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Abstract

Let P be a partially-ordered set in which every two elements have a common lower bound. It is
proved that there exists a lower semilattice L whose elements are labelled with elements of P in
such a way that (i) comparable elements of L are labelled with elements of P in the same strict
order relation; (ii) each element of P is used as a label and every two comparable elements of P
are labels of comparable elements of L; (iii) for any two elements of L with the same label, there
is a label-preserving isomorphism between the corresponding principal ideals. Such a structure
is called a full, uniform iMabelled semilattice.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 06 A 12,08 A 99; secondary
20 M 10.

0. Introduction

Let P be a partially-ordered set. A P-labelling of a lower semilattice, L, is an
assignment, to each element a of L, of an element /(a) of P such that, if a, beL
and a<b in the ordering of L, then l(a)<l(jb) in the ordering of P. Such a pair
(£, /) will be called a ^-labelled semilattice, or P-semilattice.

A /'-semilattice will be called full if, whenever p,qeP and p^q, then there
exist a,beL with a < b, l(a) —p and l(b) —q. (In particular, for each peP there
exists aeL with /(a) =/>.) Clearly, there can only exist a full jP-semilattice if P is
downward-directed, that is, for any p,qeP there exists reP with r < p and r <- q.

If if = (L, /) is a P-semilattice, then each aeL determines a P-semilattice SC<a

consisting of those elements c of L with c<a. We say that S£ is uniform if, whenever
a,beL and /(a) = l(b), then JSf<a and JS?<fc are isomorphic P-semilattices.
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386 C. J. Ash [2]

In this paper we show that, for each downward-directed partially-ordered set,
P, there exists a full, uniform P-semilattice. This answers a question originally
suggested by the study of Green's relation / on semigroups, see Rhodes (1972),
Hall (1973), Ash and Hall (1975), and also by the related topic of generalized
cardinal systems (Ash (1979c)). The construction we give is quite involved and
seems of independent interest, so we will record the other matters elsewhere in
Ash (1979a, b, c).

Two cases present themselves, according to whether P has or has not a least
element. In the first case, a fairly simple construction is sufficient and this is
essentially the method used in Ash and Hall (1975). This case is dealt with in
Section 2, giving part of the main theorem, Theorem A.

The body of this paper is concerned with the second case. Here no such straight-
forward method appears possible and we give a less direct construction which
depends heavily on Jonsson's homogeneous-universal structures (Jonsson (1960),
Morley and Vaught (1962)). The relevant definitions and theorems are given,
without proof, in Section 3, and applied in Section 4 to give the remaining part,
Theorem B, of the Main Theorem, which is then stated.

In Section 5 we discuss ways in which the set-theoretic assumptions used in
Theorem B may be avoided. We continue by adding a refinement, Corollary C, of
the main theorem, concerning the cardinalities of full, uniform P-semilattices. We
conclude with some further remarks about the method of proof of Theorem B.

The axiom of choice is used freely throughout.

1. Preliminaries

The numbering refers to the section in which the terminology is first used.

1.0. A lower semilattice is a partially ordered set (L, ^ ) in which every two
elements a, b have a greatest lower bound, or meet, aAb. The ordering is deter-
mined by the pair (L, A), since then a < b if and only if a = a A b. We adopt this
convention throughout. Also, throughout the paper, semilattice means lower
semilattice.

An isomorphism between semilattices (L^Aj) and (L2,/\2) is a bijection
f: Lt->L2 such that, for all a,beLu f{a AX6) =/(a) A2f(b). If LI , L2 are semi-
lattices and :£?! ={Lulj), £P2 = (L2,l2)

 a r e .P-semilattices, then an isomorphism
from SCt to if2 is a semilattice isomorphism/: Lt->L2 such that, for all aeLu

Ii(a) = l2(f(a)).
If L = (L, A) is a semilattice and Lo is a subset of L such that, for all a,beL0,

aAbeL0, then Lo = (L0, A) is also a semilattice, called a subsemilattice of L. If
JS? = (L, /) is a .P-semilattice and Lo is a subsemilattice of L, then :£?0 = (Lo, /) is
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also a P-semilattice, called a P-subsemilattice of if. Here and elsewhere, we use
the labour-saving device of letting A and / also denote their restrictions to the
obvious sets.

