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Abstract
In this paper, we consider the defocusing nonlinear wave equation −𝜕2

𝑡 𝑢 +Δ𝑢 = |𝑢 |𝑝−1𝑢 in R×R𝑑 . Building on our
companion work (Self-similar imploding solutions of the relativistic Euler equations, arXiv:2403.11471), we prove
that for 𝑑 = 4, 𝑝 ≥ 29 and 𝑑 ≥ 5, 𝑝 ≥ 17, there exists a smooth complex-valued solution that blows up in finite time.
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1. Introduction

In this paper, we consider the defocusing nonlinear wave equation

�𝑢 = |𝑢 |𝑝−1𝑢, (1.1)

where 𝑢 : R1+𝑑 → C is the unknown field, � = 𝜕𝛼𝜕𝛼 = −𝜕2
𝑡 +

∑𝑑
𝑖=1 𝜕

2
𝑖 is the d’Alembertian operator1

on Minkowski spacetime R1+𝑑 with the standard Minkowski metric

𝑚00 = −1, 𝑚𝑖𝑖 = 1 for all 𝑖 ∈ Z ∩ [1, 𝑑], 𝑚𝜇𝜈 = 0 if 𝜇, 𝜈 ∈ Z ∩ [0, 𝑑] with 𝜇 ≠ 𝜈,

and we assume 𝑝 ∈ 2Z+ + 1 for simplicity.
Given smooth initial data (𝑢 |𝑡=0, 𝜕𝑡𝑢 |𝑡=0), there exists a local smooth solution on the maximal

existence of interval [0, 𝑇); 𝑇 < +∞ if and only if lim sup𝑡↑𝑇 ‖𝑢(𝑡)‖𝐿∞ = +∞, see [68, 45]; moreover,
there holds the energy conservation

𝐸 [𝑢(𝑡)] :=
∫
R𝑑

1
2
|𝜕𝑡𝑢 |2 +

1
2
|∇𝑥𝑢 |2 +

1
𝑝 + 1

|𝑢 |𝑝+1 d𝑥. (1.2)

The class of solutions to (1.1) is invariant under the scaling

𝑢(𝑡, 𝑥) ↦→ 𝑢𝜆(𝑡, 𝑥) := 𝜆
2
𝑝−1 𝑢(𝜆𝑡, 𝜆𝑥), 𝜆 > 0. (1.3)

This scaling symmetry preserves the critical norm invariant, i.e.,

‖𝑢𝜆 (𝑡, ·)‖ �𝐻 𝑠𝑐𝑥 = ‖𝑢(𝜆𝑡, ·)‖ �𝐻 𝑠𝑐𝑥 where 𝑠𝑐 :=
𝑑

2
− 2

𝑝 − 1
.

We can split the range of parameters (𝑑, 𝑝) into three cases accordingly:

• Subcritical case: 𝑠𝑐 < 1 ⇐⇒ 𝑑 ≤ 2 or 𝑝 < 1 + 4/(𝑑 − 2) for 𝑑 ≥ 3.
• Critical case: 𝑠𝑐 = 1 ⇐⇒ 𝑝 = 1 + 4/(𝑑 − 2) and 𝑑 ≥ 3.
• Supercritical case: 𝑠𝑐 > 1 ⇐⇒ 𝑝 > 1 + 4/(𝑑 − 2) and 𝑑 ≥ 3.

For the subcritical case, the global well-posedness and propagation of regularity dated back to Jörgens
[31] for 𝑑 = 3; see also [19, 20] for the global well-posedness within the energy class 𝐻1 × 𝐿2 for all
dimensions; the propagation of regularity holds at least for 𝑑 ≤ 9 [3]. The critical case is much more
difficult. The global regularity result was obtained firstly in [71] for 𝑑 = 3 and spherically symmetric
initial data, and then extended to 𝑑 ≤ 9 for general smooth data in [21, 22, 66], and all dimensions in
[67] (in the energy class 𝐻1 × 𝐿2). For the long-time behavior of these global solutions, we refer to [75]
and references therein.

For the supercritical case, it is known that the Cauchy problem is ill-posed in some low regularity
spaces [6], or even in the energy class [26], despite the global existence of weak solutions [70], as well
as the global well-posedness with scattering for small smooth data [44]. The global well-posedness for

1Here we use the Einstein’s summation convention.
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general smooth data is a long-standing open problem [2, 72]. In the breakthrough work [51], Merle,
Raphaël, Rodnianski and Szeftel construct radial and asymptotically self-similar blow-up solutions for
the energy supercritical defocusing nonlinear Schrödinger equations (NLS). The goal of this paper is to
extend a similar blow-up result for NLS to the defocusing supercritical wave equation.

Before stating our theorem, we recall Tao’s blow-up result [73] for the defocusing nonlinear wave
system of the form �𝑢 = (∇R𝑚𝐹) (𝑢), where 𝑢 : R1+𝑑 → R

𝑚 is vector-valued, and 𝐹 : R𝑚 → R

is a smooth potential which is positive and homogeneous of order 𝑝 + 1 outside of the unit ball for
some 𝑝 > 1 (letting 𝑚 = 2 and 𝐹 (𝑢) = |𝑢 |𝑝+1/(𝑝 + 1) we recover (1.1)). Tao [73] proved that for any
supercritical (𝑑, 𝑝), and sufficiently large positive integer m, there exists a defocusing 𝐹 : R𝑚 → R such
that the system �𝑢 = (∇R𝑚𝐹) (𝑢) has no global smooth solution for some smooth compactly supported
initial data. A similar result for the defocusing Schrödinger system was obtained in [74].

1.1. Main results

Roughly speaking, we prove that the defocusing supercritical nonlinear complex-valued wave equation
for 𝑑 ≥ 4 admits finite time blow-up solutions arising from smooth initial data. The leading order term
of blow-up solution is given by a self-similar blow-up solution of the relativistic compressible Euler
equation, which is stated here as Assumption 1 (in Section 2). In our companion paper [65], we have
verified Assumption 1 for some (𝑑, 𝑝).

Theorem 1.1. Let 𝑑 ∈ Z ∩ [4, +∞) and 𝑝 ∈ 2Z+ + 1 be such that2 𝑘 > ℓ +
√
ℓ, where 𝑘 := 𝑑 − 1 and

ℓ := 1 + 4/(𝑝 − 1). Assume that there exists 𝛽 ∈ (1, 𝑘/(ℓ +
√
ℓ)) such that Assumption 1 holds. Then

there exist compactly supported smooth functions 𝑢0, 𝑢1 : R𝑑 → R2(= C) such that there is no global
smooth solution 𝑢 : [0, +∞) × R𝑑 → R

2 (= C) to the defocusing nonlinear wave equation (1.1) with
initial data 𝑢(0) = 𝑢0, 𝜕𝑡𝑢(0) = 𝑢1.

Corollary 1.2. If 𝑑 = 4, 𝑝 ∈ (2Z + 1) ∩ [29, +∞) or 𝑑 ≥ 5, 𝑝 ∈ (2Z + 1) ∩ [17, +∞), then there exist
compactly supported smooth functions 𝑢0, 𝑢1 : R𝑑 → R

2 (= C) such that there is no global smooth
solution 𝑢 : [0, +∞) ×R𝑑 → R2(= C) to the defocusing nonlinear wave equation (1.1) with initial data
𝑢(0) = 𝑢0, 𝜕𝑡𝑢(0) = 𝑢1.

Several remarks are in order.

1. For the blow-up solution u we construct in Theorem 1.1, if u blows up at time 𝑇∗ ∈ (0, +∞), then
according to our construction, we have the blow-up speed

‖𝑢(𝑡, ·)‖𝐿∞ � (𝑇∗ − 𝑡)−
2𝛽
𝑝−1 , ‖(𝑢(𝑡), 𝜕𝑡𝑢(𝑡))‖ �𝐻 𝑠𝑐𝑥 × �𝐻 𝑠𝑐−1

𝑥
� (𝑇∗ − 𝑡) (1−𝛽)

𝑑
2 .

As 𝛽 > 1, our solution is unbounded in the critical space. This is compatible with the results in
the literature, which state that the solutions for the supercritical defocusing wave equation that are
bounded in the critical space �𝐻𝑠𝑐

𝑥 × �𝐻𝑠𝑐−1
𝑥 must be global and scattering (at least for real-valued

solutions and some supercritical (𝑑, 𝑝), see [4, 5, 18, 35, 36]).
2. As in the recent breakthrough work by Merle-Raphaël-Rodnianski-Szeftel [51, 52, 53], the heart of

proof of Theorem 1.1 is to study (1.1) in its hydrodynamical formulation, i.e., with respect to its phase
and modulus variables, i.e. (2.1). After introducing a front re-normalization (2.2), (2.1) becomes (2.3).
Taking the formal limit 𝑏 → 0, we reveal the underlying relativistic compressible Euler dynamics
(2.6). The relativistic Euler dynamics provides us with a self-similar blow-up solution, which has
been constructed in our companion paper [65] and which, in turn, acts as the leading order term of
the blow-up solution of the defocusing supercritical wave equation (1.1).

2In particular, we have 𝑘 > ℓ, which is equivalent to 𝑝 > 1 + 4/(𝑑 − 2) . So we are in the supercritical case. Nevertheless, we
can not cover the whole supercritical range using the method of current paper.
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3. In the proof, we first construct a good approximate solution, then solve the perturbation equation
backward in time. This method is quite different from [51], and simplifies our proof greatly.
Unlike [51], we do not need to analyze the stability of the linearized operator near the leading order
profile constructed in [65], hence we only use less information of the leading order profile (see
Assumption 1). On the other hand, in [51], the initial data for blow-up form a finite co-dimensional
manifold in the class of radial smooth fast-decay functions, we only construct the blow-up solution
for one initial data (𝑢0, 𝑢1) in Theorem 1.1. We believe that the blow-up should hold for a large class
of initial data, just as in [51]. This is left to the future work.

4. To prove Corollary 1.2, we just need to verify Assumption 1, which is related to the existence of a
smooth global solution to a specific ODE (2.8). If 𝑑 = 4, 𝑝 ≥ 29 or 𝑑 = 5, 𝑝 ≥ 17, Assumption 1
is verified in our companion paper [65]. As a consequence, if one can find some other methods to
verify Assumption 1 for smaller p, then one can also get the blow-up for that smaller p. The case
𝑑 > 5 follows from the result for 𝑑 = 5 and truncation, see Subsection 2.5.

5. We emphasize that if Assumption 1 is valid, then we must have 𝑑 > 𝛽(ℓ +
√
ℓ) + 1, where ℓ := 1 +

4/(𝑝−1) > 1. Using 𝛽 > 1, we get 𝑑 > 3. As a result, the case of 𝑑 = 3 is not amenable to our analysis
at present, and the existence of blow-up solutions for 𝑑 = 3 remains open. We point out that similar
situation happens in [51], where the construction fails for 3-D and 4-D defocusing supercritical NLS.

6. In this work, we can only construct the blow-up for the complex-valued solution. The blow-up for
the scalar defocusing supercritical wave equation remains open at this point. We guess that the same
blow-up result should hold for the scalar nonlinear wave equation, at least for (𝑑, 𝑝) satisfying the
same hypothesis as in Theorem 1.1.

7. In this paper, we initiate our exploration of complex-valued blow-up solutions by employing the
modulus-phase decomposition 𝑢 = 𝑤eiΦ, as detailed in Section 2. For the R-valued problem, an
analogous approach appears promising. Specifically, we propose a decomposition of the form
𝑢 = 𝑤 𝑓 (Φ), where 𝑓 : R → R

+ is an unknown real-valued function. Under this framework, the
problem reduces to solving the following system of equations:

2𝜕𝛼𝑤𝜕𝛼Φ + 𝑤�Φ = 0, 𝑓 ′′(Φ) = − 𝑓 (Φ) 𝑝, �𝑤 = 𝑓 (Φ) 𝑝−1 (𝑤𝑝 + 𝑤𝜕𝛼Φ𝜕𝛼Φ) .

When compared with (2.1), the above system exhibits a significantly higher level of complexity.
Consequently, its thorough investigation is deferred to future work.

The road map of the proof of Theorem 1.1 and Corollary 1.2 can be found in Section 2. The proof
is based on Propositions 2.4, 2.7 and 2.8. Our starting point is to introduce a front re-normalization
(2.2), relying on a constant 𝑏 > 0; taking the limit 𝑏 → 0, the defocusing wave equation becomes the
relativistic compressible Euler equations.

We first write the desired solution to (1.1) in the form of a power series (see (2.4)) with respect to the
constant 𝑏 > 0. The non-degeneracy of the leading order approximation allows us to solve all high-order
approximations (𝜌𝑛, 𝜙𝑛), which is exactly the purpose of Proposition 2.4. The proof of Proposition 2.4
is rather technical and can be found in Section 5. One of the key ingredients used is the existence of
smooth solutions to the second order ODEs having singular points with a parameter 𝜆, see Appendix B.

Since we do not have enough information on (𝜌𝑛, 𝜙𝑛), especially the estimate uniform in n, we may
not have the convergence of the formal series (2.4). To overcome this drawback, we truncate (𝜌𝑛, 𝜙𝑛)
in the form of (2.23), and in Proposition 2.7 we prove that the truncated solution is a good approximate
solution to the defocusing wave equation. The proof of Proposition 2.7 can be found in Section 3.

Finally, we construct a solution to (1.1) near the truncated approximation solution. This is exactly
what Proposition 2.8 says. The proof of Proposition 2.8 can be found in Section 4, where we use the
energy method to solve the wave equation in a time-backward direction, and we need to use a technical
truncation to avoid the singularity at blow-up time. Such method of solving backward in time has been
used in [41, 42, 60]. Let’s emphasize that this part does not depend at all on our method of constructing
the approximate solutions, and it includes the case 𝑑 = 3 and does not require Assumption 1 or the
spherical symmetry of the approximate solutions either.
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1.2. Blow-up phenomenon for related models

Let’s review some important results on the blow-up for other related equations.
It is more common to observe the blow-up phenomenon for the focusing nonlinear wave equation, i.e.,

�𝑢 = −|𝑢 |𝑝−1𝑢. (1.4)

In fact, the spatial independent function 𝑢(𝑡) = 𝐶𝑝 (𝑇 − 𝑡)−2/(𝑝−1) , where 𝐶 𝑝−1
𝑝 = 2(𝑝 + 1)/(𝑝 − 1)2,

gives a blow-up solution to (1.4). This ODE-type solution can be further truncated to a smooth com-
pactly supported blow-up solution to (1.4) by using the finite speed of propagation [1, 30, 43]. We will
use similar ideas to prove Corollary 1.2 for the case 𝑑 > 5. See also [12, 15, 16, 18, 27, 32, 34, 40,
42, 46, 58] for the construction and classification of blow-up (or global) solutions as well as recent
breakthrough [13, 17, 29] on the soliton resolution conjecture.

Other related models such as the nonlinear Schrödinger equation, see [33, 48, 50, 51, 54, 55, 59, 61];
see [14, 38, 39, 41, 62, 64] for the wave map; see [49, 60] for the Schrödinger maps; see [7, 8, 9, 11, 23,
47, 56, 57] for the semilinear heat equation and [10, 28, 37, 63] for the harmonic heat flow.

1.3. Notations and conventions

Unless stated otherwise, we adopt the following notations, abbreviations, and conventions:
• Constants: i =

√
−1 is the imaginary unit, e is the base of the natural logarithm.

• For any 𝑎 ∈ R, we denote Z≥𝑎 := Z ∩ [𝑎, +∞) and Z>𝑎 := Z ∩ (𝑎, +∞). Moreover, we denote
Z+ := Z≥1. Similarly, R≥0 := R ∩ [0, +∞).

• Greek indices run from 0 to d, where 𝑑 ∈ Z≥2 is the spatial dimension, Latin indices run from 1 to d,
and we use the Einstein’s summation convention: repeated indices appearing once upstairs and once
downstairs are summed over their range.

• (𝑡, 𝑥) = (𝑡, 𝑥1, · · · , 𝑥𝑑) denotes coordinates in spacetime, 𝑟 = |𝑥 | = (
∑𝑑

𝑗=1 𝑥
2
𝑗 )1/2. We write

𝜕0 = −𝜕0 = 𝜕𝑡 = 𝜕
𝜕𝑡 , 𝜕 𝑗 = 𝜕 𝑗 = 𝜕𝑥 𝑗 = 𝜕

𝜕𝑥 𝑗
for 𝑗 ∈ Z ∩ [1, 𝑑], � = 𝜕𝛼𝜕𝛼 = −𝜕2

𝑡 +
∑𝑑

𝑗=1 𝜕
2
𝑗

and Δ =
∑𝑑

𝑗=1 𝜕
2
𝑗 , then � = −𝜕2

𝑡 + Δ .
• We denote ℓ := 1 + 4/(𝑝 − 1) > 1, 𝑘 := 𝑑 − 1 ∈ Z+ and 𝛾 := 4𝛽/(𝑝 − 1) + 2 = 𝛽(ℓ − 1) + 2.
• For a (vector-valued) differentiable function 𝑓 = 𝑓 (𝑡, 𝑥), we denote

𝐷 𝑓 := (𝜕𝑡 𝑓 , 𝜕1 𝑓 , 𝜕2 𝑓 , · · · , 𝜕𝑑 𝑓 ) and 𝐷𝑥 𝑓 := (𝜕1 𝑓 , 𝜕2 𝑓 , · · · , 𝜕𝑑 𝑓 ) = ∇𝑥 𝑓 ,

and |𝐷 𝑓 | := (|𝜕𝑡 𝑓 |2 +
∑𝑑

𝑗=1 |𝜕 𝑗 𝑓 |2)1/2, |𝐷𝑥 𝑓 | := (
∑𝑑

𝑗=1 |𝜕 𝑗 𝑓 |2)1/2. For all 𝑗 ∈ Z+ we denote
𝐷 𝑗 𝑓 := 𝐷𝐷 𝑗−1 𝑓 , 𝐷 𝑗

𝑥 𝑓 := 𝐷𝑥𝐷
𝑗−1
𝑥 𝑓 , 𝐷0 𝑓 = 𝐷0

𝑥 𝑓 = 𝑓 , noting that 𝐷 𝑗−1 𝑓 and 𝐷
𝑗−1
𝑥 𝑓 are again

vector-valued functions; moreover, 𝐷≤1 𝑓 := ( 𝑓 , 𝐷 𝑓 ).
• For (𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 , we let 𝜏 := − ln(𝑇 − 𝑡) and 𝑍 := |𝑥 |/(𝑇 − 𝑡) ∈ [0, +∞).
• For 𝑁 ≥ 0, 𝐻𝑁

𝑥 denotes the inhomogeneous Sobolev space with the norm ‖ · ‖𝐻𝑁
𝑥

with respect to the
spatial variables and �𝐻𝑁

𝑥 denotes the homogeneous Sobolev space with the norm ‖ · ‖ �𝐻𝑁
𝑥

. Moreover,
we denote 𝐿2

𝑥 := 𝐻0
𝑥 .

• A function space is a linear vector space if it is closed under addition and multiplication by a constant.
A function space is a ring (algebra) if it contains all the constant functions and is closed under addition
and multiplication. Then a ring is also a linear vector space.

