Yt) − dYt) dt + δ1X1/2
t dB(2)

t + δ2X1/β
t− dL(2,β)

t ,
(1.7)

with X0 = x ∈R+, Y0 = y ∈R, γ0(y) being a bounded and Lipschitz continuous function on
R, a, b, c, d > 0, and θ1, θ2, δ1, δ2 ≥ 0 satisfying θ1 + θ2 > 0 and δ1 + δ2 > 0, is exponentially
ergodic.

Second, the proofs of [1, 8] are based on the same coupling idea as the present paper.
However, the details for the construction of the coupling are quite different. In detail, reflec-
tion or synchronous coupling for the Brownian motion part and synchronous coupling for
the pure jump counterpart are employed in [1, 8], but here we apply reflection coupling for the
Brownian motion part and exploit the refined basic coupling for the pure jump part. The advan-
tage of our approach lies in that it does not depend on the order-preserving property enjoyed
by two-factor affine processes. Note that the arguments in [1, 8] cannot handle exponential
ergodicity for the SDE (1.3) (even for (1.7)) since the order-preserving property plays a crucial
role in [1, 8]. Besides, the exponential ergodicity of (Xt, Yt)t≥0 is addressed in [1, 8] under the
Wasserstein-type distance with the cost function ((x, y), (̃x, ỹ)) �→ |x − x̃| + |x − x̃|θ + |y − ỹ|
for θ ∈ (0, 1) (in particular θ = 1

2 is taken in [8]), while in Theorem 1.1 we take the cost
function ((x, y), (̃x, ỹ)) �→ 1{κ3>0,x 
=̃x} + |x − x̃| + |y − ỹ|2 ∧ |y − ỹ|. Since the cost functions
involved are different, the corresponding results in [1, 8] and Theorem 1.1 cannot be compared.
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1.2. Gruschin type processes

Suppose that the coefficients in (1.4) satisfy the following assumptions.

Assumption 1.3. There are constants λ1 > 0 and λ2, λ3 ≥ 0 such that, for all x, x̃ ∈R
m,

〈b(x) − b(̃x), x − x̃〉 ≤ λ2|x − x̃|2 and 〈b(x), x〉 ≤ −λ1|x|2 + λ3.

Assumption 1.4. There are constants κ1, κ2 > 0, l ≥ 1, and κ3 ≥ 0 such that, for all x, x̃ ∈R
m

and y, ỹ ∈R
n,

〈γ (x, y) − γ (̃x, ỹ), y − ỹ〉
≤ −κ1|y − ỹ|2 + κ2|y − ỹ|(1 ∧ |x − x̃|)(1 + |x|l + |̃x|l) + κ3|y − ỹ|21{|y−̃y|≤κ3}

and ‖σ (x) − σ (̃x)‖2 ≤ κ2(1 ∧ |x − x̃|)(1 + |x|l + |̃x|l) + κ3.

Theorem 1.2. Under Assumptions 1.3 and 1.4, the SDE given by (1.4) has a unique strong
solution (Xt, Yt)t≥0, and the process (Xt, Yt)t≥0 is exponentially ergodic in the sense that there
exist a unique invariant probability measure μ on R

m ×R
n and a constant η > 0 such that,

for all x ∈R
m, y ∈R

n, and t > 0, WV (P(t, (x, y), ·), μ) ≤ C0(x, y) e−ηt, where C0(x, y) > 0 is
independent of t, and

V(x, x̃, y, ỹ) := 1{κ3>0,x 
=̃x} + (1 ∧ |x − x̃|)(1 + |x|l + |̃x|l) + |y − ỹ|2 ∧ |y − ỹ|,
with κ3 as in Assumption 1.4.

Note that the Gruschin semigroup is a typical example of hypoelliptic semigroups. There
are a few regularity results concerning the Gruschin semigroups; see, for instance, [18, 19].
However, the long-time behavior of diffusions associated with Gruschin type semigroups is
unavailable.

Assumption 1.3 guarantees the existence of the Lyapunov function for the first component
(Xt)t≥0 and ensures that (Xt)t≥0 is exponentially ergodic, while Assumption 1.4 shows that
the function γ (x, y) may be dissipative for large distances with respect to the second variable
and of polynomial growth with respect to the first variable, and that the diffusion term σ (x)
is allowed to be of polynomial growth. We also note that under Assumption 1.3 the process
(Xt)t≥0 need not preserve the order property as the first component in the two-factor affine
processes.

