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On Motivic Realizations of the Canonical
Hermitian Variations of Hodge Structure of
Calabi-Yau Type over type D" Domains

Zheng Zhang

Abstract. Let D be the irreducible Hermitian symmetric domain of type D, . There exists a canoni-
cal Hermitian variation of real Hodge structure Vg of Calabi-Yau type over D. This short note con-
cerns the problem of giving motivic realizations for V. Namely, we specify a descent of Vi from R
to Q and ask whether the Q-descent of Vi can be realized as sub-variation of rational Hodge struc-
ture of those coming from families of algebraic varieties. When n = 2, we give a motivic realization
for Vg. When n > 3, we show that the unique irreducible factor of Calabi-Yau type in Sym? Vg can
be realized motivically.

Introduction

Let D be a period domain, that is, a classifying space for polarized Hodge structures
of weight n with Hodge numbers {h?1} for p + g = n. It has been known since
Griffiths’ pioneering work that any variation of Hodge structure coming from a fam-
ily of algebraic varieties is contained in a horizontal subvariety of D (i.e., an integral
manifold of the differential system corresponding to Griffiths transversality). More-
over, if a closed horizontal subvariety is semialgebraic (cf. [FL13, Definitions 1.1-1.2]),
then it is an unconstrained Mumford-Tate domain (and hence a Hermitian symmet-
ric domain) whose embedding into D is equivariant, holomorphic, and horizontal
(see [FL13, Theorem 1.4]). It is thus of interest to study the following horizontal sub-
varieties of D.

Definition ([FL13, Definition 2.1]) We say a horizontal subvariety D < D is of
Hermitian type if D is a Hermitian symmetric domain embedded into D via an equi-
variant, holomorphic, horizontal embedding. When D c D is of Hermitian type, the
induced variation of Hodge structure V on D is called a Hermitian variation of Hodge
Structure.

The Hermitian variations of Hodge structure are those parameterized by Hermit-
ian symmetric domains considered by Deligne [Del79]. Also, when D is irreducible, a
subvariety D c D of Hermitian type is the same thing as a Mumford-Tate subdomain
that is unconstrained (see [GGKI2, p. 12]).
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Remark  The irreducible Hermitian symmetric domains are classified by pairs
(R, as), where R is a connected Dynkin diagram and « is a special node of R (see
[Del79, 1.2.6]). We use these pairs to denote the isomorphism classes of irreducible
Hermitian symmetric domains.

We shall be especially interested in Hermitian variations of Hodge structure of
the following two special types: abelian variety type and Calabi-Yau type. Hermitian
variations of Hodge structure of abelian variety type give families of abelian varieties
over the corresponding Hermitian symmetric domains. They have been classified by
Satake [Sat65] and Deligne [Del79] (see also [Mill3, Chapter 10]). Following [FL13],
we define Hodge structures of Calabi-Yau type as follows.

Definition ([FL13, Definition 2.3]) A Hodge structure V of Calabi-Yau (CY) type is
an effective weight n Hodge structure such that V™ is I-dimensional. If n = 2, we
say that V is of K3 type.

Let D be a classifying space of certain polarized Hodge structures of CY type.
The horizontal subvarieties D c D of Hermitian type induce Hermitian variations
of Hodge structure of CY type over D. Examples of Hermitian variations of Hodge
structure of CY type were constructed by by Gross [Gro94] (over tube domains) and
Sheng-Zuo [SZ10] (over non-tube domains). Based on these, Friedman and Laza
[FL13] classified Hermitian CY variations of real Hodge structure. In this note we
mainly consider the tube domain cases. As discussed in [Gro94, Sections 1, 2, and 8]
and [FLI3, Section 2], there are six types of irreducible Hermitian symmetric domains
of tube type:

(AZn—lr an): (Brn “1)) (Cn> “n); (Dﬂj’ al)a (Dgﬂnr “271)’ (E7’ “7)-

Over every irreducible tube domain D there exists a canonical R-variation of Hodge
structure Vg of CY type (which descends to a Q-variation of Hodge structure up to
some choices). Any other irreducible R-variation of Hodge structure of CY type over
D can be obtained from the canonical Vg by taking the unique irreducible factor of
Sym® Vg of CY type. Note that the canonical R-variations of Hodge structure over
type B and D® domains all have weight 2 (i.e., they are of K3 type) and are less inter-
esting to us.

