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To assess how the presence of surfactant in lung airways alters the flow of mucus that leads
to plug formation and airway closure, we investigate the effect of insoluble surfactant on
the instability of a viscoplastic liquid coating the interior of a cylindrical tube. Evolution
equations for the layer thickness using thin-film and long-wave approximations are derived
that incorporate yield-stress effects and capillary and Marangoni forces. Using numerical
simulations and asymptotic analysis of the thin-film system, we quantify how the presence
of surfactant slows growth of the Rayleigh–Plateau instability, increases the size of initial
perturbation required to trigger instability and decreases the final peak height of the layer.
When the surfactant strength is large, the thin-film dynamics coincide with the dynamics
of a surfactant-free layer but with time slowed by a factor of four and the capillary
Bingham number, a parameter proportional to the yield stress, exactly doubled. By solving
the long-wave equations numerically, we quantify how increasing surfactant strength can
increase the critical layer thickness for plug formation to occur and delay plugging. The
previously established effect of the yield stress in suppressing plug formation (Shemilt
et al., J. Fluid Mech., vol. 944, 2022, A22) is shown to be amplified by introducing
surfactant. We discuss the implications of these results for understanding the impact of
surfactant deficiency and increased mucus yield stress in obstructive lung diseases.
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1. Introduction

Pulmonary surfactant plays a crucial role in the healthy function of the lungs. By lowering
the surface tension at the interface between air and the liquid that lines lung airways,
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surfactant helps to prevent unwanted collapse of small airways and alveoli during breathing
(Milad & Morissette 2021). Surfactant deficiency is likely to contribute to the increased
prevalence of airway obstructions in diseases such as asthma (Hohlfield 2002) and cystic
fibrosis (Tiddens et al. 2010). Mucus, the main component of the airway surface liquid,
is a complex fluid exhibiting properties such as viscoelasticity, shear-thinning and a yield
stress (Hill et al. 2022). In various obstructive diseases, and particularly in cystic fibrosis,
the mucus typically has altered rheology, including a significantly increased yield stress
compared with mucus in healthy lungs (Patarin et al. 2020). This provides motivation for
this study into the effect of insoluble surfactant on the instability of a viscoplastic liquid
coating the interior of a cylindrical tube, which is a simple model for the flow of mucus
that can lead to airway closure. Additional applications can be found in related interfacial
flows of viscoplastic fluids from engineering and industry, where surfactants may also be
present (Mitsoulis 2007; Glasser et al. 2019; Ahmadikhamsi et al. 2020).

The instability of a liquid film coating the interior of a cylindrical tube has been widely
studied in the case where the liquid is Newtonian. When the volume of fluid in the layer
is small, annular liquid collars will form on the tube wall, and when the volume is large
enough, liquid plugs form in the tube (Everett & Haynes 1972). Hammond (1983) derived
an evolution equation for the motion of a thin layer, and presented numerical and late-time
asymptotic solutions showing annular collars forming and fluid slowly draining out of thin
regions between them. This thin-film theory was then extended to describe the motion of
thick films by Gauglitz & Radke (1988), who deduced numerically that an approximate
minimum thickness of 12 % of the tube radius is required for plug formation to occur.

Otis et al. (1990) were the first to extend the theory to include the effect of insoluble
surfactant at the air–liquid interface. They found that growth of the instability and
plug formation is delayed by the surfactant. Moreover, if the surfactant is strong, then
Marangoni forces effectively immobilise the interface, increasing the time scale for the
evolution of the layer by a factor of four compared with when there is no surfactant. This
factor of four decrease in the growth rate had been previously identified by Carroll &
Lucassen (1974) in the related instability of a thin liquid layer coating the exterior of a
cylindrical filament. Results from the thick-film model of Ogrosky (2021) suggest that,
whilst this factor is very close to four for layers with thicknesses close to the critical value
for plug formation, it may be increased for thicker layers. Halpern & Grotberg (1993)
investigated the effect of surfactant on the evolution of a layer coating the interior of
an elastic tube, and also found slowing of the dynamics and a delay to plug formation,
except when the tube stiffness was very low, in which case the impact of including
surfactant was minimal. They argued that this slowing implies an increase in the critical
thickness required for plug formation, since simulations were run to a fixed finite time.
This observation has relevance to mucus plug formation in airways, which typically form
within the time scale of a single breath cycle. Experimental results have confirmed the
decreased growth rates and increased times for plug formation to occur due to surfactant
(Cassidy et al. 1999). Computational fluid dynamics (CFD) simulations have also been
conducted which, unlike quasi-one-dimensional models, can capture the post-coalescence
phase of plug formation as well as the pre-coalescence phase (Romanò, Muradoglu &
Grotberg 2022). It was found, again, that introducing surfactant delayed plug formation,
and also that it decreased the stress on the tube wall during plugging. The shear stress
exerted on the tube wall is a physiologically important variable in airway closure models
as it has been shown that epithelial cell damage can be caused by sufficiently large stresses
being exerted on the airway wall (Huh et al. 2007).

There has been some attention on the effect of non-Newtonian liquid rheology on this
flow in the case where there is no surfactant present. Halpern, Fujioka & Grotberg (2010)
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studied the effect of viscoelasticity, showing that the time for a plug to form can be
decreased by increasing the Weissenberg number if the layer is sufficiently thick. Romanò
et al. (2021) also investigated a viscoelastic version of the flow, using CFD, and found
that elastic effects can induce a significant peak in the shear stress on the tube wall in the
post-coalescence phase of plug formation. Erken et al. (2023) took a similar approach but
with an elastoviscoplastic model for the liquid layer, showing that elastic effects can also
impact how the fluid yields, particularly around and immediately after plug formation.

Shemilt et al. (2022) derived reduced-order models to study the effect of viscoplastic
rheology on the dynamics of thin films and of thick films in the lead-up to plug formation.
It was found that increasing the capillary Bingham number, B (a parameter proportional
to the liquid yield stress), can suppress instability by rigidification of the layer, reduce
deformation when there is instability and significantly increase the critical layer thickness
required for plug formation to occur. A model describing the evolution of thicker layers
was developed using a long-wave approximation, and a simplified evolution equation was
deduced using thin-film theory. The viscoplastic long-wave theory used is closely related
to the planar thin-film theory exposed by Balmforth & Craster (1999). The structure of
the flow is qualitatively the same in long-wave and thin-film theories: where the shear
stress exceeds the yield stress, the fluid is fully yielded and the flow is shear-dominated,
but where the shear stress is less than the yield stress, the flow is plug-like with no shear
flow at leading order. However, due to changes in the surrounding flow, some regions
with plug-like flow must still deform. In these regions, the yield stress is exceeded by
an asymptotically small amount (Balmforth & Craster 1999) and the regions are referred
to as ‘pseudo-plugs’ (Walton & Bittleston 1991). Whilst the long-wave theory is similar
to thin-film theory, it differs in a few crucial ways: the layer is not assumed to be thin
relative to the tube radius, additional terms are retained in the evolution equations that
more accurately capture the curvature of the geometry, and the exact expression for the
curvature of the interface is used instead of the linearised version used in the thin-film
theory. Thus, long-wave theory provides a composite approximation to the dynamics of a
thick film, which is accurate where the layer is thin and also describes well the regions of
the flow that are approximately capillary static. Equivalent, or very similar, approximations
have been used previously to study this flow when the liquid layer is viscoelastic (Halpern
et al. 2010) or Newtonian (Gauglitz & Radke 1988; Johnson et al. 1991; Camassa, Ogrosky
& Olander 2014, 2017), including when insoluble surfactant is present (Otis et al. 1990,
1993; Ogrosky 2021).

Viscoplastic thin-film theory has been used to describe various other interfacial flows
where surface tension plays a key role. Balmforth, Ghadge & Myers (2007) studied the
surface-tension-driven fingering instability in flow down an inclined plane, showing that
the yield stress has a stabilising effect. Jalaal & Balmforth (2016) developed a model using
thin-film theory for a propagating bubble through a tube filled with viscoplastic fluid,
which they validated against CFD simulations. Increasing the Bingham number was found
to increase the thickness of the film between the bubble and the tube wall. Thin-film theory
compared well with simulations for low Bingham numbers but less well when the film
thickness increased. Thin-film models for the axisymmetric spreading of droplets (Jalaal,
Stoeber & Balmforth 2021) and the spreading of long extruded filaments (van der Kolk,
Tieman & Jalaal 2023) have been developed and used to predict the distances reached by
spreading fronts, which decrease as the capillary Bingham number is increased. Whilst
these studies all addressed the effect of viscoplastic rheology on capillary phenomena,
surfactant effects were not incorporated in any of the models. Craster & Matar (2000)
used thin-film theory to model surfactant-driven flow in viscoplastic films, demonstrating
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that after Marangoni forces cause a spreading front to develop, the yield stress can rigidify
the layer before it returns to a uniform height profile. This study did not, however, include
the effects of capillary forces. To the authors’ knowledge, viscoplastic thin-film theory has
not previously been used to study any flows where both capillary and Marangoni forces
are present.

In this study, we develop a model for the evolution of a liquid film coating the interior
of a tube, where the flow is driven by surface tension but is also influenced by Marangoni
forces. Our aim is to quantify the effects of surfactant on the capillary instability and on
the previously established effects of the liquid’s yield stress (Shemilt et al. 2022). We
will derive evolution equations for the layer height and surfactant concentration using
long-wave theory, and subsequently deduce a simpler version of these equations that is
valid in the thin-film limit. To focus attention on the interaction between Marangoni,
capillary and yield-stress effects, other phenomena relevant to airway modelling are not
included in the model. The Bingham constitutive model is used, which does not include
rheological properties such as shear-thinning, viscoelasticity or thixotropy, but allows us
to focus attention on yield-stress effects. Surface tension is assumed to vary linearly with
surfactant concentration. For pulmonary surfactants, this relation is nonlinear (Schürch,
Bachofen & Possmayer 2001), but the linear model captures key Marangoni effects while
being amenable to detailed analysis. This choice is in keeping with previous models
(Halpern & Grotberg 1993; Ogrosky 2021). Moreover, gravity is assumed negligible,
the tube wall is assumed rigid and the air in the centre of the tube is assumed passive.
Numerical solutions of both the long-wave and thin-film equations will be used to elucidate
the new features of the dynamic evolution that arise due to the presence of surfactant, and
also to systematically explore parameter space. We will exploit the relative simplicity of
the thin-film equations to study the behaviour of the layer in a late-time limit and in the
limit of large Marangoni number (when surfactant is strong). By computing and analysing
solutions of the long-wave equations, we will quantify how surfactant alters the dynamics
leading to plug formation and the critical thickness required for plugging to occur. In
particular, we will show how surfactant acts synergistically with the yield stress to stabilise
the liquid layer.

The paper will proceed as follows. In § 2, we derive evolution equations for the layer
thickness and surfactant concentration, with the long-wave equations given in § 2.3 and
the thin-film equations in § 2.4. Solution methods will then be briefly discussed in
§ 2.5. Results from the thin-film system will be presented in § 3. An example numerical
simulation will be discussed in § 3.1, late-time asymptotic analysis of the thin-film
equations will be presented in § 3.2, and the effect of varying the Marangoni number on
the stability and evolution of the layer will be systematically addressed in § 3.3. Results
for thick films from the long-wave theory will be given in § 4. An example numerical
simulation will be examined in § 4.1, a discussion of the behaviour when the Marangoni
number is large will be given in § 4.2 and the effect of surfactant on the critical thickness
required for plug formation will be explored in § 4.3. Finally, in § 5, there will be a
discussion of the significance of the results, particularly in relation to modelling airway
closure in the lungs.

