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Summary

Estimation of quantitative genetic parameters conventionally requires known pedigree structure.
However, several methods have recently been developed to circumvent this requirement by inferring
relationship structure from molecular marker data. Here, two such marker-assisted methodologies
were used and compared in an aquaculture population of rainbow trout (Oncorhynchus mykiss).
Firstly a regression-based model employing estimates of pairwise relatedness was applied, and
secondly a Markov Chain Monte Carlo (MCMC) procedure was employed to reconstruct
full-sibships and hence an explicit pedigree. While both methods were effective in detecting
significant components of genetic variance and covariance for size and spawning time traits, the
regression model resulted in estimates that were quantitatively unreliable, having both significant
bias and low precision. This result can be largely attributed to poor performance of the pairwise
relatedness estimator. In contrast, genetic parameters estimated from the reconstructed pedigree
showed close agreement with ideal values obtained from the true pedigree. Although not
significantly biased, parameters based on the reconstructed pedigree were underestimated relative
to ideal values. This was due to the complex structure of the true pedigree in which high numbers
of half-sibling relationships resulted in inaccurate partitioning of full-sibships, and additional

unrecognized relatedness between families.

1. Introduction

Knowledge of the genetic architecture underlying
quantitative traits is critical to our understanding of
phenotypic determination and evolution. Within the
conceptual framework of quantitative genetics, this
architecture is described in terms of genetic par-
ameters such as trait heritabilities and genetic correla-
tions (Falconer & Mackay, 1996). Conventionally
these parameters are most readily estimated by com-
parison of phenotype between individuals of known
relationship, and thus there is a requirement for a
known pedigree. This requirement can pose difficulties
for the study of natural populations in which relation-
ships between individuals are unknown. In natural
animal populations pedigree may sometimes be deter-
mined by observation, though this typically requires
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long-term study with intensive sampling. In some taxa
(notably birds and mammals), the common provision
of parental care has facilitated this approach and
allowed estimation of heritabilities in the field (e.g.
Merild et al., 1999; Qvarnstréom, 1999 ; Cadée, 2000).
However, in many taxa such observational pedigree
determination is not feasible. As a result, estimation of
quantitative genetic parameters in natural populations
has generally been limited. Various possible alterna-
tives have been suggested including; the use of pheno-
typic measures of variance and covariance to infer
underlying genetic architecture (Cheverud, 1988), re-
gressing phenotypic trait values of lab-reared offspring
on their wild-caught parents (Riska et al., 1989), or
extrapolation of lab-based estimates to natural popu-
lations (Weigensberg & Roff, 1996). However herita-
bility is dependent on both genetic and environmental
components of phenotypic variance, and as such itis a
population specific parameter. Thus the validity of any
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ex situ estimate, even if based on wild-caught parents
to control genetic factors (Riska ez al., 1989), will be
flawed since environmental factors in the lab will not
duplicate those in the field.

More recently, attention has been focused on the
potential use of molecular markers to infer relation-
ships between individuals, and hence circumvent
this problem of unknown pedigree (see Ritland, 2000
for a review). In some cases partial pedigree infor-
mation might be available and genotypic data can then
be used to derive supplemental information. For ex-
ample, maternity might sometimes be determined by
observation, whilst paternity remains unknown. In this
context paternity analysis has been used to provide
additional pedigree information that can result in im-
proved estimation of genetic parameters (e.g. Kruuk
et al., 2000; King et al., 2001). Where there is no pedi-
gree information available, several approaches to
marker-assisted estimation of quantitative genetic par-
ameters have been proposed. These approaches can be
separated into those that do not depend on explicit
pedigree reconstruction, and those that do.

A maximum likelihood-based procedure for esti-
mating trait heritabilities without using explicit pedi-
gree information was described by Mousseau et al.
(1998) with subsequent development by Thomas e al.
(2000). This approach is based on using the joint
probability of observed phenotypic and genotypic data
to determine likelihoods for assigning pairs to each
of several specified relationship classes. However,
this maximum likelihood estimator requires a priori
knowledge of the distribution of relatedness (e.g. all
individuals are either full-sibs or unrelated), and is
therefore not appropriate where this distribution
is unknown (Mousseau et al., 1998). A more gener-
ally applicable estimator was presented by Ritland
(1996 b), in which trait heritabilities are estimated from
a linear regression of pairwise phenotypic similarity on
pairwise relatedness. This approach therefore relies
on estimators of pairwise relatedness (e.g. Queller &
Goodnight, 1989; Ritland, 1996«; Lynch & Ritland,
1999), but again does not require specification of an
explicit pedigree. In addition to its wider applicability,
simulation-based studies found that this method re-
sulted in decreased bias in estimates of heritability (/%)
as compared to the maximum likelihood estimator,
though variance was higher (Thomas et al., 2000).
High sampling variance is a feature of all pairwise
relatedness estimators (Van de Casteele et al., 2001)
and may reduce the utility of this latter method.

