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THE CONVERGENCE OF SERIES FOR VARIOUS
CHOICES OF SIGN IN BANACH SPACES

JAMES SHIREY

1. Let (x,, X,) denote a basis for a Banach space (X, || - ||) of measurable
functions in (0, 1).
It is shown in [2] and [9] that the equivalence of the norms

1S X2 )t

and || - || is equivalent to the unconditionality of the basis (x,, X,). In [8] a
weaker relationship between these norms is exploited to establish the existence
of an element of L,(E) for each E C (0, 1), |E| > 0, whose Haar series expan-
sion is conditionally convergent in the norm of L;(E).

In this note, a Lemma of Orlicz [7] is generalized to provide a relationship
between || (59,2}, ¥» € X, and the changes in sign that are tolerated in
> ¢, without disruption of norm convergence. Some applications to the Haar
and Walsh systems are given.

Givenaset H C L(0,1) of non-negative functions, define for each measurable
real-valued function x on (0, 1),

llxll = sup {];l lx@)h(t)|dt: b € H} , and

X = {x:||x]] < 0}.

The functional || - || is said to have the ‘‘Fatou property’’ whenever it follows
from 0 < u; £ u2 £ ... 7 u, with all u, measurable, that ||u,|| T ||#||. In all
that follows we assume that || - || has the Fatou property, which guarantees
the norm-completeness of (X, || -||) [10, Chapter 15]. This may be ensured
by less stringent conditions on || - ||, but the Fatou property is easy to verify
in cases and pertains to most of the important examples. In [5, p. 66] various
conditions on H are listed whose fulfillment causes || - || to have this property.

Given a space (X, || - ||) of the type described above and a series x = Y x,
x, € X,define G(x) = ||(XFx2)?||and C(x) = {6: XT7:(6)x, converges in || - ||}
where {r;} denotes the Rademacher system.

If |[C(x)| = 0 (= 1), then the series > Tx; is said to ‘‘diverge (respectively
converge) for almost every choice of sign”’. The obvious justification for such
terminology is the possibility of obtaining any desired choice of signs in the
series ) T = x; by a proper selection of 6 in > T7;(6)x,.

Received November 6, 1973 and in revised form, March 26, 1974.
475

https://doi.org/10.4153/CJM-1975-056-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-056-2

476 JAMES SHIREY
2. THEOREM 1. Let x = Y Tx; be convergent in (X, || - ||). If |C(x)| > 0, then
G(x) < o0.

Remarks. This result was given by Orlicz [7] for the ‘“Orlicz spaces’” under
the assumption that C(x) = [0, 1], and in [9] for the Banach function spaces
of the type defined above under the same assumption. Gelbaum [2] has shown
that |C(x)| = 1 through the use of the 0 — 1" law, provided that |C(x)| > 0.

Proof of Theorem 1. It is easily verified that C(x) is a Borel set (see, for
example, the proof of Theorem 6 in [8]) and that there exists a Borel set
S C C(x),|S] > 0,and an M > 0 such that

(1) || 72(@)xl| < M forall n,m > 0 and all € S.

In reference to Lemma 4 of [8], there exist constants A and N depending
only on the set .S such that

A(Z; xiz(t))llzh(t) < fs ; xn(zf)rn(o)h(t),do

forany ¢t € (0,1),h € Hyand n > N.
Integrate this inequality with respect to ¢ and reverse the order of integra-
tion on the right-hand side. This yields

2) 4 fol(Z:: xf(t))mh(t)dt < fs[fol

where n > Nand h € H.
Combine inequalities (1) and (2):

A fol (; x12(t))1/2h(t)dt =M fsdo = M|S|.

It follows that G(x) = |[(XTx.2)?|| is finite.

n

ZNj X ()72 (01 (1) ‘dt]da

CoRrOLLARY 1. Let (x,, X,) be a sequence of elements of X and of continuous
linear functionals, respectively, such that x = Y X, (x)x, for all x in X.

If |C(x)| > 0 for each x in X, there exists a constant A > 0 such that G(x) <
Allx|| for all x in X.

Proof. Theorem 1 implies that G(x) < o for each x in X. It is now not hard
to verify that (X, ||-|| + G(-)) is a Banach space (one may employ the
notions in [10, Chapter 15] in lieu of a direct computation). The natural
embedding (X, ||- || + G(-)) = (X, || - ||) is thereby a one-one and onto
map of Banach spaces. By the open mapping theorem, there then exists B > 0
such that

[lx|]| + G(x) = Bl|x|| for all x in X,

which proves the corollary.
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We remark that in Corollary 4 below it is shown that this need not imply
the equivalence of G(-) and || - ||. Were this the case, (x,, X,) would be an
unconditional basis [9].

Example. We construct an element of L;(0, 1) whose Haar series expansion
diverges in the L;-norm for almost every choice of signs.

Let {%,,} be the usual enumeration of the Haar system in which the support
of hy,is adjacent to “‘0”", and let f = 3T 2%k~ &y, To see that this series actually
converges in L,, estimate

1

J,

by partitioning the unit interval into the subintervals on which the integrand

is constant and than add up the integrals on each subinterval. This gives
m—n—1 Jjm_p onts(n + 5)~!

+ S 2 2 = 1)~ — S5 2 ()]

=o(1) + 3 27o(n + )7 (1 — 27 275)

=0(1) +>Xm2™m+7r)' = 0o(l) + nt X027

= o(1).

dt

> 2 F hy(t)

Hence, the series converges in L;.
To show that f has the desired property it is sufficient by Theorem 1, to
show that G(f) = oo.