2. A roadmap of the proof

We introduce the modulus-phase decomposition 𝑢 = 𝑤eiΦ, with 𝑤 : R1+𝑑 → R>0 and Φ : R1+𝑑 → R.
Then

�𝑢 = (�𝑤 + 2i𝜕𝛼𝑤𝜕𝛼Φ + i𝑤�Φ − 𝑤𝜕𝛼Φ𝜕𝛼Φ)eiΦ,
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and (1.1) becomes

�𝑤 = 𝑤𝑝 + 𝑤𝜕𝛼Φ𝜕𝛼Φ, 2𝜕𝛼𝑤𝜕𝛼Φ + 𝑤�Φ = 0. (2.1)

Let 𝑏 > 0 be a positive constant. We re-normalize according to

𝑤(𝑡, 𝑥) = 𝑏−
1
𝑝−1 𝜌(𝑡, 𝑥), Φ(𝑡, 𝑥) = 𝑏−

1
2 𝜙(𝑡, 𝑥), (2.2)

then (2.1) becomes

𝑏�𝜌 = 𝜌𝑝 + 𝜌𝜕𝛼𝜙𝜕𝛼𝜙, 2𝜕𝛼𝜌𝜕𝛼𝜙 + 𝜌�𝜙 = 0. (2.3)

We seek solutions (𝜌, 𝜙) to (2.3) in the form of

𝜌(𝑡, 𝑥) =
∞∑
𝑛=0

𝜌𝑛 (𝑡, 𝑥)𝑏𝑛, 𝜙(𝑡, 𝑥) =
∞∑
𝑛=0

𝜙𝑛 (𝑡, 𝑥)𝑏𝑛. (2.4)

Plugging (2.4) into (2.3), we obtain the following recurrence relation for 𝑛 ∈ Z≥0:

�𝜌𝑛−1 =
∑

𝑛1+𝑛2+···+𝑛𝑝=𝑛
𝜌𝑛1𝜌𝑛2 · · · 𝜌𝑛𝑝 +

∑
𝑛1+𝑛2+𝑛3=𝑛

𝜌𝑛1𝜕
𝛼𝜙𝑛2𝜕𝛼𝜙𝑛3 ,

0 = 2
∑

𝑛1+𝑛2=𝑛

𝜕𝛼𝜌𝑛1𝜕𝛼𝜙𝑛2 +
∑

𝑛1+𝑛2=𝑛

𝜌𝑛1�𝜙𝑛2 ,
(2.5)

where we have used the convention that 𝜌−𝑛′ = 𝜙−𝑛′ = 0 for all 𝑛′ ∈ Z+. Here (2.4) is only a formal
expansion and we will use cutoff functions to construct approximate solutions. Here b plays the role
of deriving recurrence relation (2.5), the smallness lies in the functions 𝜌𝑛, 𝜙𝑛 as 𝑡 ↑ 𝑇 rather than 𝑏𝑛.
We will not let 𝑏 ↓ 0, in fact, we will fix 𝑏 = 1.

2.1. The leading order term of the blow-up solution

Letting 𝑛 = 0 in (2.5), we know that (𝜌0, 𝜙0) satisfies the system3

𝜌𝑝0 + 𝜌0𝜕
𝛼𝜙0𝜕𝛼𝜙0 = 0, 2𝜕𝛼𝜌0𝜕𝛼𝜙0 + 𝜌0�𝜙0 = 0. (2.6)

For any 𝛽 > 1, the system (2.6) is invariant under the scaling

𝜙0,𝜆(𝑡, 𝑥) = 𝜆𝛽−1𝜙0(𝜆𝑡, 𝜆𝑥), 𝜌0,𝜆(𝑡, 𝑥) = 𝜆
2𝛽
𝑝−1 𝜌0 (𝜆𝑡, 𝜆𝑥), ∀ 𝜆 > 0.

We seek radially symmetric self-similar blow-up solutions to (2.6) of the form

𝜙0 (𝑡, 𝑟) = (𝑇 − 𝑡)1−𝛽𝜙0(𝑍), 𝜌0(𝑡, 𝑥) = (𝑇 − 𝑡)−
2𝛽
𝑝−1 �̂�0(𝑍), 𝑍 =

𝑟

𝑇 − 𝑡
, 𝑟 = |𝑥 |, (2.7)

where 𝑇 > 0 is the blow-up time and 𝛽 > 1 is a constant.4 Let 𝑣 = 𝜕𝑟𝜙0/𝜕𝑡𝜙0, then 𝑣 = 𝑣(𝑍) solves the
ODE5

Δ𝑍 (𝑍, 𝑣)d𝑣/d𝑍 = Δ 𝑣 (𝑍, 𝑣), Δ 𝑣 (𝑍, 𝑣) := (1 − 𝑣2) [𝛽ℓ(1 − 𝑣2)𝑍 − 𝑘𝑣(1 − 𝑍𝑣)],
Δ𝑍 (𝑍, 𝑣) := 𝑍

[
(1 − 𝑍𝑣)2 − ℓ(𝑣 − 𝑍)2] , (2.8)

where ℓ := 1 + 4/(𝑝 − 1) > 1 and 𝑘 := 𝑑 − 1 ∈ Z≥1. See Subsection A.1 for the derivation of (2.8).
Recall the following fact from [65] (recalling footnote 4).

3System (2.6) is exactly the same as (2.5) and (2.6) in [65] as long as we let ℓ = 1 + 4/(𝑝 − 1) and 𝜚 = 𝜌𝑝+1.
4Note that 𝛽 in this paper is not the same as 𝛽 in [65]. In fact, 𝛽in this paper = 𝛽in [40]/(ℓ + 1) . Hence, 𝛽in this paper > 1 is

equivalent to 𝛽in [65] > ℓ + 1, see Lemma A.7 in [65].
5ODE (2.8) is exactly the same as (2.17) in [65], as long as we let 𝑚 = 𝛽ℓ.
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Lemma 2.1 ([65], Lemma 2.1). If 𝑣(𝑍) : [0, 1] → (−1, 1) is a 𝐶1 solution to (2.8) with 𝑣(0) = 0 and
ℓ > 1, 𝛽 > 0, 𝑘 > 0, then 𝑘 > 𝛽(ℓ +

√
ℓ).

As a consequence, it is natural to restrict the parameters (𝑘, ℓ, 𝛽) in the following range:

𝛽 > 1, ℓ > 1, 𝑘 ∈ Z ∩ [3, +∞), 𝑘 > 𝛽(ℓ +
√
ℓ). (2.9)

Assumption 1. There exists a smooth function 𝑣 = 𝑣(𝑍) ∈ (−1, 1) defined on 𝑍 ∈ [0, +∞) solving the
ODE (2.8) with 𝑣(0) = 0 and 𝑣 ∈ 𝐶∞

o ([0, +∞)).

Here we define (with R≥0 := [0, +∞))

𝐶∞
e (R≥0) :=

{
𝑓 ∈ 𝐶∞(R≥0) : ∃ �̃� ∈ 𝐶∞(R≥0) s.t. 𝑓 (𝑍) = �̃� (𝑍2) ∀ 𝑍 ∈ R≥0

}
, (2.10)

𝐶∞
o (R≥0) :=

{
𝑓 ∈ 𝐶∞(R≥0) : ∃ �̃� ∈ 𝐶∞(R≥0) s.t. 𝑓 (𝑍) = 𝑍 �̃� (𝑍2) ∀ 𝑍 ∈ R≥0

}
. (2.11)

Then 𝐶∞
e (R≥0) is a ring and 𝐶∞

o (R≥0) is a linear vector space.

Remark 2.2. Under Assumption 1 and (2.9), we can show that the solution 𝑣(𝑍) satisfies

• 𝑣(𝑍) < 𝑍 and 𝑍𝑣(𝑍) < 1 for all 𝑍 ∈ (0, +∞).
• Δ𝑍 (𝑍, 𝑣(𝑍)) > 0 for 𝑍 ∈ (0, 𝑍1) andΔ𝑍 (𝑍, 𝑣(𝑍)) < 0 for 𝑍 ∈ (𝑍1, +∞), where 𝑍1 = 𝑘√

ℓ (𝑘−𝛽 (ℓ−1))
>

0.
• Let Δ0(𝑍) := Δ𝑍 (𝑍, 𝑣(𝑍)) for 𝑍 ∈ [0, +∞), then Δ ′

0 (𝑍1) ≠ 0.

See Subsection A.2 for the proof.

In view of Assumption 1, we can define that for 𝑍 ∈ [0, +∞)

𝜙0(𝑍) :=
1

𝛽 − 1
exp

(
(𝛽 − 1)

∫ 𝑍

0

𝑣(𝑠)
1 − 𝑠𝑣(𝑠) d𝑠

)
,

�̂�0(𝑍) :=
(𝛽 − 1)

2
𝑝−1 𝜙0(𝑍)

2
𝑝−1 (1 − 𝑣(𝑍)2)

1
𝑝−1

(1 − 𝑍𝑣(𝑍))
2
𝑝−1

.

(2.12)

Then 𝜙0 (𝑍) > 0, �̂�0 (0) = 1 and �̂�0(𝑍) > 0 for all 𝑍 ∈ [0, +∞). As a consequence, (𝜙0, 𝜌0) defined by
(2.7) solves (2.6) (see Lemma A.1), and 𝜙0, �̂�0 ∈ 𝐶∞

e ([0, +∞)) (see Lemma A.6). This is the leading
order term of our blow-up solution (𝜌, 𝜙) to (2.3).

2.2. Solving (𝝆𝒏, 𝝓𝒏) for 𝒏 ∈ Z≥1

In Subsection 2.1, under Assumption 1, we construct the leading order blow-up solution (𝜌0, 𝜙0). In
view of the expansion (2.4), we construct (𝜌𝑛, 𝜙𝑛) for 𝑛 ∈ Z≥1. We rewrite the recurrence relation (2.5)
for 𝑛 ∈ Z≥1 as

(𝑝𝜌𝑝−1
0 + 𝜕𝛼𝜙0𝜕𝛼𝜙0)𝜌𝑛 + 2𝜌0𝜕

𝛼𝜙0𝜕𝛼𝜙𝑛

= �𝜌𝑛−1 −
∑

𝑛1+···+𝑛𝑝=𝑛
𝑛1 , · · · ,𝑛𝑝≤𝑛−1

𝜌𝑛1 · · · 𝜌𝑛𝑝 −
∑

𝑛1+𝑛2+𝑛3=𝑛
𝑛1 ,𝑛2 ,𝑛3≤𝑛−1

𝜌𝑛1𝜕
𝛼𝜙𝑛2𝜕𝛼𝜙𝑛3 =: 𝐹𝑛, (2.13)

𝜌0�𝜙𝑛 + 2𝜕𝛼𝜌0𝜕𝛼𝜙𝑛 + 2𝜕𝛼𝜙0𝜕𝛼𝜌𝑛 + �𝜙0𝜌𝑛

= −2
∑

𝑛1+𝑛2=𝑛
𝑛1 ,𝑛2≤𝑛−1

𝜕𝛼𝜌𝑛1𝜕𝛼𝜙𝑛2 −
∑

𝑛1+𝑛2=𝑛
𝑛1 ,𝑛2≤𝑛−1

𝜌𝑛1�𝜙𝑛2 =: 𝐺𝑛. (2.14)
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Using the equations for (𝜌0, 𝜙0) given by (2.6), the above recurrence relation becomes

(𝑝 − 1)𝜌𝑝−1
0 𝜌𝑛 + 2𝜌0𝜕

𝛼𝜙0𝜕𝛼𝜙𝑛 = 𝐹𝑛, (2.15)

𝜕𝛼 (𝜌2
0𝜕𝛼𝜙𝑛) + 2𝜕𝛼 (𝜌0𝜕𝛼𝜙0𝜌𝑛) = 𝜌0𝐺𝑛. (2.16)

By (2.15), we have

𝜌𝑛 =
𝜌1−𝑝

0 𝐹𝑛

𝑝 − 1
− 2

𝑝 − 1
𝜌2−𝑝

0 𝜕𝛼𝜙0𝜕𝛼𝜙𝑛. (2.17)

Substituting the above identity into (2.16), we obtain the following linear equation for 𝜙𝑛:

𝜕𝛼
(
𝜌2

0𝜕𝛼𝜙𝑛 −
4

𝑝 − 1
𝜌3−𝑝

0 𝜕𝛼𝜙0𝜕
𝛼𝜙0𝜕𝛼𝜙𝑛

)
= 𝜌0𝐺𝑛 −

2
𝑝 − 1

𝜕𝛼
(
𝜌2−𝑝

0 𝜕𝛼𝜙0𝐹𝑛

)
=: 𝐻𝑛. (2.18)

We introduce the linearized operator

ℒ(𝜙) := 𝜕𝛼
(
𝜌2

0𝜕𝛼𝜙 − 4
𝑝 − 1

𝜌3−𝑝
0 𝜕𝛼𝜙0𝜕

𝛼𝜙0𝜕𝛼𝜙

)
, 𝜙 = 𝜙(𝑡, 𝑥) = 𝜙(𝑡, 𝑟). (2.19)

Then our aim is to solve inductively ℒ(𝜙𝑛) = 𝐻𝑛 for each 𝑛 ≥ 1.
Indeed, we can show that ℒ is surjective in some well-chosen functional spaces and then we solve

ℒ(𝜙𝑛) = 𝐻𝑛 in these spaces. Letting 𝜏 = ln 1
𝑇 −𝑡 , we define (here 𝐶∞

e ([0, +∞)) is defined in (2.10))

𝒳0 :=
⎧⎪⎨⎪⎩ 𝑓 (𝑡, 𝑥) =

𝑛∑
𝑗=0

𝑓 𝑗 (𝑍)𝜏 𝑗 : 𝑛 ∈ Z≥0, 𝑓 𝑗 ∈ 𝐶∞
e ([0, +∞)) ∀ 𝑗 ∈ Z ∩ [0, 𝑛]

⎫⎪⎬⎪⎭ , (2.20)

𝒳𝜆 := (𝑇 − 𝑡)𝜆𝒳0 =
{
𝑓 (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆𝑔(𝑡, 𝑥) = e−𝜆𝜏𝑔(𝑡, 𝑥) : 𝑔 ∈ 𝒳0

}
, ∀ 𝜆 ∈ C. (2.21)

Then 𝒳0 is a ring (using that { 𝑓 (𝑡, 𝑥) = 𝑓 (𝑍)𝜏 𝑗 : 𝑓 𝑗 ∈ 𝐶∞
e ([0, +∞)), 𝑗 ∈ Z≥0} is closed under

multiplication) and 𝒳𝜆 is a linear vector space.
We have the following properties for the functional spaces 𝒳𝜆.

Lemma 2.3.

(i) Let 𝜆, 𝜇 ∈ C, 𝑓 ∈ 𝒳𝜆, 𝑔 ∈ 𝒳𝜇. Then 𝜕𝑡 𝑓 ∈ 𝒳𝜆−1, Δ 𝑓 ∈ 𝒳𝜆−2, � 𝑓 ∈ 𝒳𝜆−2, 𝑓 𝑔 ∈ 𝒳𝜆+𝜇,
𝜕𝛼 𝑓 𝜕𝛼𝑔 ∈ 𝒳𝜆+𝜇−2, and 𝜕𝛼 ( 𝑓 𝜕𝛼𝑔) ∈ 𝒳𝜆+𝜇−2.

(ii) Let 𝜆, 𝜇 ∈ R and 𝑗 ∈ Z≥0 be such that 𝜆 > 𝑗 + 𝜇. If 𝑓 ∈ 𝒳𝜆, then (𝑇 − 𝑡)−𝜇𝐷 𝑗 𝑓 ∈ 𝐿∞(C), where
C is the light cone C :=

{
(𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 : |𝑥 | < 2(𝑇 − 𝑡)

}
.

(iii) Let 𝜆, 𝜇 ∈ R and 𝑗 ∈ Z≥0 be such that 𝜆 ≥ 𝑗 + 𝜇. If 𝑓 (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆 �̂� (𝑍) for some
�̂� ∈ 𝐶∞

e ([0, +∞)), then (𝑇 − 𝑡)−𝜇𝐷 𝑗 𝑓 ∈ 𝐿∞(C).

The proof of Lemma 2.3 can be found in Subsection 5.1.

Proposition 2.4. The linear operator ℒ : 𝒳𝜆 → 𝒳𝜆−𝛾 is surjective for all 𝜆 ∈ C, where
𝛾 := 4𝛽/(𝑝 − 1) + 2 = 𝛽(ℓ − 1) + 2.

See Section 5 for the proof of Proposition 2.4.
Let

𝜆𝑛 := (2𝑛 − 1) (𝛽 − 1), 𝜇𝑛 := 2𝑛(𝛽 − 1) − 2𝛽
𝑝 − 1

, ∀ 𝑛 ∈ Z≥0. (2.22)
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Recall from (2.7) that

𝜙0(𝑡, 𝑟) = (𝑇 − 𝑡)𝜆0𝜙0(𝑍), 𝜌0(𝑡, 𝑟) = (𝑇 − 𝑡)𝜇0 �̂�0(𝑍).

As 𝜙0(𝑍), �̂�0 (𝑍) ∈ 𝐶∞
e ([0, +∞)), by (2.20), (2.21) we have 𝜙0 ∈ 𝒳𝜆0 and 𝜌0 ∈ 𝒳𝜇0 . Similarly, for

𝑎 ∈ R we have 𝜌0 (𝑡, 𝑟)𝑎 = (𝑇 − 𝑡)𝑎𝜇0 �̂�0 (𝑍)𝑎 and �̂�0(𝑍)𝑎 ∈ 𝐶∞
e ([0, +∞)), then 𝜌𝑎0 ∈ 𝒳𝑎𝜇0 . Moreover,

𝜙0(𝑍), �̂�0(𝑍) are real-valued, so are 𝜙0, 𝜌0.

Lemma 2.5. Assume that 𝑛 ∈ Z≥1, 𝜙 𝑗 ∈ 𝒳𝜆 𝑗 , 𝜌 𝑗 ∈ 𝒳𝜇 𝑗 are are real-valued for 𝑗 ∈ Z ∩ [0, 𝑛 − 1].
Let 𝐹𝑛, 𝐺𝑛 be defined in (2.13), (2.14). Then there exist real-valued 𝜙𝑛 ∈ 𝒳𝜆𝑛 and 𝜌𝑛 ∈ 𝒳𝜇𝑛 such that
(2.15) and (2.16) hold.