2. Model formulation

2.1. Governing equations and boundary conditions
We consider a rigid circular cylindrical tube lined on its interior by a layer of viscoplastic
liquid, with a gas in the centre of the tube and insoluble surfactant present at the gas–liquid
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Figure 1. (a) Sketch of the model geometry. The air–liquid interface is located at r = R(z, t). Insoluble
surfactant is present at the interface, with (non-dimensionalised) concentration Γ . (b) Illustration of a possible
axial velocity profile in the liquid layer, w. Fully yielded, shear-dominated regions (white) are shown adjacent
to the interface (R ≤ r ≤ Ψ−) and adjacent to the wall (Ψ+ ≤ r ≤ 1), with a plug-like region (grey) in between
(Ψ− < r < Ψ+).

interface (see figure 1). We assume the system is axisymmetric so it can be described
using cylindrical coordinates (r∗, z∗). The tube has radius a and the interface is located
at r∗ = R∗(z∗, t∗). The liquid layer has velocity u∗(r∗, z∗, t∗) = u∗r̂ + w∗ẑ and pressure
p∗(r∗, z∗, t∗) relative to the gas pressure, which is assumed to be spatially uniform.

The liquid is incompressible and we assume inertia is negligible, so conservation of
mass and momentum imply

∇∗ · u∗ = 0, ∇∗ · τ ∗ = ∇∗p∗ for R∗ ≤ r∗ ≤ a, (2.1a,b)

where τ ∗ is the deviatoric stress tensor. The boundary conditions at the interface are the
kinematic condition,

∂∗
t R∗ + w∗∂∗

z R∗ = u∗ at r∗ = R∗, (2.2)

and the stress condition,

− p∗n + τ ∗ · n = σ ∗κ∗n + ∇∗
sσ

∗, (2.3)

where σ ∗ is the surface tension, κ∗ is the curvature of the interface, n is the unit normal to
the interface directed away from the liquid layer and ∇∗

s is the surface gradient operator.
At the tube wall, there is no slip and no penetration,

u∗ = w∗ = 0 at r∗ = a. (2.4)

The liquid is assumed to be a Bingham fluid with constitutive relation,

τ ∗
ij =

(
η + τy

γ̇ ∗

)
γ̇ ∗

ij if τ ∗ ≥ τy,

γ̇ ∗
ij = 0 if τ ∗ < τy,

⎫⎪⎬
⎪⎭ (2.5)

where η is a viscosity, τy is the yield stress, γ̇ ∗ = ∇∗u∗ + ∇∗u∗T is the shear-rate tensor,
and τ ∗ and γ̇ ∗ are the second invariants of τ ∗ and γ̇ ∗, respectively. The second invariant

of a tensor T is defined as T =
√

1
2 TijTij.

We take the surface tension of the interface to be a linear function of the surfactant
concentration,

σ ∗ = σ0 + K(Γ0 − Γ ∗), (2.6)

where σ0 and Γ0 represent the constant values of the surface tension and surfactant
concentration in an unperturbed state, and K > 0 is a constant. We assume that the
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surfactant is insoluble so its motion is governed by the transport equation (see, e.g. Stone
1990)

∂∗
t Γ

∗ + ∇∗
s · (Γ ∗u∗

s )+ Γ ∗κ∗(u∗ · n) = 0, (2.7)

where u∗
s is the velocity along the interface. In (2.7), we have neglected diffusion of

surfactant to focus on the limit of advection-dominated transport. In lung airways, although
there is significant variation in measurements of the properties of surfactant and mucus, we
typically expect surfactant diffusivity to be small and that advection will be the dominant
transport mechanism (Craster & Matar 2000; Lai et al. 2009; Chen et al. 2019). At the
lateral boundaries of the domain, we impose symmetry boundary conditions,

∂∗
z R∗ = τ ∗

rz = w∗ = (u∗
s · ẑ)Γ = 0 at z∗ = {0, L∗}, (2.8)

which enforce that the first derivative of the layer height is zero and that there is no flux of
fluid or surfactant across the side boundaries.

2.2. Non-dimensionalisation
To non-dimensionalise (2.1)–(2.7), we introduce the dimensionless quantities,

(r, z) =
(

r∗

a
,

z∗

a

)
, t = σ0

aη
t∗, γ̇ = aη

σ0
γ̇ ∗, (u,w) = η

σ0
(u∗,w∗), Γ = Γ ∗

Γ0
,

τ = a
σ0

τ ∗, R = R∗

a
, σ = σ ∗

σ0
, p = a

σ0
p∗, κ = aκ∗, L = L∗

a
.

⎫⎪⎪⎬
⎪⎪⎭

(2.9)

The mass and momentum conservation equations (2.1) become

0 = ∂zw + 1
r
∂r(ru), (2.10)

∂rp = 1
r
∂r(rτrr)+ ∂zτrz − τθθ

r
, (2.11)

∂zp = 1
r
∂r(rτrz)+ ∂zτzz. (2.12)

The wall boundary conditions (2.4) are

u = w = 0 on r = 1, (2.13)

the kinematic boundary condition (2.2) is

∂tR + w∂zR = u, on r = R, (2.14)

and the stress boundary condition (2.3) is

− pni + τijnj = σκni + (δij − ninj)∂jσ, on r = R, (2.15)

where the curvature of the interface is

κ = 1√
1 + (∂zR)2

[
1
R

− ∂zzR
1 + (∂zR)2

]
. (2.16)
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The constitutive relation (2.5) is

τij =
(

1 + B
γ̇

)
γ̇ ij, if τ ≥ B,

γ̇ ij = 0 if τ < B,

⎫⎪⎬
⎪⎭ (2.17)

where

B = aτy

σ0
(2.18)

is a capillary Bingham (or plastocapillarity) number (Jalaal et al. 2021; van der Kolk et al.
2023). The equation of state (2.6) becomes

σ(Γ ) = 1 + M(1 − Γ ), (2.19)

where

M = KΓ0

σ0
(2.20)

is a Marangoni number. The transport equation (2.7) can be expressed in conservative
form (Halpern & Frenkel 2003) as

∂t[RΓ
√

1 + (∂zR)2] + ∂z[wsRΓ
√

1 + (∂zR)2] = 0, (2.21)

where ws is the axial component of the surface velocity. We now examine simplified
versions of (2.10)–(2.21), first in a long-wave limit, appropriate for thicker films, and then
in a more restrictive thin-film limit.

2.3. Long-wave theory
We consider the system (2.10)–(2.21) in a long-wave limit by defining a characteristic axial
length scale, L = a/δ, where δ � 1. We define stretched variables,

z̄ = δz, ū = u
δ2 , w̄ = w

δ
, t̄ = δ2t, τ̄ = τ

δ
, L̄ = δL, (2.22a–f )

where the choice of scalings for z and L arise from the long-wave approximation, the
scaling for τ is then chosen so that the radial gradient of shear stress balances the axial
pressure gradient in (2.12), the scaling for w is chosen so that the shear stress balances
with the corresponding term in the strain-rate tensor in (2.17), u is scaled such that the
mass conservation equation (2.10) balances and, finally, the scaling for t allows all terms
in the kinematic boundary condition (2.14) to balance. (The scalings (2.22) correct those
printed in (2.11) of Shemilt et al. (2022) but the equations derived there are still correct
and consistent with what we derive here.) We then truncate the governing equations
(2.10)–(2.21) at leading order in δ, with the exception of (2.16) where we retain the exact
curvature, which is a commonly used device to improve accuracy in near-static regions of
the flow (Gauglitz & Radke 1988; Halpern & Grotberg 1992, 1993; Halpern et al. 2010;
Ogrosky 2021; Shemilt et al. 2022). The leading-order governing equations and boundary
conditions are given in Appendix A, where we also detail the derivation of the long-wave
evolution equations, which are presented in the remainder of this section. As has been done
previously in similar problems (Camassa et al. 2012; Camassa & Ogrosky 2015; Ogrosky
2021; Shemilt et al. 2022), we will present the long-wave equations here in terms of the
unscaled variables defined in (2.9) instead of the scaled variables (2.22), but the equations
still represent the leading-order theory in the limit δ � 1.
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To understand the structure of the evolution equations, it is important to first understand
the structure of the flow and the ways in which the layer can yield. Where the magnitude
of the shear stress is larger than the yield stress, |τrz| > B for some R(z, t) < r < 1,
the fluid is fully yielded and the flow is shear-dominated. Where |τrz| ≤ B for some
R(z, t) < r < 1, the flow is plug-like and the leading-order axial velocity is independent
of r, i.e. w = wp(z, t). If wp is also independent of z in a plug-like region, then it is a rigid
plug. If not, then that plug-like region is deforming axially so it must be yielded. In those
yielded plug-like regions, the normal stresses become leading-order in δ and combine
with the shear stress such that the yield condition is just met; such a region is referred to
as a ‘pseudo-plug’ (Walton & Bittleston 1991). This general structure is the same as in
viscoplastic thin-film flows, as detailed by (Balmforth & Craster 1999). For the remainder
of this section, subscripts will be used to denote derivatives.

Where the fully yielded regions, pseudo-plugs and rigid plugs occur in the liquid film
depends on the competition between surface and bulk forcing, via MΓz and pz, and their
sizes relative to B. In Appendix A, we show that, in the long-wave limit, the capillary
pressure is given by

p = −κ [1 + M(1 − Γ )] , (2.23)

where the curvature of the interface, κ , is defined in (2.16), and that the shear stress is
given by

τrz = pz

2

(
r − R2

r

)
+ R

r
MΓz. (2.24)

By noting how τrz depends on r in (2.24), it can be deduced that there are five qualitatively
different types of yielding that can occur in the layer, corresponding to the five possible
combinations of fully yielded regions, rigid plugs and pseudo-plugs that can exist in R ≤
r ≤ 1. We define two internal surfaces, r = Ψ−(z, t) and r = Ψ+(z, t), which separate fully
yielded and plug-like regions. The fully yielded regions (where |τrz| > B) occupy R ≤ r ≤
Ψ− and Ψ+ ≤ r ≤ 1, and the plug-like region (where |τrz| ≤ B) occupies Ψ− ≤ r ≤ Ψ+.
Note that each of these three regions may not always exist, in which case the width of the
region will be zero. The five possible types of yielding are as follows and are illustrated in
figure 2(a).

(I) Internal pseudo-plug (R < Ψ− < Ψ+ < 1). Here, fully yielded regions adjacent to
the wall and the interface are separated by a pseudo-plug.

(II) Surface pseudo-plug (Ψ− = R < Ψ+ < 1). Here, the pseudo-plug extends to the
interface and the only fully yielded region is adjacent to the wall.

(III) Fully yielded (Ψ− = Ψ+ = R or 1 = Ψ− = Ψ+). In this case, there is no plug-like
region and the whole layer is fully yielded.

(IV) Near-wall plug (R < Ψ− < 1 = Ψ+). Here, there is a rigid plug adjacent to the wall
and the only fully yielded region is adjacent to the interface.

(V) Fully rigid (Ψ− = R and Ψ+ = 1). Neither yielded region exists and the whole layer
is a rigid plug.