Hermitian symmetric domains are universal coverings of connected Shimura vari-
eties that parameterize certain abelian varieties. It is a natural problem to investigate
the possibility of constructing Hermitian variations of Hodge structure of CY type
from families of abelian varieties. The case for the (C,, a,,) domains is classical and
well known. One can simply take the middle cohomology of abelian n-fold, which
will contain a Hodge structure of CY type. At the other extreme, Satake and Deligne
showed that there is no variation of Hodge structure of abelian variety type over
(E7, a7). Thus, the canonical variation of Hodge structure of CY type over (E7, a7)
cannot come from variations of Hodge structure of abelian variety type. The case
when the domain is of type A has been discussed in [Zhal5]. Specifically, certain Q-
descents of the canonical CY variations over type A tube domains can be realized as
sub-variations of Hodge structure of certain Q-variations of Hodge structure that are
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naturally associated with families of abelian varieties of Weil type (or generalized Weil
type in the presence of nontrivial real multiplication).

The goal of this short note is to prove the following theorem concerning the re-
maining DY case.

Main Theorem  Let D be the irreducible Hermitian symmetric domain (D3, 02,)
that has real rank n.

(i) When n = 2, there exist two families of abelian 8-folds my: Ay - D and m: Ay —
D such that R'm;,Q ®g R'72.Q contains a Hermitian Q-variation of Hodge structure
V of K3 type. Moreover, V ®q R is isomorphic to the canonical CY variation of real
Hodge structure (which has weight 2) over D.

(ii) When n > 2, there exists a family of abelian 4n-folds m: A — D over D such
that R*" 71, Q contains an irreducible Hermitian Q-variation of Hodge structure V' of
CY type. Moreover, V' ®q R is isomorphic to the unique irreducible factor of CY type in
Sym? Vi where Vg is the the canonical R-variation of Hodge structure of CY type over
D (n.b. Vg is of weight n).

Remark  Let'V be a Hermitian QQ-variation of Hodge structure of CY threefold type
over (D, a6 ) with V®gR the canonical CY R-variation of Hodge structure. By [FL13,
Corollary 3.8], the generic endomorphism algebra of V is Q. One could consider the
more general situation when the generic endomorphism algebra is an arbitrary totally
real field. The issue is V will then be over Hermitian symmetric domains of mixed type
D (¢f. [FL13, Theorem 3.18]) over which there is no variation of Hodge structure of
abelian variety type (¢f. [Mill3, p. 532]).

Remark  Over Hermitian symmetric domains of type D™, one important reason
why the rank 2 case is distinguished from the higher rank cases is that there are two
different symplectic nodes for the rank 2 case, while there is only one for the higher
rank cases (cf. [Mill3, pp. 529-530]). This fact was also noted and used by Abdulali to
solve a quite different problem (cf. [Abd02]).

Also, in the higher rank cases, one has to quotient out the kernel of @, (viewed as a
character) from the simply connected groups of D* type to obtain faithful symplectic
representations (i.e., Hodge representations giving variations of Hodge structure of
abelian variety type, see [Mill3, p. 530 and Theorem 10.21]). More specifically, we
should view these faithful representations as representations of the groups SO* (cf.
[Mil94, Remark 1.22]).

Remark  In part (ii) of the Main Theorem, we only realize the Q-descents of
Sym?® Vg (not the canonical V) when the rank of D is bigger than or equal to 3.
For some representation-theoretic reasons, this is the best our constructions can do.
See Remark 3.5.

After reviewing some background materials on Hermitian symmetric domains,
Hodge representations, and the groups Spin* and SO* in Section 1, we prove the Main
Theorem for the rank 2 case and higher rank cases in Section 2 and Section 3, respec-
tively. The constructions for these two cases are different, but the ideas of the proof
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are quite similar and were also used in [Zhal5]. Specifically, to give a Hermitian vari-
ation of Hodge structure it suffices to give a Hodge representation. In this way one
reduces the problem of constructing a sub-variation of Hodge structure to the prob-
lem of constructing a subrepresentation. Another key step is to prove the rationality of
certain representations (e.g, the half-spin representations) using representation the-
ory and the ideas from [FL14]. We hope that our motivic realizations give a hint as to
how to construct families of Calabi-Yau varieties over Hermitian symmetric domains
(geometric realizations). For example, the families of abelian varieties we construct
can also be obtained (up to isogeny) as certain Prym varieties associated with quater-
nionic covers of some algebraic curves (¢f. [vGV03]). We wonder if it is possible to
construct Calabi-Yau varieties out of these quaternionic covers.