2. Proofs of main results

We present the proofs of Theorems 1.1 and 1.2. For this, we first provide the general frame-
work to handle the exponential ergodicity for a class of Markov processes with interactions,
and then provide sufficient conditions for this general result. Some comments on extensions of
Theorems 1.1 and 1.2 are given at the end of the section.

2.1. A general result

The setting below is highly motivated by the SDE (1.2), but from the point of view of
the generator. Let (Xt, Yt)t≥0 be a strong Markov process on D ×R

n ⊂R
m+n := R

m ×R
n

such that (Xt)t≥0 itself is a strong Markov process on D, and, given (Xt)t≥0, (Yt)t≥0 is also
a strong Markov process on R

n. Let L be the generator of the process (Xt, Yt)t≥0. Then we
have Lf (x, y) = LXf (·, y)(x) + Lx,Y f (x, ·)(y), f ∈ D(L), where LX is the infinitesimal generator
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of the process (Xt)t≥0 and, for any fixed x ∈ D, Lx,Y is the generator of the process (Yt)t≥0 for
given (Xt)t≥0.

A measurable function f : D ×R
n →R belongs to the domain of the extended generator L

of the Markov process (Xt, Yt)t≥0 if there exists a measurable function F : D ×R
n →R such

that the process f (Xt, Yt) − ∫ t
0 F(Xs, Ys) ds, t ≥ 0, is well defined, and is an FX,Y -martingale

with respect to P(x,y) for any (x, y) ∈ D ×R
n. For any such pair (f , F), we write f ∈ D(L) and

Lf = F.
Suppose that

((
Xt, Yt

)
,
(
X̃t, Ỹt

))
t≥0 is a strong Markov coupling process of the pro-

cess (Xt, Yt)t≥0 such that
(
Xt, X̃t

)
t≥0 itself is a strong Markov process on D × D, and, for

given
(
Xt, X̃t

)
t≥0,

(
Yt, Ỹt

)
t≥0 is also a strong Markov process on R

n ×R
n. In particular,(

Xt, X̃t
)

t≥0 is a Markov coupling of the process (Xt)t≥0. Let L be the generator of the pro-

cess
((

Xt, Yt
)
,
(
X̃t, Ỹt

))
t≥0. Then, for any f ∈ D(L) (that is, f belongs to the domain of the

extended generator L, which is defined as D(L) above),

L f (x, x̃, y, ỹ) = LXf (·, ·, y, ỹ)(x, x̃) + Lx,̃x,Y f (x, x̃, ·, ·)(y, ỹ),

where LX is the generator of the coupling process
(
Xt, X̃t

)
t≥0 and Lx,̃x,Y is the generator of

the process
(
Yt, Ỹt

)
t≥0 for given

(
Xt, X̃t

)
t≥0. Since

((
Xt, Yt

)
,
(
X̃t, Ỹt

))
t≥0 is a strong Markov

coupling process of the process (Xt, Yt)t≥0, and
(
Xt, X̃t

)
t≥0 is a Markov coupling of the pro-

cess (Xt)t≥0, L is a coupling operator of L (that is, for any h((x, y), (̃x, ỹ)) = f (x, y) + g(̃x, ỹ)
with f , g ∈ D(L), L̃h((x, y), (̃x, ỹ)) = Lf (x, y) + Lg(̃x, ỹ)) and LX is a coupling operator of LX .
Hence, Lx,̃x,Y is also a coupling operator of the operator Lx,Y and L̃x,Y .

We impose the following assumptions on LX and Lx,̃x,Y , respectively.

Assumption 2.1. There are a constant λ1 > 0 and a sequence of distance-like functions (fk)k≥1
such that, for all k ≥ 1, fk ∈ D(LX) and

LXfk(x, x̃) ≤ −λ1fk(x, x̃), x, x̃ ∈ D with |x − x̃| ≥ 1/k. (2.1)

Assumption 2.2. There are a distance-like function g : Rn ×R
n →R+ with g ∈ D(Lx,̃x,Y ) for

all x, x̃ ∈ D, and constants λ2, λ3 > 0 such that, for any x, x̃ ∈ D with |x − x̃| ≥ 1/k and any
y, ỹ ∈R

n,
Lx,̃x,Yg(y, ỹ) ≤ −λ2g(y, ỹ) + λ3fk(x, x̃). (2.2)