Hewitt & Balmforth (2012) identified these same five yielding types in the flow of a
thin film between two moving solid surfaces. In that problem, there are simple criteria to
determine which yielding type occurs based on the size of the shear stress at the two solid
boundaries. Here, the additional complexity of the long-wave theory compared with the
thin-film theory means there are not such simple criteria. Instead, we derive the following
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Figure 2. (a) The fives types of yielding that can occur in the layer. Plug-like regions are shown in grey and
fully yielded regions in white. Typical axial velocity profiles are also sketched. Below are maps of parameter
space showing where these yielding types occur in (b) the long-wave system and (c) the thin-film system. When
plotting the map in panel (b), we treat R as a fixed parameter to focus on variation with pz and MΓz. In panel
(b), as in § 2.3, the parameter map is plotted in terms of the unscaled variables (2.9). In panel (c), the map is
plotted in terms of the scaled thin-film variables introduced in (2.37). Along the dashed line in panel (c), the
surface velocity is exactly zero, w̃s = 0.

expressions for Ψ±, from which the type of yielding can be deduced. We find

Ψ± = max[R,min (1, ψ±)], (2.25)

where, if pz /= 0, we have

ψ± =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

± B
|pz| +

√(B
pz

)2

+ R2 − 2RMΓz

pz
if

2MΓz

Rpz
< 1,

B
|pz| ±

√(B
pz

)2

+ R2 − 2RMΓz

pz
if 1 + B2

R2p2
z

≥ 2MΓz

Rpz
≥ 1,

R if
2MΓz

Rpz
> 1 + B2

R2p2
z
,

(2.26)

and if pz = 0, then ψ− = RM |Γz|/B and ψ+ = 1. Note that these definitions mean that
Ψ± are continuous everywhere, including at pz = 0.
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Given values of R, B, pz and MΓz, the type of yielding can then be deduced from
(2.26). A more intuitive illustration of when the yielding types I–V occur is given by
figure 2(b). It shows how the yielding type depends on the size of the capillary stress
relative to the yield stress, via pz/B, and on the size of the Marangoni stress relative to
the yield stress, via MΓz/B. We plot figure 2(b) assuming R is fixed, even though, in
general, it will vary with z. We now briefly survey ( pz/B,MΓz/B)-space. Starting in
the upper left region of figure 2(b), where capillary and Marangoni stresses are both large
but with opposite signs, there is yielding of type I. Suppose MΓz/B is then decreased,
so that we cross the line MΓz/B = 1. Then the shear stress at the interface has dropped
below B so there can no longer be a fully yielded region at the interface, and the layer
then exhibits yielding of type II. Decreasing MΓz/B further so that MΓz/B < −1, the
Marangoni stress at the interface again exceeds the yield stress so there must be yielding
at the interface, but it now acts in the same direction as the capillary stress. The layer then
exhibits yielding of type III. Now increasing pz/B, we remain in yielding type III until we
reach the line (1 − R2)pz + 2RMΓz = −2B. After crossing this line, the capillary stress
is no longer strong enough to yield the fluid adjacent to the wall, so a rigid plug develops
there and we have yielding of type IV. Increasing pz/B yet further, so that we cross the
line (1 − R2)pz + 2RMΓz = 2B, now pz/B is large enough that the lower fully yielded
region appears again so we have returned to yielding of type I, but with the flow in the
opposite direction to when we started. Symmetry means that if we proceed in the same
fashion around the other half of the plane, the yielding transitions will be the same as just
described. There are two regions in figure 2 that we have not yet discussed. When pz/B
and MΓz/B are both small, there is no yielding, so there is a region with yielding of type
V around the origin. Finally, yielding of type I can also be observed in two small regions
near ( pz/B,MΓz/B) = (±2/(1 − R),±1). The existence of these relies on the shear
stress in the long-wave theory being nonlinear, so they do not exist in the simpler thin-film
limit (figure 2c).

Given the expressions for Ψ± in (2.25) and (2.26), we can now present the long-wave
evolution equations, which are derived in Appendix A. The evolution equation for the
interface position, R, is

Rt = 1
R

Qz, (2.27)

where the axial volume flux is given by

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− pz

16
F1 − 1

4
RMΓzF2 − B

6
sgn( pz)(F3 + F4) if

2MΓz

Rpz
< 1,

− pz

16
F1 − 1

4
RMΓzF2 − B

6
sgn( pz)(F3 − F4) if

2MΓz

Rpz
≥ 1,

−1
4

RMΓzF2 + B
6

sgn(Γz)F4 if pz = 0,

(2.28)

with

F1 = Ψ 4
− − 4R2Ψ 2

− + R4
[

3 − 4 log
(

RΨ+
Ψ−

)]
− Ψ 4

+ + 4R2Ψ 2
+ − 4R2 + 1, (2.29a)

F2 = Ψ 2
− − R2 − Ψ 2

+ + 1 + 2R2 log
(

RΨ+
Ψ−

)
, (2.29b)

F3 = (Ψ+ − 1)(−3R2 + 1 + Ψ+ + Ψ 2
+), F4 = Ψ 3

− − 3R2Ψ− + 2R3. (2.29c)
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If M = 0, or equivalently if there is no surfactant, Γ = 0, then Ψ− = R and
(2.27)–(2.29) reduce to the evolution equation for the surfactant-free problem (correcting
a typographical sign error in the expression for Q given in (2.16) of Shemilt et al. 2022).
The surfactant transport equation is

(RΓ )t + (wsRΓ )z = 0, (2.30)

where the surface velocity is

ws =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4

pzG1 + RMΓzG2 + B sgn( pz)(G3 + G4) if
2MΓz

Rpz
< 1,

1
4

pzG1 + RMΓzG2 + B sgn( pz)(G3 − G4) if
2MΓz

Rpz
≥ 1,

RMΓzG2 − B sgn(Γz)G4 if pz = 0,

(2.31)

with

G1 = R2 + Ψ 2
+ − Ψ 2

− − 1 − 2R2 log
(

RΨ+
Ψ−

)
, (2.32a)

G2 = log
(

RΨ+
Ψ−

)
, G3 = 1 − Ψ+, G4 = R − Ψ−. (2.32b–d)

Equations (2.27)–(2.32) are solved subject to the boundary conditions

Rz = Q = wsΓ = 0, at z = {0, L}, (2.33)

which completes the long-wave system of equations. Finally, by evaluating the shear stress
(A7) at r = 1, we can deduce an expression for the stress exerted on the tube wall,

τw = pz

2
(1 − R2)+ RMΓz. (2.34)

2.4. Thin-film theory
We now consider the system in a thin-film limit to derive simpler evolution equations that
are more amenable to detailed analysis. In the thin-film theory, we assume that |1 − R| �
1, but no longer require that δ � 1. Rather than presenting a derivation of the thin-film
equations from (2.10)–(2.21), here we will show how they can be deduced directly from
the long-wave equations (2.27)–(2.33). The flow structure is qualitatively the same and the
same five possible yielding types I–V also occur.

We assume that
R(z, t) = 1 − εH(z, t), (2.35)

where ε � 1 and H is the scaled layer thickness. Similarly, we define the boundaries
between fully yielded and plug-like regions,

Ψ± = 1 − εY∓. (2.36)

Since Ψ+ ≥ Ψ−, the definitions (2.36) mean Y+ ≥ Y−. Other relevant variables are
rescaled by defining

p̃ = 1 + p
ε

, κ̃ = κ − 1
ε

, t̃ = ε3t, τ̃ = τ

ε2 , (2.37)
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and the scaled capillary Bingham and Marangoni numbers are given respectively by

B = B
ε2 = aτy

σ0ε2 and M = M
ε2 = KΓ0

σ0ε2 . (2.38)

We then insert (2.35)–(2.38) into the long-wave equations (2.23)–(2.33) and truncate at
leading order in ε. From (2.23), the thin-film capillary pressure gradient is given by

p̃z = −κ̃z = −Hz − Hzzz (2.39)

to leading order in ε. (Unlike in the thick-film case (2.23), surfactant has no effect on
the mean surface tension at leading order in the thin-film limit.) Note that with the
scalings (2.37) and (2.38), 2MΓz/Rpz = O(ε), so in the thin-film theory, we always have
2MΓz/Rpz < 1. This simplifies (2.26) somewhat, giving Y± = max[0,min(H,Y±)]
where

Y± = H + MΓz

pz
± B

|pz| , (2.40)

assuming for now that pz /= 0. As in § 2.3, we can present criteria for each of the
five yielding types to occur based on the values of Y± (as in figure 2a): I, internal
pseudo-plug (0 < Y− < Y+ < H); II, surface pseudo-plug (0 < Y− < H = Y+); III, fully
yielded (Y± = 0 or Y± = H); IV, near-wall plug (Y− = 0 < Y+ < H); V, fully rigid
(Y− = 0 and Y+ = H). Figure 2(c) illustrates where in (Hp̃z/B,MΓz/B)-space each of
types I–V occurs. The picture is similar to figure 2(b), which was described in detail above,
but is somewhat simplified.

The evolution equation (2.27), to leading order in ε, becomes

Ht̃ + qz = 0, (2.41)

where the scaled axial volume flux is

q = −1
3

p̃z[H3 + (H − Y+)3 − (H − Y−)3] − 1
2

MΓz[H2 − (H − Y−)2 + (H − Y+)2]

+1
2

B sgn(p̃z)[H2 − (H − Y−)2 − (H − Y+)2], (2.42)

if p̃z /= 0. When p̃z = 0, the flux is q = −1
2 sgn(Γz)H2(|MΓz| − B) if |MΓz| > B, and q =

0 if |MΓz| ≤ B. As can be seen in figure 2(c), when p̃z = 0, the only type of yielding
possible is type III, which occurs if |MΓz| > B; the layer is rigid (type V) if |MΓz| ≤ B.

The surfactant transport equation (2.30), at leading order, becomes

Γt̃ + [w̃sΓ ]z = 0, (2.43)

where the scaled surface velocity is

w̃s = −1
2

p̃z[H2 + (H − Y+)2 − (H − Y−)2] − MΓz(H + Y− − Y+)

−B sgn(p̃z)(H − Y− − Y+), (2.44)

if p̃z /= 0. When p̃z = 0, the surface velocity is w̃s = − sgn(Γz)H(|MΓz| − B) if |MΓz| >
B and w̃s = 0 if |MΓz| ≤ B. From (2.40) and (2.44), we can deduce that if Hp̃z = −2MΓz,
then Y− = H − Y+ and w̃s = 0, meaning that the interface of the layer is immobilised.
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This line is included in figure 2(c) and will form part of our later discussion. The lateral
boundary conditions (2.33) reduce in the thin-film limit to

Hz = q = Γ w̃s = 0, at z = {0, L}. (2.45)

Equations (2.40)–(2.44) with boundary conditions (2.45) comprise the thin-film system.
The wall shear stress (2.34), in the thin-film limit, becomes

τ̃w = Hp̃z + MΓz. (2.46)

2.5. Solution methods
When solving the thin-film or long-wave equations numerically, we use initial conditions
with a uniform surfactant concentration across the layer and a perturbation to the interface
height with wavelength 2L. For the thin-film equations, these initial conditions are

H(z, t = 0) = 1 − A cos
(πz

L

)
, Γ (z, t = 0) = 1, (2.47)

and for the long-wave equations, the equivalent conditions are

R(z, t = 0) =
√
(1 − ε)2 − ε2A2/2 − εA cos

(πz
L

)
, Γ (z, t = 0) = 1, (2.48)

where A is the amplitude of the initial perturbation and ε is the ratio of the average layer
thickness to the tube radius when A = 0. The constant term in (2.48) ensures that the
volume of fluid is independent of A. As noted for the surfactant-free problem (Shemilt et al.
2022), when the fluid is viscoplastic, there is no linear instability since a finite-amplitude
initial perturbation is required to yield.

For ease of comparison with the surfactant-free problem (Shemilt et al. 2022) and other
related studies (Gauglitz & Radke 1988; Halpern et al. 2010), we solve the equations in
a domain of length L = √

2π. This is the domain length that can accommodate the most
unstable mode in the Newtonian linear stability analysis (Hammond 1983). The initial
perturbation applied to the layer then corresponds to the one unstable Fourier mode that
exists in the domain. Although this value of L is not necessarily of unique importance in
the viscoplastic problem, we do not observe any qualitative changes in the results when L
is changed by relatively small amounts. As in the surfactant-free problem, since there is
nothing in the model equations that could break symmetry around the lateral boundaries of
the domain, the boundary conditions (2.33) and (2.45) yield the same solutions as would
be found using periodic boundary conditions. Symmetry rather than periodic boundary
conditions allows a finer grid to be used for the spatial finite differencing at the same
computational expense, since the computational domain is shorter.

