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Abstract Let p be a prime number. For a positive integer n and a p-adic number ξ, let λn(ξ) denote
the supremum of the real numbers λ such that there are arbitrarily large positive integers q such that
‖qξ‖p, ‖qξ2‖p, . . . , ‖qξn‖p are all less than q−λ−1. Here, ‖x‖p denotes the infimum of |x − n|p as n runs
through the integers. We study the set of values taken by the function λn.
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1. Introduction

Throughout the paper, p denotes a prime number and | · |p denotes the usual p-adic
absolute value, normalized by |p|p = p−1.

In 1935, in order to define his classification of p-adic numbers, Mahler [11] introduced
the exponents of Diophantine approximation wn.

Definition 1.1. Let n � 1 be an integer and let ξ be a p-adic number. We denote by
wn(ξ) the supremum of the real numbers w such that, for arbitrarily large real numbers
X, the inequalities

0 < |xnξn + · · · + x1ξ + x0|p � X−w−1, max
0�m�n

|xm| � X

have a solution in integers x0, . . . , xn.

The p-adic version of the Dirichlet Theorem implies that wn(ξ) � n for every p-
adic number ξ which is not algebraic of degree at most n. Furthermore, it follows from
the p-adic version of the Schmidt Subspace Theorem that wn(ξ) = min{n, d − 1} for
every positive integer n and every p-adic algebraic number ξ of degree d. Moreover,
Sprindžuk [15] proved that wn(ξ) = n for every n � 1 and almost every p-adic number ξ,
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with respect to the Haar measure; see [5, § 9.3] for an overview of the known results on
the exponents wn.

Another exponent of Diophantine approximation, which measures the quality of the
simultaneous rational approximation to a number and its n first integral powers, has
been introduced recently [7] in the real case.

Definition 1.2. Let n � 1 be an integer and let ξ be a p-adic number. We denote by
λn(ξ) the supremum of the real numbers λ such that, for arbitrarily large real numbers
X, the inequalities

0 < |x0| � X, max
1�m�n

|x0ξ
m − xm|p � X−λ−1

have a solution in integers x0, . . . , xn.

The p-adic version of the Dirichlet Theorem implies that λn(ξ) � 1/n for every irra-
tional p-adic number ξ. Furthermore, it follows from the p-adic form of the Schmidt
Subspace Theorem that λn(ξ) = max{1/n, 1/(d − 1)} for every positive integer n and
every p-adic algebraic number ξ of degree d. Moreover, λn(ξ) = 1/n for every n � 1 and
almost every p-adic number ξ.

In the present paper, by the spectrum of a function we mean the set of values taken
by this function on the set of transcendental p-adic numbers. For n � 1, the spectrum of
wn is equal to the whole interval [n, ∞], but nothing seems to be known regarding the
spectrum of λn when n � 2. We address the following question.

Problem 1.3. Let n � 1 be an integer. Is the spectrum of the function λn equal to
[1/n, ∞]?

The real analogue of Problem 1.3 was recently investigated in [6]. The goal of the
present paper is twofold. Firstly, we show that, for any n � 1, the spectrum of the function
λn contains the interval [1,∞], proving thereby the exact analogue of [6, Theorem 3.4].
Secondly, we establish the p-adic analogue of the metrical result from [4].

The notation a �d b means that there exists a constant c > 0 such that a � b and c

depends only on d. When � is written without any subscript, it means that the constant
is absolute. We write a � b if both a � b and a � b hold.

2. Main results

Our first result is a p-adic analogue of [6, Corollary 2.3], which slightly improved an old
theorem of Güting [9]. This seems to be the first result of this type for p-adic numbers.

Theorem 2.1. Let n � 1 be an integer. For any real number w � 2n − 1, there exist
uncountably many p-adic integers ξ such that

w1(ξ) = · · · = wn(ξ) = w.

The key tool for the proof is a construction inspired by the theory of continued frac-
tions.

Proceeding as in [6,8], we combine Theorem 2.1 and a transference principle of Mahler
[12] to get our main result on the spectra of the functions λn.
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Theorem 2.2. Let n � 1 be an integer and λ � 1 be a real number. There are uncount-
ably many p-adic integers ξ, which can be constructed explicitly, such that λn(ξ) = λ.
In particular, the spectrum of λn contains the interval [1,∞].