Alternatively genotypic information might be used
to explicitly reconstruct relationships. In natural popu-
lations pedigree reconstruction from marker data
might involve determination of parent-offspring re-
lationships (e.g. Marshall et al., 1998) or of sibships
(e.g. Painter, 1997; Almudevar & Field, 1999 ; Thomas
& Hill, 2000; Smith ez al., 2001). These pedigrees can
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subsequently be used to estimate quantitative genetic
parameters using conventional methods such as
parent-offspring regression, sib analysis or restricted
maximum likelihood (REML). In particular REML
estimators do not require balanced data sets and can be
obtained for any arbitrary pedigree that might occur in
a natural population (Lynch & Walsh, 1998). Whilst
parentage analysis represents a useful approach, it may
be limited in many natural populations where there is
likely to be incomplete sampling of candidate parents.
Although likelihood-based methodologies can be used
with incomplete sampling of parents, successful parent-
age assignment decreases rapidly as a function of the
proportion of candidate parents sampled (Marshall
et al., 1998). Thus efficient sampling for parentage
assignment may be problematic in systems lacking
extensive overlap of generations (on either spatial or
temporal scales). In such situations sibship reconstruc-
tion might provide a more practical approach. Thomas
& Hill (2000) demonstrated the use of Markov chain
Monte Carlo (MCMC) techniques to partition popu-
lations into full-sibships that were then used in an
animal model to estimate genetic parameters. Based on
simulation studies, this method was found to be su-
perior to those methods described above that do not
rely on explicit pedigree reconstruction (Thomas &
Hill, 2000).

To date there has been comparatively little empirical
work done in this area of marker-assisted parameter
estimation (but see Ritland & Ritland, 1996; Mous-
seau et al., 1998 ; Thomas et al., 2002). Furthermore,
success has been mixed, and the generation of reason-
able estimates would seem to be dependent on the
population genetic structure of the system being con-
sidered. In particular it may be necessary to focus on
systems in which there is high variation in relatedness
between individuals sampled (Ritland, 2000), or equiv-
alently in which family sizes are likely to be large
(Thomas et al., 2002). Despite such limitations, the
advantages of being able to generate field-based esti-
mates of genetic parameters are such that there is a
clear need for further empirical work to test the utility
of these methods.

The current study attempts to address this need for
empirical study by examining marker-assisted esti-
mation of trait heritabilities and genetic correlations in
rainbow trout, Oncorhynchus mykiss. The data consist
of genotypic and phenotypic information from an
aquaculture strain development project (McDonald,
2001 ; Quinton, 2001). In this project parental fish from
three strains of rainbow trout (denoted B, G and O)
were used in both intra- and inter-strain crosses to
generate a progeny generation. Parental individuals
were used in multiple crosses such that the progeny
generation contains many full-sib families that share
one parent with other families. Given this prior knowl-
edge of the manner in which crosses were performed,


https://doi.org/10.1017/S0016672302006055

Marker-assisted heritability estimation

147

Table 1. Variability of microsatellite loci used, showing number of alleles
(n) and expected heterozygosity (H,) for data sets ALL, B, G and O.
Values are based on allele frequencies for both generations combined

ALL B G (0]

Locus n H, n H, n H, n H,

OmyRGT4ITUF' 16 0-869 8 0-800 9 0796 6 0-788
OmyFGT5TUF? 9 0-703 5 0-541 5 0:697 4 0542
OmyFGTI10TUF 5 0-530 4 0-614 2 0433 2 0428
OmyFGTI2TUF' 18 0909 16 0-894 10 0-884 6 0736
OmyFGTI14TUF 4 0-468 4 0-612 3 0-239 2 0438
OmyFGTI15TUF? 5 0432 5 0-494 5 0298 4 0482
OmyFGT23TUF 12 0-821 9 0-824 8 0695 6 0-755
OmyFGT34TUF' 17 0919 12 0911 8 0-812 5 0726
Omy27DU 6 0-654 5 0-588 4 0-618 3 0630
Omy77DU? 10 0-744 9 0-834 7 0-:666 4 0686
Omy325U0oG 12 0-808 8 0-823 7 0-767 3 0661
Onel8ASC 7 0-705 5 0-728 6 0684 3 0-538
Ots1BML? 12 0759 11 0-817 5 0-680 7 0-803
Ssa85DU?! 14 0-875 11 0-880 5 0757 5 0-768
Ssa20.19NUIG 5 0-770 5 0-774 3 0-521 4 0708
SSOSL439 14 0-826 11 0-821 9 0-804 4 0537
Mean 976  0-694 7-53  0-703 565 0609 4 0602

1 Only parental generation genotyped at these loci.
2 Not all progeny were genotyped at these loci.

and that family sizes produced by such crosses may
potentially be large, it is anticipated that this captive
population will have a structure amenable to marker-
assisted estimation of quantitative genetic parameters.
By using microsatellite data, we estimate such par-
ameters for phenotypic traits of body weight and
spawning time according to two alternative methods.
Firstly we apply the regression-based method of Rit-
land (1996 b) that requires no explicit pedigree struc-
ture, and secondly estimates are made using a pedigree
obtained from reconstruction of intra-generational
sibships. Performance of these methods is examined by
comparison of estimated genetic parameters to those
obtained from the true pedigree obtained from parent-
age analysis.