To solve both the long-wave equations and the thin-film equations numerically, we use a
regularisation introduced by Jalaal (2016), which was used for the surfactant-free problem
(Shemilt et al. 2022) and has also been used for several other viscoplastic thin-film
problems (Balmforth et al. 2007; Jalaal et al. 2021). We define Ŷ± = max(Ymin, Y±) and
Ψ̂± = min(1 − Ymin, Ψ±)where Ymin is a small parameter, and replace Y± andΨ± with Ŷ±
and Ψ̂±, respectively, in the equations. We choose Ymin = 10−8 for all simulations, which
is small enough that the exact value does not affect the results. To solve the resulting
equations, the domain 0 ≤ z ≤ L is discretised into a grid of N evenly spaced points (we
typically use N = 200), the spatial derivatives are approximated by second-order central
finite differences and then the equations are time-stepped using an ordinary differential
equation (ODE) solver in MATLAB.
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3. Thin films

3.1. Time evolution of a surfactant-laden thin film
Figure 3(a) shows snapshots from a sample numerical solution of the thin-film system. At
t̃ = 0, the initial perturbation amplitude, A, is large enough that the layer is yielded in a
region in the centre of the domain with a fully yielded region at the base of the layer. At
very early times, this yielded region spreads to cover the whole domain by t̃ = 5. In this
very-early-time period, Γz remains small, so the dynamics are essentially uninfluenced by
the presence of surfactant. The behaviour is qualitatively the same as in the early-time
yielding period described previously for the surfactant-free problem (Shemilt et al. 2022).
Figure 3(b) shows that there is a delay in the initial growth of the instability compared
with a Newtonian (B = 0) simulation, and that the delay is approximately equal in the
surfactant-free viscoplastic simulation. After this early-time period, however, figure 3(b)
shows that the growth rate of the instability is reduced by the presence of surfactant.

Between t̃ = 5 and t̃ = 80 (figure 3a), significant gradients in surfactant concentration
develop, and at t̃ ≈ 80, a fully yielded region at the interface, where MΓz exceeds B,
appears near the centre of the domain. This yielded region grows and has extended across
the whole interface by t̃ = 500. During the intermediate period, 80 < t̃ < 500, the two
lateral edges of the upper yielded region propagate towards the side boundaries; these
coincide with the location of two gradually steepening travelling wave fronts in Γz. At
t̃ = 130, the right-travelling wave in Γz near z = 4 resembles a discontinuous shock wave.
The sudden decrease in Γz across the shock results in a rise in Y− just ahead of the shock
where the Marangoni force is weaker. Similarly, at t̃ = 250, a shock-like discontinuity has
developed in Γz in the left-travelling wave as it approaches z = 0, and a small rise in Y−
can be observed ahead of the wave.

Once we observe that a shock has developed in Γz, we can use (2.43) to derive a
Rankine–Hugoniot condition (see Appendix B), which provides the relation

us = [(w̃sΓ )z]+−
[Γz]+−

(3.1)

for the shock propagation speed, us, in terms of the sizes of jumps in Γz and (w̃sΓ )z across
the discontinuity. We have already noted how the jump in Γz across the shock affects
the yielding behaviour on either side, but (3.1) also shows that the yielding behaviour,
via w̃s, influences the shock propagation, highlighting the coupling between rheology and
surfactant transport. Although our numerical method does not actively track the shock
location, the speed of shock propagation observed in the simulations agrees well with us
calculated via (3.1) (data not shown here), providing evidence that the numerics accurately
capture the behaviour around the shock.

Throughout the intermediate-time period described above, the regions ahead of the
shock waves exhibit yield type II (surface pseudo-plug) while the central region behind the
shocks exhibits yield type I (internal pseudo-plug). At t̃ = 80, t̃ = 100 and t̃ = 130, at both
side boundaries, the solution in (Hp̃z/B,MΓz/B)-space approaches (Hp̃z/B,MΓz/B) =
(0,−1). This indicates that near the side boundaries, capillary forces are small and
Marangoni forces dominate. Unlike in the clean problem, where Y− → 0 as z → 0 or
z → L, here, due to the presence of Marangoni forces, Y− is not necessarily zero at the
side boundaries. The value of Y− in the limits z → 0 or z → L during this period is given
by limz→0,L(H − MΓzz/p̃zz), which can be seen to take a positive value in figure 3(a) for
80 ≤ t̃ ≤ 130.

Once the shock waves have propagated to the side boundaries, the evolution enters
a late-time regime where the upper and lower yielded regions extend across the whole
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Figure 3. (a) Snapshots from a numerical solution of the thin-film evolution equations (2.40)–(2.45) with
B = 0.04, M = 0.2, A = 0.2 at t̃ = {0, 5, 80, 100, 130, 250, 500, 2000}. At each t̃, there are three panels: the
top panel shows the layer evolving, with Y− (cyan) and Y+ (red), and the thin-film axial velocity w̃ represented
by the colour map; the middle panel shows plots of p̃z (magenta), Γ (green) and 10Γz (blue); the bottom panel
shows the solution in (Hp̃z/B,MΓz/B)-space, in dotted black lines, with the dots corresponding to points evenly
spaced along the domain 0 < z < L and the arrows indicating the direction of increasing z. Red diamonds in
the first and third panels mark the boundaries of the region where there is yielding at the interface. (b) Time
evolution of maxz H from the same simulation (solid) compared with the evolution of maxz H from a Newtonian
surfactant-laden simulation with (B,M) = (0, 0.2) (dashed), a surfactant-free viscoplastic simulation with
(B,M) = (0.04, 0) (dash-dotted) and a surfactant-free Newtonian simulation with (B,M) = (0, 0) (dotted).
(c) Time evolution of maxz Y− (solid red), maxz(H − Y+) (solid blue) and maxz(|τ̃w| − B) (solid black) for the
simulation in panel (a). Also shown are plots of maxz Y− (dash-dotted red) and maxz(|τ̃w| − B) (dash-dotted
black) for the surfactant-free viscoplastic simulation (B = 0.04,M = 0).

971 A24-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.588


J.D. Shemilt, A. Horsley, O.E. Jensen, A.B. Thompson and C.A. Whitfield

layer while getting gradually smaller, indicating that the layer is rigidifying. Both Y− and
H − Y+ tend towards zero at a rate proportional to 1/t (figure 3c). It can also be seen
that in (Hp̃z/B,MΓz/B)-space (figure 3a, t̃ = 500, 2000), the whole solution is close to
the line MΓz + 1

2 Hp̃z = 0. This indicates that H − Y+ ≈ Y−, and so w̃s ≈ 0 from (2.44),
meaning the interface is approximately immobilised at late times. As the layer approaches
its final static shape, all points in the domain converge towards (Hp̃z/B,MΓz/B) = (−2, 1)
(figure 3a, t̃ = 2000). Hence, when the layer reaches its final static shape, the capillary
stress is twice as strong as the Marangoni stress and they act in opposite directions, with
the resultant magnitude of stress exactly equal to B. From this, we can deduce that at late
times, the layer approaches a marginally yielded static shape, H → H0(z; B) as t̃ → ∞,
which satisfies

H0(H0,z + H0,zzz) = 2B, (3.2a)

whilst MΓ → MΓ0 as t̃ → ∞ where Γ0 has a linear profile with slope B/M and mass L
over 0 < z < L,

MΓ0 = M − BL
2

+ Bz. (3.2b)

For the solution (3.2b) to be valid, it must have Γ0 ≥ 0 everywhere, or specifically 2M ≥
BL. Indeed, we observe that in simulations with 2M < BL, H and Γ do not approach H0
and Γ0 at late times, but rather approach different static solutions: we will discuss this in
more detail in § 3.3. Until then, we will focus attention on the case where M is sufficiently
large that a solution of (3.2) is approached at late times.

In the surfactant-free problem (Shemilt et al. 2022), the late-time static solution for H
also satisfies the ODE (3.2a) but with 2B replaced by B. Hence, the presence of sufficiently
strong surfactant effectively doubles the capillary Bingham number in relation to the
layer’s final shape. In keeping with this observation, figure 3(b) indicates the decreased
late-time height of the layer compared with the clean viscoplastic problem. Figure 3(c)
shows the evolution of maxz(|τ̃w|), the maximum value of the shear stress exerted on the
tube wall, showing that it peaks around t̃ ≈ 100 and then approaches B at late times. The
comparison with the surfactant-free simulation in the same figure shows that introducing
surfactant reduces the peak in the wall stress.

3.2. Late-time dynamics of a thin film
To predict the late-time behaviour of the layer, we propose an asymptotic solution for
t̃ � 1. Inspired by observations from numerical simulations such as figure 3, we make
expansions of the form

H = H0 + H1

Bt
+ · · · , Γ = Γ0 + Γ1

Bt
+ · · · , Y+ = H0 + Y+,1

Bt
+ · · · ,

Y− = Y−,1
Bt

+ · · · , ∂zp = ∂zp0 + ∂zp1

Bt
+ · · · = −2B

H0
− (∂z + ∂3

z )H1

Bt
+ · · · ,

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

where Γ0 is given by (3.2b) and H0 is a solution to (3.2a). For all of the analysis in this
section, we will assume that 2M ≥ BL, so (3.2b) is a valid solution. We will also assume
that Y−,1 > 0 and Y+,1 < 0 for 0 < z < L, since we observe in numerical simulations (e.g.
figure 3) that the whole layer exhibits yielding of type I when it is in this late-time regime.
We will subsequently confirm that the resulting solution is consistent with simulations.
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Substituting (3.3) into (2.40)–(2.42) gives

H1 = ∂z(Y2
−,1), Y+,1 = H1 − H0

2B
M∂zΓ1, Y−,1 = Y+,1 + H2

0
2B
(∂z + ∂3

z )H1. (3.4a–c)

Inserting (3.3) into the surface velocity (2.44) gives, to leading order,

w̃s ∼ 1
B2t2

W1, where W1 = BY2
−,1

H0
− H0

4B
(M∂zΓ1)

2, (3.5)

and the transport equation (2.43) gives

BΓ1 = ∂z (Γ0W1) . (3.6)

The boundary conditions (2.45) imply

∂zH0 = ∂zH1 = Y−,1 = W1 = 0, at z = {0, L}, (3.7)

and mass conservation implies

∫ L

0
H0 dz = L,

∫ L

0
H1 dz = 0,

∫ L

0
Γ1 dz = 0. (3.8)

We solve (3.2a) and (3.4)–(3.6) numerically subject to (3.7) and (3.8).
There are two branches of solutions for H0, as shown in figure 4(a), which are the same

set of static solutions as computed in the surfactant-free problem (Shemilt et al. 2022)
but with each corresponding B halved. The upper-branch solutions are strongly deformed,
marginally yielded states that the layer approaches at late times. Figure 4(b) illustrates
how the deformation and peak height of these solutions is reduced when surfactant is
present compared with when the interface is clean, and figure 4(a) quantifies this effect
for varying B. The lower-branch solutions in figure 4(a) are unstable near-flat marginally
yielded states, which in the clean problem were shown to approximate the minimum initial
perturbation required to trigger instability (Shemilt et al. 2022). We will show in § 3.3 that
the lower-branch solutions for the surfactant-laden problem have the same significance
when M is sufficiently large. Figure 4(a,b) quantify the increased deformation in the
lower-branch solutions when surfactant is present compared with when it is not.

Figure 4(c) shows the O(1/t) terms in an example late-time asymptotic solution. There
is close agreement between these asymptotics and the numerical solution of the thin-film
equations at t̃ = 104. Also, figure 4(c) suggests that Y−,1 ≈ Y+,1 − H1, so at late times,
the near-wall and near-interface yielded regions have approximately the same size. This
implies that the surface velocity, w̃s, is approximately zero. We investigate this further
by plotting the leading-order surface velocity, W1, for various M in figure 4(d). As M is
increased, MW1 approaches a fixed curve, indicating that W1 is approaching zero at a rate
proportional to O(1/M). It also shows that W1 < 0 in all cases, indicating that at late times,
surfactant typically induces a reverse flow at the interface. However, at sufficiently large
M, the surface velocity is very small and so the interface is essentially immobilised as the
layer approaches its late-time configuration. By immobilisation of the interface, we mean
that there is no axial surface velocity, but the free surface can still deform and the layer
thickness can still evolve.
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Figure 4. (a) Plot of maxz H0 for all the solutions to (3.2a) (solid), which are static, marginally yielded
solutions to the thin-film equations with surfactant. For comparison, the equivalent plot for the static solutions
for the surfactant-free problem, which were computed by Shemilt et al. (2022), is also shown (dotted). The four
coloured markers in panel (a) correspond to the example solutions shown in panel (b). All solutions in panel
(b) have B = 0.05 but the dotted ones are the solutions for the surfactant-free problem. (c) O(1/t) terms in
the late-time expansion (3.3) for a solution with B = 0.05 and M = 0.5, showing H1 (solid black), Y−,1 (solid
magenta), Y+,1 − H1 (solid red) and Γ1 (solid blue). These are compared with the corresponding quantities
from a numerical solution of the thin-film equations (2.40)–(2.45) at t̃ = 104, specifically [H(z, t̃ = 104)−
H0(z)]Bt̃ (dashed black), Y−(z, t̃ = 104)Bt̃ (dashed magenta), [Y+(z, t̃ = 104)− H(z, t̃ = 104)]Bt̃ (dashed red)
and [Γ (z, t̃ = 104)− Γ0(z)]Bt̃ (dashed cyan) where Γ0 is defined in (3.2b). (d) Leading-order surface velocity,
W1, scaled by M, for B = 0.05 and M = {0.25, 0.5, 1, 2, 4, 8}.