Theorem 2.1. Under Assumptions 2.1 and 2.2, there are constants θ, η > 0 such that, for all
x, x̃ ∈ D, y, ỹ ∈R

n, and t > 0,

E
((x,y),(̃x,̃y))V

(
Xt, X̃t, Yt, Ỹt

) ≤ max{θ, θ−1}e−ηtV(x, x̃, y, ỹ), (2.3)

where E
((x,y),(̃x,̃y)) is the expectation of the process

((
Xt, Yt

)
,
(
X̃t, Ỹt

))
t≥0 starting

from ((x, y), (̃x, ỹ)), and V(x, x̃, y, ỹ) := f (x, x̃) + g(y, ỹ), x, x̃ ∈ D, y, ỹ ∈R
n with f (x, x̃) =

lim inf
k→∞ fk(x, x̃). Moreover, if both (x, x̃) �→ f (x, x̃) and (y, ỹ) �→ g(y, ỹ) satisfy the triangle

inequality in the weak sense (see (1.5) for more details), and, for any t > 0, x, x0 ∈ D, and
y ∈R

n,
E

xf (Xt, x0) +E
yg(Yt, 0) < ∞, (2.4)

then the process (Xt, Yt)t≥0 is exponentially ergodic under the quasi-distance WV , i.e. there
exist a unique invariant probability measure μ on D ×R

n such that, for all x ∈ D, y ∈R
n, and

t > 0, WV (P(t, (x, y), ·), μ) ≤ C0(x, y) e−ηt, where C0(x, y) > 0 is independent of t.
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Proof. For any k ≥ 1 and θ > 0, define Vk,θ (x, x̃, y, ỹ) = fk(x, x̃) + θg(y, ỹ) and
Vθ (x, x̃, y, ỹ) = f (x, x̃) + θg(y, ỹ) for x, x̃ ∈ D, y, ỹ ∈R

n. We claim that there exist constants
θ, η > 0 such that, for all x, x̃ ∈ D, y, ỹ ∈R

n, and t > 0,

E
((x,y),(̃x,̃y))Vθ

(
Xt, X̃t, Yt, Ỹt

) ≤ e−ηtVθ (x, x̃, y, ỹ). (2.5)

If (2.3) holds, then the first desired assertion (2.5) follows by the basic fact that

(1 ∧ θ )V(x, x̃, y, ỹ) ≤ Vθ (x, x̃, y, ỹ) ≤ (1 ∨ θ )V(x, x̃, y, ỹ), x, x̃ ∈ D, y, ỹ ∈R
n.

Now, since (x, x̃) �→ f (x, x̃) and (y, ỹ) �→ g(y, ỹ) satisfy the weak form of the triangle inequal-
ity in the sense of (1.5), ((x, y), (̃x, ỹ)) �→ V(x, x̃, y, ỹ) satisfies the weak form of the triangle
inequality, and so (P(D ×R

n),WV ) is a complete space. Thus, the second assertion is a con-
sequence of (2.5) by following the argument of [15, Corollary 1.8] and by taking the condition
(2.4) into consideration.

We first suppose that x = x̃. Since
(
Xt, X̃t

)
t≥0 is a Markov coupling of the process (Xt)t≥0

and f is a distance-like function, for any t > 0, x ∈ D, and y, ỹ ∈R
n,

E
((x,y),(x,̃y))Vθ

(
Xt, X̃t, Yt, Ỹt

) = θE((x,y),(x,̃y))g(Yt, Ỹt)

≤ θe−λ2tg(y, ỹ) = e−λ2tVθ (x, x, y, ỹ), (2.6)

where the inequality follows from (2.2) with x = x̃, i.e. Lx,x,Yg(y, ỹ) ≤ −λ2g(y, ỹ).
In the following, we show that (2.5) is still valid for the case x 
= x̃. Define the stopping time

TX = inf{t > 0 : Xt = X̃t}. By the strong Markov property and (2.6), we have

E
((x,y),(̃x,̃y))(Vθ

(
Xt, X̃t, Yt, Ỹt

)
1{TX≤t}

)
=E

((x,y),(̃x,̃y))
(

1{TX≤t}E
((

XTX ,y
)
,
(

XTX ,̃y
))

Vθ

(
Xt−TX , X̃t−TX , Yt−TX , Ỹt−TX

))
≤E

((x,y),(̃x,̃y))
(

1{TX≤t}e−λ2(t−TX )Vθ

(
XTX , X̃TX , YTX , ỸTX

))
.