1.3. A structure consists of a non-empty set together with famines of finitary
relations and finitary operations on the set. Thus one may define a structure as a
triple si — (A, {Rt}^, {fj}Jej) where, for each iel, R( is a o-(/)-ary relation on A
and, for each jeJ, /} is a r(j)-ary operation on A. The quadruple (I,J,a,x) is
referred to as the type of the structure. A monomorphism f: si^SS, where
si = (A,{Ri}ieI,{fj}jej) and & = (B,{Si}ieI,{gJ}jSJ) are structures of the same
type, is an injection/: A-*B such that for iel, a{i) — k and au...,akeA,

(au...,ak)eRi if and only if (/(a^),.. .,f(aj) e S,

and for jeJ, r[j) =k and au ...,aksA,

si is a substructure of 38, denoted by si £ 38, if A £ 5 and the insertion of /4
into B is a monomorphism. An isomorphism is a monomorphism which is also a
surjection. An automorphism of j / is an isomorphism from si to si.

For any structure .s/ = {A,...), the underlying set of .s/ is 4̂, denoted by \si\.
The cardinality of a set 4̂ is denoted by c(A). The power of a structure .s/ is
c(\si\), also denoted by C(J/). The Greek letters K, A, n, v are used to denote
infinite cardinal numbers, without further explanation. If fi is the cardinality of
the set 5, then 2* denotes the cardinality of the set of all subsets of S. Xo is the
first infinite cardinal.

A regular cardinal, K, is one which is not a sum of fewer than K cardinals each
of size less than K.

1.4. A semilattice (L, A) is free on a set X of generators if X £ L and if every
element of L is the meet of some unique finite subset of X.

The free P-semilattice (L, X, /) defined below in Section 4 may be construed as
the structure (L,X,{Rjspep, A) in the sense of 1.3, where, for peP, Rp is the
1-ary relation true for aeL if and only if/(a) =p. The definition of monomorphism
then agrees with that of 1.3.

1.5. Zermelo-Fraenkel set theory is described in, for example, Cohen (1966).
K+ denotes the least cardinal greater than K. X" denotes the cardinality of the set
of all functions from a set of cardinality n to a set of cardinality A.

Constructive sets, sets (relatively) constructible from another set and standard
models of ZFC and parts thereof are also described in Cohen (1966).
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2. P has a least element

Assume now that P has a least element, 0. Let L be the set of finite sequences
</>i, ...,pny, n^\, of the members of P— {0} for which Jp1>/>2 >•••>/'». together
with a single new object O. Define an ordering on L— {<>} by

<01> ••-,?,»> <</>!, •;Pn>

if Pi =<7i> />2 = ?2> • ••»/>• =? r f ° r some r < /w. Extend < to L by making O the
least element. Under this ordering, L is clearly a lower semilattice. Let / be defined
by K<J>i,—,P«y)=Pn and l(O) = 0. It is easy to see that £C=(L,l) is a full
P-semilattice. Moreover, if x = (j>u •••,/>„>, J = <9i> - ^ m ) a n d Kx)=l(y) then
Pn—qm'?1® a n ^ one may define an order isomorphism (and therefore a semi-
lattice ismorphism) from JS?<X to ££<y by

Since this mapping also respects /, we have thus proved the following

THEOREM A.IfP is a partially ordered set with least element then there exists a
full, uniform P-semilattice.

COMMENT. A finite downward-directed partially ordered set must have a least
element and so we have, in Theorem A, dealt with all cases where P is finite.

3. Homogeneous-universal structures

We now summarize those parts of the theory of homogeneous-universal
structures which we shall need. The results are essentially as stated in Jonsson
(1960). Further results and extensive proofs are given in Morley and Vaught
(1962).

Jonsson's constructions apply to arbitrary classes, Jt, of structures of the same
type satisfying the following conditions.

JONSSON'S CONDITIONS.

I. J( is closed under isomorphism.
II. J( contains members of arbitrarily large powers.
HI. (The joint embedding property.) For all si\, st2£M there exist s/3eJl

and monomorphisms

gx: s£x-*st3 and g2: s/2-*s#3.
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IV. (The amalgamation property.) For all s/0, si\, si2eJl and mono-
morphisms

there exist si3 e Jl and monomorphisms

gl:sil-*sf3 and g2:

for which the following diagram commutes.

A ^r •*! \ _ gi

V. Jl is closed under unions of chains.
VIA. For some infinite cardinal A, if si e Jl, S £ | si | and c(S)<A, then there

exists &eJl with # £ .s/, 5 £ 138 \ and c(J^)<A.