It is with the help of metric Diophantine approximation that we are able to show
that the spectrum of wn is equal to [n, ∞]. Thus, it is meaningful to try to compute the
Hausdorff dimension (for background, the reader is directed to [3]) of the set of p-adic
numbers ξ with a prescribed value for λn(ξ). For n = 1, this was done by Melničuk [13],
who proved that

dim{ξ ∈ Qp : λ1(ξ) � λ} =
2

1 + λ
.

Actually, there is a slightly more precise result [3], namely

dim{ξ ∈ Qp : λ1(ξ) = λ} =
2

1 + λ
.

In this respect, we are able to establish the p-adic analogue of [4, Theorem 2].

Theorem 2.3. Let n � 2 be an integer. Let λ > n − 1 be a real number. Then

dim{ξ ∈ Qp : λn(ξ) = λ} =
2

n(1 + λ)
.

For n = 2 and 1
2 � λ � 1, it is expected that

dim{ξ ∈ Qp : λ2(ξ) = λ} =
2 − λ

1 + λ
,

in analogy with the real case [2,16]. We plan to investigate this problem in a subsequent
work.

3. p-adic continued fractions

This section was inspired by [10].
Set

p−1 = 1, q−1 = 0, p0 = 1, q0 = 1.

Let v = (vn)n�1 be a sequence of positive integers and set

pn = pvnpn−2 + pn−1, qn = pvnqn−2 + qn−1, n � 1.

A rapid calculation shows that

q1 = 1, q2 = pv2 + 1, q3 = pv3 + pv2 + 1, q4 = pv2+v4 + pv4 + pv3 + pv2 + 1,

and
pn

qn
=

pv1

1 +
pv2

1 +
pv3

· · · + pvn

.
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The reader may note the differences between these continued fractions and the classical
continued fraction algorithm for real numbers. In the latter case, the convergents pn/qn

are given by the recurrences pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2, where the
partial quotients an are positive integers.

Observe that ∣∣∣∣p1

q1
− p0

q0

∣∣∣∣
p

= p−v1 ,

and that, for n � 2, we have
∣∣∣∣pn

qn
− pn−1

qn−1

∣∣∣∣
p

=
∣∣∣∣ (p

vnpn−2 + pn−1)qn−1 − (pvnqn−2 + qn−1)pn−1

qnqn−1

∣∣∣∣
p

= p−vn

∣∣∣∣pn−1

qn−1
− pn−2

qn−2

∣∣∣∣
p

,

since p does not divide qnqn−1qn−2.
Consequently, for n � 0 and k � 1, we have

∣∣∣∣pn+k

qn+k
− pn

qn

∣∣∣∣
p

=
∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣
p

= p−vn+1−vn−···−v1 , (3.1)

since v1, v2, . . . are positive. Here, we have used that

|a + b|p = max{|a|p, |b|p}

holds for all p-adic numbers a and b such that |a|p �= |b|p. This fact will be used repeatedly
in the course of the proof of Theorem 2.1.

Equalities (3.1) show that the sequence (pn/qn)n�1 converges p-adically. Let ξv denote
its limit. It follows from (3.1) that

∣∣∣∣ξv − pn

qn

∣∣∣∣
p

� p−vn+1−vn−···−v1 . (3.2)

If ∣∣∣∣ξv − pn

qn

∣∣∣∣
p

< p−vn+1−vn−···−v1 ,

then, by (3.1), we get
∣∣∣∣ξv − pn+1

qn+1

∣∣∣∣
p

= max
{∣∣∣∣ξv − pn

qn

∣∣∣∣
p

,

∣∣∣∣pn+1

qn+1
− pn

qn

∣∣∣∣
p

}
= p−vn+1−vn−···−v1 ,

which contradicts (3.2) since vn+2 � 1. Consequently, we have proved that
∣∣∣∣ξv − pn

qn

∣∣∣∣
p

= p−vn+1−vn−···−v1 , n � 1. (3.3)
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4. Proof of Theorem 2.1

Let w > 1 be a real number. Set v1 = �w� and v2 = �w2�, where �x� denotes the smallest
integer greater than or equal to x. For n � 3, let vn be the integer such that

vn + vn−2 + · · · + vε(n) = �wn + wn−2 + · · · + wε(n)�,

where ε(n) = 2 if n is even and ε(n) = 1 otherwise. Let ξ = ξv be the p-adic number
constructed by the algorithm described in § 3 applied with v = (vn)n�1.