3.3. Effect of varying the Marangoni number on stability and dynamics
To systematically assess the effect of surfactant on the stability and dynamics of the layer,
we have run a large set of numerical simulations for various values of B and M, with a
fixed initial perturbation to the layer height, A = 0.2. Figure 5 shows the resulting data for
the final peak height, maxz H(z, t̃ = 104), which have several characteristics of note.

There is a sharp stability boundary in the data in figure 5. There is a critical value of
B, which we call Bc, such that for B < Bc, there is instability and significant deformation
of the layer, whilst for B > Bc, there is minimal or no deformation. This stabilisation at
high B was identified for the surfactant-free problem (Shemilt et al. 2022), but it can be
seen from figure 5 that Bc also depends on M. For small M, Bc recovers its value for the
surfactant-free case but as M is increased, Bc decreases towards a different constant value
at high M. It is evident that Bc also depends on the amplitude of the initial perturbation
given to the layer, A, as we discuss in detail in § 3.4 below. Shemilt et al. (2022) showed
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Figure 5. Data from thin-film simulations with A = 0.2 and various B and M. Each coloured point corresponds
to one simulation with the colour indicating the final peak height. Contours interpolated from the same data are
also plotted in black, which are evenly spaced and in the range 2.4 ≤ maxz H ≤ 2.8. The red lines are 2M = BL
(solid), B = Bm(A = 0.2) ≈ 0.0289 (dashed) and B = 2Bm(A = 0.2) ≈ 0.0578 (dash-dotted).

that Bc can be predicted accurately for a large range of A using the marginally yielded
static solutions, H0(z; B). Here, we find that the same approach can be used to predict Bc
for large M as well as small M. If we define Bm(A) as the value of B such that the solution
H0 to (3.2a) satisfies 1 − H0(z = 0; B) = A, then we find Bm(0.2) ≈ 0.0289 which can be
seen in figure 5 to accurately predict Bc at large M. To approximate the stability boundary
at small M, we can use the prediction for the surfactant-free problem, which is simply
Bc ≈ 2Bm ≈ 0.0578, since the function H0 is the same but the corresponding capillary
Bingham number for that H0 is doubled. Figure 5 shows that this predicts the stability
boundary well at small M.

To understand why the prediction for large M works, first note that in the surfactant-free
problem (Shemilt et al. 2022), the lower-branch static solutions from figure 4(a)
correspond to the minimum amplitude of perturbation required to make the layer initially
yield, as long as we now also have that MΓz ≈ B. For large M, surfactant is strong
enough that a thin fully yielded region adjacent to the interface develops rapidly before
any significant deformation of the layer occurs, so after a rapid adjustment from the initial
conditions at early times, we do have MΓz ≈ B subsequently. Then, whether instability
occurs depends only on whether the initial perturbation to the layer height, parametrised by
A, was larger than the minimum required to yield, which is represented by the lower-branch
static solution for a given B. Or, equivalently, if A is fixed as in figure 5, then instability
occurs only if B < Bm(A).

In the limit of very strong surfactant, we can derive a simplified evolution equation
by exploiting M � 1 as a large parameter (see Appendix C). In this large-M asymptotic
theory, we find that the surface velocity is zero to leading order, so the interface is
immobilised throughout the evolution. Additionally, we find that the motion is governed
by the evolution equation,

Ht̃ +
[

1
6

p̃zỸ2(2Ỹ − 3H)
]

z
= 0, where Ỹ = max

(
0,

1
2

H − B
|p̃z|

)
. (3.9)
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If we replace B with 1
2 B and t̃ with 1

4 t̃ in (3.9), then we exactly recover the evolution
equation for the surfactant-free problem ((2.27) of Shemilt et al. 2022). Therefore,
solutions for the dynamics with very strong surfactant are the same as solutions for the
dynamics without surfactant, but with the capillary Bingham number doubled and time
slowed by a factor of four. The four-fold increase in the time scale has been established
previously for Newtonian fluids (Otis et al. 1993), but the effective doubling of the yield
stress by strong surfactant is (we believe) a new phenomenon. We have already seen this
doubling of B in relation to the final shape of the layer in (3.2a) and in the value for Bc in
figure 5, as described above. However, this theory indicates that for M � 1, the doubling
of B holds for the entire dynamics, except for a very short period with time scale O(1/M) at
the beginning of the evolution when the initially uniform surfactant profile rapidly adjusts
to a configuration consistent with the asymptotic theory.

Figure 5 also indicates that, within the unstable region of parameter space, i.e. B < Bc,
there are two qualitatively different behaviours. At sufficiently large M, there is a region
where the final peak height is effectively independent of M. These are the simulations
which obey the late-time behaviour described in § 3.2, and so their final shape is the
marginally yielded static shape H0, a solution to (3.2a), which has no M-dependence.
In contrast, for sufficiently small M, not all of the fluid adjacent to the interface fully
yields at late times, and so the layer does not enter the late-time regime described in § 3.2
but instead approaches a different final static shape. It can be seen in figure 5 that for
small M, the final peak height and, hence, the final shape, depend on both M and B.
These results are consistent with the observation that the late-time solution (3.2) exists
only for 2M ≥ BL: figure 5 shows there is M-dependence in the final layer shape when
2M < BL. There is, however, also a small band of parameter values in figure 5 where there
is still M-dependence in the final shape despite 2M ≥ BL. Although our results suggest
that the final shape of the layer in these cases does depend on M, we cannot rule out the
possibility that if simulations were run to much longer times, some of these simulations
may eventually approach the M-independent final shape, H0.

Figure 6 shows an example numerical simulation in this small M region. In this
simulation, there is a region near z = 0 that exhibits yielding of type II throughout the
evolution, even at late times, so there is only partial yielding adjacent to the interface.
For this simulation, B = 0.04 and M = 0.08, so 2M < BL. This means that the layer
cannot enter the late-time regime described in § 3.2, as then (3.2b) would require Γ to
be negative. In figure 5, the boundary between the region with complete surface yielding
(simulations that enter the late-time regime from § 3.2) and the small M region with no
or partial surface yielding occurs close to the line 2M = BL. Physically, we can interpret
the behaviour at small M as the surfactant being too weak for Marangoni effects to be
able to fully yield the whole interface. In figure 6, a large portion of the domain does
exhibit interface-adjacent yielding, but if M was decreased further, this portion would
become smaller and eventually as M → 0, no fully yielded region would exist near the
interface, consistent with the behaviour in the surfactant-free case. We note that at late
times in the simulation in figure 6, there is complex behaviour near z = 0 with a small
region developing where p̃z changes sign. We find this type of behaviour to be typical in
simulations with very small M, but since it occurs at late times when the layer is already
near-static, it generally has minimal impact on the global dynamics. Finally, figure 5
demonstrates that surfactant has an appreciable impact on the final configuration of the
thin film for M = O(1), corresponding (from (2.38)) to a negligible (O(ε2)) reduction in
surface tension relative to its mean value. In this thin-film limit, surfactant operates solely
through powerful Marangoni effects.
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Figure 6. Snapshots from a thin-film simulation with B = 0.04, M = 0.08, A = 0.2, at
t̃ = {70, 120, 1100, 9000}. The upper row of panels shows the layer height evolving, with Y− (cyan)
and Y+ (red), and the thin-film axial velocity, w̃, represented by the colour map; the middle row shows Γ
(green), Γz (blue) and p̃z (magenta); and the lower row shows shows the solution in (Hp̃z/B,MΓz/B)-space,
with the black dots corresponding to evenly spaced points along 0 < z < L and the arrows indicating the
direction of increasing z. Red diamonds in the first and third panels mark the boundaries of the region where
there is yielding at the interface.

3.4. Dependence on the amplitude of initial perturbation
When B > 0, the instability is nonlinear and the dynamics of the layer, including its final
shape, have some dependence on the size of initial perturbation to the free surface, A. For
the surfactant-free problem, Shemilt et al. (2022) showed that the late-time static solutions
(solutions to (3.2a) but with 2B replaced by B) can be used both to predict the minimum
A required to trigger instability, referred to as Ac(B), and to identify a large region of
parameter space where the final shape is independent of A. Figure 7(a) illustrates how,
in the surfactant-free case, the curve B = 2Bm(A) approximates closely the boundary of
the region in (B,A)-space where maxz H(z, t = 104) is independent of A. This boundary
includes the sharp stability boundary separating simulations where minimal or no growth
occurred from the simulations where there is significant growth. As above, Bm(A) is
defined as the value of B such that 1 − H0(z = 0; B) = A, where H0 are solutions to (3.2a).

Figure 7(b,c) show how introducing surfactant alters this A-dependence, particularly
how Ac is increased for larger values of M. For M = 0.6 (figure 7b), Ac is increased
for each value of B compared with the surfactant-free case. When surfactant strength
is increased again to M = 6 (figure 7c), Ac is further increased and, analogously to the
surfactant-free case, the curve B = Bm(A) predicts the entire boundary of the region where
the final shape is independent of A, including predicting Ac. The lower branch of static
solutions in figure 4(a) correspond to the values of Bm that predict Ac in figure 7(c),
illustrating that these lower-branch solutions correspond to the minimal initial perturbation
to the free surface required to trigger instability when surfactant is strong. The accuracy
of B = Bm(A) in predicting the whole boundary of the A-independent region in figure 7(c)
provides further evidence of the effective doubling of B by introducing strong surfactant
compared with the surfactant-free case, and highlights that the static solutions, H0(z; B),
can provide significant insight into the stability and dynamics of a layer with strong
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Figure 7. Data from thin-film numerical simulations with (a) M = 0, (b) M = 0.6 and (c) M = 6. Each
coloured dot corresponds to one simulation, with the given values of A and B, where the colour indicates
the final maximum height of the layer. The same data for maxz H(z, t = 104) are linearly interpolated and
plotted as black contour lines. The two magenta curves in each panel are B = Bm(A) (solid) and B = 2Bm(A)
(dash-dotted).

surfactant. Figure 7 also illustrates that, while there is non-trivial dependence of Ac on M,
accurate upper and lower bounds for Ac for any M are provided by the curves B = Bm(A)
and B = 2Bm(A), respectively.

4. Thick films and liquid plug formation

Whilst the relative simplicity of the thin-film equations allows for more detailed analysis,
liquid plug formation cannot occur in that theory. To assess the effect of surfactant
on the dynamics leading to plug formation, we now consider the long-wave equations
(2.27)–(2.33), which model the evolution of layers which are not thin. The layer thickness
is described by the parameter ε, which is the ratio of the average thickness to the tube
radius after a small adjustment to account for the change in volume induced by having a
finite amplitude initial perturbation (see (2.48)).

The minimum volume of fluid required to form a liquid plug corresponds to a layer
thickness of ε ≈ 0.107 for the length of domain we are using (Everett & Haynes 1972).
Gauglitz & Radke (1988) conducted the first numerical simulations of the Newtonian
problem without surfactant, which predicted a slightly larger critical thickness, εcrit ≈
0.12, due in part to the restriction of only being able to run simulations to a relatively
short, finite time. Viscoplastic rheology can significantly increase εcrit when the capillary
Bingham number is sufficiently high (Shemilt et al. 2022). Here, we investigate how εcrit
is affected by the additional presence of surfactant.