This yields that, for any t > 0, x, x̃ ∈ D with x 
= x̃, and λ0 ∈ (0, λ2],

eλ0t
E

((x,y),(̃x,̃y))Vθ

(
Xt, X̃t, Yt, Ỹt

)
=E

((x,y),(̃x,̃y))
(

eλ0(t∧TX )Vθ

(
Xt∧TX , X̃t∧TX , Yt∧TX , Ỹt∧TX

)
1{TX>t}

)
+ eλ0t

E
((x,y),(̃x,̃y))

(
Vθ

(
Xt, X̃t, Yt, Ỹt

)
1{TX≤t}

)
≤E

((x,y),(̃x,̃y))
(

eλ0

(
t∧TX

)
Vθ

(
Xt∧TX , X̃t∧TX , Yt∧TX , Ỹt∧TX

)
1{TX>t}

)
+E

((x,y),(̃x,̃y))
(

1{TX≤t}eλ0TX Vθ

(
XTX , X̃TX , YTX , ỸTX

))
=E

((x,y),(̃x,̃y))
(

eλ0(t∧TX )Vθ

(
Xt∧TX , X̃t∧TX , Yt∧TX , Ỹt∧TX

))
.

Thus, (2.5) follows for the case x 
= x̃ if we can verify that there is a constant λ0 ∈ (0, λ2] such
that, for all t > 0 and y, ỹ ∈R

n,

E

(
eλ0(t∧TX )Vθ

(
Xt∧TX , X̃t∧TX , Yt∧TX , Ỹt∧TX

)) ≤ Vθ (x, x̃, y, ỹ). (2.7)
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Define the stopping time TX,k := inf
{
t > 0 : |Xt − X̃t| ≤ 1/k

}
, k ≥ 1. Since x 
= x̃, there

exists a constant k0 ≥ 1 sufficiently large such that |x − x̃| > 1/k0. On the other hand, choos-
ing θ ∈ (0, 1 ∧ (λ1/λ3)) and using (2.1) and (2.2), we have, for all k ≥ k0, x, x̃ ∈ D with
|x − x̃| ≥ 1/k, and y, ỹ ∈R

n,

LVk,θ (x, x̃, y, ỹ) ≤ −(
(λ1 − θλ3) ∧ θλ2

)
Vk,θ (x, x̃, y, ỹ).

Now let λ0 = η := (λ1 − θλ3) ∧ θλ2. Then, for any k ≥ k0, x, x̃ ∈ D with |x − x̃| ≥ 1/k0, y, ỹ ∈
R

n, and t > 0,

E
((x,y),(̃x,̃y))(eη(t∧TX,k)Vk,θ

(
Xt∧TY,n , X̃t∧TX,k , Yt∧TX,k , Ỹt∧TX,k

))
= Vk,θ (x, x̃, y, ỹ) +E

((x,y),(̃x,̃y))
∫ t∧TX,k

0
eηs(ηVk,θ

(
Xs, X̃s, Ys, Ỹs

) + LVk,θ
(
Xs, X̃s, Ys, Ỹs

))
ds

≤ Vk,θ (x, x̃, y, ỹ).

Consequently, (2.7) holds from the inequality above and Fatou’s lemma. The proof is therefore
completed. �

2.2. Proofs

The proofs of Theorems 1.1 and 1.2 are based on Theorem 2.1. For this, we need to provide
some explicit sufficient conditions to guarantee that Assumption 2.2 holds. First, we assume
that, for any x ∈ D and f ∈ C2

b(Rn),

Lx,Y f (y) = 〈∇f (y), γ (x, y)〉 + 1
2

〈∇2f (y), (σσ ∗)(x)
〉
HS

+
∫
Rn

(
f (y + z) − f (y) − 〈∇f (y), z〉1{|z|≤1}

)
ν(x, dz), (2.8)

where γ : D ×R
n →R

n, σ : D →R
n ⊗R

n, ν(x, dz) is a Lévy kernel on D × B(Rn) such that

∫
Rn

(|z|α0 ∧ |z|2) ν(x, dz) < ∞, x ∈ D, (2.9)

for some α0 ∈ (0, 1], ∇ (resp. ∇2) denotes the gradient operator (resp. the Hessian operator)
on R

n, and 〈·, ·〉 means the Hilbert–Schmidt inner product on R
n ⊗R

n.
Given the coupling

(
Xt, X̃t

)
t≥0, we adopt simultaneously the synchronous couplings for

the diffusion term and the pure jump term in the second component process (Yt)t≥0. For the
synchronous coupling of multidimensional diffusion processes, we refer to, e.g., [5, 7, 17]
for more details. With regard to the pure jump counterpart, the synchronous coupling is con-
structed via the following relationship (see, e.g., [6, Theorem 0.21] and [20, Section 3.1]): for
given x, x̃ ∈ D,