1 Preliminaries

1.1 Hermitian Variations of Hodge Structure and Hodge Representations

In this subsection, we collect some basic facts on Hermitian variations of Hodge struc-
ture. The emphasis will be on Hermitian symmetric domain of type D™ and Hermit-
ian variations of Hodge structure of abelian variety type and of CY type. The general
references include [Mill3, GGK12, Kerl4].

Let D = G(R)/K be an irreducible Hermitian symmetric domain (where G is the
almost simple and simply connected R-algebraic group associated with D and K is a
maximal compact subgroup of G(R)). Recall that irreducible Hermitian symmetric
domains are classified by the root system R of G(C) together with one of its spe-
cial roots a;. In particular, an irreducible Hermitian symmetric domain of type D5,
(n.D. it has real rank n) corresponds to the pair (D,,, a3, ) and the associated sim-
ply connected algebraic group is Spin”* (4n) (cf. [Gro94, Section 1]). After choosing
a suitable arithmetic subgroup of Hol(D), we may also assume that the associated
algebraic group G is defined over Q (¢f. [Mill3, Theorem 3.13]).

To give a Hermitian Q-variation of Hodge structure over D, one needs to construct
arepresentation p: G - GL(V') defined over Q and a compatible polarization Q on V
such that p(V) ¢ Aut(V, Q). As explained in [GGKI12, Step 4 of (IV.A)], a compatible
polarization typically exists and is unique. Also, without loss of generality, one can
assume that p is irreducible over Q.

We recall the following theorem of Deligne (see also [FLI13, Section 2.1.1]). The
necessary and sufficient conditions for p: G — GL( V) together with a reference point
¢:U(1) - G (where G = G/Z(G) is the adjoint group) to give a Hermitian variation
of Hodge structure are as follows: there exists a reductive algebraic group M ¢ GL(V)
defined over Q (the generic Mumford-Tate group of the variation of Hodge structure)
and a morphism of algebraic groups h:S — Mg € GL(Vk) (S = Resc/rG ) such that

(a) the homomorphism h defines a Hodge structure on V;
(b) the representation p factors through M and p(G) = Mer;
(c) the induced map h:S/G,, - M,k = G is conjugate to ¢: U(1) » G.

Remark (i) Following [GGKI2], we call p a Hodge representation.
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(ii) Asmentioned in [FL13, Section 2.1.1], for variations of Hodge structure of pure
weight it suffices to consider the restrictions H = MNSL( V') (thought of as the generic
special Mumford-Tate group or the generic Hodge group) and h|yy: U(1) — Hg.

(iii) Subrepresentations of V correspond to sub-Hermitian variations of Hodge
structure and operations on representations correspond to the same operations on
Hermitian variations of Hodge structure.

Satake [Sat65] and Deligne [Del79] (especially Table 1.3.9) classified Hodge repre-
sentations of abelian variety type (see also [Mill3, Chapter 10]). Based on the earlier
work of Gross [Gro94] and Sheng and Zuo [SZ10], Friedman and Laza [FL13] clas-
sify Hermitian R-variations of Hodge structure (or Hermitian Q-variations of Hodge
structure that remain irreducible over R) of CY type. Over every irreducible Hermit-
ian symmetric domain D, there exists a canonical R-variation of Hodge structure Vg
of CY type; any other irreducible CY Hermitian R-variation of Hodge structure on D
can be obtained from the canonical Vg by taking the unique irreducible CY factor of
Sym* Vg or, for non-tube domains, Sym® Vg {~4} (a € Z, { - } denotes the half twist;
see [FL13, Section 2.1.3]). To describe the canonical variation of Hodge structure of
CY type, we set (R, ;) to be the pair determined by the domain D, and let G be the
associated algebraic group. Also let p: G — GL(V') be a representation defined over Q
such that Vg := V ®q R is still an irreducible representation. For tube domains, if the
representation V¢ := Vg ®g C of G(C) is irreducible (in other words, the represen-
tation Vg is of real type, see, for example, [GGK12, p. 88]) and has highest weight @
which is the fundamental weight corresponding to the special root «, then p gives rise
to a Hermitian Q-variation of Hodge structure of CY type whose scalar extension to
R is the canonical Hermitian R-variation of Hodge structure of CY type. The weight
@, will be called the fundamental cominuscule weight associated with the domain D.
We refer the reader to [FL13] for the description of the canonical CY variation over
non-tube domains.