COMMENT. The status of this last condition is, perhaps, clarified by the observ-
ation that, if Jl satisfies conditions I to VIAo then one may show (by transfinite
induction on cardinals) that Jl satisfies VIA for every X~&-10.

The constructions which we shall use are obtained by forming transfinite
chains from Jl, repeatedly using the properties of Jl, notably the amalgamation
property, IV.

DEFINITION 3a. A structure sieJf is said to be (Jt,K)-homogeneous if,
whenever SS^eJl, f:@^>si, g:^-*si are monomorphisms, h: $)-*'# is an
isomorphism and c(0S), c(<tf)<K, then there exists an automorphism k of si for
which the following diagram commutes.

PROPOSITION 3.1. If Jl is a class of structures satisfying Jonsson's conditions,
then, for each cardinal K, Jt contains an (JK, »c)-homogeneous structure.

DEFINITION 3b. s/e Jl is (Jl, K)-universal if, whenever s/oe Jl and C(S/0)<K,

then there exists a monomorphism/: sfo-*sf.
(Jl, K)-homogeneous-wiiversalmeans (Jl, K)-homogeneous and( Jt, jc)-universal.
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PROPOSITION 3.2. If Jl satisfies Jonsson's conditions then, for each cardinal
K, Jl contains an {Jl, K)-homogeneous-universal structure.

The proof of Proposition 3.2 guarantees only a structure of power > K . TO
minimize this power, some cardinal arithmetic is needed. Suppose that, for each
cardinal ft, v(j£) denotes the number of non-isomorphic members of Jl of power y..

PROPOSITION 3.3. Suppose that K is a regular cardinal, K ^ A and that, whenever
H<K, both 2*1 < K and v(ji) < K. Then, if Jl satisfies Jonsson's conditions I to VI^,
Jl contains an {Jl, K)-homogeneous-universal structure of power K.

For the moment, we assume that such a K exists. This assumption is not essential,
as we comment later in Section 5, but avoids further complications. The significance
of Proposition 3.3 is the following:

PROPOSITION 3.4. If Jl. satisfies Jonsson's conditions I to VIA, K ~S* X, and si, 8
are {Jl, ic)-homogeneous-universal, both of power K, then si and 38 are isomorphic.

Finally, for such structures, we have the following simplification.

PROPOSITION 3.5. If M satisfies Jonsson's conditions I to VIA, sfeJl, c(sf) < K

and K~^ 1 then si is {Jl, ic)-homogeneous-universal of power K if and only if, when-
ever SS^e Jl, c{3S), C{^)<K andf. 3S^si andg: &-*<# then there exists a mono-
morphism h: %-* si for which the following diagram commutes.

4. P has no least element: free P-semilattices

We now return to the problem of constructing full, uniform P-semilattices.
We assume from now on that P is downward-directed and has no least element.
Were it the case that the class of P-semilattices satisfied Jonsson's conditions, the
problem would be immediately solved, using Proposition 3.1. This is not so,
however, since the amalgamation property (IV) fails, f We therefore consider a
different, but related, class of structures to which the results of the last section may
be applied.

DEFINITION 4a. A free P-semilattice is a triple (L, X, I) for which (L, /) is a P-
semilattice and X is a set of free generators for L.

t The author is indebted to T. E. Hall for demonstrating this fact to him.

https://doi.org/10.1017/S1446788700012520 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012520


[7] Uniform labelled semilattices 391

A monomorphism between free .P-semilattices (L1; A^,^) and (L2,X2,l2) is a
semilattice monomorphism / : Lx ->L2 such that, for xeXu f(x)eX2 and for

Let ^?(P) denote the class of all free P-semilattices.

THEOREM 4.1. The class J((P) satisfies Jonsson's conditions I to VINo.

PROOF. Condition? I, II, V, VIXo are easily verified. Condition III may be shown
in just the same way as IV, which we now establish.