(y, ỹ) →

⎧⎪⎨⎪⎩
(y + z, ỹ + z), (ν(x, ·) ∧ ν (̃x, ·))(dz),

(y + z, ỹ), ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz),

(z, ỹ + z), ν (̃x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz).

https://doi.org/10.1017/jpr.2022.56 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.56


A class of Markov processes with interactions 473

Thus, the generator of the coupling above is given by

Lx,̃x,Y f (y, ỹ) = 〈∂1f (y, ỹ), γ (x, y)〉 + 〈∂2f (y, ỹ), γ (̃x, ỹ)〉
+ 1

2 〈∂11f (y, ỹ), (σσ ∗)(x)〉HS + 1
2 〈∂22f (y, ỹ), (σσ ∗)(̃x)〉HS

+ 〈∂12f (y, ỹ), (σσ ∗)(̃x)〉HS

+
∫
Rn

(
f (y + z, ỹ + z) − f (y, ỹ) − 〈∂1f (y, ỹ), z〉1{|z|≤1}

− 〈∂2f (y, ỹ), z〉1{|z|≤1}
)
(ν(x, ·) ∧ ν (̃x, ·))(dz)

+
∫
Rn

(
f (y + z, ỹ) − f (y, ỹ) − 〈∂1f (y, ỹ), z〉1{|z|≤1}

)
× (

ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)

+
∫
Rn

(
f (y, ỹ + z) − f (y, ỹ) − 〈∂2f (y, ỹ), z〉1{|z|≤1}

)
× (

ν (̃x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)
, (2.10)

where ∂11 (resp. ∂22) denotes the second-order gradient operator with respect to the first (resp.
second) variable, and ∂12 stands for the second-order gradient operator by taking gradient with
respect to the first component followed by doing so with respect to the second component.

Let
g0(r) = η(r)r2 + (1 − η(r))rα0, r ≥ 0, (2.11)

where α0 ∈ (0, 1] is introduced in (2.9) and η : [0, ∞) → [0, 1] is defined as

η(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, r ∈ [

0, 5
8

]
,

−30 · 45 · [ 1
5

(
r − 7

8

)5 + 1
8

(
r − 7

8

)4 + 1
48

(
r − 7

8

)3]
, 5

8 < r < 7
8 ,

0, r ≥ 7
8 .

A direct calculation shows that η ∈ C2(R+) and is decreasing. Moreover, it is easy to see that
g0 ∈ C2(R+) is an increasing function satisfying g0(r) ≤ rα0 for all r ≥ 0.

Proposition 2.1. Assume that Assumption 2.1 holds. Suppose further that there are constants
c∗

1 > 0 and c∗
2, c∗

3 ≥ 0 such that, for all k ≥ 1, x, x̃ ∈ D with |x − x̃| ≥ 1/k, and y, ỹ ∈R
n,

〈y − ỹ, γ (x, y) − γ (̃x, ỹ)〉 ≤ −c∗
1|y − ỹ|2 + c∗

2|y − ỹ|fk(x, x̃) (2.12)

and

‖σ (x) − σ (̃x)‖2 +
∫
Rn

(|z|2 ∧ |z|α0
)|ν(x, ·) − ν (̃x, ·)|(dz) ≤ c∗

3fk(x, x̃), (2.13)

where {fk}k≥1 is a sequence of distance-like functions given in Assumption 2.1. Then,
Assupmtion 2.2 holds, i.e. there are constants c1, c2 > 0 such that, for any k ≥ 1, x, x̃ ∈
D with |x − x̃| ≥ 1/k, and y, ỹ ∈R

n, Lx,̃x,Yg(y, ỹ) ≤ −c1g(y, ỹ) + c2fk(x, x̃), where g(y, ỹ) :=
g0(|y − ỹ|) with g0 given by (2.11).