In particular, the canonical R-variation of Hodge structure of CY type Vi over
(D2n, a3,) is given by a R-representation S, of G(R) = Spin”(4n) with the prop-
erty that Sg p ®g C is the half-spin representation with highest weight @,, (which is
the fundamental cominuscule weight associated with the domain (D,,, a2,)). The
weight of Vg equals 7, the real rank of (D5, a2, ).

1.2 The Groups Spin* and SO*

We construct a form H of the real algebraic group SO (2m) over Q following [FL14]
in this subsection. Then the spin double cover G of H, which is simply connected and
of type D!, gives a Q-form of Spin* (2m). This specifies the descents of the canonical
CY variations from R to Q.

Let E = Q(v/~d) be an imaginary quadratic extension of Q. Set W to be an
E-vector space of dimension 2m with an E-basis e, .. ., e2,,. We write z = Zf:"{ zie;,
and similarly for w € W. Suppose that Q( -, -) is a nondegenerate E-bilinear form on
W, written in the standard form

2m
Q(z,w) = Y (2iWmsi + ZmeiWi).
i=1
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Also, let h be the standard (E, Q)-Hermitian form of signature (m, m) on W, given by

s

Il
—

h(z,w) =) ziw; —

i=1

Zm+iWm+i-

Now we define H to be the group of E-linear isomorphisms of W that have deter-
minant 1 and preserve Q and h. The group H is defined over Q, since it is the inter-
section of Resg;pSO(W, Q) with SU(W, h). Recall that the real group SO*(2m) is
defined to be the isometry group of a skew-Hermitian form on H™. By [GW09, Ex-
ercise 1.1.5(12)], one has H ®p R = SO*(2m).

Let G be the neutral component of the preimage of H in Resg o Spin(W, Q) under
the spin double covering map. Clearly, G is a Q-form of Spin* (2m).

To conclude this subsection, let us note that there are some natural representations
of G. The first one is the standard representation G -~ H — GL(W). Moreover, G
also admits two half-spin representations. To construct them, let W; (resp. W5) be the
Q-isotropic E-vector subspace of W spanned by ey, . .., ey, (resp. em+1, - - - > €2m). The
half-spin representations are then given by the direct sum of even and odd exterior
powers of Wi:

even odd

S+:/\Wl; 87:/\1/\/1.
E

2 Proof of the Main Theorem for the Rank 2 Case

We shall prove part (i) of the Main Theorem in this section. The notation remains the
same as in Subsection 1.2 (with m = 4). In particular, D is an irreducible Hermitian
symmetric domain of type (Dy, a4 ) and G is the simply connected Q-algebraic group
associated with D (n.b. G is a Q-form of Spin*(8)). First, we construct two families
of abelian varieties over D.

Proposition 2.1  The standard representation G — GL(W) and the half-spin repre-
sentation G — GL(S™) are both Hodge representations giving Hermitian Q-variation
of Hodge structure of abelian variety type over D.

Moreover, there exist two families of abelian 8-folds, m: Ay — D and m5: Ay - D,
such that the associated variation of Hodge structure R'm; Q (resp. R'm,. Q) corre-
sponds to the Hodge representation Resgjqg W (resp. Resg S~ ).

Proof The representations G - GL(W) and G — GL(S™) are both defined over Q.
According to [Mill3, Summary 10.11], there are two symplectic nodes associated with
the domain DY, namely, a; and a3. By the standard representation theory (e.g., [FH9I,
Chapters 19 and 20]), the irreducible factors of the representations (Resg/qo W) ®q C
and (Resg/pS~) ®q C have highest weight @; and @3, respectively. So they give two
Hermitian (Q-variation of Hodge structure of abelian variety type. After choosing the
underlying integral structures we get two families of abelian 8-folds, m; and 7, (see
also [Mill13, Theorem 11.8]). [ |
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Remark 2.2 Recall that there is a classification of irreducible polarized Q-Hodge
structures of weight 1 (or the corresponding abelian varieties) according to their en-
domorphism algebras (see for example [M0099, (1.19)-(1.20)]). Specifically, there are
the following four types: real multiplication (type I), totally indefinite quaternion
multiplication (type II), totally definite quaternion multiplication (type III), and com-
plex multiplication (type IV). In our case, [GGK12, Theorem IV.E.4] implies that the
generic fiber of 71; and 7, are both of type III; therefore, the generic special Mumford-
Tate group (a.k.a. Hodge group) of the Hermitian variations of Hodge structures
R'7;,Q and R'7,,Q are both semisimple (cf. [M0099, Proposition (1.24)]). We also
note that a general fiber of the family of abelian varieties A, is isogenous to a certain
Prym variety associated with a quaternionic cover of a genus three curve (c¢f. [vGV03,
Section 3]).