To shorten the notation, for n � 1, we set

un = vn + vn−2 + · · · + vε(n).

Note that
un � un−1, n � 2. (4.1)

Observe that

un � wn + wn−2 + · · · + wε(n) + 1

� w(wn−1 + wn−3 + · · · + wε(n−1)) + w + 1

� wun−1 + w + 1 (4.2)

and

un � wn + wn−2 + · · · + wε(n)

� w(wn−1 + wn−3 + · · · + wε(n−1))

� w(un−1 − 1) = wun−1 − w. (4.3)

We begin with an easy lemma.

Lemma 4.1. Using the above notation, we have

qj � puj , j � 2,

and there exists C1, depending only on p and w, such that

qj � C1p
uj , j � 1.

Proof. The first statement of the lemma is straightforward, since qj � pvj qj−2 for
j � 2. For the second, we first check inductively that

qj � 2jpuj , j � 1. (4.4)

Indeed, q1 = 1, q2 = pu2 + 1 and, assuming that (4.4) holds for j = n − 1 and j = n − 2
for an integer n � 3, we have

qn � 2n−2pun + 2n−1pun−1 � 2npun ,

by (4.1), showing that (4.4) holds for j = n. We conclude that (4.4) holds for j � 1.
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Let n0 be such that
pwn−wn−1 � 22np, n � n0,

and set C1 = 2n0 + 1. Since un � wn, we have

pun(1−1/w) � 2nC1p, n � n0 + 1. (4.5)

Furthermore, by (4.4), we have

qn � (C1 − 1)pun , 1 � n � n0. (4.6)

We prove by induction on n that

qn � (C1 − 1/n)pun , n � 1. (4.7)

By (4.6), inequality (4.7) holds for n � n0. Let n � n0 + 1 be an integer such that (4.7)
holds for n − 1 and for n − 2. Observe that, by (4.3) and (4.5),

2nC1p
un−1 � 2nC1ppun/w � pun ;

thus,

qn = pvnqn−2 + qn−1 � (C1 − 1/(n − 2))pun + C1p
un−1

� (C1 − 1/(n − 2) + 2−n)pun

� (C1 − 1/n)pun .

This proves the lemma. �

Lemma 4.2. With the above notation there are positive real numbers C2 and C3,
depending only on p and w, such that

C2q
w
j � qj+1 � C3q

w
j , j � 1.

Proof. Let j be a positive integer. By Lemma 4.1 and (4.2), we have

qj+1 � C1p
uj+1 � C1p

wuj+w+1 � (C1p
w+1)qw

j ,

while, by Lemma 4.1 and (4.3),

qj+1 � puj+1 � pwuj−w � (pC)−wqw
j .

This proves the lemma. �

We end these preliminaries with a lemma, which follows from an immediate induction.

Lemma 4.3. For j � 0, we have

pj � (pv1 + 1)qj .
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For j � 2, it follows from (3.3) that
∣∣∣∣ξ − pj

qj

∣∣∣∣
p

= p−vj+1−vj−···−v1 = p−uj+1−uj ;

thus, by Lemma 4.1, we get

q−1
j q−1

j+1 �
∣∣∣∣ξ − pj

qj

∣∣∣∣
p

� C2
1q−1

j q−1
j+1,

and, by Lemma 4.2,
C−1

3

qw+1
j

�
∣∣∣∣ξ − pj

qj

∣∣∣∣
p

� C2
1C−1

2

qw+1
j

. (4.8)