2. Methods
(1) Data sets

Data were obtained from a rainbow trout strain
development project involving three aquaculture
strains. Seventy-one parental fish were used to obtain
a progeny generation containing 595 individuals
derived from both intra- and inter-strain crosses
(see McDonald, 2001 and Quinton, 2001 for details).
Phenotypic trait data describing 2-year weight (WT)
and female spawning time at ages 3 (ST3) and 4
(ST4) were available (see Quinton, 2001 for details).
Spawning time is defined as the number of days after
October 1st in the given spawning season.
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Tissue samples were taken from both parental and
progeny generations, and DNA was extracted using a
phenol chloroform procedure (Bardakci & Skibinski,
1994). Twelve microsatellite loci were then amplified
in the PCR using the multiplexed reactions of Fishback
et al. (1999). PCR products were visualized using an
ABI 377 DNA sequencer and alleles were scored using
GENESCAN™ 2.0.0 and GENOTYPER™ 1.1r8.
An additional three loci were amplified in single locus
PCR reactions as described in McDonald (2001).
Products of these reactions were separated using
gel electrophoresis in a 6 % polyacrylamide-7-M urea
matrix. Alleles were visualized using the Hitachi
FMBIOII fluorescence imaging system, and sized by
comparison with 350-TAMRA lane standards loaded
on each gel.

Genetic data are thus comprised of genotypes for up
to sixteen moderately- to highly-variable loci (Table 1).
Individuals of the parental generation were genotyped
at all sixteen loci, while all of the progeny were geno-
typed at a common subset of eight of these. For some
progeny individuals, genotypic information was avail-
able at an additional subset of four of those loci used in
the parents.

Parentage analysis was carried out to determine the
true pedigree structure, using the microsatellite data
to assign progeny to parental pairs on the premise
that a parent and offspring must share at least one
allele at every codominant locus. Using this purely
exclusion-based approach as implemented in PROB-
MAX (Danzmann, 1997), 97% of the progeny were
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Fig. 1. True pedigree as determined by parentage analysis, indicating dam, sire and size for families in data sets ALL, B, G and O.
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assigned to a single parental pair consistent with
Mendelian segregation of alleles. The remaining 3 %
(18 individuals) could be assigned to more than one
possible parental pair and were therefore excluded
from the data set such that this pedigree is con-
sidered correct. Parentage analysis in this data set
indicated the presence of 182 full-sibling families, with
family size ranging from 1 to 16, and furthermore re-
vealed the complex nature of the pedigree structure
that results from the use of parental individuals in
multiple crosses (Figure 1).

In addition to the complete rainbow trout data set,
subsequently denoted ALL, three pure-strain subsets
are considered in the subsequent analysis. The subsets
are henceforth denoted B, G and O, corresponding to
the three strains used in the strain development project
(McDonald, 2001). Each subset is comprised of the
parental generation individuals from a given strain,
together with all progeny resulting from crosses be-
tween males and females of that strain (Figure 1).
These subsets are examined to investigate relative per-
formance of methodologies with smaller sample sizes.
Since sample size is considerably less for spawning time
traits as opposed to weight (only females can be scored
for the former), estimation of genetic parameters for
ST3 and ST4 may not be informative but is never-
theless included for completeness.

(ii) Data treatment
(a) Regression method

The procedure of Ritland (1996 b) relies on a simple re-
gression of pairwise trait similarity on pairwise rela-
tedness to estimate genetic parameters. For example,
heritability (4?) is estimated from the model:

Zl/ = 2]’,‘1'112 + Vo,

Z;;is a measure of trait similarity between individuals
i and J, calculated as the product of the trait values
of the individuals (after normalization to variates of
mean zero and variance one). The residual error term,
r., can be interpreted as the average environmental
correlation between the two individuals. We follow
the notation of Ritland (19964) in using r; to denote
the pairwise relatedness, defined as the probability
that two genes, one drawn at random from each in-
dividual, will be identical by descent. The estimator for
r;;was calculated from microsatellite data according to
Ritland (1996a). Relative performance of different
relatedness estimators may vary such that there is no
single best-performing estimator (Van de Casteele
et al., 2001). Here the estimator of Ritland (19964a)
was selected on the basis of preliminary simulations
(using allele frequencies as estimated from ALL), to
compare performance of several estimators (results not
shown).

https://doi.org/10.1017/50016672302006055 Published online by Cambridge University Press

149

Since the model requires no explicit pedigree struc-
ture it can be used in samples that span multiple gen-
erations. Thus both parental and progeny information
was combined for estimating trait heritabilities and
genetic correlations. This regression-based procedure
was implemented using the program MaRQ version
1.0 (written by K. Ritland, available from http://
genetics.forestry.ubc.ca/ritland/programs.html). Esti-
mates were made of trait heritabilities, genetic corre-
lations, and the actual variance of relatedness in each
data set. It should be noted that in the absence of
significant actual variance of relatedness, heritability
estimates made under this model cannot be significant.
For each pair of traits, the sign of a genetic correlation
was determined as the sign of Cov(r;, Z;), with Z;
being the ““similarity” between trait 1 in individual i
and trait 2 in individualj. Significance of all parameters
estimated was determined by bootstrapping over in-
dividuals with a bootstrap number of 1000. Estimates
were deemed significant if 95% of the bootstrap
values were found to be greater than zero.