Proof. By Lemma 2.3 (i) and the definition of 𝐹𝑛, we have 𝐹𝑛 ∈ 𝒳𝜇𝑛−1−2, where we have used the fact
that 𝜇𝑛1 + · · · + 𝜇𝑛𝑝 = 𝜇𝑛−1 − 2 if 𝑛1 + · · · + 𝑛𝑝 = 𝑛 and 𝜇𝑛1 +𝜆𝑛2 +𝜆𝑛3 − 2 = 𝜇𝑛−1 − 2 if 𝑛1 + 𝑛2 + 𝑛3 = 𝑛.
Using Lemma 2.3 (i) and the definition of 𝐺𝑛, we have 𝐺𝑛 ∈ 𝒳(2𝑛−1) (𝛽−1)−2𝛽/(𝑝−1)−2, where we have
used the fact that 𝜇𝑛1 +𝜆𝑛2 −2 = (2𝑛−1) (𝛽−1)−2𝛽/(𝑝−1)−2 if 𝑛1+𝑛2 = 𝑛. It follows from Lemma 2.3
(i) that 𝜌0𝐺𝑛 ∈ 𝒳𝜇0+(2𝑛−1) (𝛽−1)−2𝛽/(𝑝−1)−2 = 𝒳2𝑛(𝛽−1)−𝛽ℓ−1 (recall that 𝜌0 ∈ 𝒳𝜇0 , ℓ = 1 + 4

𝑝−1 ). Since
𝜌2−𝑝

0 ∈ 𝒳(2−𝑝)𝜇0 , 𝐹𝑛 ∈ 𝒳𝜇𝑛−1−2, by Lemma 2.3 (i) we get 𝜌2−𝑝
0 𝐹𝑛 ∈ 𝒳𝜇𝑛−1−2+(2−𝑝)𝜇0 , then by 𝜙0 ∈ 𝒳𝜆0

we have

𝜕𝛼
(
𝜌2−𝑝

0 𝜕𝛼𝜙0𝐹𝑛

)
∈ 𝒳𝜇𝑛−1−2+(2−𝑝)𝜇0+𝜆0−2 = 𝒳2𝑛(𝛽−1)−𝛽ℓ−1.

Hence by the definition of 𝐻𝑛 in (2.18), we have 𝐻𝑛 ∈ 𝒳2𝑛(𝛽−1)−𝛽ℓ−1 = 𝒳𝜆𝑛−𝛾 (recall that
𝛾 = 𝛽(ℓ − 1) + 2). Moreover, 𝐹𝑛, 𝐺𝑛, 𝐻𝑛 are real-valued.

By Proposition 2.4, there exists (real-valued) 𝜙𝑛 ∈ 𝒳𝜆𝑛 such that ℒ(𝜙𝑛) = 𝐻𝑛 (otherwise take
Re 𝜙𝑛), then (2.18) holds. Let 𝜌𝑛 be defined by (2.17). Then 𝜌𝑛 is real-valued. Moreover, using (i) of
Lemma 2.3, 𝜌1−𝑝

0 ∈ 𝒳(1−𝑝)𝜇0 , 𝜌2−𝑝
0 ∈ 𝒳(2−𝑝)𝜇0 , 𝐹𝑛 ∈ 𝒳𝜇𝑛−1−2, 𝜙0 ∈ 𝒳𝜆0 and 𝜙𝑛 ∈ 𝒳𝜆𝑛 , we have

𝜌1−𝑝
0 𝐹𝑛 ∈ 𝒳𝜇0 (1−𝑝)+𝜇𝑛−1−2 = 𝒳𝜇𝑛 , 𝜌2−𝑝

0 𝜕𝛼𝜙0𝜕𝛼𝜙𝑛 ∈ 𝒳𝜇0 (2−𝑝)+𝜆0+𝜆𝑛−2 = 𝒳𝜇𝑛 ,

hence 𝜌𝑛 ∈ 𝒳𝜇𝑛 . Now (2.15) follows from (2.17), and (2.16) follows from (2.17) and (2.18). �

As 𝜙0 ∈ 𝒳𝜆0 , 𝜌0 ∈ 𝒳𝜇0 and 𝜙0, 𝜌0 are real-valued, by Lemma 2.5 and the induction, we have the
following result.

Proposition 2.6. Let 𝜙0, 𝜌0 be defined in (2.7). For each 𝑛 ∈ Z≥1, there exist real-valued 𝜙𝑛 ∈ 𝒳𝜆𝑛 and
𝜌𝑛 ∈ 𝒳𝜇𝑛 such that (2.15) and (2.16) hold with 𝐹𝑛, 𝐺𝑛 defined in (2.13), (2.14). Hence, (2.5) holds for
𝑛 ∈ Z≥0.

Now we briefly explain the ideas in the proof of Proposition 2.4. In the proof of Lemma 2.5, we see
that we only need to use the surjectivity of ℒ from 𝒳𝜆 to 𝒳𝜆−𝛾 for 𝜆 ∈ {𝜆𝑛 : 𝑛 ∈ Z+}. However, this is
not easy to solve the equation ℒ 𝑓 = 𝑔 for 𝑓 ∈ 𝒳𝜆 even in the simplest case 𝑔 = (𝑇 − 𝑡)𝜆−𝛾 �̂�(𝑍) ∈ 𝒳𝜆−𝛾
for some �̂� ∈ 𝐶∞

e ([0, +∞)) (without the logarithm correction 𝜏 𝑗 for 𝑗 ∈ Z+), in which process we
need to check a non-degenerate property (nonzero of Wronski defined in (5.32)) on the coefficients of
ℒ𝜆 (defined in (5.23)), and it is difficult to check that all 𝜆𝑛 satisfy the non-degenerate property, even
for one 𝜆𝑛0 . To overcome this drawback, we solve the equation for all 𝜆 ∈ C, not merely for those
𝜆 ∈ {𝜆𝑛 : 𝑛 ∈ Z+}. It turns out that the non-degenerate property holds for all but countably many 𝜆 ∈ C
(these 𝜆 are “bad” in some sense) and the solution depends analytically on 𝜆. In this way, we can show
that the solution 𝑓 = 𝑓 (·;𝜆) is a meromorphic function on 𝜆. For those countably many 𝜆 ∈ C not
satisfying the non-degenerate property, the analytic property of f allows us to introduce a logarithm
correction to solve the corresponding equation for “bad” 𝜆. See Section 5 and Appendix B for details.
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2.3. The approximate solution

Let (𝜌𝑛, 𝜙𝑛) ∈ 𝒳𝜇𝑛 × 𝒳𝜆𝑛 (𝑛 ∈ Z≥0) be given by Proposition 2.6. We fix a bump function
𝜂 ∈ 𝐶∞

𝑐 (R; [0, 1]) such that 𝜂 |[0,1] = 1 and 𝜂 |[2,+∞) = 0.

Proposition 2.7. Let 𝑇 = 𝑏 = 1. There exist 𝑁0 ∈ Z+, 𝑐0 ∈ (0, 𝑇) and a sequence {𝑇𝑛}𝑛≥0 such that
𝑇𝑛 = 𝑇 for 0 ≤ 𝑛 < 𝑁0, 0 < 𝑇𝑛 ≤ 𝑇𝑛−1/4 for all 𝑛 ≥ 𝑁0, and for functions6

𝜌∗(𝑡, 𝑥) :=
∞∑
𝑛=0

𝜂

(
𝑇 − 𝑡

𝑇𝑛

)
𝜌𝑛 (𝑡, 𝑥)𝑏𝑛, 𝜙∗(𝑡, 𝑥) :=

∞∑
𝑛=0

𝜂

(
𝑇 − 𝑡

𝑇𝑛

)
𝜙𝑛 (𝑡, 𝑥)𝑏𝑛, (2.23)

𝐸∗ := 𝜌𝑝∗ + 𝜌∗𝜕
𝛼𝜙∗𝜕𝛼𝜙∗ − 𝑏�𝜌∗, 𝐽∗ := 2𝜕𝛼𝜌∗𝜕𝛼𝜙∗ + 𝜌∗�𝜙∗, (2.24)

defined on (𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 we have

(𝑇 − 𝑡)𝛽+ 𝑗−1𝐷 𝑗𝜙∗ ∈ 𝐿∞(C), (𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗𝐷 𝑗 𝜌∗ ∈ 𝐿∞(C), ∀ 𝑗 ∈ Z≥0, (2.25)

(𝑇 − 𝑡)𝛽 (𝜕𝑡𝜙∗ − |𝐷𝑥𝜙∗ |) ≥ 𝑐0, (𝑇 − 𝑡)
2𝛽
𝑝−1 𝜌∗ ≥ 𝑐0, ∀ (𝑡, 𝑥) ∈ C, 𝑇 − 𝑡 < 𝑐0, (2.26)

(𝑇 − 𝑡)−𝜆(𝐷 𝑗𝐸∗, 𝐷
𝑗𝐽∗) ∈ 𝐿∞(C), ∀ 𝜆 > 0, ∀ 𝑗 ∈ Z≥0. (2.27)

See Section 3 for the proof of Proposition 2.7.

2.4. Solving nonlinear wave equation

Proposition 2.8. Assume that 𝑇 = 1, 𝑤∗ ∈ 𝐶∞(C),Φ∗ ∈ 𝐶∞(C) satisfy

(𝑇 − 𝑡)𝛽+ 𝑗−1𝐷 𝑗Φ∗ ∈ 𝐿∞(C), (𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗𝐷 𝑗𝑤∗ ∈ 𝐿∞(C), ∀ 𝑗 ∈ Z≥0, (2.28)

(𝑇 − 𝑡)𝛽 (𝜕𝑡Φ∗ − |𝐷𝑥Φ∗ |) ≥ 𝑐0, (𝑇 − 𝑡)
2𝛽
𝑝−1 𝑤∗ ≥ 𝑐0, ∀ (𝑡, 𝑥) ∈ C, 𝑇 − 𝑡 < 𝑐0, (2.29)

for some 𝑐0 ∈ (0, 𝑇) = (0, 1). Suppose that (2.27) holds for 𝐸∗, 𝐽∗ defined as

𝐸∗ := 𝑤𝑝
∗ + 𝑤∗𝜕

𝛼Φ∗𝜕𝛼Φ∗ − �𝑤∗, 𝐽∗ := 2𝜕𝛼𝑤∗𝜕𝛼Φ∗ + 𝑤∗�Φ∗, (2.30)

Then there exist 𝑐1 ∈ (0, 𝑐0) and 𝑢 ∈ 𝐶2 ((𝑇 − 𝑐1, 𝑇) × R𝑑;C) such that 𝑢(𝑡, ·), 𝜕𝑡𝑢(𝑡, ·) ∈ 𝐶∞
𝑐 (R𝑑;C)

for 𝑡 ∈ (𝑇 − 𝑐1, 𝑇), �𝑢 = |𝑢 |𝑝−1𝑢 for 𝑡 ∈ (𝑇 − 𝑐1, 𝑇), |𝑥 | ≤ 𝑇 − 𝑡, and

𝐶−1(𝑇 − 𝑡)−
2𝛽
𝑝−1 ≤ |𝑢(𝑡, 𝑥) | ≤ 𝐶 (𝑇 − 𝑡)−

2𝛽
𝑝−1 , ∀ 𝑡 ∈ (𝑇 − 𝑐1, 𝑇), |𝑥 | ≤ 𝑇 − 𝑡 (2.31)

for some constant 𝐶 > 0.

In fact, 𝑢 = (1 + ℎ)𝑤∗eiΦ∗ , ℎ = 𝑂 ((𝑇 − 𝑡)𝜆), ∀ 𝜆 > 0. To prove Proposition 2.8, it suffices to solve
the equation for h (see (4.1)) and prove that h is small. In view of the singularity of (4.1) at blow-up
time T, we take a sequence 𝜀𝑛 ↓ 0 and then we solve (4.1) (with technical truncation) with zero initial
data at 𝑇 − 𝜀𝑛 in a backward direction. We denote the solution for each 𝑛 ∈ Z+ by ℎ𝑛. Using energy
estimates and a bootstrap argument, we can show that ℎ𝑛 lives in an interval with a positive lower bound
independent of 𝑛 ∈ Z+. Taking the limit 𝑛 → ∞ we get a desired solution to (4.1) (in the light cone).
See Section 4 for details.

6For fixed (𝑡 , 𝑥) ∈ [0, 𝑇 ) ×R𝑑 , the summations in (2.23) are both finite sums. Indeed, we have 𝑇 − 𝑡 > 0, then lim𝑛→∞(𝑇 −
𝑡)/𝑇𝑛 = +∞, thus (𝑇 − 𝑡)/𝑇𝑛 > 2 for all sufficiently large n and hence 𝜂

(
(𝑇 − 𝑡)/𝑇𝑛

)
= 0 for all sufficiently large n. As a

consequence, we have 𝜌∗ , 𝜙∗ ∈ 𝐶∞( [0, 𝑇 ) × R𝑑) .
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2.5. Proof of main results

Let’s begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. Let 𝑇 = 𝑏 = 1 and (𝜌∗, 𝜙∗) ∈ 𝐶∞(C), 𝑐0 ∈ (0, 𝑇) be given by Proposition 2.7,
and𝑤∗ = 𝜌∗,Φ∗ = 𝜙∗. Then𝑤∗,Φ∗ ∈ 𝐶∞(C), (2.28) is equivalent to (2.25), (2.29) is equivalent to (2.26).
The definitions of 𝐸∗, 𝐽∗ in (2.24) and (2.30) are the same, and (2.27) also follows from Proposition 2.7.
It follows from Proposition 2.8 that there exist 𝑐1 ∈ (0, 𝑐0) ⊂ (0, 1), �̃� ∈ 𝐶2((𝑇 − 𝑐1, 𝑇) × R𝑑;C) such
that �̃�(𝑡, ·), 𝜕𝑡 �̃�(𝑡, ·) ∈ 𝐶∞

𝑐 (R𝑑;C) for 𝑡 ∈ (𝑇 − 𝑐1, 𝑇), ��̃� = |�̃� |𝑝−1�̃� for 𝑡 ∈ (𝑇 − 𝑐1, 𝑇), |𝑥 | ≤ 𝑇 − 𝑡, and

𝐶−1
1 (𝑇 − 𝑡)−

2𝛽
𝑝−1 ≤ |�̃�(𝑡, 𝑥) | ≤ 𝐶1 (𝑇 − 𝑡)−

2𝛽
𝑝−1 , ∀ 𝑡 ∈ (𝑇 − 𝑐1, 𝑇), |𝑥 | ≤ 𝑇 − 𝑡 (2.32)

for some constant 𝐶1 > 0. Choose initial data 𝑢0, 𝑢1 : R𝑑 → C such that

𝑢0(𝑥) = �̃�(𝑇 − 𝑐1/2, 𝑥), 𝑢1(𝑥) = 𝜕𝑡 �̃�(𝑇 − 𝑐1/2, 𝑥), ∀ 𝑥 ∈ R𝑑 .

Then 𝑢0, 𝑢1 ∈ 𝐶∞
𝑐 (R𝑑;C). Moreover, let 𝑢∗(𝑡, 𝑥) = �̃�(𝑡 +𝑇 − 𝑐1/2, 𝑥) for 𝑡 ∈ (−𝑐1/2, 𝑐1/2), 𝑥 ∈ R𝑑 then

𝑢∗(0, 𝑥) = 𝑢0(𝑥), 𝜕𝑡𝑢∗(0, 𝑥) = 𝑢1(𝑥) and �𝑢∗ = |𝑢∗ |𝑝−1𝑢∗ for 𝑡 ∈ [0, 𝑐1/2), |𝑥 | ≤ 𝑐1/2 − 𝑡. Suppose
for contradiction that Theorem 1.1 fails for this initial data 𝑢0, 𝑢1, then there exists a smooth function
𝑢 : [0, +∞) × R𝑑 → C such that �𝑢 = |𝑢 |𝑝−1𝑢 and 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝜕𝑡𝑢(0, 𝑥) = 𝑢1 (𝑥) for all 𝑥 ∈ R𝑑 .
Finite speed of propagation shows that 𝑢 = 𝑢∗ in the region {(𝑡, 𝑥) ∈ [0, 𝑐1/2) × R𝑑 : |𝑥 | ≤ 𝑐1/2 − 𝑡}.
Hence by (2.32) we have

|𝑢(𝑡, 0) | = |𝑢∗(𝑡, 0) | = |�̃�(𝑡 + 𝑇 − 𝑐1/2, 0) | ≥ 𝐶−1
1 (𝑐1/2 − 𝑡)−

2𝛽
𝑝−1 , ∀ 𝑡 ∈ [0, 𝑐1/2).

On the other hand, since u is smooth on [0, +∞) × R𝑑 , we have |𝑢(𝑡, 𝑥) | ≤ 𝐶 for all |𝑥 | ≤ 2𝑇 and
𝑡 ∈ [0, 𝑐1/2], where 𝐶 > 0 is a constant. This reaches a contradiction. �

The following result was proved in [65] Theorem 2.2 and Lemma A.7 (𝛽 > ℓ +1 in [65] is equivalent
to 𝛽 > 1 in this paper, recalling footnote 4).

Lemma 2.9. There exist ℓ∗(3) = 76−4
√

154
23 ∈ ( 8

7 ,
7
6 ) and ℓ1(4) ∈ (5/4, 4/3) such that if

𝑘 = 4, 1 < ℓ < ℓ1(4) or 𝑘 = 3, 1 < ℓ < ℓ∗(3), (2.33)

Then there exists 𝛽 ∈ (1, 𝑘/(ℓ +
√
ℓ))7such that Assumption 1 holds for 𝑑 = 𝑘 + 1.

Proof of Corollary 1.2. Let 𝑇 = 1. If 𝑑 = 4, 𝑘 = 3, 𝑝 ≥ 29, ℓ = 1 + 4
𝑝−1 , then 1 < ℓ ≤ 1 + 4

29−1 = 8
7 <

ℓ∗(3). If 𝑑 = 5, 𝑘 = 4, 𝑝 ≥ 17, ℓ = 1 + 4
𝑝−1 , then 1 < ℓ ≤ 1 + 4

17−1 = 5
4 < ℓ1(4). Thus, if 𝑑 = 4, 𝑝 ≥ 29

or 𝑑 = 5, 𝑝 ≥ 17, then (2.33) holds for 𝑘 = 𝑑 − 1, ℓ = 1 + 4
𝑝−1 and the result follows from Theorem 1.1.