Consequently, we get
w � w1(ξ) � · · · � wd(ξ) (4.9)

for every positive integer d (note that the unknown xn occurring in the definition of wn

can be equal to 0).
Let d be a positive integer with d < w. Let P (X) be an integer polynomial of degree

at most d and of large height H(P ) (recall that the height of an integer polynomial is
the maximum of the absolute values of its coefficients). Assume first that P (X) does not
vanish at any element of the sequence (pj/qj)j�1. Let j be defined by qj � H(P ) < qj+1.
Observe that, by Lemma 4.3, the numerator of the rational number P (pj/qj) is at most
equal to (d + 1)(pv1 + 1)dH(P )qd

j ; thus,

|P (pj/qj)|p � (d + 1)−1(pv1 + 1)−dH(P )−1q−d
j .

To shorten the formulae, set

C4 = (d + 1)−1(pv1 + 1)−d.

Since ξ and pj/qj are p-adic integers, the Mean Value Theorem (see, for example, [14,
§ 5.3]) gives

|P (pj/qj) − P (ξ)|p � |ξ − pj/qj |p � p−uj+1−uj

by (3.3). Consequently, since

|P (pj/qj)|p � C4H(P )−1q−d
j ,

we get
|P (ξ)|p = |P (pj/qj)|p � C4H(P )−1−d

as soon as p−uj+1−uj < C4H(P )−1q−d
j , that is, whenever

H(P ) < C4q
−d
j puj+1+uj . (4.10)

Similarly, we observe that

|P (pj+1/qj+1)|p � C4H(P )−1q−d
j+1
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and
|P (pj+1/qj+1) − P (ξ)|p � p−uj+2−uj+1 � C2

1C−1
2 q−1−w

j+1 .

Since w > d and H(P ) < qj+1, this implies that, if j (that is, if H(P )) is large enough,
we have |P (ξ)|p � C4H(P )−1q−d

j+1. In other words, for any positive real number C5 < C4,
we have |P (ξ)|p � C5H(P )−1−w if H(P )−w � C−1

5 C4q
−d
j+1, that is, if

H(P ) � C
−1/w
4 C

1/w
5 q

d/w
j+1 . (4.11)

By Lemma 4.1, inequality (4.10) holds if

H(P ) < C4q
−d
j C−2

1 qjqj+1 = C−2
1 C4qj+1q

1−d
j . (4.12)

Using Lemma 4.2, we see that (4.11) certainly holds for

H(P ) � C
−1/w
4 C

1/w
5 qj+1(C3q

w
j )−1+d/w. (4.13)

Selecting C5 such that
C

−1/w
4 C

1/w
5 C

−1+d/w
3 < C4C

−2
1 ,

we get that, if 1 − d � −w + d, then for every polynomial P (X) whose height is in the
interval [qj , qj+1) at least one of the inequalities (4.12) and (4.13) is satisfied. This means
that the whole range of values qj � H(P ) < qj+1 is covered as soon as

w � 2d − 1. (4.14)

To summarize, we have proved that if j is sufficiently large, then, for w � 2d − 1 and
for any polynomial P (X) of degree at most d that does not vanish at pj/qj and whose
height satisfies qj � H(P ) < qj+1, we have

|P (ξ)|p � C5H(P )−w−1.

In particular, if the polynomial P (X) of degree at most d does not vanish at any element
of the sequence (pj/qj)j�1 and has sufficiently large height, then it satisfies

|P (ξ)|p � C5H(P )−w−1. (4.15)

Assume now that there are positive integers a1, . . . , ah, distinct positive integers
n1, . . . , nh and an integer polynomial R(X) such that the polynomial P (X) of degree
at most d can be written as

P (X) = (qn1X − pn1)
a1 · · · (qnh

X − pnh
)ahR(X),

where R(X) does not vanish at any element of the sequence (pj/qj)j�1. It follows from
(4.8), (4.15), Lemma 4.3 and the so-called Gelfond inequality (see, for example, [5,
Lemma A.3])

H(P ) �d,w qa1
n1

· · · qah
nh

H(R)

https://doi.org/10.1017/S001309151000060X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151000060X


Approximation to a p-adic number and its integral powers 607

that

|P (ξ)|p �d,w q−a1(w+1)
n1

· · · q−ah(w+1)
nh

|R(ξ)|p
�d,w q−a1(w+1)

n1
· · · q−ah(w+1)

nh
H(R)−w−1

�d,w (qa1
n1

· · · qah
nh

H(R))−w−1

�d,w H(P )−w−1.