Proof. According to the definition of the function g0, there exist constants c3 > 0 and c4 ≥ 1
such that

‖g′
0‖∞ + ‖g′′

0‖∞ ≤ c3, c−1
4 g′

0(r)r ≤ g0(r) ≤ c4g′
0(r)r, g′

0(r)/r ≤ c4, r ≥ 0. (2.14)
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From (2.10), we deduce that, for any k ≥ 1, x, x̃ ∈ D with |x − x̃| ≥ 1/k, and y, ỹ ∈R
n,

Lx,̃x,Yg0(|y − ỹ|) = g′
0(|y − ỹ|)
|y − ỹ| 〈y − ỹ, γ (x, y) − γ (̃x, ỹ)〉

+
[

g′′
0(|y − ỹ|)
2|y − ỹ|2 〈(y − ỹ) ⊗ (y − ỹ), 
(x, x̃)〉HS

+ g′
0(|y − ỹ|)
2|y − ỹ|

(‖σ (x) − σ (̃x)‖2

−〈(y − ỹ)/|y − ỹ|, 
(x, x̃)(y − ỹ)/|y − ỹ|〉HS
)]

+
∫
Rn

(
g0(|y + z − ỹ|) − g0(|y − ỹ|) − g′

0(|y − ỹ|)
|y − ỹ| 〈y − ỹ, z〉1{|z|≤1}

)
× (

ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)

+
∫
Rn

(
g0(|y − ỹ − z|) − g0(|y − ỹ|) − g′

0(|y − ỹ|)
|y − ỹ| 〈̃y − y, z〉1{|z|≤1}

)
× (

ν (̃x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)

=: �1 + �2 + �3 + �4,

where 
(x, x̃) := (σ (x) − σ (̃x))(σ (x) − σ (̃x))∗ ∈R
n ⊗R

n.
Due to (2.12) and (2.14), for any k ≥ 1, x, x̃ ∈ D with |x − x̃| ≥ 1/k, and y, ỹ ∈R

n,

�1 ≤ g′
0(|y − ỹ|)(−c∗

1|y − ỹ| + c∗
2fk(x, x̃)

) ≤ −c5g0(|y − ỹ|) + c6fk(x, x̃)

holds with some constants c5, c6 > 0. Using the fact that the matrix 
 is non-negative definite,
and (2.13) as well as (2.14), we find that there is a constant c7 > 0 such that, for any k ≥ 1,
x, x̃ ∈ D with |x − x̃| ≥ 1/k, and y, ỹ ∈R

n, �2 ≤ c7fk(x, x̃). Furthermore, we can derive that, for
any k ≥ 1, x, x̃ ∈ D with |x − x̃| ≥ 1/k, and y, ỹ ∈R

n,

�3 ≤ c8fk(x, x̃) (2.15)

holds with some constant c8 > 0. Indeed, by using g0(r) ≤ rα0 for r ≥ 0, g0(r) = rα0 for r ≥ 1,
and the fact that (a + b)α0 ≤ aα0 + bα0 for all a, b ≥ 0, we find that, for any y, ỹ ∈R

n with
|y − ỹ| ≥ 2 and any z ∈R

n,

g0(|y + z − ỹ|) − g0(|y − ỹ|) ≤ |y + z − ỹ|α0 − |y − ỹ|α0 ≤ |z|α0 .

Then, for any k ≥ 1, x, x̃ ∈ D with |x − x̃| ≥ 1/k, and any y, ỹ ∈R
n with |y − ỹ| ≥ 2, according

to the mean value theorem, we have

�3 =
∫

{|z|≤1}

(
g0(|y + z − ỹ|) − g0(|y − ỹ|) − g′

0(|y − ỹ|)
|y − ỹ| 〈y − ỹ, z〉

)
× (

ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)

+
∫

{|z|>1}
(
g0(|y + z − ỹ|) − g0(|y − ỹ|))(ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)

)
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≤ ‖g′′
0‖∞
2

∫
{|z|≤1}

|z|2(ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)

+
∫

{|z|>1}
|z|α0

(
ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)

)
≤ c9

∫
Rn

(|z|2 ∧ |z|α0
) (

ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)

for some constant c9 > 0. On the other hand, for any k ≥ 1, x, x̃ ∈ D with |x − x̃| ≥ 1/k, and
any y, ỹ ∈R

n with |y − ỹ| ≤ 2, by the mean value theorem again, we have

�3 =
∫

{|z|≤1}

(
g0(|y + z − ỹ|) − g0(|y − ỹ|) − g′

0(|y − ỹ|)
|y − ỹ| 〈y − ỹ, z〉

)
× (

ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)

+
∫

{|z|>1}
(
g0(|y + z − ỹ|) − g0(|y − ỹ|))(ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)

)
≤ ‖g′′

0‖∞
2

∫
{|z|≤1}

|z|2(ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)

+
∫

{|z|>1}
(2 + |z|)α0

(
ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)

)
≤ c10

∫
Rn

(|z|2 ∧ |z|α0
) (

ν(x, dz) − (ν(x, ·) ∧ ν (̃x, ·))(dz)
)

for some constant c10 > 0. Combining both estimates above with (2.13) yields (2.15).
Similarly, there exists a constant c11 > 0 such that �4 ≤ c11fk(x, x̃).