The remaining case is 𝑑 > 5, 𝑝 ≥ 17. Then Assumption 1 holds with d replaced by 𝑑 ′ = 5. By the
proof of Theorem 1.1, there exists 𝑐1 ∈ (0, 1), �̃� ∈ 𝐶2 ((𝑇 − 𝑐1, 𝑇) × R5;C) such that �̃�(𝑡, ·), 𝜕𝑡 �̃�(𝑡, ·) ∈
𝐶∞
𝑐 (R5;C) for 𝑡 ∈ (𝑇 − 𝑐1, 𝑇), ��̃� = |�̃� |𝑝−1�̃� for 𝑡 ∈ (𝑇 − 𝑐1, 𝑇), |𝑥 | ≤ 𝑇 − 𝑡, and (2.32) holds for some

constant 𝐶1 > 0. Choose initial data 𝑢0, 𝑢1 : R𝑑 → C such that

𝑢0(𝑥) = 𝜂(|𝑥 |)�̃�(𝑇 − 𝑐1/2, 𝑥1, · · · , 𝑥5), 𝑢1(𝑥) = 𝜂(|𝑥 |)𝜕𝑡 �̃�(𝑇 − 𝑐1/2, 𝑥1, · · · , 𝑥5),

for all 𝑥 = (𝑥1, · · · , 𝑥𝑑) ∈ R𝑑 . Then 𝑢0, 𝑢1 ∈ 𝐶∞
𝑐 (R𝑑; C). Moreover, let 𝑢∗(𝑡, 𝑥) = 𝜂(|𝑥 |)�̃�(𝑡 + 𝑇 −

𝑐1/2, 𝑥1, · · · , 𝑥5) for 𝑡 ∈ (−𝑐1/2, 𝑐1/2), 𝑥 = (𝑥1, · · · , 𝑥𝑑) ∈ R𝑑 . Then 𝑢∗(0, 𝑥) = 𝑢0(𝑥), 𝜕𝑡𝑢∗(0, 𝑥) =
𝑢1 (𝑥) and �𝑢∗ = |𝑢∗ |𝑝−1𝑢∗ for 𝑡 ∈ [0, 𝑐1/2), |𝑥 | ≤ 𝑐1/2− 𝑡. Here we used that 𝜂(|𝑥 |) = 1 for |𝑥 | ≤ 1 and
that if 𝑡 ∈ [0, 𝑐1/2), |𝑥 | ≤ 𝑐1/2 − 𝑡 then |𝑥 | ≤ 𝑐1/2 < 1. Suppose for contradiction that Corollary 1.2

7Note that 1 < ℓ∗ (3) < ℓ1 (4) < 3/2, thus if (2.33) holds then ℓ +
√
ℓ < 2ℓ < 3 ≤ 𝑘.
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fails for this kind of initial data 𝑢0, 𝑢1, then there exists a smooth function 𝑢 : [0, +∞) × R𝑑 → C such
that �𝑢 = |𝑢 |𝑝−1𝑢 and 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝜕𝑡𝑢(0, 𝑥) = 𝑢1 (𝑥) for all 𝑥 ∈ R𝑑 , and we can get a contradiction
as in the proof of Theorem 1.1. �

3. The approximate solution

In this section, we prove Proposition 2.7, i.e., the construction of the approximate solution.

3.1. Construction of the approximate solution

Let 𝑇 = 𝑏 = 1 and (𝜌𝑛, 𝜙𝑛) ∈ 𝒳𝜇𝑛 × 𝒳𝜆𝑛 (𝑛 ∈ Z≥0) be given by Proposition 2.6. For 𝑁 ∈ Z+ and
(𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 , let

𝜌 (𝑁 ) (𝑡, 𝑥) :=
𝑁∑
𝑛=0

𝜌𝑛 (𝑡, 𝑥)𝑏𝑛, 𝜙 (𝑁 ) (𝑡, 𝑥) :=
𝑁∑
𝑛=0

𝜙𝑛 (𝑡, 𝑥)𝑏𝑛,

𝐸𝑁 := 𝜌𝑝(𝑁 ) + 𝜌 (𝑁 )𝜕
𝛼𝜙 (𝑁 )𝜕𝛼𝜙 (𝑁 ) − 𝑏�𝜌 (𝑁 ) ,

𝐽𝑁 := 2𝜕𝛼𝜌 (𝑁 )𝜕𝛼𝜙 (𝑁 ) + 𝜌 (𝑁 )�𝜙 (𝑁 ) .

It follows from (2.5) that

𝐸𝑁 (𝑡, 𝑥) =
𝑝𝑁∑

𝑛=𝑁+1
𝐸𝑁 ,𝑛 (𝑡, 𝑥)𝑏𝑛, 𝐽𝑁 (𝑡, 𝑥) =

2𝑁∑
𝑛=𝑁+1

𝐽𝑁 ,𝑛 (𝑡, 𝑥)𝑏𝑛

with

𝐸𝑁 ,𝑛 :=
∑

𝑛1+···+𝑛𝑝=𝑛
𝑛1 , · · · ,𝑛𝑝≤𝑁

𝜌𝑛1𝜌𝑛2 · · · 𝜌𝑛𝑝 +
∑

𝑛1+𝑛2+𝑛3=𝑛
𝑛1 ,𝑛2 ,𝑛3≤𝑁

𝜌𝑛1𝜕
𝛼𝜙𝑛2𝜕𝛼𝜙𝑛3 − �𝜌𝑁 1𝑛=𝑁+1,

𝐽𝑁 ,𝑛 := 2
∑

𝑛1+𝑛2=𝑛
𝑛1 ,𝑛2≤𝑁

𝜕𝛼𝜌𝑛1𝜕𝛼𝜙𝑛2 +
∑

𝑛1+𝑛2=𝑛
𝑛1 ,𝑛2≤𝑁

𝜌𝑛1�𝜙𝑛2 .

Then 𝐸𝑁 ,𝑛 ∈ 𝒳2𝑛(𝛽−1)−2𝑝𝛽/(𝑝−1) , 𝐽𝑁 ,𝑛 ∈ 𝒳(2𝑛−1) (𝛽−1)−2𝛽/(𝑝−1)−2 = 𝒳(2𝑛+1) (𝛽−1)−2𝑝𝛽/(𝑝−1) . Here the
proof is similar to Lemma 2.5.

Take 𝑁0 ∈ Z+ such that 2𝑁0 (𝛽 − 1) − 2𝑝𝛽/(𝑝 − 1) > 3. We fix such 𝑁0 (which is the same as the
one in Proposition 2.7) and a non-decreasing sequence {𝑘𝑁 }𝑁 ∈Z≥𝑁0

⊂ Z+ such that

2𝑁 (𝛽 − 1) − 2𝑝𝛽/(𝑝 − 1) > 3𝑘𝑁 ∀ 𝑁 ∈ Z ∩ [𝑁0, +∞), and lim
𝑁→∞

𝑘𝑁 = +∞. (3.1)

Then by Lemma 2.3 (ii), we have (𝑇 − 𝑡)−2𝑘𝑁 (𝐷 𝑗𝐸𝑁 , 𝐷
𝑗𝐽𝑁 ) ∈ 𝐿∞(C) for 0 ≤ 𝑗 ≤ 𝑘𝑁 , 𝑁 ≥ 𝑁0. Or

equivalently, for each 𝑁 ∈ Z ∩ [𝑁0, +∞) there is a constant 𝐴𝑁 > 0 satisfying

|𝐷 𝑗𝐸𝑁 (𝑡, 𝑥) | + |𝐷 𝑗𝐽𝑁 (𝑡, 𝑥) | ≤ 𝐴𝑁 (𝑇 − 𝑡)2𝑘𝑁 , ∀ 0 ≤ 𝑗 ≤ 𝑘𝑁 , (𝑡, 𝑥) ∈ C .

In fact for every fixed 𝑛 > 𝑑/2, we can use (𝜌 (𝑁 ) , 𝜙 (𝑁 ) ) as an approximate solution for N large enough
(but fixed) to construct blow-up solutions of 𝐻𝑛 regularity. But to obtain a blow-up solution of𝐶∞ initial
data, we need to sum all the (𝜌𝑛, 𝜙𝑛) with truncation as in (2.23). Note that for 𝑇 − 𝑡 ∈ [2𝑇𝑁+1, 𝑇𝑁 ], we
have 𝐸∗(𝑡, 𝑥) = 𝐸𝑁 (𝑡, 𝑥) and 𝐽∗(𝑡, 𝑥) = 𝐽𝑁 (𝑡, 𝑥). The following result extends the above estimate to the
case 𝑇 − 𝑡 ∈ [𝑇𝑁+1, 𝑇𝑁 ] (with a possible different 𝐴𝑁 ).
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Lemma 3.1. Let 𝑇 = 𝑏 = 1. Then there exists a sequence {𝐴𝑁 }𝑁 ∈Z≥𝑁0−1 such that for all {𝑇𝑛}𝑛∈Z≥0

satisfying 𝑇𝑛 = 𝑇 for 0 ≤ 𝑛 < 𝑁0, 0 < 𝑇𝑛 ≤ 𝑇𝑛−1/4 for all 𝑛 ≥ 𝑁0, if we define 𝜌∗, 𝜙∗, 𝐸∗, 𝐽∗ by (2.23),
(2.24), then for 𝑗 ∈ Z ∩ [0, 𝑘𝑁 ] we have

|𝐷 𝑗𝐸∗(𝑡, 𝑥) | + |𝐷 𝑗𝐽∗(𝑡, 𝑥) | ≤ 𝐴𝑁 (𝑇 − 𝑡)2𝑘𝑁 , ∀ 𝑇 − 𝑡 ∈ [𝑇𝑁+1, 𝑇𝑁 ], (𝑡, 𝑥) ∈ C . (3.2)

Lemma 3.2. Let 𝑇 = 𝑏 = 1. There exists a sequence {𝑇𝑛}𝑛≥0 satisfying

𝑇𝑛 = 𝑇 for 0 ≤ 𝑛 < 𝑁0 and 0 < 𝑇𝑛 ≤ 𝑇𝑛−1/4 for 𝑛 ≥ 𝑁0,

such that for every sequence {𝑇𝑛}𝑛≥0 with 𝑇𝑛 = 𝑇 for 0 ≤ 𝑛 < 𝑁0 and 0 < 𝑇𝑛 ≤ min(𝑇𝑛, 𝑇𝑛−1/4) for
𝑛 ≥ 𝑁0, for 𝜌∗, 𝜙∗ defined in (2.23), we have

(𝑇 − 𝑡) 𝑗𝐷 𝑗 (𝜙∗ − 𝜙0) ∈ 𝐿∞(C), (𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗−𝛽+1𝐷 𝑗 (𝜌∗ − 𝜌0) ∈ 𝐿∞(C), ∀ 𝑗 ∈ Z≥0. (3.3)

Lemma 3.3. Let 𝑇 = 1. There exists �̃� ∈ (0, 𝑇) such that

(𝑇 − 𝑡)𝛽−1+ 𝑗𝐷 𝑗𝜙0 ∈ 𝐿∞(C), (𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗𝐷 𝑗 𝜌0 ∈ 𝐿∞(C), ∀ 𝑗 ∈ Z≥0, (3.4)

(𝑇 − 𝑡)𝛽 (𝜕𝑡𝜙0 − |𝐷𝑥𝜙0 |) (𝑡, 𝑥) ≥ �̃�, (𝑇 − 𝑡)
2𝛽
𝑝−1 𝜌0 (𝑡, 𝑥) ≥ �̃�, ∀ (𝑡, 𝑥) ∈ C . (3.5)

Let’s first prove Proposition 2.7 by admitting Lemma 3.1∼Lemma 3.3 for the moment.

Proof of Proposition 2.7.
Step 1. Construction of the sequence {𝑇𝑛}𝑛≥0. Let 𝐴𝑁 > 0 be given by Lemma 3.1 and the sequence

{𝑇𝑛}𝑛≥0 be given by Lemma 3.2. Let 𝑇𝑛 = 𝑇 for 0 ≤ 𝑛 < 𝑁0 and 𝑇𝑛 = min(𝑇𝑛, 𝐴−1/𝑘𝑛
𝑛 , 𝑇𝑛−1/4) for

𝑛 ≥ 𝑁0. Then 0 < 𝑇𝑛 ≤ 𝑇𝑛−1/4, 𝑇𝑛 ≤ 𝑇𝑛, 𝐴𝑛𝑇 𝑘𝑛
𝑛 ≤ 1, for all 𝑛 ≥ 𝑁0, and lim

𝑁→+∞
𝑇𝑁 = 0. So, there hold

(3.2) for 𝑗 ∈ Z ∩ [0, 𝑘𝑁 ], (3.3), (3.4), and (3.5) with �̃� ∈ (0, 𝑇) given by Lemma 3.3.
Step 2. Proof of (2.25). As 𝛽 > 1, (𝑇 − 𝑡)𝛽−1 ∈ 𝐿∞(C), we get by (3.3) that

(𝑇 − 𝑡)𝛽−1+ 𝑗𝐷 𝑗 (𝜙∗ − 𝜙0) = (𝑇 − 𝑡)𝛽−1(𝑇 − 𝑡) 𝑗𝐷 𝑗 (𝜙∗ − 𝜙0) ∈ 𝐿∞(C), ∀ 𝑗 ∈ Z≥0,

(𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗𝐷 𝑗 (𝜌∗ − 𝜌0) = (𝑇 − 𝑡)𝛽−1(𝑇 − 𝑡)

2𝛽
𝑝−1+ 𝑗−𝛽+1𝐷 𝑗 (𝜌∗ − 𝜌0) ∈ 𝐿∞(C), ∀ 𝑗 ∈ Z≥0,

which, along with with (3.4), implies (2.25).
Step 3. Proof of (2.26). By (3.3), we have (for some 𝐶1 > 0)

(𝑇 − 𝑡) (|𝜕𝑡 (𝜙∗ − 𝜙0) | + |𝐷𝑥 (𝜙∗ − 𝜙0) |) + (𝑇 − 𝑡)
2𝛽
𝑝−1−𝛽+1 |𝜌∗ − 𝜌0 | ≤ 𝐶1 in C .

Now we take 𝑐0 ∈ (0, 𝑇) such that 𝑐0 + 𝑐
𝛽−1
0 𝐶1 ≤ �̃�, where the existence of such a 𝑐0 is ensured by

𝛽 > 1 and �̃� > 0. Then for (𝑡, 𝑥) ∈ C, 𝑇 − 𝑡 < 𝑐0, we get by (3.5) that (as 𝑇 − 𝑡 > 0)

(𝑇 − 𝑡)𝛽 (𝜕𝑡𝜙∗ − |𝐷𝑥𝜙∗ |) ≥(𝑇 − 𝑡)𝛽 (𝜕𝑡𝜙0 − |𝐷𝑥𝜙0 |) − (𝑇 − 𝑡)𝛽 (|𝜕𝑡 (𝜙∗ − 𝜙0) | + |𝐷𝑥 (𝜙∗ − 𝜙0) |)

≥�̃� − (𝑇 − 𝑡)𝛽−1𝐶1 ≥ �̃� − 𝑐
𝛽−1
0 𝐶1 ≥ 𝑐0,

and

(𝑇 − 𝑡)
2𝛽
𝑝−1 𝜌∗ ≥ (𝑇 − 𝑡)

2𝛽
𝑝−1 𝜌0 − (𝑇 − 𝑡)

2𝛽
𝑝−1 |𝜌∗ − 𝜌0 | ≥ �̃� − (𝑇 − 𝑡)𝛽−1𝐶1 ≥ �̃� − 𝑐

𝛽−1
0 𝐶1 ≥ 𝑐0.
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Step 4. Proof of (2.27). We fix 𝜆 > 0, 𝑗 ∈ Z≥0. As lim
𝑁→+∞

𝑘𝑁 = +∞, there exists 𝑁1 ∈ Z≥𝑁0 such

that 𝑘𝑁 > 𝜆 + 𝑗 for 𝑁 ∈ Z≥𝑁1 . Then by (3.2) and 𝐴𝑛𝑇
𝑘𝑛
𝑛 ≤ 1, we have

|𝐷 𝑗𝐸∗(𝑡, 𝑥) | + |𝐷 𝑗𝐽∗(𝑡, 𝑥) | ≤ 𝐴𝑁 (𝑇 − 𝑡)2𝑘𝑁 ≤ 𝐴𝑁𝑇
𝑘𝑁
𝑁 (𝑇 − 𝑡)𝑘𝑁 ≤ (𝑇 − 𝑡)𝑘𝑁 ≤ (𝑇 − 𝑡)𝜆,

for 𝑇 − 𝑡 ∈ [𝑇𝑁+1, 𝑇𝑁 ], (𝑡, 𝑥) ∈ C, 𝑁 ∈ Z≥𝑁1 . As lim𝑁→+∞ 𝑇𝑁 = 0, we have

|𝐷 𝑗𝐸∗(𝑡, 𝑥) | + |𝐷 𝑗𝐽∗(𝑡, 𝑥) | ≤ (𝑇 − 𝑡)𝜆, ∀ 𝑇 − 𝑡 ∈ (0, 𝑇𝑁1], (𝑡, 𝑥) ∈ C . (3.6)

As 𝜌∗, 𝜙∗ ∈ 𝐶∞([0, 𝑇) ×R𝑑) (see footnote 6), we have 𝐸∗, 𝐽∗ ∈ 𝐶∞([0, 𝑇) ×R𝑑) by (2.24). Thus, there
exists a constant 𝐶 ( 𝑗 , 𝑇𝑁1 ) > 0 such that

|𝐷 𝑗𝐸∗(𝑡, 𝑥) | + |𝐷 𝑗𝐽∗(𝑡, 𝑥) | ≤ 𝐶 ( 𝑗 , 𝑇𝑁1 ), ∀ 𝑇 − 𝑡 ∈ [𝑇𝑁1 , 𝑇], |𝑥 | ≤ 2𝑇.

Then (recall that C =
{
(𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 : |𝑥 | < 2(𝑇 − 𝑡)

}
)

|𝐷 𝑗𝐸∗(𝑡, 𝑥) | + |𝐷 𝑗𝐽∗(𝑡, 𝑥) | ≤ 𝐶 ( 𝑗 , 𝑇𝑁1 )𝑇−𝜆
𝑁1

(𝑇 − 𝑡)𝜆, ∀ 𝑇 − 𝑡 ∈ [𝑇𝑁1 , 𝑇], (𝑡, 𝑥) ∈ C,

which along with with (3.6) implies (2.27). �

3.2. Proof of main lemmas

We define the following auxiliary spaces

𝒴0 := { 𝑓 ∈ 𝐶∞([0, +∞)) : 𝑓 ′ = 0 in [0, 1] ∪ [2, +∞)} , (3.7)

𝒳∗
𝜆 :=

⎧⎪⎨⎪⎩ 𝑓 (𝑡, 𝑥, 𝑠) =
𝑛∑
𝑗=0

𝑓 𝑗 (𝑡, 𝑥)𝜂 𝑗
(
𝑇 − 𝑡

𝑠

)
: 𝑛 ∈ Z≥0, 𝑓 𝑗 ∈ 𝒳𝜆, 𝜂 𝑗 ∈ 𝒴0, ∀ 𝑗

⎫⎪⎬⎪⎭ . (3.8)

Note that 𝜂 ∈ 𝒴0, 𝒴0 is a ring, and 𝒳∗
𝜆 is a linear vector space.

Lemma 3.4.

(i) Let 𝜆, 𝜇 ∈ C, 𝑓 ∈ 𝒳∗
𝜆 , 𝑔 ∈ 𝒳∗

𝜇 . Then � 𝑓 ∈ 𝒳∗
𝜆−2, 𝑓 𝑔 ∈ 𝒳∗

𝜆+𝜇, 𝜕𝛼 𝑓 𝜕𝛼𝑔 ∈ 𝒳∗
𝜆+𝜇−2.

(ii) Let 𝜆, 𝜇 ∈ R and 𝑗 ∈ Z≥0 be such that 𝜆 > 𝑗 + 𝜇. If 𝑓 ∈ 𝒳∗
𝜆 , then (𝑇 − 𝑡)−𝜇𝐷 𝑗 𝑓 ∈ 𝐿∞(C × (0, 1]).

Here the operators �, 𝜕𝛼 and D are only acted on (𝑡, 𝑥) and not on s.

Lemma 3.5.

(i) Let 𝜆, 𝜇 ∈ C, 𝑓 ∈ 𝒳∗
𝜆 , 𝑔 ∈ 𝒳∗

𝜇 . Then Δ 𝑓 ∈ 𝒳∗
𝜆−2, 𝜕𝑡 𝑓 ∈ 𝒳∗

𝜆−1, 𝑓 𝑔 ∈ 𝒳∗
𝜆+𝜇.