We conclude that, if (4.14) is satisfied, then

|P (ξ)|p �d,w H(P )−w−1

holds for every polynomial P (X) of degree at most d and sufficiently large height; hence,
wd(ξ) � w. Combined with (4.9), this completes the proof of Theorem 2.1, since our con-
struction is flexible enough to yield uncountably many p-adic integers with the required
property.

5. Proof of Theorem 2.2

Let ξ be an irrational p-adic number. Clearly, we have

λ1(ξ) = w1(ξ) � 1

and
λ1(ξ) � λ2(ξ) � · · · .

Our first lemma establishes a relation between the exponents λn and λm when m

divides n.

Lemma 5.1. For any positive integers k and n and any transcendental p-adic number
ξ we have

λkn(ξ) � λk(ξ) − n + 1
n

.

Proof. Let v be a positive real number and let q be a positive integer such that

max
1�j�k

|qξj − pj |p � q−v−1

for suitable integers p1, . . . , pk. Let h be an integer with 1 � h � kn. Write h = j1+· · ·+jm

with m � n and 1 � j1, . . . , jm � k. Then there are p-adic numbers ε1, . . . , εm such that

|εi|p � q−v−1, qξji = pji + εi, i = 1, . . . , m.

Consequently, we have

qmξh =
m∏

i=1

qξji =
m∏

i=1

(pji + εi) = ε′ +
m∏

i=1

pji
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for a p-adic number ε′ satisfying |ε′|p � q−v−1. This shows that

|qmξh − pj1 · · · pjm |p � q−v−1

and

|qnξh − pj1 · · · pjmqn−m|p � q−v−1 = (qn)−1−(v−n+1)/n,

independently of h. This proves the lemma. �

We display an immediate consequence of Lemma 5.1.

Corollary 5.2. Let ξ be a p-adic irrational number. Then λn(ξ) = ∞ holds for every
positive n if, and only if, λ1(ξ) = ∞.

We recall two relations between the exponents wn and λn deduced from the p-adic
analogue of Khintchine’s transference principle due to Mahler [12].

Proposition 5.3. For any positive integer n and any p-adic number ξ which is not
algebraic of degree at most n we have

wn(ξ)
(n − 1)wn(ξ) + n

� λn(ξ) � wn(ξ) − n + 1
n

.

Proof. See [12]. Note that the value of wn(ξ) does not change if, in Definition 1.1, we
only consider tuples (x0, x1, . . . , xn) such that there exists at least one index i for which
p does not divide xi. Similarly, the value of λn(ξ) does not change if, in Definition 1.2,
we only consider tuples (x0, x1, . . . , xn) such that p does not divide x0. �

We are now able to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Let n � 2 be an integer and let ξ be a transcendental p-adic
number. Lemma 5.1 with k = 1 implies the lower bound

λn(ξ) � w1(ξ) − n + 1
n

.

On the other hand, Proposition 5.3 gives the upper bound

λn(ξ) � wn(ξ) − n + 1
n

.

Now, Theorem 2.1 asserts that for any given real number w � 2n−1 there exist uncount-
ably many p-adic integers ξw such that

w1(ξw) = · · · = wn(ξw) = w.

Then,

λk(ξw) =
w

k
− 1 +

1
k

, k = 1, . . . , n.