We run all simulations to time t̃ = 104, which is an order of magnitude longer than in
the investigation by Shemilt et al. (2022), to capture the dynamics around plug formation
as accurately as possible. Following the approach of many previous studies, we stop the
simulations early if minz R ≤ 0.3, or equivalently if maxz H ≥ 0.7/ε, as this has been
found to indicate that a plug is imminently about to form (Halpern & Grotberg 1992, 1993;
Halpern et al. 2010; Shemilt et al. 2022). We then identify the time at which the simulation
is stopped as the plugging time, tp. We will describe the thick-film results in this section
using the unscaled capillary Bingham and Marangoni numbers, B and M, defined in the
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Figure 8. (a) Numerical solution of the long-wave equations (2.25)–(2.33) with A = 0.2, B = 0.001, M =
0.02 and ε = 0.14, showing the transition towards plug formation. The upper row shows the evolution
of the layer height, with Y− (cyan) and Y+ (red) also shown, and the colour corresponding to the
magnitude of the axial velocity, |w|. The lower row shows pz (magenta), Γz (blue) and Γ (green). (b) Time
evolution of maxz H for the same simulation, compared with maxz H from simulations with (B,M) =
{(0, 0), (0.001, 0), (0, 0.02), (0.001, 0.02)}, showing the combined delay to plug formation by surfactant and
yield stress.

long-wave theory (2.38), rather than the scaled versions that arise in the thin-film theory.
One can convert back to the scaled, thin-film parameters by dividing B and M by ε2.

4.1. Example evolution showing plug formation
Figure 8(a) shows a numerical solution of the long-wave equations. The layer thickness is
ε = 0.14, meaning that there is sufficient volume of fluid that a plug could form, and it
can be seen in figure 8(b) that one does form at around t̃ ≈ 268. Around 267 � t̃ � 268,
the layer grows rapidly towards the centre of the tube, indicating that it is about to
form a plug when the simulation is stopped. Introducing surfactant to a Newtonian layer
with comparable thickness has been shown to increase the plugging time approximately
four-fold (Ogrosky 2021). We find that adding surfactant to a viscoplastic layer can
increase the plugging time by a much greater amount. In the example shown in figure 8(b),
plug formation in the surfactant-laden viscoplastic film takes approximately eight times
longer than when there is no surfactant, which in itself takes longer than plugging in the
surfactant-free Newtonian simulation.

Figure 8(a) shows that by t̃ = 190, the layer is exhibiting yielding of type I everywhere,
similar to the typical thin-film behaviour seen in figure 3(a). However, at later times, a
region with type IV yielding, where the fluid is yielded near the interface but rigid adjacent
to the wall, appears near z = 0 and then expands towards the centre of the domain. The
flow in this region is in the negative z-direction, opposing the flow in the rest of the layer.
However, the velocity in this region is small so we expect any effect on the global dynamics
to be minimal. This behaviour is similar to what is observed in the long-wave problem
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without surfactant, but in that case, the region near z = 0 is fully rigid (Shemilt et al.
2022). Whilst we expect this long-wave theory to be a good approximation to the overall
dynamics of the thick film, small details such as this behaviour near z = 0 would need to be
confirmed with full two-dimensional simulations. The more profound effect of surfactant
that can be seen in figure 8(a) is the development of a sizeable fully yielded region near the
interface all along the layer, where the shear is opposing the general flow and so delaying
the formation of a plug.

4.2. Thick-film dynamics at large Marangoni numbers
To explore the effect of increasing the surfactant strength on the evolution of a thick film,
we propose an expansion for M � 1,

R = R0 + 1
MR1 + · · · , Γ = G0 + 1

MG1 + · · · , ws = W0 + 1
MW1 + · · · .

(4.1)

Since the surface stress must be finite, |∂zσ | = |M ∂zΓ | < ∞, we must have ∂zG0 = 0.
Conservation of the total amount of surfactant in the long-wave theory then implies

G0(t) =
∫ L

0 R0|t=0 dz∫ L
0 R0 dz

. (4.2)

The surfactant transport equation (2.30) at leading order in M, after rearranging and using
(4.2), gives

W0(z, t) = 1
R0

∫ z

0
I(ζ, t) dζ, where I = R0

∫ L
0 ∂tR0 dz − ∂tR0

∫ L
0 R0 dz∫ L

0 R0 dz
. (4.3)

Therefore, unlike for the thin-film case (Appendix C), the surface velocity is not zero for
large M, in general. From (4.3), the surface velocity can be deduced from the difference
between the local time derivative of the film thickness, ∂tR0, and the globally averaged rate
of change of the thickness, via the integral of ∂tR0. Non-zero W0 leads to small gradients
in surfactant concentration. The results (4.2) and (4.3) can be understood physically as
follows: the surfactant is so strong that any local change in the shape of the interface
induces a surface velocity that redistributes surfactant so that the concentration remains
(almost) globally uniform, and if the total surface area of the interface has changed, this
will also induce a change in the mean concentration. We have appealed neither to the
equation of state for surface tension (2.19), except that σ ′(Γ ) /= 0, nor to the liquid’s
rheology to reach (4.2) and (4.3). Hence, within long-wave theory, the results (4.2) and
(4.3) are generic for any type of fluid and any equation of state that has σ ′(Γ ) /= 0.

Figure 9 compares a solution of the full long-wave system (2.27)–(2.33) with M = 10
with the results (4.2) and (4.3). It shows good agreement between Γ and ws from the
numerical solutions and the leading-order approximations (4.2) and (4.3), despite the value
of M not being extremely large. The spatial gradients in Γ (figure 9b) are small in the
numerical solution, and we expect these would become smaller if the surfactant strength
was further increased, in line with the large-M theory. Figure 9(c) shows that the surface
velocity induced as plug formation occurs is in the negative z-direction, and is strongest
immediately before the simulation is stopped. This is because there is a rapid decrease
in the local surface area of the interface near z = L during the fast growth before plug
formation, which induces a surface velocity to redistribute surfactant across the layer.
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Figure 9. Results from a numerical solution of the long-wave equations with ε = 0.14, M = 10, B = 0.001
and A = 0.25. (a) The interface position, R, shown at various time points. The last time point is t̃ = tp = 410.69,
when the simulation is stopped. (b) Surfactant concentration, Γ (solid), at the same time points as in panel (a).
These are compared with G0(t) (dashed), the approximation from the large-M asymptotic theory, which is
evaluated via (4.2) using the numerical solutions from panel (a) as proxies for R0. (c) Surface velocity, ws
(solid), at the same time points. These are also compared with the corresponding approximation from the
large-M theory (4.3).

The results from figure 9 suggest that the large-M theory can be used to better
understand the behaviour of thick films when surfactant is strong. However, we have
assumed a simple linear equation of state for surface tension (2.19), which limits how
large we are able to make M in simulations while retaining accuracy. Figure 9(b) suggests
that when the simulation is stopped, the increase in Γ from its original value was
approximately 3 %. We have found that this is approximately independent of M, so for
values of M close to or larger than M ≈ 30, we expect the theory to break down since σ
will approach zero as a plug forms. For this reason, M = 10 is the largest Marangoni that
we have used in the long-wave simulations. A more complex nonlinear equation of state
would have to be used to access higher values accurately.

4.3. Critical layer thickness for plug formation
Figure 10(a) compares the computed critical layer thickness for plug formation to occur,
εcrit, when surfactant is present with its value when the interface is clean. Both with and
without surfactant, increasing B induces an increase in εcrit. The increase is small when
B is small, but is significant at larger B. When surfactant is present, the increase in εcrit
is initiated at B ≈ 10−3, compared with at B ≈ 2 × 10−3 when the interface is clean.
Beyond these values of B, the increase is amplified by the presence of surfactant, such that
the value of εcrit is approximately 30 % larger than when the interface is clean.

Figure 10(b) illustrates the effect on the dynamics of varying M and ε. It shows data
from many simulations, some of which are stable and some form plugs. The boundary
between the stable and unstable regions in the data can be identified as εcrit, so the
dependence of the critical layer thickness on M can be seen. At low M, the critical
thickness for the surfactant-free problem is recovered, and as M is increased, εcrit
increases to a significantly higher value for large M. Therefore, for this value of B,
there is a range of layer thicknesses 0.14 � ε � 0.185 where increasing the surfactant
strength sufficiently, without changing any other parameters, can suppress plug formation.
This stabilisation of the system by increasing the surfactant strength resembles what was
seen in the thin-film system (figure 5). Again, surfactant has a powerful effect at low
concentrations: the range 10−2 <M < 10−1, over which εcrit changes appreciably in
figure 10(b), corresponds to a maximum relative reduction of surface tension of between
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Figure 10. (a) Critical layer thickness, εcrit, as a function of B, for a surfactant-free layer (M = 0) and a
layer with surfactant (M = 0.4). All simulations have A = 0.25. The value of εcrit computed is such that a
simulation with ε = εcrit + 0.001 forms a plug before t̃ = 104 and a simulation with ε = εcrit − 0.001 has not
formed a plug by t̃ = 104. (b) Data from long-wave simulations at various values of ε and M, with A = 0.25
and B = 0.0024. Grey crosses indicate simulations where a liquid plug formed, while black dots indicate
simulations where a plug did not form. Within the plugging region, the grey contours indicate the plugging
time, tp.

1 % and 10 %. Figure 10(b) also quantifies how the plugging time increases as M is
increased. We know increasing B extends the plugging time (Shemilt et al. 2022), and
figure 10(b) shows it can be extended further again by introducing surfactant. However, the
profound stabilisation effect by surfactant is not due mainly to slowing of the dynamics as
it is in the Newtonian problem (Halpern & Grotberg 1993). Instead, figure 10(b) highlights
how the increase in εcrit due to rigidification and stabilisation of the layer by yield stress is
amplified by the presence of sufficiently strong surfactant.

The value of εcrit and the dynamics leading to plug formation are necessarily dependent
on the initial perturbation applied to the layer, which here is parametrised by A. With
a larger initial perturbation, there can be more yielding at larger values of B. However,
we have found that varying the initial conditions does not qualitatively affect the results
presented. The finite time to which we run simulations, t̃ = 104, will have some effect on
the computed value of εcrit, but figure 10(b) shows that the plugging time increases rapidly
close to the computed value of εcrit, suggesting that there is good convergence to the true
value of εcrit.

5. Discussion

We have developed two models, using long-wave and thin-film theories, of the capillary
instability of a viscoplastic layer coating a cylindrical tube where insoluble surfactant is
present at the air–liquid interface. This flow can be strongly modified both by the strength
of the yield stress, described by the capillary Bingham number, and the strength of the
surfactant, described by the Marangoni number. We showed that the layer can exhibit
five qualitatively different types of yielding, which are different combinations of fully
yielded shear flow, pseudo-plugs and rigid plugs, depending on the relative strengths
of the capillary and Marangoni forces. Numerical simulations highlighted the complex
dynamical transitions between these yielding types that can occur as the layer evolves.

For thin layers, we quantified how introducing surfactant enhances the stabilising effect
of the yield stress and induces an effective doubling of B when M is sufficiently large.
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Asymptotic analysis of the late-time behaviour in § 3.2, valid for moderate and large M,
showed that the final static, marginally yielded configuration of a surfactant-laden layer
coincides with that of a surfactant-free layer but with B exactly doubled. Static, marginally
yielded solutions were also shown to accurately predict the critical capillary Bingham
number above which instability is suppressed, for both small and large Marangoni numbers
(figure 5). When M is asymptotically large, the entire thin-film dynamics coincides with
that of a surfactant-free layer but with time slowed by a factor of four and B doubled.

For thicker layers, we quantified how the known effect of yield stress in delaying or
suppressing plug formation (Shemilt et al. 2022) is amplified by introducing surfactant.
Using numerical solutions of the long-wave equations, which describe the motion of thick
films, we showed that the approximately four-fold increase in plugging time when strong
surfactant is introduced to a thick Newtonian layer (Otis et al. 1990; Halpern & Grotberg
1993) can become much larger when the liquid is viscoplastic (figure 8). The critical layer
thickness required for a plug to form is also known to increase as the capillary Bingham
number is increased (Shemilt et al. 2022). In figure 10, we quantified how this increase
is amplified when sufficiently strong surfactant is present; the threshold for surfactant to
have an appreciable effect corresponds to a relative surface-tension reduction of only a few
percent. By examining the limit of large Marangoni number in § 4.2, we found that surface
velocities are induced by local changes to the shape of the interface during plug formation,
which act to redistribute surfactant and uniformly raise the concentration globally.