(ii) Let 𝜆, 𝜇 ∈ R and 𝑗 ∈ Z≥0 be such that 𝜆 > 𝑗 + 𝜇. If 𝑓 ∈ 𝒳∗
𝜆 , then (𝑇 − 𝑡)−𝜇𝐷 𝑗

𝑥 𝑓 ∈ 𝐿∞(C × (0, 1]).

Proof. By the definition of 𝒳∗
𝜆 , it suffices to prove the result for 𝑓 (𝑡, 𝑥, 𝑠) = 𝑓1 (𝑡, 𝑥)𝜂1

(
𝑇 −𝑡
𝑠

)
, 𝑔(𝑡, 𝑥, 𝑠) =

𝑔1 (𝑡, 𝑥)𝜂1
(
𝑇 −𝑡
𝑠

)
for some 𝑓1 ∈ 𝒳𝜆, 𝑔1 ∈ 𝒳𝜇, 𝜂1, 𝜂1 ∈ 𝒴0.

In this case, Δ 𝑓 (𝑡, 𝑥, 𝑠) = Δ 𝑓1(𝑡, 𝑥)𝜂1
(
𝑇 −𝑡
𝑠

)
. By Lemma 2.3 (i), we have Δ 𝑓1 ∈ 𝒳𝜆−2, thus

Δ 𝑓 ∈ 𝒳∗
𝜆−2. We also have

𝜕𝑡 𝑓 (𝑡, 𝑥, 𝑠) = 𝜕𝑡 𝑓1(𝑡, 𝑥)𝜂1
(
(𝑇 − 𝑡)/𝑠

)
+ (𝑇 − 𝑡)−1 𝑓1(𝑡, 𝑥)𝜂2

(
(𝑇 − 𝑡)/𝑠

)
with 𝜂2 (𝑧) = −𝑧𝜂′1(𝑧) ∈ 𝒴0 (as 𝜂2 = 0, 𝜂′2 = 0 in [0, 1] ∪ [2, +∞)). By Lemma 2.3 (i), we have
𝜕𝑡 𝑓1 ∈ 𝒳𝜆−1, (𝑇 − 𝑡)−1 ∈ 𝒳−1, (𝑇 − 𝑡)−1 𝑓1 ∈ 𝒳𝜆−1, thus 𝜕𝑡 𝑓 ∈ 𝒳∗

𝜆−1.
In this case, ( 𝑓 𝑔) (𝑡, 𝑥, 𝑠) = ( 𝑓1𝑔1) (𝑡, 𝑥) (𝜂1𝜂1)

(
𝑇 −𝑡
𝑠

)
. By Lemma 2.3 (i), we have 𝑓1𝑔1 ∈ 𝒳𝜆+𝜇, as

𝒴0 is a ring we have 𝜂1𝜂1 ∈ 𝒴0, thus 𝑓 𝑔 ∈ 𝒳∗
𝜆+𝜇. This completes the proof of (i).
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Assume that 𝛼1, · · · , 𝛼𝑑 ∈ Z≥0 are such that 𝛼1 + · · · + 𝛼𝑑 = 𝑗 , then we have

(𝑇 − 𝑡)−𝜇𝜕𝛼1
𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 𝑓 (𝑡, 𝑥, 𝑠) = (𝑇 − 𝑡)−𝜇𝜕𝛼1

𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 𝑓1(𝑡, 𝑥)𝜂1((𝑇 − 𝑡)/𝑠).

Then (ii) follows from Lemma 2.3 (ii) and 𝜂1 ∈ 𝐿∞([0, +∞)). �

Proof of Lemma 3.4. By Lemma 3.5 (i), we have 𝑓 𝑔 ∈ 𝒳∗
𝜆+𝜇, Δ 𝑓 ∈ 𝒳∗

𝜆−2, 𝜕𝑡 𝑓 ∈ 𝒳∗
𝜆−1, 𝜕2

𝑡 𝑓 ∈ 𝒳∗
𝜆−2,

thus � 𝑓 = −𝜕2
𝑡 𝑓 + Δ 𝑓 ∈ 𝒳∗

𝜆−2. As a consequence, we have �( 𝑓 𝑔) ∈ 𝒳∗
(𝜆+𝜇)−2, (� 𝑓 )𝑔 ∈ 𝒳∗

(𝜆−2)+𝜇,
𝑓�𝑔 ∈ 𝒳∗

𝜆+(𝜇−2) , hence 𝜕𝛼 𝑓 𝜕𝛼𝑔 = (�( 𝑓 𝑔) − (� 𝑓 )𝑔 − 𝑓�𝑔)/2 ∈ 𝒳∗
𝜆+𝜇−2.

Assume that 𝛼0, 𝛼1, · · · , 𝛼𝑑 ∈ Z≥0 are such that 𝛼0 + · · · + 𝛼𝑑 = 𝑗 . By Lemma 3.5 (i), we have
𝜕𝛼0
𝑡 𝑓 ∈ 𝒳∗

𝜆−𝛼0
. Then by Lemma 3.5 (ii) and 𝜆 − 𝛼0 > 𝑗 ′ + 𝜇 (here 𝑗 ′ = 𝛼1 + · · · + 𝛼𝑑 = 𝑗 − 𝛼0), we have

(𝑇 − 𝑡)−𝜇 |𝜕𝛼0
𝑡 𝜕𝛼1

𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 𝑓 | ≤ (𝑇 − 𝑡)−𝜇 |𝐷 𝑗′

𝑥 𝜕
𝛼0
𝑡 𝑓 | ∈ 𝐿∞(C × (0, 1]).

This completes the proof. �

Now we are in a position to prove Lemma 3.1.

Proof of Lemma 3.1. For 𝑡 ∈ [0, 𝑇), 𝑥 ∈ R𝑑 , 𝑠 ∈ (0, +∞) and 𝑁 ∈ Z≥0, let

𝜌𝑁 ∗(𝑡, 𝑥, 𝑠) :=
𝑁∑
𝑛=0

𝜌𝑛 (𝑡, 𝑥)𝑏𝑛 + 𝜂

(
𝑇 − 𝑡

𝑠

)
𝜌𝑁+1(𝑡, 𝑥)𝑏𝑁+1,

𝜙𝑁 ∗(𝑡, 𝑥, 𝑠) :=
𝑁∑
𝑛=0

𝜙𝑛 (𝑡, 𝑥)𝑏𝑛 + 𝜂

(
𝑇 − 𝑡

𝑠

)
𝜙𝑁+1(𝑡, 𝑥)𝑏𝑁+1.

Then by (2.23), for all 𝑁 ∈ Z≥𝑁0−1, we have

𝜌∗(𝑡, 𝑥) = 𝜌𝑁 ∗(𝑡, 𝑥, 𝑇𝑁+1), 𝜙∗(𝑡, 𝑥) = 𝜙𝑁 ∗(𝑡, 𝑥, 𝑇𝑁+1), ∀ 𝑇 − 𝑡 ∈ [𝑇𝑁+1, 𝑇𝑁 ], (𝑡, 𝑥) ∈ C .

Let

𝐸𝑁 ∗ = 𝜌𝑝𝑁 ∗ + 𝜌𝑁 ∗𝜕
𝛼𝜙𝑁 ∗𝜕𝛼𝜙𝑁 ∗ − 𝑏�𝜌𝑁 ∗, 𝐽𝑁 ∗ = 2𝜕𝛼𝜌𝑁 ∗𝜕𝛼𝜙𝑁 ∗ + 𝜌𝑁 ∗�𝜙𝑁 ∗. (3.9)

Then by (2.24), for all 𝑁 ∈ Z≥𝑁0−1, we have

𝐸∗(𝑡, 𝑥) = 𝐸𝑁 ∗(𝑡, 𝑥, 𝑇𝑁+1), 𝐽∗(𝑡, 𝑥) = 𝐽𝑁 ∗(𝑡, 𝑥, 𝑇𝑁+1), ∀ 𝑇 − 𝑡 ∈ [𝑇𝑁+1, 𝑇𝑁 ], (𝑡, 𝑥) ∈ C .

Now (3.2) is reduced to the proof of

(𝑇 − 𝑡)−2𝑘𝑁 (𝐷 𝑗𝐸𝑁 ∗, 𝐷
𝑗𝐽𝑁 ∗) ∈ 𝐿∞(C × (0, 1]), ∀ 𝑗 ∈ Z ∩ [0, 𝑘𝑁 ], 𝑁 ∈ Z≥𝑁0−1. (3.10)

For 𝑡 ∈ [0, 𝑇), 𝑥 ∈ R𝑑 , 𝑠 ∈ (0, +∞), let

𝜌𝑁 ,𝑛 (𝑡, 𝑥, 𝑠) :=
⎧⎪⎪⎨⎪⎪⎩
𝜌𝑛 (𝑡, 𝑥) 𝑛 ∈ Z ∩ [0, 𝑁]
𝜌∗𝑛 (𝑡, 𝑥, 𝑠) 𝑛 = 𝑁 + 1
0 𝑛 ∈ Z≥𝑁+2

,

𝜙𝑁 ,𝑛 (𝑡, 𝑥, 𝑠) :=
⎧⎪⎪⎨⎪⎪⎩
𝜙𝑛 (𝑡, 𝑥) 𝑛 ∈ Z ∩ [0, 𝑁]
𝜙∗𝑛 (𝑡, 𝑥, 𝑠) 𝑛 = 𝑁 + 1
0 𝑛 ∈ Z≥𝑁+2

.

where

𝜌∗𝑛 (𝑡, 𝑥, 𝑠) := 𝜂 ((𝑇 − 𝑡)/𝑠) 𝜌𝑛 (𝑡, 𝑥), 𝜙∗𝑛 (𝑡, 𝑥, 𝑠) := 𝜂 ((𝑇 − 𝑡)/𝑠) 𝜙𝑛 (𝑡, 𝑥), ∀ 𝑛 ∈ Z≥0. (3.11)
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As 𝜌𝑛 ∈ 𝒳𝜇𝑛 , 𝜙𝑛 ∈ 𝒳𝜆𝑛 for all 𝑛 ∈ Z≥0, we have 𝜌∗𝑛, 𝜌𝑁 ,𝑛 ∈ 𝒳∗
𝜇𝑛 , 𝜙∗𝑛, 𝜙𝑁 ,𝑛 ∈ 𝒳∗

𝜆𝑛
for all 𝑛, 𝑁 ∈ Z≥0.

For 𝑡 ∈ [0, 𝑇), 𝑥 ∈ R𝑑 , 𝑠 ∈ (0, +∞) and 𝑁 ∈ Z≥0, we have

𝜌𝑁 ∗(𝑡, 𝑥, 𝑠) :=
𝑁+1∑
𝑛=0

𝜌𝑁 ,𝑛 (𝑡, 𝑥, 𝑠)𝑏𝑛, 𝜙𝑁 ∗(𝑡, 𝑥, 𝑠) :=
𝑁+1∑
𝑛=0

𝜙𝑁 ,𝑛 (𝑡, 𝑥, 𝑠)𝑏𝑛.

Then by (3.9), (2.5) and 𝜌𝑁 ,𝑛 (𝑡, 𝑥, 𝑠) = 𝜌𝑛 (𝑡, 𝑥) for 𝑛 ∈ Z ∩ [0, 𝑁], we have

𝐸𝑁 ∗(𝑡, 𝑥, 𝑠) =
𝑝 (𝑁+1)∑
𝑛=𝑁+1

𝐸∗
𝑁 ,𝑛 (𝑡, 𝑥, 𝑠)𝑏

𝑛, 𝐽𝑁 ∗(𝑡, 𝑥, 𝑠) =
2(𝑁+1)∑
𝑛=𝑁+1

𝐽∗𝑁 ,𝑛 (𝑡, 𝑥, 𝑠)𝑏
𝑛, (3.12)

with (note that 𝜌𝑁 ,𝑛 (𝑡, 𝑥, 𝑠) = 0 for 𝑛 ∈ Z≥𝑁+2)

𝐸∗
𝑁 ,𝑛 =

∑
𝑛1+···+𝑛𝑝=𝑛

𝜌𝑁 ,𝑛1𝜌𝑁 ,𝑛2 · · · 𝜌𝑁 ,𝑛𝑝 +
∑

𝑛1+𝑛2+𝑛3=𝑛

𝜌𝑁 ,𝑛1𝜕
𝛼𝜙𝑁 ,𝑛2𝜕𝛼𝜙𝑁 ,𝑛3 − �𝜌𝑁 ,𝑛−1,

𝐽∗𝑁 ,𝑛 = 2
∑

𝑛1+𝑛2=𝑛

𝜕𝛼𝜌𝑁 ,𝑛1𝜕𝛼𝜙𝑁 ,𝑛2 +
∑

𝑛1+𝑛2=𝑛

𝜌𝑁 ,𝑛1�𝜙𝑁 ,𝑛2 .

By Lemma 3.4 (i), we have 𝐸∗
𝑁 ,𝑛 ∈ 𝒳∗

2𝑛(𝛽−1)−2𝑝𝛽/(𝑝−1) , 𝐽
∗
𝑁 ,𝑛 ∈ 𝒳∗

(2𝑛+1) (𝛽−1)−2𝑝𝛽/(𝑝−1) , where we have
used the facts that 𝜇𝑛1 + · · · + 𝜇𝑛𝑝 = 𝜇𝑛−1 − 2 if 𝑛1 + · · · + 𝑛𝑝 = 𝑛, 𝜇𝑛1 + 𝜆𝑛2 + 𝜆𝑛3 − 2 = 𝜇𝑛−1 − 2 =
2𝑛(𝛽 − 1) − 2𝑝𝛽/(𝑝 − 1) if 𝑛1 + 𝑛2 + 𝑛3 = 𝑛 and 𝜇𝑛1 + 𝜆𝑛2 − 2 = (2𝑛 − 1) (𝛽 − 1) − 2𝛽/(𝑝 − 1) − 2 =
(2𝑛 + 1) (𝛽 − 1) − 2𝑝𝛽/(𝑝 − 1)if 𝑛1 + 𝑛2 = 𝑛.

If 𝑛 ≥ 𝑁 + 1 and 𝑗 ∈ Z ∩ [0, 𝑘𝑁 ], then we get by (3.1) that

(2𝑛 + 1) (𝛽 − 1) − 2𝑝𝛽/(𝑝 − 1) − 𝑗 > 2𝑛(𝛽 − 1) − 2𝑝𝛽/(𝑝 − 1) − 𝑗

> 2𝑁 (𝛽 − 1) − 2𝑝𝛽/(𝑝 − 1) − 𝑗 > 3𝑘𝑁 − 𝑗 ≥ 2𝑘𝑁 .

Thus, by Lemma 3.4 (ii), we have (𝑇 − 𝑡)−2𝑘𝑁𝐷 𝑗𝐸∗
𝑁 ,𝑛 ∈ 𝐿∞(C × (0, 1]) for 𝑛 ∈ Z∩ [𝑁 + 1, 𝑝(𝑁 + 1)],

and (𝑇 − 𝑡)−2𝑘𝑁𝐷 𝑗𝐽∗𝑁 ,𝑛 ∈ 𝐿∞(C× (0, 1]) for 𝑛 ∈ Z∩ [𝑁 +1, 2(𝑁 +1)], which along with (3.12) implies
(3.10). �

Next we prove Lemma 3.2.

Proof of Lemma 3.2. For (𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 , and any fixed {𝑇𝑛}𝑛≥0 satisfying 𝑇𝑛 = 𝑇 for 0 ≤ 𝑛 < 𝑁0
and 0 < 𝑇𝑛 ≤ 𝑇𝑛−1/4 for 𝑛 ≥ 𝑁0, we define 𝜌∗, 𝜙∗ by (2.23), then ((𝜌∗𝑛, 𝜙∗𝑛) is defined in (3.11))

𝜌∗(𝑡, 𝑥) =
∞∑
𝑛=0

𝜌∗𝑛 (𝑡, 𝑥, 𝑇𝑛)𝑏𝑛, 𝜙∗(𝑡, 𝑥) =
∞∑
𝑛=0

𝜙∗𝑛 (𝑡, 𝑥, 𝑇𝑛)𝑏𝑛,

(𝜌∗ − 𝜌0) (𝑡, 𝑥) =
∞∑
𝑛=1

𝜌∗𝑛 (𝑡, 𝑥, 𝑇𝑛)𝑏𝑛, (𝜙∗ − 𝜙0) (𝑡, 𝑥) =
∞∑
𝑛=1

𝜙∗𝑛 (𝑡, 𝑥, 𝑇𝑛)𝑏𝑛.

Recall that 𝜌∗𝑛 ∈ 𝒳∗
𝜇𝑛 and 𝜙∗𝑛 ∈ 𝒳∗

𝜆𝑛
for all 𝑛 ∈ Z≥0. By (2.22), we have

𝜆𝑛 − 𝑗 = (2𝑛 − 1) (𝛽 − 1) − 𝑗 > (𝑛 − 1) (𝛽 − 1) − 𝑗 , ∀ 𝑛 ∈ Z+,

𝜇𝑛 − 𝑗 = 2𝑛(𝛽 − 1) − 2𝛽
𝑝 − 1

− 𝑗 > 𝑛(𝛽 − 1) − 2𝛽
𝑝 − 1

− 𝑗 , ∀ 𝑛 ∈ Z+.
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Thus, by Lemma 3.4 (ii), for any 𝑗 , 𝑛 ∈ Z≥0, there exists a constant 𝐵𝑛, 𝑗 > 0, which is independent of
the sequence {𝑇𝑛}𝑛≥0, such that for all (𝑡, 𝑥) ∈ C, we have

(𝑇 − 𝑡) 𝑗−(𝑛−1) (𝛽−1) |𝐷 𝑗𝜙∗𝑛 (𝑡, 𝑥, 𝑇𝑛) | + (𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗−𝑛(𝛽−1) |𝐷 𝑗 𝜌∗𝑛 (𝑡, 𝑥, 𝑇𝑛) | ≤ 𝐵𝑛, 𝑗 ,

which gives (recalling that 𝜂((𝑇 − 𝑡)/𝑇𝑛)) ≠ 0 implies 𝑇 − 𝑡 ≤ 2𝑇𝑛)

(𝑇 − 𝑡) 𝑗 |𝐷 𝑗𝜙∗𝑛 (𝑡, 𝑥, 𝑇𝑛) | + (𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗−𝛽+1 |𝐷 𝑗 𝜌∗𝑛 (𝑡, 𝑥, 𝑇𝑛) | ≤ 𝐵𝑛, 𝑗 (2𝑇𝑛) (𝑛−1) (𝛽−1) .

Let 𝑇𝑛 := 𝑇 for 0 ≤ 𝑛 < 𝑁0 and for 𝑛 ≥ 𝑁0 we let

𝐵𝑛 := 2𝑛 max
0≤ 𝑗≤𝑛−𝑁0

𝐵𝑛, 𝑗 , 𝑇𝑛 := min
(
𝐵
−1/[ (𝑛−1) (𝛽−1) ]
𝑛 /2, 𝑇𝑛−1/4

)
.