In order to examine the performance of the re-
latedness estimator underlying the estimates of genetic
parameters we define the test statistic A;, where:
Aj=estimated r;—true ry,
with true r; being defined as 0 between unrelated in-
dividuals, 0-125 between half-sibs, and 0-25 between
full-sibs or between parents and offspring. True r; was
therefore determined from the true pedigree (deter-
mined as described above), under the assumption that
all parental individuals were unrelated. For each data
set the mean value of A;;, was then used to describe the
bias of the estimator. Normality of A;; was assumed to
calculate 95 % confidence limits to the mean and hence
test for significant deviation from zero. Variance of A;;
was also calculated as a further measure of estimator
performance. These statistics were calculated using
all possible pairwise values of A;, and for each data
set, mean and variance of A; were also obtained for
each value of true relatedness (i.e. true r;;equal to 0-25,
0-125 or 0). In each data set, all pairwise values of
true r; were also used to calculate the actual variance
of relatedness (for comparison to the estimates made
using MaRQ).

(b) Sibship reconstruction

For each data set, individuals were partitioned into
groups of putative full siblings using the MCMC
approach described by Smith er «al. (2001), which
maximizes an overall likelihood score on the basis of
pairwise likelihood ratios of being full siblings or un-
related. The algorithm is constrained such that within
a group of putative siblings the genotypes at each
locus must be able to be derived from a single parental
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Table 2. Estimates of trait heritabilities and genetic correlations (& SE). For the regression method 95 %
confidence limits obtained from the bootstrap percentile method are indicated in parentheses. Significant deviation
from 0 is denoted by *. The number of individuals scored for each trait/pair of traits in the progeny generation is
denoted by n for the both generations combined, and by n,, for the progeny alone

Heritability/Genetic correlation

Data set Trait(s) n n, Regression method Reconstructed pedigree Ideal

ALL WT 628 558 1-78* (1-39, 2:26) 0-382+0-031%* 0-45540-044*
ST3 268 247 2-41%* (1-68, 3-33) 0-456 +0-049* 0-500+0-063*
ST4 279 199 2-35*% (1-61, 3-19) 0-402+0-058* 0-498 +0-069*
WT-ST3 265 244 —0-770* (—0-606, —0-951) —0:698 +0:066* —0-861 +£0-052*
WT-ST4 275 195 —0-711* (—0-532, —0911) —0:6174+0:056* —0-882+0-055*
ST3-ST4 265 195 0-994* (0-965, 1-08) 0-951+0-017* 0-991 4+0-008*

B WT 91 62 0-746 (—0-253, 2-21) 0-278 +0-085* 0-296+0-114*
ST3 35 31 256 (—0-149, 5-87) 0-120+0-164 0-1794+0-154
ST4 35 22 0-952 (—0-861, 3-59) 0-238+0-178 0-160+NE
WT-ST3 32 28 —0-0390 (—2-50, 1-36) —0:866+0-462 —1:000+NE
WT-ST4 31 18 —0-194 (—7-23, 7-58) —0-848 +0-268* —1:000+NE
ST3-ST4 29 18 1-11 (—3-60, 3-50) 1000+ NE 1-:000 + NE

G WT 90 62 0-489* (0-0169, 1-93) 0-137+0-108 0-000+0-000
ST3 27 26 0-115(—1-82,2-71) 0-502+0-171%* 0-000+0-000
ST4 30 24 0-853 (—0-750, 3-84) 0-238 +£0-371 0-000 4+ 0-000
WT-ST3 24 23 —0-274 (—7-26, 4-69) 0-389 +0-549 0-986+0-999
WT-ST4 26 20 —0-0750 (—4-33, 2:49) 1:000+ NE 0-000+ 1-000
ST3-ST4 20 20 3-57 (—12:9, 12:7) 0-925+0-094* 0-000 + 1-000

(0] WT 77 56 —129 (—17-3, 12:6) 0-213+0-165 0-2254+0-028*
ST3 38 26 —0-652 (—20-0, 25-3) 0-000 +0-000 0-004 £+ 0-000*
ST4 31 18 —2-06 (—35-8,231) 0-135+NE 0-120+ NE
WT-ST3 35 26 10-5 (—47-4,75-3) 1-000 + 1-000 1-:000 + NE
WT-ST4 27 18 —1-08 (—27-1, 19-5) 1:000+NE —1:000+NE
ST3-ST4 25 18 1-81 (—23-6, 30-2) 0-135+NE —1:000+NE

pair. Multiple runs were performed to assess solution
convergence, and reconstructed pedigrees were based
chain lengths of 10 million (ALL) and 3-9 million (B, G
and O) iterations. Phenotypic data was recoded using
PEST (Groeneveld & Kovac, 1990), and then used in
conjunction with reconstructed pedigree to estimate
quantitative genetic parameters with standard errors.
Estimates were made using a REML procedure im-
plemented in VCE4 (Groeneveld, 1994) under the sire
model:

yi=p+aste,

where y; is a phenotypic observation for individual 7,
u 1s the population mean (or strain-specific population
mean for the data sets B, G and O), a; is the random
sire effect, and e; is a residual error term. This simple
model was used since, in comparison to an animal
model, it is expected to yield smaller standard errors
associated with estimated genetic parameters. This will
permit more effective comparison of results to “ideal ”’
parameter estimates (described below).