The results suggest a mechanism for the stabilising effect of pulmonary surfactant in the
small airways, particularly in diseases where mucus yield stress is increased such as cystic
fibrosis (Patarin et al. 2020). Figure 8(b) illustrates the delay to plug formation caused
by surfactant. In these simulations, plug formation occurs at tp ≈ 35 when there is no
surfactant and tp ≈ 268 when there is surfactant. We can relate these dimensionless times
to real time scales in the lungs by taking the following physiologically relevant parameters
values for a 12th generation airway: airway radius, a = 0.4 mm (Hsia, Hyde & Weibel
2016); equilibrium surface tension, σ0 = 30 mN m−1 (Chen et al. 2019) and viscosity,
η = 0.01 Pa s (Lai et al. 2009). Using these values, tp ≈ 35 and tp ≈ 268 correspond to
real plugging times of t∗p ≈ 1.7 s and t∗p ≈ 13 s. Whilst there is significant variation in
measurements of rheological parameters for mucus, this suggests that for a 12th generation
airway, the plugging time in the surfactant-free simulation is less than the time of a
breathing cycle and it is longer than a breathing cycle in the surfactant-laden simulation.
This provides evidence that surfactant can make plug formation less likely to occur in an
airway.

The results presented in figure 10 for the critical layer thickness for plugging to
occur also have physiological relevance. Measurements of healthy pulmonary surfactant
suggest that Marangoni numbers around M ≈ 1 are likely to be observed (Schürch et al.
2001), although there is significant variation in measured values. Figure 10(b) illustrates
how the critical thickness is increased when M ≈ 1 compared with when M is low.
There is clinical evidence that in lungs affected by cystic fibrosis, surfactant function
is impaired (Gunasekara et al. 2017) and that this is linked to increased prevalence of
airway obstructions (Griese et al. 2004). Our results are consistent with these clinical
observations, and suggest a mechanism for how surfactant deficiency may destabilise
airways. Moreover, as discussed by Shemilt et al. (2022), mucolytic therapies commonly
used in cystic fibrosis can significantly decrease mucus yield stress (Patarin et al. 2020),
which could destabilise airways and trigger plug formation if the mucus layer is thick. One
of these mucolytic drugs, rhDNAse, has been linked with increased lung exacerbations
and a decline in lung function in patients with idiopathic bronchiectasis (O’Donnell et al.
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1998). The evidence of surfactant amplifying yield-stress effects suggests surfactant needs
to be accounted for when considering the impacts of mucolytic drugs that significantly
lower the mucus yield stress.

Our results also suggest that introducing surfactant can decrease the peak value of the
shear stress induced on the tube wall during the evolution of the liquid layer (figure 3c).
This suggests that surfactants in airways are likely to provide protection against epithelial
cell damage, which can occur when a sufficiently large stress is exerted on the airway
wall (Huh et al. 2007). This is consistent with previously reported effects of introducing
surfactant to a Newtonian layer (Romanò et al. 2022).

The theory we have used here could be easily modified to study other related flows.
For example, the surface Marangoni force could be replaced by a force caused by an
oscillating air flow, something that has been studied previously in the case that the liquid
is Newtonian (Halpern & Grotberg 2003). Beyond the application to airway modelling,
the present theory could be used to study the effect of surfactant on other capillary flows
of viscoplastic fluids. For example, one possible industrial application that has received
recent modelling attention is ink-jet printing (Jalaal et al. 2021; van der Kolk et al. 2023),
where the effects of surfactant have not yet been studied but may be important. The flow
region maps that we have introduced (figures 2, 3a and 6) may also prove useful in other
problems by illustrating the transitions between different types of yielding.

There are many limitations to the modelling approach we have taken. Several
physiologically relevant effects have not been included in the model, such as gravity, air
flow and more complex liquid rheologies. However, the relative simplicity of the model
has allowed for extensive exploration of parameter space to systematically examine the
effect of surfactant on this flow. We have assumed a linear relation between surface
tension and surfactant concentration, despite this typically being nonlinear for pulmonary
surfactants (Schürch et al. 2001). With this assumption, the model is simplified but still
retains sufficient complexity to capture the key effects of surfactant on the flow. As
discussed in § 4.2, whilst we have explored a wide range of M, the linear surfactant
equation of state limits how large we can make M in our long-wave simulations. To
fully explore the large-M limit in the future, a nonlinear equation of state should be
used. The quasi-one-dimensional long-wave theory has been shown to provide a good
approximation to the dynamics of thick films in similar problems (e.g. Halpern et al.
2010) so we expect it to perform well here also, but our predictions await validation
against fully two-dimensional CFD simulations. Long-wave theory is known to break
down immediately before plug formation (Johnson et al. 1991), so to extend the analysis to
study coalescence and the post-coalescence phase would require a fully two-dimensional
model, in line with what has been done in the Newtonian case (Romanò et al. 2022).

In this study, we have quantified how surfactant can amplify the effect of viscoplastic
rheology during the capillary instability of a liquid film coating a tube. In addition
to slowing the dynamics, sufficiently strong Marangoni forces can induce an effective
doubling of the capillary Bingham number for thin films. For thick films with a large
enough capillary Bingham number, the critical thickness required for plug formation to
occur can be significantly increased by the presence of surfactant. These results suggest
a mechanism for how pulmonary surfactant can stabilise airways and how surfactant
deficiency can contribute to the prevalence of mucus plugging in obstructive lung diseases.
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Appendix A. Derivation of long-wave evolution equations

To derive evolution equations in the long-wave limit, we insert the scaled variables (2.22)
into the dimensionless governing equations (2.10)–(2.21) and then truncate at leading order
in δ. Mass and momentum conservation, to leading order, are

0 = ∂z̄w̄ + 1
r
∂r(rū), 0 = ∂rp, ∂z̄p = 1

r
∂r(rτ̄rz). (A1a–c)

The no slip boundary conditions at the wall are

ū = w̄ = 0 on r = 1 (A2)

and the interfacial boundary conditions are

∂t̄R + w̄∂z̄R = ū, p = −κ[1 + M(1 − Γ )], τ̄rz = M∂z̄Γ, on r = R. (A3a–c)

As discussed in § 2.3, in (A3b), we retain the full expression for κ given by (2.16) rather
than truncating it. The surfactant transport equation (2.21) at leading order is

∂t̄ (RΓ )+ ∂z̄ (w̄sRΓ ) = 0, (A4)

where w̄s is the leading-order surface velocity. Using (A1a), (A2) and (A3a), we can derive
the evolution equation,

∂t̄R = 1
R
∂z̄Q̄, where Q̄ =

∫ 1

R
w̄r dr. (A5)

Equations (A4) and (A5) are the long-wave evolution equations for R and Γ , but they need
to be closed by deriving expressions for the surface velocity, w̄s, and the axial volume flux,
Q̄, which we pursue below. When presenting (A4) and (A5) in § 2.3, we rewrite them in
terms of the unscaled variables (2.9), but they are entirely equivalent to the versions given
here in terms of the scaled variables.
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From (A1b) and (A3b), we deduce that

p(z̄, t̄) = −κ [1 + M(1 − Γ )] . (A6)

Integrating (A1c) and using (A3c), we get an expression for the leading-order shear stress,

τ̄rz = ∂z̄p
2

(
r − R2

r

)
+ R

r
M∂z̄Γ. (A7)

Note that (A7) holds independently of any rheological considerations. The non-zero
components of the strain-rate tensor, up to O(δ2), are

γ̇rz ∼ δ∂rw̄, γ̇zz ∼ 2δ2∂z̄w̄, γ̇rr ∼ 2δ2∂rū, γ̇θθ ∼ δ2 ū
r
. (A8a–d)

Therefore, the constitutive relation (2.17) implies that, if |τ̄rz| > B̄, where B̄ = B/δ, then

τ̄rz =
(

1 + B̄
|∂rw̄|

)
∂rw̄, (A9)

and the leading-order normal stresses are all of size O(δ). We call regions of the flow
where |τ̄rz| > B̄ shear-dominated or fully yielded. As identified by Balmforth & Craster
(1999) for thin-film flows, regions where |τ̄rz| ≤ B̄ exhibit plug-like flow, with ∂rw̄ = 0 to
leading order. These plug-like regions can be yielded, with the normal stresses becoming
O(1) and the second invariant of the stress becoming exactly equal to B̄ to leading order.
To derive an expression for w̄ that holds everywhere in the layer, we will use (A7) to
determine the boundaries between the shear-dominated and plug-like regions, which are
the surfaces satisfying |τ̄rz| = B̄, then use (A9) to find w̄ in the shear-dominated regions
and, finally, match these to the r-independent expression for w̄ in the plug-like regions.
Note that since τ̄rz is quadratic in r (A7), there can be at most two shear-dominated
regions and one plug-like region within R ≤ r ≤ 1. We will define the boundaries between
shear-dominated and plug-like regions as r = Ψ±, such that the shear-dominated regions
are R ≤ r ≤ Ψ− and Ψ+ ≤ r ≤ 1, and the plug-like region is Ψ− ≤ r ≤ Ψ+. Any of these
three regions may not exist at a given point, in which case, the width of it will be zero.
There are four separate cases that we must consider separately below, depending on how
many roots there are to each of the equations τ̄rz = ±B̄. Figure 11 illustrates where in
( pz̄/B̄,MΓz̄/B̄)-space each of these four cases occurs.

Case 1. 2M∂z̄Γ/(R∂z̄p) < 1 and ∂z̄p /= 0. Figure 11 shows that this case occurs in
the upper-left and lower-right regions of ( pz̄/B̄,MΓz̄/B̄)-space, where capillary and
Marangoni forces either act in opposite directions or, if they act in the same direction,
the Marangoni force is relatively weak.

In this case, τ̄rz is monotonic for r > 0, so there is exactly one solution to τ̄rz = B̄
and exactly one solution to τ̄rz = −B̄. We define r = ψ

(1)
± as the surfaces such that

τ̄rz = ±B̄ sgn(∂z̄p). From (A7), we get

ψ
(1)
± = ± B̄

|∂z̄p| +

√√√√( B̄
∂z̄p

)2

+ R2 − 2RM∂z̄Γ

∂z̄p
. (A10)

The functions ψ(1)± could take any positive value, and whether the surfaces r = ψ
(1)
± lie

within the layer, R < r < 1, or not determines which of the shear-dominated and plug-like
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MΓz–/B–

MΓz– = B–

MΓz– = –B–

pz– /B–

2Rp z–/B– MΓ z– 
= R

2 p2
z–  +

 B– 2 

2MΓ z– = Rp z–
Case 1

Case 4

Case 3

Case 1

Case 3

p z– 
=

 0

Case 2

Figure 11. Map of ( pz̄/B̄,MΓz̄/B̄)-space with the shading indicating the locations of cases 1–4, which
are considered separately to derive the evolution equations in Appendix A. In this figure, subscripts denote
derivatives. The map shown here corresponds exactly with figure 2(b), which shows the location of the yielding
types I–V. Unlike in figure 2(b), here the map is plotted in terms of scaled variables (2.22), but this just
corresponds to a uniform scaling of the whole space by δ.

regions exist. If both surfaces lie within the layer, i.e. R < ψ
(1)
− ≤ ψ

(1)
+ < 1, then Ψ± =

ψ
(1)
± and both shear-dominated regions and the plug-like region exist. We say that the

layer is exhibiting yielding of type I (see figure 2a). If, instead, ψ(1)− ≤ R < ψ
(1)
+ < 1,

then Ψ+ = ψ
(1)
+ and Ψ− = R, and there is yielding of type II. If ψ(1)± ≤ R, then Ψ± = R

and there is yielding of type III. Similarly, if ψ(1)± ≥ 1, then Ψ± = 1 and there is also
yielding of type III. If R < ψ