Now we prove that {𝑇𝑛}𝑛≥0 is a desired sequence for Lemma 3.2.
Let {𝑇𝑛}𝑛≥0 be such that 𝑇𝑛 = 𝑇 for 0 ≤ 𝑛 < 𝑁0 and 0 < 𝑇𝑛 ≤ min(𝑇𝑛, 𝑇𝑛−1/4) for 𝑛 ≥ 𝑁0. Then

𝐵𝑛 (2𝑇𝑛) (𝑛−1) (𝛽−1) ≤ 1 for 𝑛 ≥ 𝑁0. Fix 𝑗 ∈ Z≥0. For any (𝑡, 𝑥) ∈ C, we have

(𝑇 − 𝑡) 𝑗 |𝐷 𝑗 (𝜙∗ − 𝜙0) (𝑡, 𝑥) | + (𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗−𝛽+1 |𝐷 𝑗 (𝜌∗ − 𝜌0) (𝑡, 𝑥) |

≤
∞∑
𝑛=1

(
(𝑇 − 𝑡) 𝑗 |𝐷 𝑗𝜙∗𝑛 (𝑡, 𝑥, 𝑇𝑛) | + (𝑇 − 𝑡)

2𝛽
𝑝−1+ 𝑗−𝛽+1 |𝐷 𝑗 𝜌∗𝑛 (𝑡, 𝑥, 𝑇𝑛) |

)
≤

∞∑
𝑛=1

𝐵𝑛, 𝑗 (2𝑇𝑛) (𝑛−1) (𝛽−1) ≤
∞∑
𝑛=1

𝐵𝑛, 𝑗 (2𝑇𝑛) (𝑛−1) (𝛽−1)

≤
𝑁0+ 𝑗−1∑
𝑛=1

𝐵𝑛, 𝑗 (2𝑇𝑛) (𝑛−1) (𝛽−1) +
∞∑

𝑛=𝑁0+ 𝑗
2−𝑛𝐵𝑛 (2𝑇𝑛) (𝑛−1) (𝛽−1)

≤
𝑁0+ 𝑗−1∑
𝑛=1

𝐵𝑛, 𝑗 (2𝑇𝑛) (𝑛−1) (𝛽−1) +
∞∑

𝑛=𝑁0+ 𝑗
2−𝑛 ≤

𝑁0+ 𝑗−1∑
𝑛=1

𝐵𝑛, 𝑗 (2𝑇𝑛) (𝑛−1) (𝛽−1) + 1,

which implies (3.3), as the right hand side is a finite constant independent of (𝑡, 𝑥) ∈ C. �

Finally, we prove Lemma 3.3.

Proof of Lemma 3.3. By (2.7), Lemma A.6 and Lemma 2.3 (iii), we obtain (3.4). It suffices to prove
(3.5). By (2.7), we have

𝜕𝑡𝜙0 = (𝑇 − 𝑡)−𝛽
(
(𝛽 − 1)𝜙0(𝑍) + 𝑍𝜙′

0 (𝑍)
)
, 𝜕𝑟𝜙0 = (𝑇 − 𝑡)−𝛽𝜙′

0(𝑍).

It follows from (2.12) that

𝜙′
0(𝑍) =

(𝛽 − 1)𝜙0(𝑍)𝑣(𝑍)
1 − 𝑍𝑣(𝑍) , 𝑍𝜙′

0 (𝑍) + (𝛽 − 1)𝜙0(𝑍) =
(𝛽 − 1)𝜙0(𝑍)

1 − 𝑍𝑣(𝑍) . (3.13)

Hence,

(𝑇 − 𝑡)𝛽 (𝜕𝑡𝜙0 − |𝐷𝑥𝜙0 |) = (𝛽 − 1) 𝜙0(𝑍) (1 − |𝑣(𝑍) |)
1 − 𝑍𝑣(𝑍) . (3.14)
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Since 𝛽 > 1, 𝜙0(𝑍) > 0, 𝑣(𝑍) ∈ (−1, 1), 𝑍𝑣(𝑍) < 1 for all 𝑍 ∈ [0, +∞) and 𝜙0, 𝑣 ∈ 𝐶∞([0, +∞)), we
know that the right hand side of (3.14) is strictly positive and continuous. Thus, there exists �̃�1 ∈ (0, 𝑇)
such that

inf
𝑍 ∈[0,2]

(𝛽 − 1) 𝜙0(𝑍) (1 − |𝑣(𝑍) |)
1 − 𝑍𝑣(𝑍) > �̃�1.

On the other hand, by (2.7), we have (𝑇 − 𝑡)2𝛽/(𝑝−1) 𝜌0 = �̂�0(𝑍). As �̂�(𝑍) > 0 and �̂� ∈ 𝐶 ([0, +∞)),
there exists �̃�2 ∈ (0, 𝑇) such that inf𝑍 ∈[0,2] �̂�0 (𝑍) > �̃�2. As a consequence, letting �̃� := min(�̃�1, �̃�2) ∈
(0, 𝑇), we have (3.5). �

4. The blow-up solution of nonlinear wave equation

Fix 𝑇 = 1. Recall that C = {(𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 : |𝑥 | < 2(𝑇 − 𝑡)}. Let 𝑤∗ ∈ 𝐶∞(C;R),Ψ∗ ∈ 𝐶∞(C;R)
be such that both (2.28) and (2.29) hold; moreover, (2.27) also holds for 𝐸∗, 𝐽∗ defined by (2.30).

4.1. Derivation of the error equation

We construct a blow-up solution u to �𝑢 = |𝑢 |𝑝−1𝑢 of the form 𝑢 = (1 + ℎ)𝑤∗eiΦ∗ , where h is complex-
valued. First of all, we deduce the equation for the error h.

Lemma 4.1. Assume that 𝑢 = (1 + ℎ)𝑤∗ eiΦ∗ solves �𝑢 = |𝑢 |𝑝−1𝑢. Then h satisfies

�ℎ + 2 i 𝜕𝛼Φ∗𝜕𝛼ℎ + 2
𝜕𝛼𝑤∗
𝑤∗

𝜕𝛼ℎ − (𝑝 − 1)𝑤𝑝−1
∗ ℎr = 𝑤𝑝−1

∗ 𝜑1(ℎ) +
𝐸∗ − i 𝐽∗

𝑤∗
(1 + ℎ), (4.1)

where ℎr = Re ℎ = (ℎ + ℎ̄)/2 and

𝜑1(ℎ) = (|1 + ℎ|𝑝−1 − 1 − (𝑝 − 1)ℎr) (1 + ℎ) + (𝑝 − 1)ℎrℎ = 𝑂 (|ℎ|2).

The converse is also true.

Proof. This is a brute force computation. If 𝑢 = (1 + ℎ)𝑤∗eiΦ∗ , then for any 𝛼 ∈ Z ∩ [0, 𝑑], we have

𝜕𝛼𝑢 = 𝜕𝛼ℎ𝑤∗eiΦ∗ + (1 + ℎ)𝜕𝛼𝑤∗eiΦ∗ + i(1 + ℎ)𝑤∗eiΦ∗𝜕𝛼Φ∗.

Hence,

(�𝑢)e−iΦ∗ =(�ℎ + 2i𝜕𝛼ℎ𝜕𝛼Φ∗)𝑤∗ + 2𝜕𝛼ℎ𝜕𝛼𝑤∗

+ (1 + ℎ) (�𝑤∗ + 2i𝜕𝛼𝑤∗𝜕
𝛼Φ∗ − 𝑤∗𝜕

𝛼Φ∗𝜕𝛼Φ∗ + i�Φ∗𝑤∗)
(2.30)
========(�ℎ + 2i𝜕𝛼ℎ𝜕𝛼Φ∗)𝑤∗ + 2𝜕𝛼ℎ𝜕𝛼𝑤∗ + (1 + ℎ) (𝑤𝑝

∗ + i𝐽∗ − 𝐸∗),
|𝑢 |𝑝−1𝑢 =|1 + ℎ|𝑝−1 (1 + ℎ)𝑤𝑝

∗ eiΦ∗ .

By the definition of 𝜑1, we have 1 + (𝑝 − 1)ℎr + ℎ + 𝜑1(ℎ) = (1 + ℎ) |1 + ℎ|𝑝−1. Thus,

�𝑢 = |𝑢 |𝑝−1𝑢 ⇐⇒ �ℎ + 2i𝜕𝛼Φ∗𝜕𝛼ℎ + 2
𝜕𝛼𝑤∗
𝑤∗

𝜕𝛼ℎ + (1 + ℎ)
(
𝑤𝑝−1
∗ + i𝐽∗ − 𝐸∗

𝑤∗

)
=

(
1 + (𝑝 − 1)ℎr + ℎ + 𝜑1(ℎ)

)
𝑤𝑝−1
∗

⇐⇒ �ℎ + 2i𝜕𝛼Φ∗𝜕𝛼ℎ + 2
𝜕𝛼𝑤∗
𝑤∗

𝜕𝛼ℎ − (𝑝 − 1)𝑤𝑝−1
∗ ℎr = 𝑤𝑝−1

∗ 𝜑1 (ℎ) +
𝐸∗ − i𝐽∗

𝑤∗
(1 + ℎ).

This completes the proof of Lemma 4.1. �
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We fix a bump function 𝜉 ∈ 𝐶∞
𝑐 (R; [0, 1]) such that supp 𝜉 ⊂ [−1, 1] and 𝜉 [0,4/5] = 1. We define the

vector fields 𝑋,𝑌 by8

𝑋 (𝑡, 𝑥) := 𝐷Φ∗(𝑡, 𝑥)𝜉
(

3|𝑥 |
5(𝑇 − 𝑡)

)
, 𝑌 (𝑡, 𝑥) :=

𝐷𝑤∗(𝑡, 𝑥)
𝑤∗(𝑡, 𝑥)

𝜉

(
3|𝑥 |

5(𝑇 − 𝑡)

)
(4.2)

for (𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 . We also define the functions on [0, 𝑇) × R𝑑 by

𝑉∗(𝑡, 𝑥) := (𝑝 − 1)𝑤𝑝−1
∗ (𝑡, 𝑥)𝜉

(
3|𝑥 |

5(𝑇 − 𝑡)

)
, 𝑁∗(𝑡, 𝑥) :=

𝐸∗ − i 𝐽∗
𝑤∗

(𝑡, 𝑥)𝜉
(

3|𝑥 |
4(𝑇 − 𝑡)

)
. (4.3)

Then 𝑋,𝑌 ∈ 𝐶∞([0, 𝑇) ×R𝑑;R𝑑+1) and𝑉∗ ∈ 𝐶∞([0, 𝑇) ×R𝑑;R), 𝑁∗ ∈ 𝐶∞([0, 𝑇) ×R𝑑;C). Moreover,
we have

supp𝑥 𝑁∗(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3}, ∀ 𝑡 ∈ [0, 𝑇). (4.4)

Let 𝑐0 ∈ (0, 𝑇) satisfy (2.29). Let C1 := {(𝑡, 𝑥) ∈ [𝑇 − 𝑐0, 𝑇) × R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3} ⊂ C. Using
(2.28), (2.29) and (2.27), we have 𝑋0 (𝑡, 𝑥) > 0, 𝑉∗(𝑡, 𝑥) > 0 for all (𝑡, 𝑥) ∈ C1. The following lemma
gives more useful properties.

Lemma 4.2. There exists a constant 𝑀 > 0 such that

(𝑇 − 𝑡)
(
|𝐷𝑋 |
𝑋0

+ |𝑌 | + |𝐷𝑉∗ |
𝑉∗

)
≤ 𝑀, (4.5)

1
𝑀

(𝑇 − 𝑡)−𝛽 ≤𝑋0 ≤ 𝑀 (𝑇 − 𝑡)−𝛽 , 1
𝑀

(𝑇 − 𝑡)−2𝛽 ≤ 𝑉∗ ≤ 𝑀 (𝑇 − 𝑡)−2𝛽 (4.6)

on C1. Moreover, for any 𝑗 ∈ Z≥0,

(𝑇 − 𝑡)𝛽+ 𝑗 |𝐷 𝑗𝑋 | + (𝑇 − 𝑡)1+ 𝑗 |𝐷 𝑗𝑌 | + (𝑇 − 𝑡)2𝛽+ 𝑗 |𝐷 𝑗𝑉∗ | + (𝑇 − 𝑡)1+ 𝑗 |𝐷 𝑗𝑁∗ | ∈ 𝐿∞(C1). (4.7)

For any 𝑗 ∈ Z≥0 and 𝜆 > 0, there exists a constant 𝑀 𝑗 ,𝜆 > 0 such that

|𝐷 𝑗𝑁∗ | ≤ 𝑀 𝑗 ,𝜆 (𝑇 − 𝑡)𝜆 on C1. (4.8)

Proof. On C1, we have

𝑋 = 𝐷Φ∗, 𝑌 = 𝐷𝑤∗/𝑤∗, 𝑉∗ = (𝑝 − 1)𝑤𝑝−1
∗ . (4.9)

By (2.28), we have (𝑇 − 𝑡)𝛽𝑋0 = (𝑇 − 𝑡)𝛽𝜕𝑡Φ∗ ∈ 𝐿∞(C1) and (𝑇 − 𝑡)2𝛽𝑉∗ ∈ 𝐿∞(C1). By (2.29), we
have (𝑇 − 𝑡)𝛽𝑋0 = (𝑇 − 𝑡)𝛽𝜕𝑡Φ∗ ≥ 𝑐0, (𝑇 − 𝑡)2𝛽𝑉∗ = (𝑝 − 1) (𝑇 − 𝑡)2𝛽𝑤𝑝−1

∗ ≥ (𝑝 − 1)𝑐𝑝−1
0 on C1. This

proves (4.6).
It follows from (2.28) that (𝑇 − 𝑡)𝛽+1 |𝐷𝑋 | = (𝑇 − 𝑡)𝛽+1 |𝐷2Φ∗ | ∈ 𝐿∞(C1), hence by (𝑇 − 𝑡)𝛽𝑋0 ≥ 𝑐0

on C1, we have (𝑇 − 𝑡) |𝐷𝑋 |/𝑋0 ∈ 𝐿∞(C1). Similarly, by using (2.28) and (4.6), we get (𝑇 − 𝑡) (|𝑌 | +
|𝐷𝑉∗ |/𝑉∗) ∈ 𝐿∞(C1). This proves (4.5).

Next we prove (4.7) and (4.8). Recall the product rule: for smooth 𝑓 , 𝑔 and (𝛼0, 𝛼1, · · · , 𝛼𝑑) ∈ Z𝑑+1
≥0 ,

we have (see [24])

8Here we explain the notations to avoid ambiguities. For a smooth function 𝑓 (𝑡 , 𝑥) , we denote the action of the vector field
X on f by 𝑋 𝑓 , i.e., 𝑋 𝑓 = 𝑋𝛼𝜕

𝛼 𝑓 = 𝑋 𝛼𝜕𝛼 𝑓 , where 𝑋0 = 𝜕𝑡Φ∗ 𝜉 , 𝑋0 = −𝑋0 and 𝑋 𝑗 = 𝑋 𝑗 = 𝜕𝑗Φ∗ 𝜉 for 𝑗 ∈ Z ∩ [1, 𝑑 ].
The same clarification holds also for Y. Moreover, in (4.2), although 𝐷Φ∗ (𝑡 , 𝑥) is only defined for (𝑡 , 𝑥) ∈ C, we just simply let
𝑋 (𝑡 , 𝑥) = 0 for (𝑡 , 𝑥) ∈ ( [0, 𝑇 ) ×R𝑑) \ C, noting that 𝜉 (3 |𝑥 |/(5(𝑇 − 𝑡))) = 0 near the boundary of C. The same clarification
holds also for Y, and 𝑉∗ , 𝑁∗ in (4.3).
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𝜕𝛼0+𝛼1+···+𝛼𝑑

𝜕𝛼0
𝑡 𝜕𝛼1

𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑
( 𝑓 𝑔) =

𝛼0∑
𝑗=0

𝛼1∑
𝑗1=0

· · ·
𝛼𝑑∑
𝑗𝑑=0

(
𝛼0
𝑗0

) (
𝛼1
𝑗1

)
· · ·

(
𝛼𝑑
𝑗𝑑

)
× 𝜕 𝑗0+ 𝑗1+···+ 𝑗𝑑 𝑓

𝜕
𝑗0
𝑡 𝜕

𝑗1
𝑥1 · · · 𝜕

𝑗𝑑
𝑥𝑑

· 𝜕
𝛼0− 𝑗0+𝛼1− 𝑗1+···+𝛼𝑑− 𝑗𝑑𝑔

𝜕
𝛼0− 𝑗0
𝑡 𝜕

𝛼1− 𝑗1
𝑥1 · · · 𝜕𝛼𝑑− 𝑗𝑑𝑥𝑑

.

Hence,

|𝐷𝑛 ( 𝑓 𝑔) | �𝑛
𝑛∑
𝑗=0

|𝐷 𝑗 𝑓 | |𝐷𝑛− 𝑗𝑔 |, |𝐷𝑛
𝑥 ( 𝑓 𝑔) | �𝑛

𝑛∑
𝑗=0

|𝐷 𝑗
𝑥 𝑓 | |𝐷

𝑛− 𝑗
𝑥 𝑔 |, ∀ 𝑛 ∈ Z≥0, (4.10)

|𝑔𝐷𝑛 𝑓 | �𝑛 |𝐷𝑛 ( 𝑓 𝑔) | +
𝑛−1∑
𝑗=0

|𝐷 𝑗 𝑓 | |𝐷𝑛− 𝑗𝑔 |, ∀ 𝑛 ∈ Z+. (4.11)

As 𝑋 = 𝐷Φ∗ on C1, we get by (2.28) that

(𝑇 − 𝑡)𝛽+ 𝑗 |𝐷 𝑗𝑋 | ∈ 𝐿∞(C1), ∀ 𝑗 ∈ Z≥0. (4.12)

Now we use the induction argument to prove that

(𝑇 − 𝑡)1+ 𝑗 |𝐷 𝑗𝑌 | ∈ 𝐿∞(C1), ∀ 𝑗 ∈ Z≥0. (4.13)

By (4.5), we know that (4.13) holds for 𝑗 = 0. Assume that (4.13) holds for all 𝑗 ∈ Z ∩ [0, 𝑛 − 1] for
some 𝑛 ∈ Z+. Note that 𝐷𝑤∗ = 𝑤∗𝑌 on C1, hence by (4.11) we have

|𝑤∗𝐷
𝑛𝑌 | �𝑛 |𝐷𝑛 (𝐷𝑤∗) | +

𝑛∑
𝑗=1

|𝐷 𝑗𝑤∗ | |𝐷𝑛− 𝑗𝑌 | on C1.

Using (2.29), (2.28) and the induction assumption, we obtain

(𝑇 − 𝑡)1+𝑛 |𝐷𝑛𝑌 | ≤ 1
𝑐0

(𝑇 − 𝑡)1+𝑛+ 2𝛽
𝑝−1 |𝑤∗𝐷

𝑛𝑌 |

�𝑛 (𝑇 − 𝑡)1+𝑛+ 2𝛽
𝑝−1 |𝐷1+𝑛𝑤∗ | +

𝑛∑
𝑗=1

(𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗 |𝐷 𝑗𝑤∗ |(𝑇 − 𝑡)1+𝑛− 𝑗 |𝐷𝑛− 𝑗𝑌 | ∈ 𝐿∞(C1).