In order to examine the performance of the sibship
reconstruction algorithm, partitioned sibships were
examined visually to assess homology with true sibship
groups (from the known pedigrees) in all four data sets.
Summary statistics were used to describe the number
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and mean size of families in the reconstructed (and
true) pedigrees. The number of correctly and incor-
rectly reconstructed full-sib pairs were counted for
each reconstructed pedigree and used to calculate the
accuracy statistic of Thomas & Hill (2000) in which:

accuracy = (S — Sp/uss) / TOlsss

where Sy 1 and Sy, are the numbers of correctly and
incorrectly reconstructed full-sib pairs, and Toz is
the number of full-sib pairs in the true pedigree. Fur-
thermore since the true pedigree contained a mix of
full-sib, half-sib and unrelated pairs, it was of interest
to examine the extent to which incorrect partitioning of
half-sibs as full-sibs accounted for observed error in
pedigree reconstruction. To this end we define the
statistic half-sib error, where:

half-sib error = Ss/n,/ Ss/nfss

where S s is the number of incorrectly partitioned
full-sib pairs in the reconstructed pedigree that were
actually true half-sibs.

To further assess the performance of the pedigree
reconstruction algorithm, 1000 pedigrees were simu-
lated for each data set by assigning individuals to
families at random. From these simulated pedigrees,
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mean values (and standard errors) for accuracy and
half-sib error were determined. These were used to test
whether the observed values (i.e., those derived from
the reconstructed pedigrees) were larger than might be
expected with random assignment of individuals to
families. The distribution of family sizes (which will
affect both accuracy and half-sib error) was kept
constant and identical to the distribution of family
sizes in the reconstructed pedigree. This was carried
out for each of the four data sets.

(c) Estimation of *‘ideal” parameters from
true pedigree

The true pedigree (as determined by full parentage
analysis) was used to generate values of genetic par-
ameters to which the marker-assisted estimates can be
compared. All parental and progeny information was
used to generate trait heritabilities and genetic corre-
lations under the sire-model approach as described
above.

3. Results
(1) Regression method

In the full data set (ALL), actual variance of related-
ness was estimated as 0-002 and was found to be
significantly greater than zero. The regression-based
approach resulted in estimates of heritability that were
significant for all three traits (Table 2). Furthermore
significant negative genetic correlations were deter-
mined between WT and both spawning time traits,
while between ST3 and ST4 there was a significant
positive genetic correlation. These results are quali-
tatively consistent with the ““ideal ” estimates obtained
using the REML methodology in the true pedigree
(Table 2). However compared to the ideal estimates,
regression-based estimates of trait heritabilities all
exhibit significant upward bias. It should be noted that
under this model heritability is not constrained to lie
between 0 and 1. In contrast, no bias is seen in the esti-
mation of genetic correlations, which are comparable
in magnitude to the optimal estimates. In all cases the
sign of the estimated genetic correlations is consistent
with ideal results. For all parameters, precision of
regression-based estimators is low. This is particularly
true for heritability estimates where 95% confidence
intervals are an order of magnitude greater than those
of the optimal estimates.

In the pure-strain subsets of the data, esti-
mated actual variances of relatedness were signifi-
cantly greater than zero (with values of 0-003, 0-005
and 0-003 corresponding to B, G and O respectively).
However, small sample sizes led to difficulties in esti-
mating standard errors for ideal genetic parameters
relating to spawning time traits, (especially genetic

https://doi.org/10.1017/50016672302006055 Published online by Cambridge University Press

151

Table 3. Performance of relatedness estimator in each
data set and class of true ry;. n; indicates number of
pairwise estimates made, * denotes significant
departure from zero

Data set true ry; ny mean Ay var A
ALL all pairs 210276 —0-0129* 0-00536
0-25 2322 —0-0168* 0-0426
0-125 15141 —0-0371* 0-0146
0 192813 —0-0110* 0-00414
B all pairs 4278 —0-0469* 0-00526
0-25 334 —0-112*% 0-00910
0-125 696 —0-0837* 0-00573
0 3248 —0-0324* 0-00384
G all pairs 4371 —0-0347* 0-00719
0-25 229 —0-0649* 0-0222
0-125 533 —0-0693* 0-0100
0 3609 —0-0277* 0-00555
(@) all pairs 2775 —0-0624* 0-00992
0-25 332 —0-158%* 0-00899
0-125 559 —0-0988* 0-0101
0 1884 —0-0348* 0-00728

correlations; Table 2). As such comparison between
ideal and regression-based estimates of genetic par-
ameters is problematic for these traits. Nevertheless
examination of heritabilities for WT suggests that per-
formance of this method is lower in the pure-strain
subsets of the data. In particular, while the ideal
estimates suggest significant heritabilities for WT in
data sets B and O but not G, the regression-based
estimator indicates the opposite (Table 2). In B, heri-
tability was considerably overestimated (0-746 as
opposed to the ideal estimate of 0-296), but remains
non-significant due to the wide confidence interval. In
O, the regression-based estimate of /% was negative, a
result that is interpreted as zero.

