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1. Introduction. We consider & medium in which the equation
satisfied by a disturbance ¢(z, t) is capable of solutions of the form
sin(vx—wt), with v and w real but not necessarily of the same sign. If
the phase velocity U = w/v is not of constant magnitude the medium is
said to be dispersive, and the group velocity ¥ may conveniently be defined
as dw/dv, an expression easily re-written in other familiar forms. From
this definition the two physical interpretations of ¥V may easily be seen.
In one interpretation we consider a superposition of two harmonic waves
with slightly different v (and w); the velocity of advance of the group
form, being the velocity of advance of a point at which the two waves have
a constant phase difference, is dw/dv. From the system just described
we readily obtain the alternative interpretation of V as a velocity of
propagation of “energy ”’, which for this purpose could be defined as any
quantity whose spatial density e satisfied a relation?! of the form ¢ = — 8,
where € and S are functions (of the quantities specifying the disturbance,
and of their various differentials) such that ¢ and S are zero in the
undisturbed medium and € has a non-zero mean value in a harmonic wave.
For then, if we consider for example a region PP, of space, of length L,
in which, at a certain time, the group pattern of the double wave ranges
from its very small minimum to its maximum, of amplitude say 4, at P;,
then, from the change in the energy content of this space when the group
pattern moves by a small fraction of L, we see at once that if € is the mean
energy density in the region of P; the mean value of § in the plane P, is
(dw/dv)e; that is, V€ is the mean forward flow of energy per unit area per
unit time in a region where the disturbance is 4 sin(vx—w?) with mean
energy density €. It will be noted that in this interpretation of ¥ the idea
of the double wave is no longer present.

For subsequent use it may be mentioned that a third physical
interpretation of V is known, though as it stands it is of a rather academic

1 The point and dash mean 9/3¢ and 9/¢x; and the range of all the integrals in the
paper is from —o to ®, except where otherwise obvious.
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nature, since it is concerned with a state attained asymptotically at very
large time. It may be described roughly by saying that if we have initially
a disturbance in a finite region round the origin, the wave lengths present
in a Fourier analysis of it will, after a very long time ¢, have separated out
into a spectrum in space, the disturbance in the region of a point distant
V(A)t from the origin being then a harmonic wave of length XA and of
amplitude indicated by the original Fourier analysis. If, for example, in
a dispersive medium of infinite extent, a real quantity ¢ (fallingoff
sufficiently rapidly at large |z| at ¢= 0) can be represented at ¢ >0 by

= (277)_1/25 F(v) exp {i(vz—wt)}dv 1)

where w has the same sign as v, and |w| is a function of |v|, and if there
are no two | v]s with the same V, then at sufficiently large ¢ the disturbance
¢ in the region of z = V¢ is a harmonic wave of length 2x/|v|, phase velocity
wfv, and amplitude A(z,t) conveniently specified by saying that the

relation ngﬂ dz = 2| F(|v|)|*d|v| (which when integrated with respect to | v|

holds at all times) ultimately holds for each element d|v|, if the integral
on the left is taken over the corresponding range, which is of length
Az =1t.dV; the integral is evidently ;A2Ax. The statement is readily
generalised for other cases such as those in which ¢ is a complex quantity,
or cannot be represented by the single integral (1).

2. The theorems which will be established in the present paper exhibit a
different aspect of group velocity. It will be shown that in various types
of dispersive media, of infinite extent, the motion resulting from an
arbitrary initial state of disturbance is characterised by certain quantities
which are independent of time and may be expressed as suitable averages
of the group velocity (or a power of it) over the range of waves present in
a Fourier analysis of the original disturbance.