This proves (4.13).
Now we prove that

(𝑇 − 𝑡)
2𝛽
𝑝−1𝑚+ 𝑗 ��𝐷 𝑗 (𝑤𝑚

∗ )
�� ∈ 𝐿∞(C1), ∀ 𝑚 ∈ Z+, ∀ 𝑗 ∈ Z≥0. (4.14)

By (2.28), we know that (4.14) holds for 𝑚 = 1. We assume that (4.14) holds for 𝑚 − 1, where
𝑚 ∈ Z ∩ [2, +∞). By (4.10), for 𝑗 ∈ Z≥0 we have

��𝐷 𝑗 (𝑤𝑚
∗ )

�� = ��𝐷 𝑗 (𝑤𝑚−1
∗ 𝑤∗)

�� � 𝑗 𝑗∑
𝑖=0

��𝐷𝑖 (𝑤𝑚−1
∗ )

�� ��𝐷 𝑗−𝑖𝑤∗
�� ,

which gives

(𝑇 − 𝑡)
2𝛽
𝑝−1𝑚+ 𝑗 ��𝐷 𝑗 (𝑤𝑚

∗ )
�� � 𝑗 𝑗∑

𝑖=0
(𝑇 − 𝑡)

2𝛽
𝑝−1 (𝑚−1)+𝑖 ��𝐷𝑖 (𝑤𝑚−1

∗ )
�� (𝑇 − 𝑡)

2𝛽
𝑝−1+ 𝑗−𝑖

��𝐷 𝑗−𝑖𝑤∗
��

∈ 𝐿∞(C1).
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By the induction argument, we have (4.14). Letting 𝑚 = 𝑝 − 1 in (4.14), we get (using (4.9))

(𝑇 − 𝑡)2𝛽+ 𝑗 |𝐷 𝑗𝑉∗ | ∈ 𝐿∞(C1), ∀ 𝑗 ∈ Z≥0. (4.15)

Finally, we estimate 𝑁∗. Let 𝜉 (𝑡, 𝑥) := 𝜉 (3|𝑥 |/(4(𝑇 − 𝑡))). Then by Lemma 2.3 (iii), we have
(𝑇 − 𝑡) 𝑗𝐷 𝑗𝜉 ∈ 𝐿∞(C). Let 𝑁∗ := (𝐸∗ − i𝐽∗)𝜉, then 𝑁∗ = 𝑁∗/𝑤∗. By (4.10), we have���𝐷 𝑗𝑁∗

��� � 𝑗 𝑗∑
𝑖=0

��𝐷𝑖 (𝐸∗ − i𝐽∗)
�� ���𝐷 𝑗−𝑖𝜉

��� ,
hence by (2.27), for all 𝜆 > 0 and 𝑗 ∈ Z≥0 we have

(𝑇 − 𝑡)−𝜆
���𝐷 𝑗𝑁∗

��� � 𝑗 𝑗∑
𝑖=0

(𝑇 − 𝑡)−(𝜆+ 𝑗−𝑖)
��𝐷𝑖 (𝐸∗ − i𝐽∗)

�� (𝑇 − 𝑡) 𝑗−𝑖
���𝐷 𝑗−𝑖𝜉

��� ∈ 𝐿∞(C). (4.16)

Now we use the induction argument to prove that

(𝑇 − 𝑡)−𝜆 |𝐷 𝑗𝑁∗ | ∈ 𝐿∞(C1), ∀ 𝑗 ∈ Z≥0, ∀ 𝜆 > 0. (4.17)

For 𝑗 = 0, (4.17) follows from (4.16) and (2.29). Assume that (4.17) holds for all 𝑗 ∈ Z ∩ [0, 𝑛 − 1] for
some 𝑛 ∈ Z+. As 𝑁∗ = 𝑤∗𝑁∗, we get by (4.11) that

|𝑤∗𝐷
𝑛𝑁∗ | �𝑛

���𝐷𝑛𝑁∗

��� + 𝑛∑
𝑗=1

|𝐷 𝑗𝑤∗ | |𝐷𝑛− 𝑗𝑁∗ | on C1.

Using (2.27), (2.28), (2.29) and the induction assumption, for any 𝜆 > 0 we obtain

(𝑇 − 𝑡)−𝜆 |𝐷𝑛𝑁∗ | ≤
1
𝑐0

(𝑇 − 𝑡)−𝜆+
2𝛽
𝑝−1 |𝑤∗𝐷

𝑛𝑁∗ |

�𝑛 (𝑇 − 𝑡)
2𝛽
𝑝−1 (𝑇 − 𝑡)−𝜆

���𝐷𝑛𝑁∗

��� + 𝑛∑
𝑗=1

(𝑇 − 𝑡)
2𝛽
𝑝−1+ 𝑗

��𝐷 𝑗𝑤∗
�� (𝑇 − 𝑡)−(𝜆+ 𝑗)

��𝐷𝑛− 𝑗𝑁∗
�� ∈ 𝐿∞(C1).

This proves (4.17) for 𝑗 = 𝑛. By induction, we have (4.17), which is equivalent to (4.8).
Taking 𝜆 = 1 in (4.8), we get

(𝑇 − 𝑡)1+ 𝑗 |𝐷 𝑗𝑁∗ | ≤ 𝑇 𝑗+2 (𝑇 − 𝑡)−1 |𝐷 𝑗𝑁∗ | ∈ 𝐿∞(C1), ∀ 𝑗 ∈ Z≥0. (4.18)

Therefore, (4.7) follows from (4.12), (4.13), (4.15) and (4.18). �

4.2. Energy estimates for the linearized wave equation

Lemma 4.3. Let 𝑇∗ ∈ (0, 𝑐0) and ℎ ∈ 𝐶∞
𝑐 ([𝑇 − 𝑇∗, 𝑇) × R𝑑;C) be such that supp𝑥 ℎ(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 :

|𝑥 | ≤ 4(𝑇 − 𝑡)/3} for all 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇). We define the linear operator

Lℎ := �ℎ + 2 i 𝑋ℎ + 2𝑌ℎ −𝑉∗ℎr, (4.19)

where ℎr = (ℎ + ℎ̄)/2 and energy functionals

𝐸0 [ℎ] (𝑡) :=
1
2

∫
R𝑑

(
|𝐷ℎ(𝑡, 𝑥) |2 +𝑉∗(𝑡, 𝑥) |ℎr (𝑡, 𝑥) |2

)
d𝑥, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇), (4.20)

𝐸 𝑗 [ℎ] := 𝐸0 [𝐷 𝑗
𝑥ℎ], ∀ 𝑗 ∈ Z+. (4.21)
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Then there exist positive constants 𝑀1 > 1 and {𝐶 𝑗 } 𝑗∈Z≥0 such that√
𝐸 𝑗 [ℎ] (𝑡) ≤ 𝐶 𝑗

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1 𝑗∑
𝑖=0

��𝐷𝑖
𝑥Lℎ(𝑠)

��
𝐿2

(𝑇 − 𝑠) ( 𝑗−𝑖)𝛽
d𝑠, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇), ∀ 𝑗 ∈ Z≥0. (4.22)

Proof. Let 𝑇∗ ∈ (0, 𝑐0) and ℎ ∈ 𝐶∞
𝑐 ([𝑇 − 𝑇∗, 𝑇) × R𝑑;C) be such that

supp𝑥 ℎ(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3}, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇).

We define the energy momentum tensor 𝑇 [ℎ] by

𝑇 [ℎ]𝜇𝜈 := Re
(
𝜕𝜇ℎ𝜕𝜈ℎ

)
− 1

2
𝑚𝜇𝜈

(
𝜕𝛼ℎ𝜕𝛼ℎ +𝑉∗ℎ2

r

)
, ∀ 𝜇, 𝜈 ∈ Z ∩ [0, 𝑑], (4.23)

where we have used the Einstein’s convention in 𝜕𝛼ℎ𝜕𝛼ℎ. Then we have

𝐸0 [ℎ] (𝑡) =
∫
R𝑑

𝑇 [ℎ]00 (𝑡, 𝑥) d𝑥, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇). (4.24)

We define

𝑃𝑋𝜇 [ℎ] := 𝑇 [ℎ]𝜇𝜈𝑋𝜈 , ∀ 𝜇 ∈ Z ∩ [0, 𝑑] . (4.25)

Let’s first claim that there exists a constant �̃�0 > 0 such that

𝑃𝑋0 [ℎ] ≤ �̃�0𝑇 [ℎ]00𝑋
0 ≤ 0 on C∗ := {(𝑡, 𝑥) ∈ [𝑇 − 𝑇∗, 𝑇) × R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3}; (4.26)

and there exists a constant 𝐶∗ > 0 such that��𝜕𝜇𝑃𝑋𝜇 [ℎ]�� ≤ 𝐶∗(𝑇 − 𝑡)−𝛽
(
(𝑇 − 𝑡)−1𝑇 [ℎ]00 +

√
𝑇 [ℎ]00 |Lℎ|

)
on C∗, (4.27)

and moreover, for all 𝑗 ∈ Z≥0,���𝐷 𝑗
𝑥 (L𝐷𝑥ℎ − 𝐷𝑥Lℎ)

���
𝐿2
𝑥

� 𝑗

𝑗∑
𝑖=0

(𝑇 − 𝑡)−𝛽−1+𝑖− 𝑗√𝐸𝑖 [ℎ] (𝑡) ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇), (4.28)

where the implicit constants only depend on 𝑋,𝑌,𝑉∗, 𝑁∗ (and they are independent of h).
Now we prove (4.22) by the induction argument. We first consider 𝑗 = 0. For all 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇), by

(4.24), 𝑋0 = −𝑋0, supp𝑥 ℎ(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3}, (4.26) and (4.6), we have

𝐸0 [ℎ] (𝑡) ≤
∫
R𝑑

−𝑃𝑋0 [ℎ] (𝑡, 𝑥)
�̃�0𝑋0 (𝑡, 𝑥)

d𝑥 ≤ 𝑀

�̃�0
(𝑇 − 𝑡)𝛽

∫
R𝑑

−𝑃𝑋0 [ℎ] (𝑡, 𝑥) d𝑥. (4.29)

Let

𝐸0 [ℎ] (𝑡) =
∫
R𝑑

−𝑃𝑋0 [ℎ] (𝑡, 𝑥) d𝑥 ≥ 0, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇).

By the divergence theorem (recall that 𝜕0 = −𝜕0 = −𝜕𝑡 ), we get

d
d𝑡
𝐸0 [ℎ] (𝑡) =

∫
R𝑑

𝜕0𝑃𝑋0 [ℎ] (𝑡, 𝑥) d𝑥 =
∫
R𝑑

𝜕𝜇𝑃𝑋𝜇 [ℎ] (𝑡, 𝑥) d𝑥, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇).
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Using (4.27), (4.24) and Cauchy’s inequality, we obtain���� d
d𝑡
𝐸0 [ℎ] (𝑡)

���� ≤ 𝐶∗(𝑇 − 𝑡)−𝛽
(
(𝑇 − 𝑡)−1𝐸0 [ℎ] (𝑡) +

√
𝐸0 [ℎ] (𝑡)‖Lℎ(𝑡)‖𝐿2

𝑥

)
, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇).

Hence, by (4.29) and ℎ ∈ 𝐶∞
𝑐 ([𝑇 − 𝑇∗, 𝑇) × R𝑑;C), for all 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇) we have

𝐸0 [ℎ] (𝑡) ≤
𝑀

�̃�0
(𝑇 − 𝑡)𝛽𝐸0 [ℎ] (𝑡) ≤

𝑀

�̃�0
(𝑇 − 𝑡)𝛽

∫ 𝑇

𝑡

���� d
d𝑡
𝐸0 [ℎ] (𝑠)

���� d𝑠

≤ 𝑀𝐶∗
�̃�0

(𝑇 − 𝑡)𝛽
∫ 𝑇

𝑡
(𝑇 − 𝑠)−𝛽

(
(𝑇 − 𝑠)−1𝐸0 [ℎ] (𝑠) +

√
𝐸0 [ℎ] (𝑠)‖Lℎ(𝑠)‖𝐿2

𝑥

)
d𝑠.

By Grönwall’s lemma, we have

√
𝐸0 [ℎ] (𝑡) ≤

𝑀𝐶∗
2�̃�0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

) 𝑀𝐶0/𝑐0+𝛽
2

‖Lℎ(𝑠)‖𝐿2
𝑥

d𝑠, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇).

Letting 𝑀1 := 𝑀𝐶∗/�̃�0+𝛽
2 > 0, we know that (4.22) holds for 𝑗 = 0.

Let 𝑛 ∈ Z+. We assume that (4.22) holds for all 𝑗 ∈ Z ∩ [0, 𝑛 − 1]. Then by (4.22) for 𝑗 = 𝑛 − 1 and
(4.28), for 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇) we have (also using (4.20) and (4.21))

√
𝐸𝑛 [ℎ] (𝑡) =

√
𝐸𝑛−1 [𝐷𝑥ℎ] (𝑡) �𝑛

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1 𝑛−1∑
𝑗=0

‖𝐷 𝑗
𝑥L𝐷𝑥ℎ(𝑠)‖𝐿2

𝑥

(𝑇 − 𝑠) (𝑛−1− 𝑗)𝛽 d𝑠

�𝑛

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1 𝑛−1∑
𝑗=0

‖𝐷 𝑗+1
𝑥 Lℎ(𝑠)‖𝐿2

𝑥
+
∑ 𝑗
𝑖=0(𝑇 − 𝑠)−𝛽−1+𝑖− 𝑗√𝐸𝑖 [ℎ] (𝑠)

(𝑇 − 𝑠) (𝑛−1− 𝑗)𝛽 d𝑠

�𝑛

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1 𝑛∑
𝑗=1

‖𝐷 𝑗
𝑥Lℎ(𝑠)‖𝐿2

𝑥

(𝑇 − 𝑠) (𝑛− 𝑗)𝛽
d𝑠 + 𝐼𝑛 (𝑡),

where

𝐼𝑛 (𝑡) :=
𝑛−1∑
𝑗=0

𝑗∑
𝑖=0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1

(𝑇 − 𝑠)−1+𝑖− 𝑗−(𝑛− 𝑗)𝛽√𝐸𝑖 [ℎ] (𝑠) d𝑠.

For 𝑇 − 𝑇∗ ≤ 𝑡 < 𝑠 < 𝑇 , 𝑗 ≥ 𝑖 ≥ 0 we have 0 < 𝑇 − 𝑠 < 𝑇∗ < 𝑐0 < 𝑇 = 1 and (𝑇 − 𝑠)−1+𝑖− 𝑗−(𝑛− 𝑗)𝛽 =
(𝑇 − 𝑠)−1−(𝑛−𝑖)𝛽+( 𝑗−𝑖) (𝛽−1) ≤ (𝑇 − 𝑠)−1−(𝑛−𝑖)𝛽 (as 𝛽 > 1). Then

𝐼𝑛 (𝑡) ≤ 𝑛
𝑛−1∑
𝑖=0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1

(𝑇 − 𝑠)−1−(𝑛−𝑖)𝛽√𝐸𝑖 [ℎ] (𝑠) d𝑠.

Using the induction assumption and Fubini’s theorem, we have

𝐼𝑛 (𝑡) �𝑛
𝑛−1∑
𝑖=0

𝑖∑
𝑗=0

∫ 𝑇

𝑡

((𝑇 − 𝑡)/(𝑇 − 𝑠))𝑀1

(𝑇 − 𝑠)1+(𝑛−𝑖)𝛽

∫ 𝑇

𝑠

(
𝑇 − 𝑠

𝑇 − 𝜏

)𝑀1 ‖𝐷 𝑗
𝑥Lℎ(𝜏)‖𝐿2

𝑥

(𝑇 − 𝜏) (𝑖− 𝑗)𝛽
d𝜏 d𝑠

=
𝑛−1∑
𝑖=0

𝑖∑
𝑗=0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝜏

)𝑀1 ‖𝐷 𝑗
𝑥Lℎ(𝜏)‖𝐿2

𝑥

(𝑇 − 𝜏) (𝑖− 𝑗)𝛽

∫ 𝜏

𝑡

d𝑠
(𝑇 − 𝑠)1+(𝑛−𝑖)𝛽 d𝜏
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≤
𝑛−1∑
𝑖=0

𝑖∑
𝑗=0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝜏

)𝑀1 ‖𝐷 𝑗
𝑥Lℎ(𝜏)‖𝐿2

𝑥

(𝑇 − 𝜏) (𝑖− 𝑗)𝛽
1

(𝑇 − 𝜏) (𝑛−𝑖)𝛽
d𝜏

≤ 𝑛
𝑛−1∑
𝑗=0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝜏

)𝑀1 ‖𝐷 𝑗
𝑥Lℎ(𝜏)‖𝐿2

𝑥

(𝑇 − 𝜏) (𝑛− 𝑗)𝛽
d𝜏.

Therefore, we obtain (4.22) for 𝑗 = 𝑛. This proves (4.22) for all 𝑗 ∈ Z≥0.
Thus, it remains to prove (4.26), (4.27) and (4.28). We start with

𝑃𝑋0 [ℎ] = 𝑇 [ℎ]0𝜈𝑋𝜈 = 𝑇 [ℎ]00𝑋
0 +

𝑑∑
𝑖=1

𝑇 [ℎ]0𝑖𝑋 𝑖 .

On C∗ ⊂ C1, by (4.2), we have −𝑋0 = 𝑋0 = 𝜕𝑡Φ∗ and 𝑋 𝑖 = 𝑋𝑖 = 𝜕𝑖Φ∗ for 𝑖 ∈ Z∩ [1, 𝑑], hence by (4.23)
and Cauchy’s inequality,����� 𝑑∑

𝑖=1
𝑇 [ℎ]0𝑖𝑋 𝑖

����� ≤ 𝑑∑
𝑖=1

|𝜕𝑡ℎ| |𝜕𝑖ℎ| |𝜕𝑖Φ∗ | ≤ |𝜕𝑡ℎ| |𝐷𝑥ℎ| |𝐷𝑥Φ∗ | ≤
|𝜕𝑡ℎ|2 + |𝐷𝑥ℎ|2

2
|𝐷𝑥Φ∗ |

≤ 𝑇 [ℎ]00 |𝐷𝑥Φ∗ |.

On the other hand, by (2.28) and (2.29), there exists a constant �̃�0 ∈ (0, 1) such that

𝜕𝑡Φ∗ − |𝐷𝑥Φ∗ | ≥ 𝑐0 (𝑇 − 𝑡)−𝛽 ≥ �̃�0𝜕𝑡Φ∗ > 0 on C1.

Thus, we have |𝑋 | ≤ |𝜕𝑡Φ∗ | + |𝐷𝑥Φ∗ | ≤ 2𝜕𝑡Φ∗ = 2𝑋0 and����� 𝑑∑
𝑖=1

𝑇 [ℎ]0𝑖𝑋 𝑖

����� ≤ 𝑇 [ℎ]00 |𝐷𝑥Φ∗ | ≤ 𝑇 [ℎ]00 (1 − �̃�0)𝜕𝑡Φ∗ = 𝑇 [ℎ]00 (1 − �̃�0)𝑋0,

hence

𝑃𝑋0 [ℎ] ≤ 𝑇 [ℎ]00𝑋
0 + 𝑇 [ℎ]00 (1 − �̃�0)𝑋0 = �̃�0𝑇 [ℎ]00𝑋

0 ≤ 0 on C∗.