In particular,

λn(ξw) =
w

n
− 1 +

1
n

,

and this gives the required result. �
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6. Proof of Theorem 2.3

As Qp can be covered by a countable collection of balls of radius 1, we will only prove
the theorem for one such ball, namely Zp. The arguments are the same for any other
ball but some of the constants will change. The proof follows that of [4]. Fix an integer
n � 2. Define the curve Γ ⊂ Zn

p as Γ = {(ξ, ξ2, . . . , ξn) : ξ ∈ Zp}. We will use the notation
|a, b, c| to denote the maximum of |a|, |b| and |c|. If a is a vector, then |a| is the maximum
of the vector entries. The set of points (ξ, ξ2, . . . , ξn) ∈ Γ which satisfy the inequalities
|qξ − r|p � |q, r, t|−τ and |qξi − ti|p � |q, r, t|−τ for infinitely many q, r ∈ Z and t ∈ Zn−1

will be denoted by Wτ (Γ ). The set Wτ (Γ ) is closely related to the set of exact order
in the statement of Theorem 2.3 and in order to prove the theorem we will first obtain
the Hausdorff dimension and measure of Wτ (Γ ) for sufficiently large τ . The proof relies
on the following lemma, which shows that if (ξ, ξ2, . . . , ξn) ∈ Wτ (Γ ), then the rational
points (r/q, t/q) also lie on Γ for τ sufficiently large.

Lemma 6.1. Let (ξ, ξ2, . . . , ξn) ∈ Wτ (Γ ) be such that there exist infinitely many
D, r ∈ Z, t ∈ Zn−1 such that |Dξ − r|p < |D, r, t|−τ and |Dξi − ti|p < |D, r, t|−τ . If
τ > n, then (r/D, t/D) ∈ Γ .

Proof. Let (ξ, ξ2, . . . , ξn) ∈ Wτ (Γ ). Hence, there exist integers r, ti and D such
that |Dξ − r|p < |D, r, t|−τ and |Dξi − ti|p < |D, r, t|−τ . Therefore, |ξ − r/D|p <

|D, r, t|−τ |D|−1
p and |ξi − t/D|p < |D, r, t|−τ |D|−1

p and there exist ε1, . . . , εn, such that
ξ − r/D = ε1 and ξi − ti/D = εi for i = 2, . . . , n with |εi|p < |D, r, t|−τ |D|−1

p . Then

ξi =
ti
D

+ εi =
(

r

D
+ ε1

)i

=
(

r

D

)i

+ R(ε1),

where R(X) is a rational polynomial divisible by X. Hence, ti/D − (r/D)i = R(ε1) − εi

so that
Di−1ti − ri = Di(R(ε1) − εi).

Clearly, Di−1R(X) ∈ Z[X], so that |DiR(ε1)|p � |D|p|ε1|p < |D, r, t|−τ . Thus,

|Di−1ti − ri|p � |D, r, t|−τ .

Since Di−1ti − ri is an integer, its p-adic absolute value is either 0 or at least equal to
|Di−1ti − ri|−1. Combined with our assumption that τ exceeds n, the above inequality
shows that Di−1ti = ri for i = 2, . . . , n. This implies that (r/D, t/D) lies on Γ , as
asserted. �

Define the point Prq as

Prq =
(

r

q
, . . . ,

rn

qn

)
=

(
rqn−1

qn
, . . . ,

rn

qn

)
.

If the highest common factor of r and q is 1, then the lowest common denominator of the
coordinates of Prq is qn. On the other hand, if (r, q) = h > 1, then we can write r = r1h
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and q = q1h so that

Prq =
(

r1q
n−1
1

qn
1

, . . . ,
rn
1

qn
1

)
= Pr1q1 .

We may therefore assume without loss of generality that (r, q) = 1. If

Ξ = (ξ, ξ2, . . . , ξn) ∈ Wτ (Γ )

and τ > n, then Lemma 6.1 asserts that Ξ must be approximated by infinitely many
points Prq with (r, q) = 1 and must satisfy the inequalities |qnξ − rqn−1|p < |qn, rn|−τ ,
|qnξ2 − r2qn−2|p < |qn, rn|−τ , . . . , |qnξn − rn|p < |qn, rn|−τ .

The proof of the theorem now follows that in [4]. First, we move from the set Wτ (Γ )
to the set

Vτ (Γ ) = {ξ ∈ Zp : (ξ, ξ2, . . . , ξn) ∈ Wτ (Γ )}.

It is not difficult to show that for all ξ1, ξ2 in Zp we have

|ξ1 − ξ2|p = max
i=1,...,n

|ξi
1 − ξi

2|p.