Significant bias was found to occur in the estimation
of pairwise relatedness that is used in the regression
method (Table 3). For all data sets and all classes of
true relatedness, mean A;; is significantly less than
zero, indicating pairwise relatedness is systematically
underestimated. In all data sets bias varies across re-
latedness classes, being generally lowest for the true
r;=0 relatedness class, and highest for true r;=0-25.
Among data sets bias has a greater magnitude in
the smaller pure-strain subsets than in the complete
data set. Estimates of var A; are of comparable
magnitude across the data sets. Actual variances of
relatedness were calculated as 0-00156 for ALL, and
0-00584, 0-00438, and 0-00759 for B, G and O
respectively.

(1) Sibship reconstruction

In the full data set, sibship reconstruction resulted in
estimates of quantitative genetic parameters that also
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Table 4. Summary data for true and reconstructed pedigrees. Accuracy and half-sib error are reported as
observed in reconstructed pedigrees, and as expected with random assignment of individuals to families. * Denotes
observed value significantly greater than expected value at a=0-001

ALL B G (¢
Number of progeny 578 64 63 59
True pedigree
no. full-sib families 182 14 25 12
mean family size 3-18 4-57 2:52 492
no. full-sib pairs 1166 206 86 214
no. half-sib pairs 15141 696 533 559
no. unrelated pairs 150446 1114 1334 938
Reconstructed pedigree
no. full-sib families 133 17 30 20
mean family size 4-:34 3-76 210 2-81
no. full-sib pairs 1476 142 57 142
(correct) 550 118 29 32
(incorrect) 926 21 28 43
Accuracy
Observed (reconstructed pedigree) —0-322% +0-471%* +0-012* —0-051*
Expected (with random assignment) —1-248 —0-536 —0-604 —0-263
Half-sib error
Observed (reconstructed pedigree) 0-640%* 1-000* 0-714* 0-605*
Expected (with random assignment) 0-092 0-384 0-256 0-372

showed qualitative agreement with the ideal values
(Table 2). Furthermore, quantitative agreement is rela-
tively good between the marker-assisted and ideal es-
timates, though the sibship-reconstruction method did
result in all parameters being underestimated. Based
on standard errors presented, differences from ideal
values are not significant except for the genetic cor-
relation between WT and ST4. It should be noted that
the standard errors associated with the marker-
assisted estimates are based on the assumption that
the reconstructed pedigree is correct, and thus as a
measure of precision they do not adequately capture
all sources of error.

In the pure strain subsets, comparisons are again
complicated by problems in estimating standard errors
for both marker-assisted and ideal estimates. How-
ever, marker-assisted estimates for heritability of WT
show close agreement with ideal values in B and O, and
there is no evidence of significant bias. The same is true
for heritabilities of ST3 and ST4, though for the latter
traits standard errors could not be calculated so that
the significance of deviation in these data sets cannot
be assessed. In G, trait heritabilities were significantly
overestimated for all three traits, and for ST3, 4* was
significantly greater than zero, a result not corrob-
orated by the ideal values.

Visual comparison of the reconstructed sibships
with the true pedigree showed that there was con-
siderable homology between reconstructed and true
full-sib families. Nevertheless discrepancies were com-
mon and errors included both splitting of true full-
sibships among two or more families, and inclusion of
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non-full sibs into partitioned families. In the recon-
structed ALL pedigree, many partitioned families
contained multiple true-sib groupings. This amalga-
mation of separate true families resulted in a smaller
number of larger families in the reconstructed pedigree
as compared to the true pedigree (Table 4). In contrast,
the reconstructed pedigrees for all three pure strain
data sets (B, G and O) had larger numbers of smaller
families than the corresponding true pedigrees. These
sources of error in the pedigree reconstruction are
reflected by the comparatively low accuracy scores for
all four reconstructed pedigrees (Table 4). Note that
the negative score obtained for ALL and O show that
in these cases more of the reconstructed full-sib re-
lationships were false than true. Nevertheless, in all
cases accuracy was found to be considerably (and sig-
nificantly) higher than would be expected under ran-
dom assignment of individuals to families (Table 4).
This was also true for half-sib error. Furthermore,
half-sib error explained the majority of incorrectly
partitioned full-sib relationships in the reconstructed
pedigrees, actually accounting for all of them in data
set B (Table 4).

4. Discussion

The results of our analyses demonstrate the utility of
marker-assisted approaches for the estimation of quan-
titative genetic parameters with unknown pedigree.
In many instances, detection of significant variance
and covariance components might be sufficient to
test biological hypotheses regarding the genetic basis
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of phenotype. In the complete data set, both the
regression-based method, and the use of reconstructed
pedigree information, were successful in this respect.
Specifically, both approaches detected significant
heritabilities for all traits, a significant positive genetic
correlation between the ST3 and ST4, and significant
negative genetic correlations between weight and both
spawning time traits. These qualitative findings were
corroborated by the ideal results obtained from the
known pedigree. Nevertheless, differences between
the two approaches are apparent from a quantitative
comparison of the results.