Next we show that Resg/S™ is a G-subrepresentation of Resg g W ®q ResggS™.

Lemma 2.3 (1) S* isa subrepresentation of W ®g S™.
(ii) There is a natural inclusion Resgjo(W ®g S7) S (ResgigW) ®q (Resg/S™)
that also commutes with the G-action.

Proof (i) Let g = Lie(G). Every representation will be viewed as representation
of g in this proof. Thanks to the complete reducibility, it suffices to construct a surjec-
tion p: W ® S~ - ST compatible with the action of g. To define p, we use the inclu-
sion W ¢ C(W, Q) 2 End(S* @ S7) (where C(W, Q) is the Clifford algebra for Q).
In other words, there is an action of W on S*@S~. By [FH91, Lemma 20.9], the action
of W exchanges S~ and S*. In other words, we have W x §~ — §*, (w, &) » w({),
which is clearly E-bilinear and hence can be used to define p. It is not difficult to check
that p is surjective.

Next we check that p is compatible with the action of g, thatis, p(g- (v ® &)) =
g-plvel)foreveryg e g, ve Wand & e S7. To do this, recall that we have
(g ©)s50(W,Q) 2 Az W = C(W,Q) = End(S*™ @ S7), where the first two maps
are morphisms of Lie algebras and the last one is an algebra isomorphism (cf. [FH9I,
Lemma 20.7]). Without loss of generality we assume that g = a A b for a,b € W. Let
us also recall that the multiplication in the Clifford algebra C(W, Q) is defined by
ab +ba =2Q(a,b). Now we have

p(g-(ved))=p((g-v)@&+ve(g-§)) =(g-v)(§ +v(g-¢)
=2Q(b,v)a(&) -2Q(a,v)b(&) + v( ab(f)) - Q(a,b)v(¥)
(by [FH9L, (20.4) and (20.6)])
=2Q(b,v)a(§) - 2Q(a,v)b(§) + (vab)(§) - Q(a, b)v(§)
= (abv)(§) - Q(a, b)v(§)
(by the definition of Clifford algebra)
= (ab)v(§) - Q(a,b)v(§) =g-p(ve ).

(ii) The proof is essentially the same as that of [Zhal5, Lemmas 3.1 and 3.2]. Re-
placing wedge product by tensor product causes no essential changes. Let us denote
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Resg /g by Res and the E-dual vector space using *. First observe that there is a natural
surjection

Res(W™) ®g Res(S7*) - Res(W* ®g S7")
which gives, by duality, an injection
Homg (Res(W* ® S7*),Q) —> Homg (Res(W*) ®g Res(S7*), Q).
Also, for any E-vector space M there is a natural isomorphism
ResHomg (M, E) ~ Homg(ResM,Q), f+—Tro f
as in op. cit. The natural inclusion can be defined as follows.
Res(W ®¢ S7) = Res( Homg(W*,E) ® Homg (S, E))
= ResHomg(W”* ® S™°, E)
~ Homg (Res(W* ®¢ $7*),Q)
¢ Homg(Res(W™) ®g Res(S77), Q)
= Homg(ResW*, Q) ®p Homg(ResS™*, Q)
= Res(W*") ®g Res(S7)*" = ResW ®q ResS™.
Finally, to check that this map is G-equivariant (also after scalar extensions by arbi-
trary Q-algebras) is straightforward and quite similar to what we did in op. cit.. ~ W

Now we show that the half-spin representation S* is defined over Q.

Lemma 2.4  There exists a G-subrepresentation on a Q-vector space S; € Resg/pS™
such that S§ ®g E = S*.

Proof As is well known, it suffices to construct an E-conjugate linear operator
*:Resp/gS™ — ResgpS™ that is compatible with the G-action and satisfy * o * = id.
Let us consider the Hodge star operator » associated with the Hermitian form h|W;
and the volume form e; A --- A e4 defined in [FL13, Section 3.5] (see also Lemma 3.3).
One can easily show that = is E-conjugate linear and maps A2 W; to A2 W,
for k = -1,0,1. The more difficult part is to verify that  is a morphism of G-
representations. But this has been done in [FL14, Section 3]. [ |

Remark  Over an arbitrary totally real field, » may not commute with the corre-
sponding group action. To fix this, one should use the “twisted Hodge star operator’,
which is defined in [FL14, Definition 3.10].