Suppose that s/0, si 1,$t1£j((P') and monomorphisms f1: $40^>sty and
f2: s£0-*s42 are given. For simplicity of notation, we may suppose that the
elements of s/y and st2

 a fe renamed so that fx and f2 are insertions. Thus, if
s/t = (Li, X,, Id, for i = 0,1,2, then

LxrsL2=U, XlnX2 = X0 and / 0 = / i l i 0 = /2lio-

It is now sufficient to give s/3 = (L3,X3,l3) for which jf3 2 sfus/2, since gx

and g2 may then be taken to be the corresponding insertions.
This is done as follows. From the properties of semilattices, L3 clearly may be

chosen to be free on X3 = Xx u X2 and to include Lx and L2 as subsemilattices.
It remains to define l3 on L3 extending lt and l2. Each element a of L3 may be
expressed uniquely as the meet of a finite subset {xux2, ...,*„} of X3. We define
I3{a) by induction on n as follows:

(i) If aeLt then I3(q) = h(a).
(ii) IfaeL2 then I3(a) = I2{a).
(iii) Otherwise, I3(a) is arbitrarily chosen to be an element of P less than I3(b)

for each b>a.
Clauses (i) and (ii) are compatible since lt and l2 extend /0. Clause (iii) is always

applicable since the b>a are exactly the meets of proper subsets of {xu ...,xn},
so that each I3(b) is previously defined in the inductive procedure and also there
are only finitely many such b so that the required choice may be made using the
assumption that P is downward-directed with no least element.

It remains to observe that for any such l3, (L3, l3) is a P-semilattice. This follows
from the observation that if a,bsL3 and a<b, then either (iii) applies to the
definition of I3{a), so that I3(a)<l3(b), or aeLt for i = 1 or 2, in which case also

h so I3{a) = /,

From Proposition 3.1 we now have the following, for suitable K,

COROLLARY 4.2. There exists an (J({P),K)-homogeneous-universal structure
= (L, X, I) of power K.
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We now claim that the corresponding P-semilattice (L, /) is full and uniform.

LEMMA 4.3. If si = (L, X, 1) is (Jt(P), K)-universal and K > Xo, then (L, 0 is full.

PROOF. Let p,qeP with p ^q. If p = q, let s/0 be the unique one-element free
{/>}-semilattice; if p<q let sf0 be ({x,y,xAy}, {x,y}, l0), where lo(x) =lo(j) =q
and lo(xAy)=p. In either case, s/oeJ?(P) and there exist a,besf0 with
a s* b, l(a) —p and l(b) =q. By Definition 3b, there exists a monomorphism of
s/0 into si, so the same statement applies to si.

To show that, if si = (L, X, 1) is ^(/>)-universal-homogeneous, then (£,, /) is
uniform, we proceed as follows. Suppose that aeL and that l(a)=p. Then
(L<a,/) is also a P-semilattice, in fact a P^-semilattice. Moreover, each element
of L<a is uniquely expressible as the meet of a set {a,xu...,xn} where
and x,>a. It follows that L<ffl is freely generated by the set

xeX and x>a}.

So the structure si<tt = (L<a, Xa,l) is a member of the class M(P<V). We shall
show that, for any such a, s/<a is {M{P<V), »c)-homogeneous-universal of power
K, using the criterion of Proposition 3.5. This requires the following lemma.

LEMMA 4.4. / /

» = {LU JTi./Oe JK(P),V = (L2,X2,l2)eM{P^\b^\3i\, Itf) =/>

an<f g: 88<b-+'& is a monomorphism, then there exist <& =(L2,X2,l2)e Jt(P)
with c(#)<max(c(^), c(f),X0), ce|<if | w/rt /2(c) =/», an isomorphism <€ s tf< c

a«rf a monomorphism g: $?-># wM g(b)=c for which the following diagram
commutes.

9

Ul Ul

PROOF. For simplicity of notation, assume that Jl<*£<!> and that 3 is the
corresponding insertion. Let {y^^<y be an arbitrary well-ordering of X2 — X\.
Let {z4}4<y be a sequence of new elements. We define "if to be (L2, X2,l2), where
L2 is free on X2 = Xt u {z^}^<, and /2 remains to be defined. The isomorphism
<& s # < c is that which identifies each >»4 with the corresponding bAzf. We thus
take c = b and ̂  to be the insertion of ̂  into "if.
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[9] Uniform labelled semilattices 393

It remains to define l2 extending both lt and 12 in such a way that We J((P).
Let £> = *! A ... AXK where xu...,xn are distinct members of Xu Each aeL2

is uniquely expressible as a = u A Z?I A zi2 A ... A zitn, where ^ < £2 < • • • < £m and u
is the meet of some subset {uu ...,uk} of X1. Let {xh,xi2, -.^x^} be the members
of {xu...,xn} not occurring among {uu...,uk}, where i,<i2<...</',. We now
define /2 as follows.