As a first example let us suppose that at £ > 0 a quantity ¢, in general
complex, is given by

¢ = (2m)V/2 5 fv, t) expivedy (2)
where
flv, t)= F(v) exp —iwt (3)

and w is a function of v, say A(v). It will be assumed that ¢, which by (2)
may be described as the Fourier transform of f, satisfies the restrictions
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needed to justify the following operations. By applying the Fourier
inversion theorem to (2) and then differentiating m times with respect to
v we see that zm¢ is the transform of imomfjoym. By (3), omf/ov™ is
exp(—iwt) multiplied by a power series in ¢ in which the term of highest
degree is (—utV)"F. Differentiating (2) » times with respect to z, we see
that 0™ ¢/dx™ is the transform of (iv)*f. Using these results we are able,

by Parseval’s formula, to write jxqu(andz":‘/ax”)dx as an integral (with

respect to v) of which the m-th time differential can be immediately written
down. We find, in fact, that if (using a star to mean a harmonic conjugate)
€, is defined by

An . an Ed . an \
W= 8 T e 5
and X, by jxm ¢, dz/E,,, where Enzjen da,

then if we write

dE, = (Av)* FF¥*dv (4)
we have : E,= jdEn
and {dm X, ! = ij JE,[E,. (5)

It is evident that the expression (4), and hence also (5), is independent
of time. (In particular cases the denominator in this last expression may
be zero, or the numerator or denominator may be a divergent integral;
in such cases the expression has, of course, no meaning.) It will be noted
that the theorem still holds if, throughout, ¢ is replaced by, say, ¢> or ¢,
since these quantities are also of the form (2).

If the equation of motion of the medium is

¢; = Sy~+1) @, a7 ¢[0xP (6)

(where a’s are real and A(v) is evidently Za,v?), a value ¢(x) specified
for ¢ at t =0 evidently determines ¢(z, t) at all later times. Hence (2),
with this A(v), being a solution of the equation of motion, is equal to this
¢(x, t) if at t = 0 it is equal to ¢(z); and this it will be if in (3) we insert the
F calculated from ¢(zx) by the Fourier reciprocal theorem. In the case
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of the one-dimensional Schrédinger equation, which may be written
&ziazﬁ" and is thus a particular case of (6), ¢, if normalised so as to give
E, a value M, is interpreted as representing a large number of equal
point-masses of total mass M in free motion parallel to the z-axis. If 4
is given the value 2a, then ¢,, ¢, ¢, are the expressions which are interpreted
as the amounts, per unit length, of mass, momentum and vis vtva. The
expression ff*dv is interpreted as the mass of particles which have
velocities dw/dv in the corresponding small range. Thus in the case of
the Schrodinger equation, (5) is the wave mechanical transcription of the
kinematical theorem, applicable to the corresponding physical system
{dm X, m[dtm}/m! = (Zom+m)[(Zo™),
independent of time.

3. For many of the wave motions occurring in physics the differential
equation of motion is not such that a single scalar function of z, specified
for ¢t =0, determines the subsequent motion. More often the equation
is such that the motion is determined by the values at time zero of two
real scalar quantities (such as a real scalar and its time differential coeffi-
cient) ; and the expressions for such quantities, in the infinite medium, are
of the form

= (277)—1/25( fot1.) expivady

where f.=F_exp—iwt; f.=F, expiwt (M

and |w| is a function of |v|, say A(|v|).

F_ and F, are readily calculated from the specified initial conditions
by the inversion formula.

If either F_ or F is zero, so that only the 4 or — waves are present,
it is evident that the arguments leading to the theorem (5) are still valid ;
whether the motion expressed by the general solution (7) is characterised
by any such constants is a question that will now be considered.

In that general case it will be found from (7) by using Parseval’s formula
that if @ and 4 are constants

I= —g’—j(&z—zﬁ%{;) dz is independent of time (8)

J= _Asw dz  is independent of time. (9)

These two results! are useful for the purpose.