Thus, there is a bi-Lipschitz transformation between any ball B(ξ, r) ⊂ Zp and the image
of that ball on Γ . To determine the Hausdorff dimension of Wτ (Γ ) it is therefore sufficient
to find the Hausdorff dimension of Vτ (Γ ). It can be readily verified that the following
inclusions hold for Vτ (Γ ):

∞⋂
N=1

⋃
k>N

⋃
|q,r|=k

B

(
r

q
, |rn, qn|−τ

)
⊂ Vτ (Γ ) ⊂

∞⋂
N=1

⋃
k>N

⋃
|q,r|=k

B

(
r

q
, |rn, qn|−τ |qn|−1

p

)
.

(6.1)
To prove the exact order result it is necessary to obtain dimension and measure results

for Wτ (Γ ). The fact that dimWτ (Γ ) = dimVτ (Γ ) � 2/nτ and the fact that the Hausdorff
2/nτ -measure is infinite follows directly from [1, Theorem 16] by using the left-hand side
of (6.1) and setting ψ(r) = r−nτ and f(r) = rs. It is therefore only necessary to prove
the upper bound for the Hausdorff dimension.

Lemma 6.2. For any n � 2 and τ > n we have

dim Vτ (Γ ) � 2
nτ

.

Proof. The proof follows that of [4, Lemma 2]. Using the right-hand side of (6.1)
gives a cover of Vτ (Γ ), so that

Hs(Vτ (Γ ))

�
∑
k>N

∑
r,q : max(r,q)=k

|rn, qn|−τs|qn|−s
p

�
∑
k>N

( ∑
r,q : max(r,q)=q=k

|rn, qn|−τs|qn|−s
p +

∑
r,q : max(r,q)=r=k

|rn, qn|−τs|qn|−s
p

)

�
∑
k>N

(
kk−nτs|k|−ns

p + k−τns
k∑

q=1

|q|−ns
p

)
.
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Consider the second sum first and let α be such that pα � k < pα+1. Then, as |k|p = 1
if p does not divide k, we have

∑
k>N

k−τns
k∑

q=1

|q|−ns
p =

∑
k>N

k−τns

( ∑
q�k,p�q

1 +
∑

q�k : p|q and p2�q

pns + · · · +
∑

q�k : pα|q
pαns

)

�
∑
k>N

k−τns

(
k +

k

p
pns +

k

p2 p2ns + · · · +
k

pα
pαns

)

�
∑
k>N

k1−τns

( α∑
i=0

pi(ns−1)
)

�
∑
k>N

kns−τns

< ∞

for s > 1/(nτ − n). Clearly, for τ > n � 2, 2/nτ > 1/(nτ − n), so for s > 2/nτ the series
converges. Now, using the same arguments, consider the first sum, to obtain∑

k>N

kk−nτs|k|−ns
p

�
∑

k>N : p�k

k1−nτs +
∑

r>N : p�r

(pr)1−nτspns +
∑

r>N : p�r

(p2r)1−nτsp2ns + · · ·

�
∑
k>N

k1−nτs
∞∑

i=0

pi(1+ns−nτs)

The last geometric series again converges if s > 1/(nτ −n). Thus, for s > 2/nτ both sums
converge, which is sufficient to prove dim Wτ (Γ ) = dimVτ (Γ ) � 2/nτ for τ > n. �

It is now possible to obtain the dimension of the set

Eλ := {ξ ∈ Zp : λn(ξ) = λ}

when λ exceeds n − 1. Clearly, Eλ ⊂ Wλ+1(Γ ), so that

dim Eλ � 2
n(1 + λ)

,

by Lemma 6.2. Note that

Eλ = lim
m→∞

Wλ+1(Γ ) \ Wλ+1+1/m(Γ ).

Also, H2/n(1+λ)(Wλ+1(Γ )) = ∞ [1, Theorem 16] and H2/n(1+λ)(Wλ+1+1/m(Γ )) = 0 from
the definition of the Hausdorff dimension. Thus,

H2/n(1+λ)(Wλ+1(Γ ) \ Wλ+1+1/m(Γ )) = ∞,

which implies that

dim Eλ � 2
n(1 + λ)

.

This proves Theorem 2.3.
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