If / ^ m, let a = u A x,, A ... A xi?n. Then a e J and we may define I2(a) = /i(d).
If l<m, let fl = MAXilA...Axi,A2?,tlA...Az{m. Then a e # < c and we may

define I2(a) = 12{&), according to the isomorphism <? ^ (€<c.
Thus, if ae^f or ae<g<c = <g<b, then either m = 0 or 1 = 0, so that d = a and

I2{a) = /j(a) or 72(a) accordingly. So /2 extends /j to 72. Moreover, it is easy to
check that, if al<a2, then ax<&2. This may be seen by first considering the cases
where ax =Q2AX for some xeX2. From this, and the fact that, if a2e@ or c€<c

and ax<a2, then aye3S or <g><c, respectively, it follows that for all a1>a2e'&, if
at <a2 then /(ai)</(a2), so that (Z,2, /2) is a P-semilattice and ^ e Jf(P), as desired.

COROLLARY 4.5. Ifs/ = (L, X, I) is (J((P), K)-homogeneous-universal of power K,

and l(a) =p, then s/<a is (Jt(P<p),K)-homogeneous-universal of power K.

PROOF. We use Proposition 3.5. We have remarked that s/<ae J((P<P), and,
since \s4<a\ = | J / | , c(s/<a) < K. M{P<P) satisfies Jonsson's conditions I-VIKo

by Theorem 4.1.
Now suppose that J , <e&M(P<v), c(J), C(%)<K and / : @-+s/<a and

^: &-*<€ are monomorphisms. By taking the substructure of si generated by the
union of the range of/ with the set of free generators of L whose meet is a, we
obtain 38eJ((P), be\3S\, an isomorphism M^SS<b and a monomorphism
/ : 8l-*s4 with f(b) = a such that the following diagram commutes.

a —
Ul

a-
J

Ul

By now applying Lemma 4.4, we obtain <ieJ((P), ce\%\, <e*L<€<C and a
monomorphism g: $?-»# with g(b) = c such that the solid part of the following
diagram commutes.
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A monomorphism h then exists, by Proposition 3.5 applied to s/, making the
outer diagram commute. f(b) = h(g(b)), so h(c) = a. Thus, the restriction, ft, of
h to # is a monomorphism from %! to «s/<a making the inner diagram commute,
as required for the premises of Proposition 3.5 applied to si<a. Hence s/<a is
(^(i><0»'c)-homogeneous-universal of power K.

Since, by Proposition 3.4, all such structures are isomorphic, Corollary 4.2,
Lemma 4.3 and Corollary 4.5 establish the following

THEOREM B. If P is a downward-directed partially-ordered set with no least
element, then there exists a full, uniform P-semilattice.

Theorems A and B together clearly give our Main Theorem.

MAIN THEOREM. If P is any downward-directed partially ordered set', then there
exists a full, uniform P-semilattice.

5. Further comments

Set theoretic aspects of the construction

In establishing Theoiem B, we have assumed the existence of a cardinal K
satisfying the premises of Proposition 3.3. Since the number, vQz), of free P-
semilattices of power n is at most c(PY = 211 for ft ^ c(P), this amounts to the
existence of a regular cardinal K for which K ̂  c(P) and n < K implies 2" < JC.
The existence of such a K may not be proved in the usual Zermelo-Fraenkel set
theory with the axiom of choice (ZFC), although the additional assumption of its
existence would be acceptable. Two distinct conventional set theoretic assumptions
which ensure the existence of such a cardinal K for each P are: (a) the Generalized
Continuum Hypothesis (GCH), that K+ = 2* for every infinite K, and (b) that
there are arbitrarily large strongly inaccessible cardinals, that is, regular cardinals,
K, for which / I < K implies 2"<K. Statement (a) is generally considered false, but
is provably consistent, while (b) is considered true, but is not provably consistent.

https://doi.org/10.1017/S1446788700012520 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012520


[11] Uniform labelled semilattices 395

Avoiding set-theoretic assumptions

Our main theorem may, nevertheless, be proved in ZFC alone. Firstly, we
observe that Theorem A is provable in ZF alone and therefore only the homo-
geneous-universal construction in the proof of Theorem B need be modified.
Three different methods occur to the author and are now described.