We also need the following lemmas to prove the Main Theorem. Let us denote
the special Mumford-Tate group (a.k.a. Hodge group) of a Q-Hodge structure V by
Hg(V).

Lemma 2.5 Let V be a Q-Hodge structure. Let W C V be a sub-Hodge structure.

(i)  There exists a surjective homomorphism Hg(V) - Hg(W).
(i) IfHg(V) is semisimple, then Hg(W) is also semisimple.
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Proof Part (i) follows from [GGK12, (I.B.7)]. Since any quotient of a semisimple
algebraic group is semisimple, part (ii) is clear from part (i). ]

Lemma 2.6 Let V be a Q-Hodge structure. If Hg( V') is semisimple, then Hg(/\!fl) V)
is semisimple (with k a non-negative integer).

Proof Note that /\ V is a sub-Hodge structure of ® V. By Lemma 2.5 it suf-
fices to show that Hg(® V) is semisimple. Accordmg to [M0099, (1.8)], we have
Hg(®QV) = r(Hg(V)) where rGL(V) - GL(®QV) is the natural homomor-
phism. In other words, we have a surJectlve homomorphism Hg(V) - Hg(®@ ).
Because Hg( V') is semisimple, Hg(®@ V) is also semisimple. ]

Now let us prove part (i) of the Main Theorem.

Proof ByLemma2.3and Lemma 2.4, we have S§ € Resg/gS™ € Resg/q(W®EpS™) €
(ResggW) ®q (Resg S~ ) as representations of G. Also, Resg/q W (resp. ResgpS™)
corresponds to a family of abelian 8-folds m: A; — D (resp. mz: A, - D) (cf. Propo-
sition 2.1). Let A; be the generic fiber of ; (i =1, 2), which is a simple abelian variety.
Using [GGKI12, Theorem IV.E.4], it is easy to see that A; and A, are both of type IIL
By [M0099, Proposition (1.24)], the special Mumford-Tate group of H'(A; x A,, Q)
is semisimple. The special Mumford-Tate group of H?(A; x A,, Q) is also semisimple
because H*(A; x A3, Q) = A§ H' (A} x A3, Q) (¢f Lemma 2.6). Since H' (A1, Q) ®q
H'(A,,Q) is a sub-Hodge structure of H*(A; x A,,Q), H'(A;,Q) ®g H' (A3, Q) has
a semisimple special Mumford-Tate group as well (Lemma 2.5).

As a result, the special Mumford-Tate group of the Hermitian variation of
Hodge structure R'm.Q ®Q R'7,,Q (which corresponds to the Hodge represen-
tation (Resg/qW) ®q (Resg/pS™)) is semisimple. Let us denote it by Hg. By
Deligne’s theorem in Subsection 1.1 (especially condition (ii)), Hg is the image of G
in SL((Resg/qW) ®q (Resg/gS™)) (see also [Roh09, Corollary 1.3.19] and [Mill5,
Corollary 22.123] ). It follows that Sj is a Hg-subrepresentation of (Resg;oW) ®q
(Resg/@S™) (n.b. Hg is the generic special Mumford-Tate group) and hence gives a
variation of sub-Hodge structure V (c¢f. [M0099, (1.12)]).

Now it suffices to show that S§ ®g R (or equivalently, V ®g R) gives the canonical
R-variation of Hodge structure of K3 type. Note that S ®g C = S§ ®g E ®g R =
§* ®g R. Since S§* ®q R is isomorphic to AZ"(W; ®g R) (by the construction),
S¢ ®q R is the half-spin representation of G(C) = Spin(8, C) with highest weight
@4. Because @, is the fundamental cominuscule weight associated with the domain
D, the theorem follows from [Gro94, Section 3] or [FL13, Theorem 2.22]. [ |

3 Proof of the Main Theorem for the Higher Rank Cases

Let D be the irreducible Hermitian symmetric domain of type (Dy,, a2, ) with n >
2. We will prove part (ii) of the Main Theorem for D in this section. Recall that G
is the simply connected Q-algebraic group associated with D and H is a Q-form of
SO*(2m). There is a spin double cover G — H. We also use the other notation in
Subsection 1.2 (in particular, note that m = 2n).
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Proposition 3.1 ‘The standard representation H — GL(W) is a faithful Hodge repre-
sentation corresponding to a Hermitian Q-variation of Hodge structure of abelian vari-
ety type over D. Furthermore, there exists a family of abelian 4n-folds m: A — D such
that the associated variation of Hodge structure R'm,Q is given by the Hodge represen-
tation ResgjqoW.