1 Tt will be found that there are also a large number of such expressions containing
higher differential coefficients.
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As an example we may consider an irrotational disturbance of smail
amplitude in an inviseid incompressible fluid of finite (or infinite) depth H,
acted on by gravity. The typical harmonic solution and the function
k(| v|) are well known. We will take the y-axis as directed upwards, with
y zero at the surface of the undisturbed fluid. In the expressions of type (7)
for quantities which vary with y, F_and F, are functions of v and y, but
this does not affect the derivation, from (7), of (8) and (9), which are thus
true at every y. The general motion considered may be thought of as
having been established by applying forces to the upper surface of the
fluid prior to ¢=0. The vertical surface-displacement and velocity,
say n(z) and 7(z) at ¢ = 0, determine the subsequent motion, the F_and F
in expressions of the type (7) being readily calculated from them. Ifnow
we consider a unit thickness in the z direction, and if the energy ¢ in a vertical
column, of unit length in the 2 direction and extending from the bottom
to the surface, is defined as the sum of the kinetic energy in the whole
column and the work obtainable by redistributing the surface column of
height 7 as a thin sheet at the level of the undisturbed surface (with an
analogous definition where 7 is negative), then if ¢ is the velocity potential
and if @ and 4 are given the value p/g, the constant integral I, taken at
y = 0, is equal to the total energy, say E (a formula which is also true for
one wave-length of a harmonic wave if present alone). Moreover é = —§’,

0

where Sde = gs Jdy, and, since (9) holds at every y, we see that dex
-H

is independent of time, and hence (integrating x< dz by parts) that so also

is (d/dt) sxe dz/E, the velocity X of the centre of energy!. For evaluating

these constant quantities we may evidently choose a time so great that the
frequency distribution has become a spatial distribution, as mentioned in
§1. Thus if the functions F_ and F are those in the expression of type (7)
for gn (which in this motion is the value of qS at y = 0) and if we write
dE_=aF_F_%*dv and dE, =aF_ F *dv we have

E= j(dE_+dE+) and X = j(V_ dE_+V, dE,)/E.

1 Similarly, of course, in media where there are relations of the form ¢ = —§’, 8 = —PR,
and IRd:u = 0, the quantity d’{ Ix"’ € dx} / di? is independent of time, and the expression

for it as E multiplied by an average of V2 is easily writtsn down. It is also evident that,
owing to the ultimate sorting out of the frequencies in space, there will be a large number
of X™'s whose m-th time differential coefficients, though not constant, will tend with
increasing time to constant values given by simple expressions,
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In visualising this average of V, it should be remembered that at a given
wave-length its values V_ and V_ in the — and 4 waves are, by our
definitions, equal and opposite.

Returning to the general class of wave motions satisfying (7) we see that
another quantity, constant during the motion and having the dimensions
of a velocity, may be obtained by dividing (8) by (9). Writing

dJ_=AF_F_#dy/U_ and dJ, = AF, F,*dv|U,

where the F’s are those of ¢, we have
J=S(dJ_+dJ+) and I/J = %S(U_dJ_ﬁ— U,dJ,)J.

Thus, putting « = A4, we can regard I/J as an average not of the group
but of the phase velocity ; but this is a rather artificial way of regarding it.
It is of quite a different nature from such a quantity as X and cannot be
thought of as the velocity of a moving point having a simple physical
significance. Its meaning may be exemplified by taking the case of the
fluid waves and considering the two integrals I and J at y = 0. If we put
a = A =plg, Iis, as remarked above, the total energy: and (since qS is gn)
J is the total momentum, in the x direction, in the columns of height 4
in the regions where 7 is positive, together with an analogous contribution
from the regions where 5 is negative; it is also equal to the momentum
in the z direction generated in the fiuid by the forces acting on the upper
surface during the original setting up of the motion. Thus the expression
for I/J asserts that the total energy is obtained by multiplying each of
the elements dJ_ and dJ, of momentum by the corresponding phase
velocity and summing them.

In conclusion it should be mentioned that there are complex dispersive
media in which four quantities can be assigned arbitrary initial values:
as would be expected the general solution corresponding to (7) now consists
of four integrals. They are made possible by there being, in such media,
two possible frequencies for each wave-length.
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