(i) The use of special structures. These came into being precisely for this purpose,
and are discussed in Jonsson (1960), Morley and Vaught (1962). For our purposes,
it is sufficient to use Proposition 3.2 to construct a chain sf0 £ J!/1 £ s/2 £ ...
of free f-semilattices for which sfn has power Kn and each j / n + 1 is ( ^ ( P ) , «:„)-
homogeneous-universal. The union of this chain is an example of an M(P\-
special structure and its associated P-semilattice is full and uniform, as may be
shown by methods similar to, but longer than and involving heavier notation than,
those already used.

(ii) The use of inner models of set theory. The class, L\P'\ of all sets con-
structible (in the sense of Godel) from an isomorphic copy, P', of P, all of whose
elements are ordinals, is well known (see, for example, Cohen (1966)) to satisfy
the axioms of ZFC plus the statement K+ = T for all K >C(P). Thus, Theorem B
holds when relativized to L[P'~\. Examination of the definitions reveals that a full,
uniform P-semilattice in the sense of L[P'J is also one in the sense of the class of
all sets.

(iii) A further possible variation is the use of the homogeneous-universal con-
struction to prove, in ZFC alone, the existence of a class-sized, full, uniform
P-semilattice. Only finitely many axioms of ZFC are used in this proof, and one
may prove (in ZFC) the existence of a standard model, M[P'~\, of these axioms of
ZFC, which contains an isomorphic, well-ordered copy, P', of P. The definition
of the class-sized structure, when applied' to the set M[P ' ] , yields a set-sized, full,
uniform jP-semilattice.

Of these methods, (i) is clearly the most algebraic. In fact, in an earner version
of this paper, special structures were used throughout. We feel that the resulting
simplification justifies the current presentation. Method (ii) is the standard
technique for removing applications of the GCH and is probably the simplest and
most generally acceptable. Method (iii), although more technical, seems preferable
to the author from a metamathematical viewpoint, since it appears to be closer to
the intuitive assumption of the existence of inaccessible cardinals. (The first ordinal
not in M[ / " ] is 'as good as' an inaccessible cardinal, for this particular purpose.)

In contrast, the assumption of the axiom of choice or, at least, that P may be
well-ordered, does appear to be necessary, although we have not proved this.
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Reducing the size

Depending on the set-theoretic assumptions made, the power of the full, uniform
P-semilattice constructed for Theorem B may be very large. However, one may
prove the following, from first principles, in the case where P is infinite.

THEOREM 5.1. Any full, uniform P-semilattice S£= (L,T) has a full, uniform P-
subsemilattice £0 of power c(P).

PROOF. Using the axiom of choice, let /and g be 3-ar> operations on L such that,
for a,beL and l(a) = l(b), the map x\-*f(a,b,x) is an isomorphism from S£<a

Xo Z£<b, and x\-*g(a,b,x) is its inverse. Also, let So be a subset of L of cardinality
c(P) containing, for all p,qeP with p ^ q, some a,b with a < b and l(a)< l(b).
Let the chain So £ S t £ S2 £ ... be defined inductively so that

Sn+1=Snu{f(a,b,c): a,b,ceSn}<u{g(a,b,c): a,b,ceSn}v{aAb: a,beSn}.
Let Lo — \JSn. It is easily shown that i f 0 = (Lo, /) is as stated.

If P is finite, then the semilattice obtained in the proof of Theorem A is finite,
so our Main Theorem and Theorem 5.1 give the following

COROLLARY C If P is any downward-directed partially-ordered set, then there
exists a full, uniform P-semilattice, finite ifP is finite and of power c(P) ifP is infinite.

It is interesting to note that the existence of a full, uniform P-semilattice of
power c{P), for P infinite, also follows more directly, using method (iii) of this
section. If P has a least element then the proof of Theorem A gives the result
immediately. If not, then, when using method (iii), the model M[P'~] may be taken
to have cardinality c(P), with the desired result.

The method of proof

The reader may wonder, with the author, whether the use of homogeneous-
universal structures is necessary for the proof of Theorem B. Similar constructions
in model theory suggest that such methods are necessary for some theorems of
this sort, but it is conceivable, and highly desirable, that a simpler proof may be
found in this case.

Finally, it should be recorded that the author knows of no a priori reason why a
full, uniform P-semilattice, if it exists, may be taken to be free. The class of free
P-semilattices was conceived so that it, together with the universal-homogeneous
construction, would realize a rather vague intuitive notion. If, however, such an
a priori reason could be discovered, it might well clarify the status of our theorem.
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