(1)
− < 1 ≤ ψ

(1)
+ , then Ψ− = ψ

(1)
− and Ψ+ = 1, and there is

yielding of type IV. Finally, if ψ(1)− < R < 1 < ψ
(1)
+ , then Ψ− = R, Ψ+ = 1 and there is

no yielding (type V). We can identify that all of the above cases are captured by defining

Ψ± = max[R,min(1, ψ(1)± )]. (A11)

With the expressions for Ψ± now established, we can proceed to determine w̄. In Ψ+ ≤
r ≤ 1, we equate (A7) with (A9), solve for ∂rw̄, then integrate and use (A2). We also need
to use the fact that sgn(∂rw̄) = sgn(∂z̄p) in Ψ+ ≤ r ≤ 1. Doing this gives

w̄ = ∂z̄p
4
(r2 − 1 − 2R2 log r)+ M(∂z̄Γ )R log r − B̄ sgn(∂z̄p)(r − 1) (A12)

for Ψ+ ≤ r ≤ 1. We then determine the velocity in the plug-like region, Ψ− ≤ r ≤ Ψ+, by
evaluating (A12) at r = Ψ+. Therefore, w̄ = w̄p(z̄, t̄) in Ψ− ≤ r ≤ Ψ+, where

w̄p = ∂z̄p
4
(Ψ 2

+ − 1 − 2R2 logΨ+)+ M(∂z̄Γ )R logΨ+ − B̄ sgn(∂z̄p)(Ψ+ − 1). (A13)
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From (A13), we have the value of w̄ at r = Ψ−, which can be used to find w̄ in the
shear-dominated region, R ≤ r ≤ Ψ−, using the same procedure as above, but noting that
instead, sgn(∂rw̄) = − sgn(∂z̄p). We get

w̄ = w̄p + ∂z̄p
4

[
r2 − Ψ 2

− − 2R2 log
(

r
Ψ−

)]
+ M(∂z̄Γ )R log

(
r
Ψ−

)
+ B̄ sgn(∂z̄p)(r − Ψ−)

(A14)

for R ≤ r ≤ Ψ−. This then completes the leading-order axial velocity in case 1. We can
then integrate to determine volume flux, Q̄, and evaluate (A14) at r = R to get the surface
velocity, w̄s. This gives

Q̄ = −∂z̄p
16

F1 − 1
4
M(∂z̄Γ )RF2 − B̄

6
sgn(∂z̄p)(F3 + F4), (A15)

where the functions F1, F2, F3 and F4 are given in (2.29), and

w̄s = ∂z̄p
4

G1 + M(∂z̄Γ )RG2 + B̄ sgn(∂z̄p)(G3 + G4), (A16)

where the functions G1, G2, G3 and G4 are given in (2.32).
Case 2. 1 + B̄2

/(R∂z̄p)2 ≥ 2M∂z̄Γ /(R∂z̄p) ≥ 1 and ∂z̄p /= 0. Again, figure 11
illustrates the region of ( pz̄/B̄,MΓz̄/B̄)-space where this case occurs. In this case, there
are no solutions to τ̄rz = −B̄ sgn(∂z̄p) in r ≥ 0. We define r = ψ

(2)
± as the two surfaces on

which τ̄rz = B̄ sgn(∂z̄p), with ψ(2)− ≤ ψ
(2)
+ . From (A7), these are

ψ
(2)
± = B̄

|∂z̄p| ±

√√√√( B̄
∂z̄p

)2

+ R2 − 2RM∂z̄Γ

∂z̄p
. (A17)

As in case 1 above, by considering all possible types of yielding that can occur, we find

Ψ± = max[R,min(1, ψ(2)± )]. (A18)

We can then proceed similarly to above to derive w̄. The only difference here is that ∂rw̄
has the opposite sign in the near-interface shear-dominated region, R ≤ r ≤ Ψ−, compared
with case 1. Hence, w̄ is still given by (A12) inΨ+ ≤ r ≤ 1, and by (A13) inΨ− ≤ r ≤ Ψ+.
However, we have

w̄ = w̄p + ∂z̄p
4

[
r2 − Ψ 2

− − 2R2 log
(

r
Ψ−

)]
+ M(∂z̄Γ )R log

(
r
Ψ−

)
− B̄ sgn(∂z̄p)(r − Ψ−)

(A19)

in R ≤ r ≤ Ψ−. This leads to slightly modified expressions for axial volume flux,

Q̄ = −∂z̄p
16

F1 − 1
4
M(∂z̄Γ )RF2 − B̄

6
sgn(∂z̄p)(F3 − F4), (A20)

and surface velocity,

w̄s = ∂z̄p
4

G1 + M(∂z̄Γ )RG2 + B̄ sgn(∂z̄p)(G3 − G4), (A21)

in case 2.
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Case 3. 2M∂z̄Γ/(R∂z̄p) > 1 + B̄2/(R∂z̄p)2. Figure 11 shows that, in this case, capillary
and Marangoni forces act in the same direction, with Marangoni forces being relatively
strong. In case 3, |τ̄rz| > B̄ for all r > 0. Hence, the whole layer is shear-dominated (yield
type III). We set Ψ+ = Ψ− = R. The axial velocity, w̄ is then given by (A12) for the
whole layer, R ≤ r ≤ 1. Since there is no contribution from the plug-like region or the
near-interface shear-dominated region, the expressions for Q̄ and w̄s from case 1, (A15)
and (A16), and from case 2, (A20) and (A21), both recover the correct expressions for Q̄
and w̄s in case 3, so either can be used.

Case 4. ∂z̄p = 0. When ∂z̄p = 0, there is exactly one solution to τ̄rz = B̄ sgn(∂z̄Γ ) and
no other solutions to |τ̄rz| = B̄ in r > 0. The solution corresponds to r = Ψ−. We can
deduce from (A7) that Ψ− = min(1,max[R,RM |Γz|/B̄]), and we always have Ψ+ = 1.
This is consistent with the behaviour in cases 1 and 2 as ∂z̄p → 0. The velocity, w̄, can
be derived using a similar procedure as in the cases above: we equate (A7) and (A9) in
R ≤ r ≤ Ψ−, solve for ∂rw̄, then integrate and apply no slip at r = Ψ− to get w̄. We have
w̄ = 0 in Ψ− ≤ r ≤ 1. Again, we integrate the velocity to get the flux,

Q̄ = −1
4

RM(∂z̄Γ )F2 + B̄ sgn(∂z̄Γ )F4, (A22)

and evaluate w̄ at r = R to get the surface velocity,

w̄s = M(∂z̄Γ )RG2 − B̄ sgn(∂z̄Γ )G4, (A23)

in case 4.
We have now derived expressions for the axial volume flux and surface velocity in

all cases, and so have closed the evolution equations (A4) and (A5). Finally, the lateral
boundary conditions (2.8), at leading order in δ, imply

∂z̄R = Q̄ = w̄sΓ, on z̄ = L̄. (A24)

Equations (2.27)–(2.33) are presented in terms of the unscaled variables (2.9), but they are
entirely equivalent to what is derived here.

Appendix B. Rankine–Hugoniot condition for shock propagation speed

Suppose we observe a jump discontinuity in Γz at the point z = zs(t), and denote the size of
the jump by [Γz]+−. Then we can use the following argument to derive a Rankine–Hugoniot
condition (see, e.g. Billingham & King 2001) for the speed of propagation of the
discontinuity. Define two points, z1 and z2, such that 0 < z1 < zs(t) < z2 < L. Then the
surfactant transport equation (2.43) implies

d
dt

∫ z2

z1

Γz dz = − [(w̃sΓ )z
]z2

z1
. (B1)

Splitting the integral in (B1) and expanding, we get

d
dt

(∫ zs

z1

Γz dz +
∫ z2

zs

Γz dz
)

= −dzs

dt

[
Γz
]z2

z1
+
∫ zs

z1

Γtz dz +
∫ z2

zs

Γtz dz. (B2)

Then taking z1 → z−
s and z2 → z+

s , (B1) and (B2) imply

dzs

dt

[
Γz
]+
− = [

(w̃sΓ )z
]+
− , (B3)
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which defines the shock propagation speed

us ≡ dzs

dt
=
[
(w̃sΓ )z

]+
−[

Γz
]+
−

. (B4)

The velocity (B4) can, in theory, be integrated to get the shock location,

zs(t) = zs(t0)+
∫ t

t0
us(t′) dt′, (B5)

if the location of the shock is known at some time, t0. We have used (B5) to provide a
consistency check on numerical simulations. For example, for the simulation shown in
figure 3(a), we take t0 = 69.2, which is shortly after the interface-adjacent yielded region
first appears, we take the value of zs(t0) from the simulation and we use the values for
[w̃sΓz]+− and [Γz]+− also from the simulation. Doing this, we find that the prediction of the
location of either shock computed via (B5) never deviates from the shock location in the
simulation by more than three grid points (when using 200 points), providing evidence
that the numerical scheme is capturing the speed of shock propagation. Since we can
only calculate us by using values from the numerical simulation, this does not provide
independent validation of the numerical method. However, it does provide evidence that at
each instant, the shock propagation velocity is being accurately calculated in the numerical
scheme from the finite differenced derivatives and that spurious behaviour is not being
introduced by the numerical scheme.

Appendix C. Thin-film dynamics at large M

Consider the thin-film equations (2.41)–(2.45) in the limit of very strong surfactant. We
propose the expansions

H = H0 + 1
M
H1 + · · · , p̃ = p̃0 + 1

M
p̃1 + · · · , w̃s = w̃0 + 1

M
w̃1 + · · · ,

Γ = G̃0 + 1
M
G̃1 + · · · , Y− = Y−0 + 1

M
Y−1 + · · · , Y+ = Y+0 + 1

M
Y+1 + · · · ,

⎫⎪⎪⎬
⎪⎪⎭

(C1)

as M → ∞. The Marangoni force at the interface must be finite in the limit M → ∞, so
we require |MΓz| < ∞. This implies G̃0,z = 0 and conservation of total mass of surfactant
then means we must have

G̃0 = 1. (C2)

Inserting (C1) into the surfactant transport equation (2.43), and using (C2), implies w̃0,z =
0. Combined with the boundary condition (2.45) which enforces w̃0G̃0 = 0 at z = {0, L},
we get

w̃0 = 0. (C3)

This means that in the limit of strong surfactant, the interface of the thin film is essentially
immobilised by Marangoni effects. Inserting (C3) into the expression for surface velocity
(2.44), and rearranging, gives

H0 − Y+0 = Y−0, (C4)

assuming p̃0,z /= 0. The result (C4) says that the wall-adjacent and interface-adjacent fully
yielded regions always have the same thickness in the leading-order theory. This also
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means that only yielding of types I or V can occur. We will assume for now that the
fluid is yielded, so Y− > 0 and Y+ < H, and then subsequently present criteria for when
the fluid rigidifies.

The definition (2.40) gives

Y±0 = H0 ± B
|p̃0,z| + G̃1,z

p̃0,z
, (C5)

which, when combined with (C4), implies

G̃1,z + 1
2
H0p̃0,z = 0. (C6)

Note that for certain choices of initial conditions, G̃1 may not initially satisfy (C6), in
which case we expect there to be a rapid adjustment at early times to a state where (C6)
is satisfied. For an arbitrary choice of initial Γ , the change in Γ required to reach a state
satisfying (C6) is of size O(1/M), so we expect the time scale for the adjustment to this
state to be of size O(1/M) also, since the initial surface velocity would be of size O(1)
during the adjustment period.

At leading order, the axial volume flux (2.42) is

q = 1
6

p̃0,zY2
−0 (2Y−0 − 3H) . (C7)

If we define the function

Ỹ ≡ 1
2

H − B
|p̃z| , (C8)

then from (C8), Y−0 = Ỹ to leading order when the fluid is yielded. Note that from (C4),
the criterion for no yielding to occur in the leading order theory is Y−0 = 0. Therefore,
from (2.41) and (C7), the leading order evolution equation, which holds if fluid is yielded
or unyielded, is (3.9). To reach (3.9), we have assumed so far that p̃z /= 0, but we can see
from (C6) that if p̃0,z = 0, then G̃1,z = 0, so there is no driving force. Therefore, (3.9) also
holds when p̃z = 0 since it says there is no motion in that case.
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