Therefore, the desired assertion follows from all the estimates for �i (1 ≤ i ≤ 4). �

Now, we are in a position to present the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. According to [9, Theorem 5.6], under Assumption 1.1 the first SDE
in (1.3) has a unique strong solution (Xt)t≥0 taking values in R+. Once (Xt)t≥0 is available, the
second SDE in (1.3) also has a unique strong solution (Yt)t≥0 since Assumption 1.2 yields that
the coefficient γ (x, ·) satisfies the one-sided Lipschitz condition; see, e.g., [10, Theorem 1] or
[16, Theorem 1.1]. Therefore, the SDE (1.3) has a unique strong solution (Xt, Yt)t≥0. We can
also follow the proof of [2, Theorem 2.2] (which only considers the affine two-factor models
but works for general cases) to directly construct the strong solution to the SDE (1.3) with the
aid of the Itô formula.

We split the proof into two cases.
Case (i): κ3 = 0. For the first component process (Xt)t≥0, we consider the Markov cou-

pling
(
Xt, X̃t

)
t≥0, where (X̃t)t≥0 is constructed by applying the coupling by reflection for the

Brownian motion and the refined basic coupling (see, e.g., [14]) for the spectrally positive
stable process. Roughly speaking, the refined basic coupling is a revised version of the clas-
sical maximal coupling which will couple two marginal processes to meet together with half
of the biggest jump intensity but fully adopt for the characterization of Lévy jumps. Then,
it is seen from the proof of [12, Theorem 3.1] that, under Assumption 1.1, Assumption 2.1
holds for fk(x, x̃) = f0(|x − x̃|) for all x, x̃ ∈R+ with |x − x̃| ≥ 1/k, where the explicit expres-
sion for f0, satisfying c1r ≤ f0(r) ≤ c2r for some c2 ≥ c1 > 0, is given in [12, (4.2)]. (That is,
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in this case we can choose fk(x, x̃) = f0(|x − x̃|) independent of k.) For the second component
process (Yt)t≥0, we adopt simultaneously the synchronous couplings for the diffusion term
and the pure jump term. Then, we can see that the coupling process

(
(Xt, Yt),

(
X̃t, Ỹt

))
t≥0 has

the strong Markov property. Moreover, in this case, σ (x) = δ1x1/2 and ν(x, dz) = δ
β

2 xνβ (dz) in
(2.8), and (2.9) is satisfied with α0 = 1. In particular, by Assumption 1.2, (2.12) and (2.13) hold
with fk(x, x̃) = f0(|x − x̃|) as mentioned above. Indeed, when κ3 = 0, by (1.6) we know that, for
all x, x̃ ∈R+ and y, ỹ ∈R,

(γ (x, y) − γ (̃x, ỹ))(y − ỹ) ≤ −κ1(y − ỹ)2 + κ2|(x − x̃)(y − ỹ)|
≤ −κ1(y − ỹ)2 + κ2c−1

1 |y − ỹ|f0(|x − x̃|)
= −κ1(y − ỹ)2 + κ2c−1

1 |y − ỹ|fk(x, x̃).

Therefore, according to Proposition 2.1, Assumption 2.2 is satisfied with fk(x, x̃) = f0(|x − x̃|)
and g(y, ỹ) = g0(|y − ỹ|), with g0 given by (2.11).

Now let V(x, x̃, y, ỹ) = |x − x̃| + |y − ỹ| ∧ |y − ỹ|2, x, x̃ ∈R+, y, ỹ ∈R. It is clear that there
are constants 0 < c3 ≤ c4 such that, for all x, x̃ ∈R+ and y, ỹ ∈R,

c3(f0(|x − x̃|) + g0(|y − ỹ|)) ≤ V(x, x̃, y, ỹ) ≤ c4(f0(|x − x̃|) + g0(|y − ỹ|)),
and (y, ỹ) �→ |y − ỹ| ∧ |y − ỹ|2 satisfies the weak form of the triangle inequality. On the other
hand, due to α, β ∈ (1, 2), we can see from the Itô formula that, for all t > 0 and x, y ∈R+,
E

(x,y)(|Xt| + |Yt|) < ∞; see, e.g., the proof of [9, Proposition 2.3]. Therefore, the desired
assertion follows from Theorem 2.1.