Proof By [Mill3, Summary 10.11], the only symplectic node of D5 (1 > 3) is a;. The
rest is the same as the proof of Proposition 2.1. ]

Remark  As discussed in Remark 2.2, the generic fiber of 7 is of type III and has a
semisimple special Mumford-Tate group.

From [Zhal5, Lemmas 3.1 and 3.2], we deduce the following lemma.
Lemma 3.2 Resg/q(Ag W) is naturally an H-subrepresentation of Ay (Resgjq W).

We construct elements L and  of the endomorphism algebra Endgq1(AE W),
which will be used to decompose AF W. The operator * is defined in the same way
as in [FL13, Section 3.5]. Specifically, there are two natural pairings on Af W: the
wedge product

m m 2m
ANAWXAW — AW=E
E E E
and
m m
ANRAW X AW —E, (A"h) (Wi A AWp, Ui Ao Ay ) o= det(h(w,-,uj)).
E E
They give an E-linear isomorphism ¢: Af W — AF W* and an E-conjugate-linear
isomorphism p: A W — A W™ respectively. The operator * is then defined by
» = ¢~ o p. Note that there is another E-linear isomorphism : A W — A} W*
given by the pairing
/\mQ:}n\ W x }n\ W —>E, (A"Q)(WiA - AWp,ur Ao Aty,) = det(Q(wi, uj)).
E E

We define Lby L = ¢ o1.
Concerning » and L, they satisfy the following properties.

Lemma 3.3

(i)  The E-linear operator L commutes with the H-action and L o L = id.
(ii) The E-conjugate-linear operator x commutes with the H-action and * o x = id.

Proof For (i), the action of H preserves the pairing
m m 2m
ANAWx AW-— AW=ZE
E E E

and the symmetric bilinear form A™ Q, and hence commutes with L. By [FH91, The-
orem 19.2(iii)], L o L = id. Part (ii) follows from [FL13, Lemma 3.21]. |
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Lemma 3.4  The operators L and x commute (i.e., Lo = xoL) in Endgry] (A W).

Proof We first set up some notation. Let {ej, ..., €2, } be a basis of W such that the
symmetric bilinear form Q and the Hermitian form 4 can be expressed in the same
form as in Subsection 1.2. Also denote the corresponding dual basis by {e;, ..., €3, }-
Now define B:W — W* by B(v)(w) = Q(v,w), and F: W — W* by F(v)(w) =
h(w,v). Itis clear that B(e;) = ey, ;» B(em+i) = e and that F(e;) = e}, F(ep+i) =
—e,,,; for1 < i < m. Using these we can make the operators T and p more explicit.
Specifically, we have 7(e;, A e, A---Ae;,) = B(e,) A B(ey,) A+ A B(ey,) and
p(ell ANep AN A elm) = F(ell) A F(elz) JARRRNAN F(elm).

Now we consider ¢. Let I = {iy, iz, ..., iy} With1 < i) < ip <+ < i, <2m. Set] =
{1,2,....2m} N1 ={j1, jar- -+ jm} With j; < j <+ < jp. Then it is not difficult to
seethat p(e; Aei,A-wAey, ) = €rpe; Aef A -oAef = (—l)A"”l“Z*“‘”m ej Aej A Ae],
(recall that n = 5). So 9" (e} e, A---nef ) = ()" e, ney - ne,.

Let us prove the lemma. Let I and ] be the ordered set as above. Clearly, it suffices
to verify that togplop = poglorfore; =e; Aej, A Aej, (i1 <iy<-<ip). We
first determine which e;’s appear for the left-hand-side (i.e., (70 97" o p)(er)) and
the right-hand side (i.e., (po @' o 7)(er)). To do this, we define s(i) € {1,2,...,2m}
(foreveryl < i <2m)bys(i) =m+iifi <mands(i) =i-mifi>m. Ifiel
while s(i) ¢ I, then e; will appear for both the left-hand-side and the right-hand side;
if i € I and s(i) € I, then neither e} nor e;;y will be contained in (7o o top)(er)or
(pog~tot)(er);ifi ¢ Iands(i) ¢ I, then e} and e;(;) willbe contained in both the left-
hand-side and the right-hand side. So (to ¢ 0p)(er) and (pogp o 1)(er) consist of
the same e’s. It follows that both (top~'op)(er) and (popo1)(e;) canbe expressed
uniquely, up toa sign, ase; Aej A---Ae; with the same sub-indices [y < [ <+ < L.
Now let us verify that the signs are the same. Let k = Card(In{m+1,...,2m}). Then
it is straightforward to check that the sign of (70 ¢~ 0 p)(ey) is (—1)k+m+it-+imtk
and the sign for (p o ™' o 7)(e;) is (—1)k+n+s()+=+s(im)+(m=k) Gince m is an even
number, we get i = s(i) (mod 2) for every i, which implies that the two signs are the
same. u

We now prove part (ii) of the Main Theorem. Note that m = 2n.