In general the regression-based method was the less
successful of the two marker-assisted approaches em-
ployed, a finding that is consistent with previous com-
parative studies based on both simulated and empirical
data (Thomas & Hill, 2000; Thomas et al., 2000). For
example, heritability estimates exhibited large upward
bias, with all values being greater than one. Thus these
estimates actually lie outside of the true parameter
space, a result that presents a challenge for biological
interpretation. Furthermore confidence intervals were
large for all estimated parameters. This low accuracy
and precision reflects both bias and high sampling
variance that are often associated with the estimation
of pairwise relatedness (Van de Casteele et al., 2001).
Here, underestimation of pairwise relatedness is more
pronounced for pairs with true r; of 0-25 and 0-125
than it is for unrelated pairs, an effect that will likely
contribute to the observed upward bias in h2. While
some bias is expected as an inherent property of the
pairwise relatedness estimator (Ritland, 1996a; Rit-
land, 2000), underestimation of r; can also result from
high levels of relatedness among the individuals used to
estimate population allele frequencies (e.g. Hansson
et al., 2000). In the current work population allele fre-
quencies were estimated from the data set itself, which
is known to include large numbers of relatives. Since
estimation of heritability (but not genetic correlation)
under the regression-based model requires division by
the actual variance of relatedness (Ritland, 19965),
underestimation of this parameter will also introduce
upward bias. This has been reported elsewhere
(Thomas et al., 2002), though in this case estimated
actual variance of relatedness is more than the true
value as determined from the known pedigree.
Nevertheless, the large confidence limits associated
with the regression-based /2 estimates may reflect low
precision in estimating the actual variance of related-
ness. This is a source of error that does not affect the
estimation of genetic correlations.

Genetic parameters estimated from the reconstruc-
ted pedigree show closer agreement with ideal values
than those obtained using the regression method. The
downward bias of all estimates relative to the ideal
values can be attributed to errors in pedigree recon-
struction and to unrecognized relatedness between
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full-sib families. The number of incorrectly assigned
full-sibling relationships is high (actually exceeding the
number correctly assigned). Despite the use of con-
siderably more genotypic information in this case,
accuracy of the reconstructed pedigree is much lower
here than has been reported elsewhere (e.g. Thomas &
Hill, 2000 ; Smith et al., 2001). This can be attributed to
the presence of half-sibs in the pedigree structure that
clearly pose problems to the pedigree reconstruction,
and account for most of the incorrectly assigned full-
sibships. While a full-sibling relationship will not be
assigned if multi-locus genotypes cannot be attributed
to a single parental pair, this constraint is not expected
to exclude all true half-sib pairs. Elsewhere, simu-
lations following the extension of the MCMC ap-
proach to include nested full- within half-sib families,
have suggested the reconstruction methods to be in-
herently conservative such that true half-sibs are
unlikely to be reconstructed as full-sibs (Thomas &
Hill, 2002). However this conclusion was based on an
assumed structure of pairs of maternal full-sib families
nested within paternal half-sib families, while in this
case the half-sib structure is considerably more com-
plex and extended. Furthermore this type of error is
made more likely here because the number of true half-
sib pairs present in the data set is an order of magnitude
greater than the number of true full-sib pairs. Any
incorrectly assigned full-sib pairs will depress true re-
latedness within reconstructed families, resulting in
downward bias of trait heritabilities. However less bias
is introduced if incorrectly assigned full-sib pairs are
actually true half-sibs (as opposed to unrelated indi-
viduals). Thus, while the presence of half-sibs poses a
challenge to pedigree reconstruction that results in low
accuracy, the high level of half-sib error in this case also
tempers the effect of this low accuracy on parameter
estimates.

Splitting true full-sibling families into multiple
groups represents a second type of error in pedigree
reconstruction. This will also contribute to downward
bias in estimated genetic parameters because re-
constructed families are assumed to be unrelated. A
tendency for reconstructed pedigrees to underestimate
family size has been reported and attributed to this
type of error (Thomas & Hill, 2000; Smith ez al., 2001).
In the present study, mean family size was actually
larger in the reconstructed pedigree than in the true
pedigree, though some instances of true families being
partitioned into two or more groups were seen. Fur-
thermore, even in the complete absence of this type of
error, unrecognized relatedness between families is
unavoidable due to the fact that single sires were
used to produce multiple families. Therefore with
half-siblings present and no parental information
available, some downward bias of genetic parameters
is expected even if full-sib families are reconstructed
without error.
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In the pure-strain subsets of the data, insufficient
sample size was the primary constraint on effective
estimation of trait heritabilities and genetic corre-
lations. Even when the true pedigree was available,
difficulties were encountered in generating meaningful
estimates of genetic parameters, and this largely pre-
vents the evaluation of marker-assisted estimation
procedures in these data subsets. Sample size is critical
to both the accuracy and precision of estimated genetic
parameters (Falconer & Mackay, 1996), and this
constraint applies to both marker-assisted and con-
ventional procedures. In natural populations, larger
sample sizes might be possible using the regression
model since, with no pedigree structure assumed, ap-
plication to samples drawn from multiple generations
is valid. This consideration might be particularly im-
portantin systems with overlapping generations, or for
organisms in which age determination is difficult. How-
ever, in the current work the pedigree reconstruction
method was superior despite the larger sample sizes
under the regression model. Furthermore, under the
regression model, results were similar (both qualitat-
ively and quantitatively) if parental individuals were
excluded from the data set (results not shown).