Case (ii): κ3 > 0. For the first component process (Xt)t≥0, we still apply the coupling
by reflection for the Brownian motion and the refined basic coupling for the spectrally
positive stable process. Suppose that Assumption 1.1 holds. According to the proof of
[12, Theorem 3.2], there are a constant λ1 > 0 and a bounded, nondecreasing, and concave
continuous function f ∗

0 such that Assumption 2.1 holds for fk(x, x̃), where fk(x, x) = 0 and
fk(x, x̃) = 1 + f ∗

0 (|x − x̃|) + f0(|x − x̃|) for all x, x̃ ∈R+ with |x − x̃| ≥ 1/k. Here, f0 is the same
function taken in the case κ3 = 0 (i.e. from [12, (4.2)]). We consider the same coupling for
the second component process (Yt)t≥0 as in the case κ3 = 0. Recall that σ (x) = δ1x1/2 and
ν(x, dz) = δ

β

2 xνβ (dz) in (2.8), and that (2.9) is satisfied with α0 = 1. Then, by Assumption 1.2,
for x, x̃ ∈R+ with |x − x̃| ≥ 1/k and y, ỹ ∈R,

(γ (x, y) − γ (̃x, ỹ))(y − ỹ) ≤ −κ1(y − ỹ)2 + κ2|(x − x̃)(y − ỹ)| + κ3|y − ỹ|21{|y−̃y|≤κ3}
≤ −κ1(y − ỹ)2 + c5|y − ỹ|fk(x, x̃),

and (2.13) holds as well since fk(x, x̃) ≥ f0(|x − x̃|) for all x, x̃ ∈R+ with |x − x̃| ≥ 1/k. Hence,
by Proposition 2.1, Assumption 2.2 is satisfied with fk(x, x̃) and g(y, ỹ) = g0(|y − ỹ|), with g0
given by (2.11).

Note that there is a constant 0 < c6 ≤ c7 such that, for all x, x̃ ∈R+,

c61{x 
=̃x}(1 + |x − x̃|) ≤ lim
k→∞ fk(x, x̃) ≤ c71{x 
=̃x}(1 + |x − x̃|).

With this at hand, the desired assertion follows by similar arguments to Case (i). �

Proof of Theorem 1.2. Following the argument at the beginning of the proof of Theorem 1.1,
we can see that the SDE (1.3) has a unique strong solution (Xt, Yt)t≥0 under Assumptions 1.3
and 1.4.
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In the first place, we consider the case κ3 = 0. For the first component process (Xt)t≥0,
we will directly apply the reflection coupling. Then, according to Assumption 1.3 and
[7, Theorem 2.2], we know that Assumption 2.1 holds for fk(x, x̃) = f (x, x̃) for all x, x̃ ∈R+
with |x − x̃| ≥ 1/k, where f (x, x̃) satisfies

c1(1 ∧ |x − x̃|)(1 + |x|l + |̃x|l) ≤ f (x, x̃) ≤ c2(1 ∧ |x − x̃|)(1 + |x|l + |̃x|l)
for any l > 0 with c1, c2 > 0; see [7, Remark 2.1 and Assumption 2.4] for more details. For
the second component process (Yt)t≥0, we adopt the synchronous coupling. It is clear that the
coupling process ((Xt, Yt),

(
X̃t, Ỹt

)
)t≥0 enjoys the strong Markov property, and that (2.12) and

(2.13) hold under Assumption 1.4. Note that (x, x̃) �→ (1 ∧ |x − x̃|)(1 + |x|l + |̃x|l) satisfies the
weak form of the triangle inequality. Then, following the argument at the end of the proof of
Theorem 1.1, we can obtain the desired assertion by invoking Proposition 2.1 and Theorem 2.1.

Next, we turn to the case κ3 > 0. Then, we can follow the arguments in Case (ii) of the proof
of Theorem 1.1 and apply [7, Theorem 2.1] (instead of [7, Theorem 2.2]). Since the details are
similar to those for the proof of Theorem 1.1, we omit them here. �

Finally, we give a remark on the extension of Theorems 1.1 and 1.2.

Remark 2.1. According to [12, Theorem 3.1] and the proof of Theorem 1.1, we can consider
more general two-factor type processes by replacing the first component process in the SDE
(1.3) by a class of continuous-state nonlinear branching processes as studied in [12]. Similarly,
by [13, Sections 2.2 and 2.3] and the proof of Theorem 1.1, we can consider more general
Gruschin type processes by replacing the Brownian motion with general Lévy noise.
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