G(f) = 27 XF 27 ()}
> 21372 (Sidkn—t)R
= 271372 Y92 (4 — 4)¢
=34 Y2 (40 — 1)
= 00 ,

which completes the example.

It is not such an easy matter to find an example of an element of L,(E),
|E| > 0, having the same property. Nevertheless, the results above entail the
existence of such functions.

CoOROLLARY 2. For any E C (0, 1), |E| > 0, there exists an f in L,(E) whose
Haar series expansion diverges in the norm of Li(E) for almost every choice of
sign. Such functions constitute all of L,(E) with the exception of a set of first
category.

Proof. In the proof of Theorem 9 of [8] it is demonstrated that the norm in
L,(E) defined by

G( : ) = fE lz (hnpy : )2hnp2(t) ai
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is not dominated by the norm of L,(E). By Corollary 1 this establishes the
existence of the desired functions.

Let X = {f: fisin L,(E) and G(f) < w0}, and let || - || denote the L,(E)
norm. As noted in the proof of Corollary 1, (X, || - || + G(-)) is a Banach
space continuously embedded in L,(E). This embedding has just been shown
to be non-surjective, so the image of X must be of the first category in L,(E).

Thus, for each f in Li(E)\X, G(f) = o, and the conclusion follows from an
application of Corollary 1.
As a partial converse of Theorem 1:

THEOREM 2. Given: a formal seriesx = Y 5 x;0f elements of L,(E), E C (0,1),
|E| >0,1 £p <.

If G(x) < 00, then there is an increasing sequence {n;} of positive integers such
that the sequence 3 1ir:(0)x, converges in the norm of L, for almost every 6.

Proof. The Khintchine Inequality [3] implies the existence of a B > 0 for

which
[ 13 nomof wzs(5 wo)”

Integrate this inequality with respect to ¢ and change the order of integra-
tion. This gives

j:)l (fE Z:L: 7 (0)xx (¢)

There is then an element g of L,([0, 1] X [0, 1]) for which

fol (fE i @0 — £0,0|

It follows that there is an increasing sequence {n;} of positive integers such
that for almost every 6,

J,

which proves the theorem.

pdt) d9 = o(1).

dt) 9 = o(1).

ni

3 @m0 - 0.0 dt = o),

CoRrOLLARY 3. Let {x;, x*} be a basis for L,(E), and let x € L,(E). If
G(x) < o0, then |C(x)| = 1.

Proof. Let x(n, m, 0,t) = 3 2r.(0)x;*(x)x:(¢). By Theorem 2 there is a set S,
|S| = 1, such thatif 6 € S, thereisa g(8, - ) in L,(E) for which

*) fF le(1, nz, 0, 8) — g(6,¢)|]” dt = o(1).
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For each pair of positive integers #» and m, n > m, define
ny=min {n : n, = n}, m; = max {n : n, < mj,
and let K denote the norm of the given basis. Then

||x(m, n, 0, - )Hp = Kllx(mv ng 0, - )”P

< Klx(my n5, 8, llp + Kllwni,m — 1,6, )1,
< (K + K?)||x(mq, n4, 6, )],

for almost every 6. (*) implies that the last term tends to 0 as m and # tend to
o0, which proves the corollary.

The following corollary is an immediate consequence of Theorem 1 and
Corollary 3.

COROLLARY 4. Let 3 Ty, be a Schauder basis expansion of an element of L,(E),
[E| > 0,1 = p < 0.

Then the series 3, & vy, converges (diverges) in L,(E) for almost every choice of
sign if and only if [|(Xy )|, < o (= ).

The orthonormal system of Walsh is known to be a basis for each reflexive
L,(0, 1) space [6]. When G( - ) as defined in § 1 is formed with respect to this
system, G(f) turns out to be the /;-norm of the coefficient sequence in the Walsh
expansion of fin L,(0, 1). This fact is used to establish the following corollary.

CoRrOLLARY 4. (I) For 2 < p < o, the Walsh Series expansion of any element
of L,(0, 1) is norm convergent for almost every choice of sign. However, the Walsh
system 1s a conditional basis for L,(0, 1).

(IT) For 1 = p £ 2, the Walsh Series expansion of any element of L,(0, 1) 1s
unconditionally convergent if f is also in L2(0, 1). Otherwise, the series diverges
for almost every choice of sign.

Proof. For any given fin L,(0, 1), f = > (W, f)W,; where {W;} denotes
the Walsh system. Since W,;(t) = £1,G(f) = (Z (Wi, f)?): Letf € L,(0,1)
for 2 < p < 0. Then f € Ly(0, 1) as well, and so G(f) < . By Theorem 2,
S (W, f)W; converges for almost every choice of sign.

If p # 2, then L,(0, 1) ¢ Ly(0, 1) and the norms G( - ) and || - ||, are not
equivalent. This implies by [2] or [9] the conditionality of the Walsh system
as a basis for L,(0, 1). (A much more general statement can be made. See, for
example, Corollary 9 of [4]).

Letf € L,(0,1)for1 < p < 2.Since||- ||, =] - ||z, the Walsh expansion of
f is unconditionally convergent of f € Ly(0, 1). Otherwise, G(f) = o and an
application of Theorem 1 establishes (II).

Finally, we remark that for 2 < p < co similar considerations would show
any L,-convergent trigonometric series to be L,-convergent for almost every
choice of sign.
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