Proof Let S = ker(L - id). Then S is an H-subrepresentation of A} W. By
Lemma 3.4, we have L o x = x o L and hence L(*(s)) = *(L(s)) = *(s) for any
s € S. So the restriction of * to S is well defined. Let o = ker(* |s —id) < S. Since *
is E-conjugate-linear, S is a Q-subrepresentation of ResgqS.

Note that we have Sy S Resg/gS S Resg/go(AF W) € AG(ResggW) as repre-
sentations of H (cf. also Lemma 3.2). Recall that the Hodge representation Resg o W
corresponds to a family of abelian 4n-folds 7: A — D constructed in Proposition 3.1.
By [GGK12, Theorem IV.E.4] and [M0099, Proposition (1.24)], the special Mumford-
Tate group of the Hermitian variation of Hodge structure R'zr, Q (which corresponds
to the Hodge representation Resg/qW) is semisimple. It follows that the special
Mumford-Tate group of the variation of Hodge structure R 7. QQ given by the Hodge
representation Ag) (Resgjq W) is semisimple (Lemma 2.6). Let us denote it by Hg.
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The next part of the proof is quite similar to the rank 2 case. Specifically, by the re-
sult of Deligne (see Subsection 1.1, especially Condition (ii)) Hg is the image of H in
SL(Ag (ResggW)). Asaresult, So € Agy (Resg/oW) is invariant under the action of
the generic special Mumford-Tate group Hg and hence corresponds to a variation of
sub-Hodge structure V'.

It remains to prove that Sy is the Hodge representation of CY type and compare V'
to the canonical CY variation. Let us consider Sy  := So®gIR. Because So®gE = S, we
get So,r®RC = §o®qC = Sy®gE®gR = S®gR. According to [FHI1, Theorem 19.2(ii)
and (iii)], S®gR ¢ A¥ Wr is the irreducible representation of H(R) = SO* (2m) with
highest weight 2@,,. Since @, is the fundamental cominuscule weight associated with
the domain D, V' is of CY type [FL13, Theorem 2.22]. Consider the half-spin represen-
tation S*. Note that S* is defined over Q (that is, there exists a G-subrepresentation
on a Q-vector space S§ such that S§ ®gE = S*). By [Gro94] or [FLI13], S§ ®R gives the
canonical CY variation Vi over D. Using the highest weight theory, it is easy to see
that So g ®r C = S®g R is isomorphic to an irreducible summand of Sym*(Sg ®¢ C).
The theorem then follows. u

Remark 3.5 Note thatin part (ii) of the Main theorem we, only realize Sym2 Vg (not
the canonical CY variation V). This is the best our constructions can do when the
rank of the domain is bigger or equal to 3. One important reason is that the half-spin
representation with highest weight @,, is not a representation of the orthogonal group
H(C) = SO(2m, C) (¢f. [FHOI, Proposition 23.13]). As a result, Vg is not contained in
any tensor construction of the cohomology of the universal family of abelian varieties
mA — D. Specifically, let W be the standard representation corresponding to a
Hermitian variation of Hodge structure of abelian variety type, and set S 1, to be the
Hodge representation corresponding to the canonical R-variation of Hodge structure
of CY type. By [GGKI12, Theorem (IV.E.4)], Wg is of quaternion type (i.e., W g C =
Ue U* with U = U* and Resc/jgU = Wg). Suppose we have Sar,R c ®]§Q Wk as
representations of G(R) = Spin*(2m). Then S; ®g C is a subrepresentation of
(®LWr) ®r C = @-(U @ U*) (as representations of G(C) 2 Spin(2m, C)) which
factors through H(C) = SO(2m,C). Since SO(2m,C) = Spin(2m,C)/{£1}, (-1)
also acts trivially on the half-spin representation S§ , ®g C which is a contradiction.
This argument also works for other tensor constructions (®% Wr) ® (®g Wit).
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