In addition to the direct effects of sample size,
features of the pure-strain data subsets have further
implications to marker-assisted methodologies in
particular. For example, smaller sample sizes will re-
sult in less reliable estimates of population allele fre-
quencies, a problem exacerbated by the presence of
relativesin the sample. While this latter point applies to
the full data set (as discussed above), B, G, and O
contain higher proportions of known relatives than
does ALL. Furthermore, the set of microsatellite
marker loci used herein is more informative for the
complete data set, because allelic diversity is less in the
pure-strain subsets (presumably as a consequence of
hatchery management practices). It should be noted
that for estimation of pairwise relatedness, loci provide
information roughly in proportion to the number of
alleles at each locus (Ritland, 1996 ), while the accu-
racy of pedigree reconstruction is expected to increase
with allelic diversity (Thomas & Hill, 2000; Smith
et al., 2001).

These features of the data result in decreased accu-
racy and precision of the relatedness estimates in the
pure-strain data subsets. It is noticeable that perform-
ance of the pairwise relatedness estimator is worst in
data set O which has the lowest sample size, the highest
proportion of pairwise relationships with true r;
greater than zero, and the lowest mean number of
alleles per locus. The particularly poor performance
in this strain is consistent with previous findings based
on the relatedness estimator of Queller & Goodnight
(1989) (McDonald, 2001). In contrast, the accuracy of
pedigree reconstruction was actually higher for B, G
and O than it was for ALL, suggesting that this method
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may be less vulnerable to the difficulties posed in the
smaller data sets. Nevertheless it is noticeable that
reconstructed pedigrees for B, G and O had larger num-
bers of families with smaller mean sizes that the true
pedigrees. This effect has been attributed to splitting of
large families into smaller ones, a partitioning error
that occurs in particular when estimates of population
allele frequencies are made from a target sample
containing a few large families (Smith ez al., 2001).

The application of marker-assisted approaches to
estimate quantitative genetic parameters is dependent
upon the relationship structure of the system exam-
ined. In particular there is a requirement for a large
variance of relationship in the sample (Ritland, 19965 ;
Thomas et al., 2000). This will occur when the sample
contains high numbers of related individuals. In the
current work the presence of family structure within
the data sets was known a priori, but in natural popu-
lations this will not typically be the case. For ex-
ample, Thomas et al. (2002) attributed disappointing
results in estimating heritability of body weight in Soay
sheep to a lack of relatedness structure in the sample, as
well as to insufficient amounts of genotypic infor-
mation. Application to natural populations therefore
requires careful consideration of biological processes
such as social grouping (Ritland, 2000), as well as
appropriate design of sampling strategy (Wilson &
Ferguson, 2002), such that significant numbers of re-
latives are sampled. Since such structure can lead to
bias and inaccuracy in the molecular pedigree analysis
(discussed above), efficient estimation of genetic par-
ameters in small, highly structured samples may re-
quire estimation of allele frequencies from a larger
sample more representative of the whole population.
Alternatively, approaches such as the iterative process
for estimating allelic frequencies described in Smith
et al. (2001) may partially correct that problem.

In conclusion, we find that both the regression-based
method, and use of pedigree reconstruction allow use-
ful analysis of quantitative genetic architecture in a
qualitative sense. While the regression-based method
requires fewer assumptions regarding family structure,
and can also be applied across generations, this gen-
erality was associated with low accuracy and precision
of estimated genetic parameters. However, superior
estimates were obtained using pedigree reconstructed
by the MCMC method, despite low accuracy of pedi-
gree reconstruction that was caused to a large extent by
failure to distinguish between full- and half-sibling
relationships. Even if more genotypic information was
used so as to reduce this error rate, some downward
bias of genetic parameters is expected in the presence
of half-siblings due to unrecognized relatedness be-
tween families. Nevertheless, in this case reconstruc-
ting pedigree under the assumption that only full-sib
family structure was present resulted in estimates of
quantitative genetic parameters very similar to those
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obtained when the true complex pedigree was known.
Simulation-based studies would provide a useful ap-
proach for further testing of the generality of this re-
sult. As many natural populations will likely contain
a complex mix of relationship classes, extension of
the MCMC methodology to include these classes also
represents a useful direction for research, though it is
likely to be a complex problem (Thomas & Hill, 2002).
Thus the results herein are particularly encouraging in
that currently available methodology might be applied
to natural populations in which a mix of both full- and
half-sibs is possible or even likely.
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