This proves (4.26).
As for (4.27), we compute

𝜕𝜇𝑇 [ℎ]𝜇𝜈 = Re
(
�ℎ𝜕𝜈ℎ

)
+ Re

(
𝜕𝜇ℎ𝜕

𝜇𝜕𝜈ℎ
)
− 1

2
𝜕𝜈

(
𝜕𝛼ℎ𝜕𝛼ℎ +𝑉∗ℎ2

r

)
= Re

(
�ℎ𝜕𝜈ℎ

)
+ 1

2
Re 𝜕𝜈

(
𝜕𝜇ℎ𝜕𝜇ℎ

)
− 1

2
𝜕𝜈

(
𝜕𝛼ℎ𝜕𝛼ℎ

)
− ℎr𝜕𝜈ℎr𝑉∗ −

1
2
ℎ2

r 𝜕𝜈𝑉∗

= Re
(
�ℎ𝜕𝜈ℎ

)
− ℎr𝜕𝜈ℎr𝑉∗ −

1
2
ℎ2

r 𝜕𝜈𝑉∗

for 𝜈 ∈ Z ∩ [0, 𝑑]. Hence,

𝜕𝜇𝑃𝑋𝜇 [ℎ] = 𝑇 [ℎ]𝜇𝜈𝜕𝜇𝑋𝜈 + (𝜕𝜇𝑇 [ℎ]𝜇𝜈)𝑋𝜈

= 𝑇 [ℎ]𝜇𝜈 (𝜋𝑋 )𝜇𝜈 + Re
(
�ℎ𝑋𝜈𝜕𝜈ℎ

)
− ℎr𝑋

𝜈𝜕𝜈ℎr𝑉∗ −
1
2
ℎ2

r 𝑋
𝜈𝜕𝜈𝑉∗

= 𝑇 [ℎ]𝜇𝜈 (𝜋𝑋 )𝜇𝜈 + Re
(
�ℎ𝑋ℎ

)
−𝑉∗ℎr𝑋ℎr −

1
2
ℎ2

r 𝑋𝑉∗,
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where we have used the fact that 𝑋𝜈 is real-valued for 𝜈 ∈ Z ∩ [0, 𝑑], 𝑋ℎ = 𝑋𝜈𝜕𝜈ℎ and we define

(𝜋𝑋 )𝜇𝜈 :=
𝜕𝜇𝑋𝜈 + 𝜕𝜈𝑋𝜇

2
, ∀ 𝜇, 𝜈 ∈ Z ∩ [0, 𝑑] . (4.30)

Hence, it follows from (4.19) that

𝜕𝜇𝑃𝑋𝜇 [ℎ] = 𝑇 [ℎ]𝜇𝜈 (𝜋𝑋 )𝜇𝜈 + Re
(
�ℎ𝑋ℎ

)
−𝑉∗ℎr𝑋ℎr −

1
2
ℎ2

r 𝑋𝑉∗

= 𝑇 [ℎ]𝜇𝜈 (𝜋𝑋 )𝜇𝜈 −
1
2
ℎ2

r 𝑋𝑉∗ + Re
(
Lℎ𝑋ℎ

)
− 2 Re

(
𝑌ℎ𝑋ℎ

)
. (4.31)

By (4.23), we have |𝑇 [ℎ]𝜇𝜈 | ≤ 𝑇 [ℎ]00 for all 𝜇, 𝜈 ∈ Z ∩ [0, 𝑑] and |𝐷ℎ|2 ≤ 2𝑇 [ℎ]00. Thus, by (4.31),
|𝑋 | ≤ 2𝑋0, (4.5) and (4.6), on C∗ we have (note that |𝑋𝑉∗ | ≤ |𝑋 | |𝐷𝑉∗ |, |𝑋ℎ| ≤ |𝑋 | |𝐷ℎ|, |𝑌ℎ| ≤ |𝑌 | |𝐷ℎ|,
see footnote 8)��𝜕𝜇𝑃𝑋𝜇 [ℎ]�� � 𝑇 [ℎ]00 |𝐷𝑋 | + 𝑇 [ℎ]00𝑋0

|𝐷𝑉∗ |
𝑉∗

+ |Lℎ| |𝑋 | |𝐷ℎ| + |𝑌 | |𝐷ℎ| |𝑋 | |𝐷ℎ|

� 𝑇 [ℎ]00 (𝑇 − 𝑡)−1𝑋0 + |Lℎ|𝑋0
√
𝑇 [ℎ]00

� (𝑇 − 𝑡)−𝛽
(
(𝑇 − 𝑡)−1𝑇 [ℎ]00 +

√
𝑇 [ℎ]00 |Lℎ|

)
,

which gives (4.27).
Finally, we prove (4.28). By (4.19), we have

L𝐷𝑥ℎ − 𝐷𝑥Lℎ = −2i𝐷𝑥𝑋
𝛼𝜕𝛼ℎ − 2𝐷𝑥𝑌

𝛼𝜕𝛼ℎ + 𝐷𝑥𝑉∗ · ℎr.

Let 𝑗 ∈ Z≥0, by (4.10) and (4.7), for any 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇) we have

‖𝐷 𝑗
𝑥 (𝐷𝑥𝑋

𝛼𝜕𝛼ℎ) (𝑡)‖𝐿2
𝑥
� 𝑗

𝑗∑
𝑖=0

‖𝐷 𝑗−𝑖
𝑥 𝐷𝑥𝑋 (𝑡)‖𝐿∞

𝑥
‖𝐷𝐷𝑖

𝑥ℎ(𝑡)‖𝐿2
𝑥

� 𝑗

𝑗∑
𝑖=0

(𝑇 − 𝑡)−𝛽−1+𝑖− 𝑗√𝐸𝑖 [ℎ] (𝑡).

Similarly, we have (recalling 𝛽 > 1)

‖𝐷 𝑗
𝑥 (𝐷𝑥𝑌

𝛼𝜕𝛼ℎ) (𝑡)‖𝐿2
𝑥
� 𝑗

𝑗∑
𝑖=0

(𝑇 − 𝑡)−2+𝑖− 𝑗√𝐸𝑖 [ℎ] (𝑡) � 𝑗 𝑗∑
𝑖=0

(𝑇 − 𝑡)−𝛽−1+𝑖− 𝑗√𝐸𝑖 [ℎ] (𝑡).

By (4.6) and (4.7), we have

‖𝐷 𝑗
𝑥 (𝐷𝑥𝑉∗ · ℎ𝑟 )‖𝐿2

𝑥
� 𝑗

𝑗∑
𝑖=0

‖𝐷 𝑗−𝑖+1
𝑥 𝑉∗/

√
𝑉∗‖𝐿∞

𝑥
‖
√
𝑉∗𝐷

𝑖
𝑥ℎr‖𝐿2

𝑥

� 𝑗

𝑗∑
𝑖=0

(𝑇 − 𝑡)−𝛽−1+𝑖− 𝑗√𝐸𝑖 [ℎ] (𝑡).
Hence, we get (4.28). �
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4.3. Solving the error equation

Lemma 4.4. There exists a constant 𝑐2 ∈ (0, 𝑐0) that depends only on 𝑋,𝑌,𝑉∗, 𝑁∗ such that for
any 𝑓 ∈ 𝐶∞

𝑐 ([𝑇 − 𝑐0, 𝑇) × R𝑑;C) satisfying |𝐷 𝑗
𝑥 𝑓 | ≤ |𝐷 𝑗

𝑥𝑁∗ | for all 𝑗 ∈ Z≥0, there is a solution
ℎ ∈ 𝐶∞

𝑐 ([𝑇 − 𝑐2, 𝑇) × R𝑑;C) to the error equation

�ℎ + 2 i 𝑋ℎ + 2𝑌ℎ −𝑉∗ℎr −
1

𝑝 − 1
𝑉∗𝜑1(ℎ) − 𝑁∗ℎ = 𝑓 . (4.32)

Moreover, supp𝑥 ℎ(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3} for all 𝑡 ∈ [𝑇 − 𝑐2, 𝑇), and there exists a constant
𝐶� > 0 that depends only on 𝑋,𝑌,𝑉∗, 𝑁∗ (𝐶� does not depend on f) such that

|�ℎ(𝑡, 𝑥) | ≤ 𝐶�, ∀ 𝑡 ∈ [𝑇 − 𝑐2, 𝑇), ∀ 𝑥 ∈ R𝑑 , (4.33)

and for any 𝑗 ∈ Z≥0, 𝜆 > 0, there exists a constant 𝐶 𝑗 ,𝜆 > 0 that depends only on 𝑋,𝑌,𝑉∗, 𝑁∗ (𝐶 𝑗 ,𝜆

does not depend on f) such that

|𝐷 𝑗
𝑥ℎ(𝑡, 𝑥) | + |𝜕𝑡𝐷 𝑗

𝑥ℎ(𝑡, 𝑥) | ≤ 𝐶 𝑗 ,𝜆 (𝑇 − 𝑡)𝜆, ∀ 𝑡 ∈ [𝑇 − 𝑐2, 𝑇), ∀ 𝑥 ∈ R𝑑 . (4.34)

The proof is based on the following lemma.

Lemma 4.5. Let 𝑓 ∈ 𝐶∞
𝑐 ([𝑇 − 𝑐0, 𝑇) × R𝑑;C) be such that |𝐷 𝑗

𝑥 𝑓 | ≤ |𝐷 𝑗
𝑥𝑁∗ | for all 𝑗 ∈ Z≥0. Let

𝑇∗ ∈ (0, 𝑐0). Assume that ℎ ∈ 𝐶∞
𝑐 ([𝑇 − 𝑇∗, 𝑇) × R𝑑;C) solves (4.32) on [𝑇 − 𝑇∗, 𝑇) × R𝑑; moreover,

supp𝑥 ℎ(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3} for all 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇) and

‖ℎ(𝑡, ·)‖𝐿∞ (R𝑑) ≤ (𝑇 − 𝑡)2𝛽−1, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇). (4.35)

Then there exists a constant 𝐶� > 0 that depends only on 𝑋,𝑌,𝑉∗, 𝑁∗ (𝐶� does not depend on 𝑓 , 𝑇∗)
such that

|�ℎ(𝑡, 𝑥) | ≤ 𝐶�, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇), ∀ 𝑥 ∈ R𝑑 , (4.36)

and for any 𝑗 ∈ Z≥0, 𝜆 > 0, there exists a constant 𝐶 𝑗 ,𝜆 > 0 that depends only on 𝑋,𝑌,𝑉∗, 𝑁∗ (𝐶 𝑗 ,𝜆

does not depend on 𝑓 , 𝑇∗) such that

|𝐷 𝑗
𝑥ℎ(𝑡, 𝑥) | + |𝜕𝑡𝐷 𝑗

𝑥ℎ(𝑡, 𝑥) | ≤ 𝐶 𝑗 ,𝜆 (𝑇 − 𝑡)𝜆, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇), ∀ 𝑥 ∈ R𝑑 . (4.37)

Now we present the proof of Lemma 4.4

Proof of Lemma 4.4. Let 𝑓 ∈ 𝐶∞
𝑐 ([𝑇−𝑐0, 𝑇)×R𝑑;C) be such that |𝐷 𝑗

𝑥 𝑓 | ≤ |𝐷 𝑗
𝑥𝑁∗ | for all 𝑗 ∈ Z≥0. We

assume that 𝜀 ∈ (0, 𝑐0) satisfies 𝑓 (𝑡, 𝑥) = 0 for all (𝑡, 𝑥) ∈ (𝑇 − 𝜀, 𝑇) × R𝑑 . By the standard local well-
posedness theory (Theorem 6.4.11 in [25]), there is a unique local solution ℎ ∈ 𝐶∞((𝑇 −𝑇+, 𝑇) ×R𝑑;C)
to (4.32) with (ℎ, 𝜕𝑡ℎ) |𝑡=𝑇 −𝜀/2 = (0, 0), where 𝜀 < 𝑇+ ≤ 𝑐0 corresponds to the left life span of h;
moreover, if 𝑇+ < 𝑐0, then

lim sup
𝑡↓𝑇 −𝑇+

‖ℎ(𝑡, ·)‖𝐿∞ (R𝑑) = +∞. (4.38)

By the uniqueness and 𝑓 (𝑡, 𝑥) = 0 for all (𝑡, 𝑥) ∈ (𝑇 − 𝜀, 𝑇) × R𝑑 , we have ℎ(𝑡, 𝑥) = 0 for all
(𝑡, 𝑥) ∈ (𝑇 − 𝜀, 𝑇) × R𝑑 . Moreover, by | 𝑓 | ≤ |𝑁∗ |, (4.4) and the finite speed of propagation, we have

supp𝑥 ℎ(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3}, ∀ 𝑡 ∈ [𝑇 − 𝑇+, 𝑇).
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Let 𝑐2 ∈ (0, 𝑐0) be such that 𝐶0,2𝛽 · 𝑐2 < 1/2, where 𝐶0,2𝛽 > 0 is given by (4.37). Note that 𝑐2 is
independent of f and 𝑇∗. We claim that 𝑇+ ≥ 𝑐2. We assume in contrary that 𝜀 < 𝑇+ < 𝑐2. Let

ℰ :=
{
𝑇0 ∈ (0, 𝑇+) : ‖ℎ(𝑡, ·)‖𝐿∞ (R𝑑) ≤ (𝑇 − 𝑡)2𝛽−1 for all 𝑡 ∈ [𝑇 − 𝑇0, 𝑇)

}
. (4.39)

Then (0, 𝜀) ⊂ ℰ. Let𝑇𝑠 := supℰ ∈ [𝜀, 𝑇+]. By (4.38), we have𝑇𝑠 < 𝑇+, hence𝑇𝑠 ∈ ℰ and𝑇𝑠 < 𝑇+ < 𝑐2.
By (4.37), we have

|ℎ(𝑡, 𝑥) | ≤ 𝐶0,2𝛽 (𝑇 − 𝑡)2𝛽 = 𝐶0,2𝛽 (𝑇 − 𝑡) (𝑇 − 𝑡)2𝛽−1 ≤ 𝐶0,2𝛽𝑐2 (𝑇 − 𝑡)2𝛽−1 <
1
2
(𝑇 − 𝑡)2𝛽−1

for all 𝑡 ∈ [𝑇 − 𝑇𝑠 , 𝑇) ⊂ [𝑇 − 𝑐2, 𝑇). Thus, by the continuity we have 𝑇𝑠 + 𝛿 ∈ ℰ for some 𝛿 > 0. This
contradicts with 𝑇𝑠 = supℰ. Therefore, 𝑇+ ≥ 𝑐2 and ‖ℎ(𝑡, ·)‖𝐿∞ (R𝑑) ≤ (𝑇 − 𝑡)2𝛽−1 for all 𝑡 ∈ [𝑇 −𝑐2, 𝑇).
Now Lemma 4.5 (letting 𝑇∗ = 𝑐2) implies Lemma 4.4. �

Let’s complete the proof of Lemma 4.5.

Proof of Lemma 4.5. Assume that h solves (4.32). Then (L is defined in (4.19))

Lℎ =
1

𝑝 − 1
𝑉∗𝜑1(ℎ) + 𝑁∗ℎ + 𝑓 .

We claim that for each 𝑗 ∈ Z≥0, there exists a constant 𝐶 𝑗 > 0 such that√
𝐸 𝑗 [ℎ] (𝑡) ≤ 𝐶 𝑗

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1 𝑗∑
𝑖=0

��𝐷𝑖
𝑥 𝑓 (𝑠)

��
𝐿2
𝑥

(𝑇 − 𝑠) ( 𝑗−𝑖)𝛽
d𝑠, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇). (4.40)

By the definition of 𝜑1, we know that 𝜑1 is a polynomial on (ℎ, ℎ) of the form 𝜑1 =
∑

2≤𝑖+ 𝑗≤𝑝 𝑐𝑖, 𝑗ℎ
𝑖ℎ

𝑗
,

with 𝑐𝑖, 𝑗 ∈ R, thus

|𝜑1 (ℎ) | � |ℎ|2 + |ℎ|𝑝 , ∀ ℎ ∈ C. (4.41)

Hence, supp𝑥 𝜑1(ℎ) (𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3} for all 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇). For 𝑗 ∈ Z≥0 and
𝑡 ∈ [𝑇 − 𝑇∗, 𝑇), by (4.10), (4.7) and Poincaré’s inequality, we have���𝐷 𝑗

𝑥 (𝑉∗𝜑1 (ℎ)) (𝑡)
���
𝐿2
𝑥

� 𝑗

𝑗∑
𝑖=0

‖𝐷 𝑗−𝑖
𝑥 𝑉∗(𝑡)‖𝐿∞

𝑥
‖𝐷𝑖

𝑥𝜑1 (ℎ) (𝑡)‖𝐿2
𝑥

� 𝑗

𝑗∑
𝑖=0

(𝑇 − 𝑡)−(2𝛽+ 𝑗−𝑖) (𝑇 − 𝑡) 𝑗−𝑖 ‖𝐷 𝑗
𝑥𝜑1(ℎ) (𝑡)‖𝐿2

𝑥

� 𝑗 (𝑇 − 𝑡)−2𝛽 ‖𝐷 𝑗
𝑥𝜑1(ℎ) (𝑡)‖𝐿2

𝑥

Using the classical product estimate,

‖𝐷𝑛
𝑥 ( 𝑓 𝑔)‖𝐿2

𝑥
�𝑛 ‖ 𝑓 ‖𝐿∞

𝑥
‖𝐷𝑛

𝑥𝑔‖𝐿2
𝑥
+ ‖𝑔‖𝐿∞

𝑥
‖𝐷𝑛

𝑥 𝑓 ‖𝐿2
𝑥
, ∀ 𝑛 ∈ Z≥0, (4.42)

and (4.35), we infer

‖𝐷𝑛
𝑥 (ℎ𝑖ℎ

𝑗 )‖𝐿2
𝑥
�𝑛,𝑖, 𝑗 ‖ℎ‖𝑖+ 𝑗−1

𝐿∞
𝑥

‖𝐷𝑛
𝑥ℎ‖𝐿2

𝑥
, ∀ 𝑛, 𝑖, 𝑗 ∈ Z≥0, 𝑖 + 𝑗 ≥ 2,

‖𝐷 𝑗
𝑥𝜑1 (ℎ) (𝑡)‖𝐿2

𝑥
� 𝑗

(
‖ℎ(𝑡)‖𝐿∞

𝑥
+ ‖ℎ(𝑡)‖ 𝑝−1

𝐿∞
𝑥

)
‖𝐷 𝑗

𝑥ℎ(𝑡)‖𝐿2
𝑥
� 𝑗 (𝑇 − 𝑡)2𝛽−1‖𝐷 𝑗

𝑥ℎ(𝑡)‖𝐿2
𝑥
,���𝐷 𝑗

𝑥 (𝑉∗𝜑1(ℎ)) (𝑡)
���
𝐿2
𝑥

� 𝑗 (𝑇 − 𝑡)−2𝛽 (𝑇 − 𝑡)2𝛽−1‖𝐷 𝑗
𝑥ℎ(𝑡)‖𝐿2

𝑥
= (𝑇 − 𝑡)−1‖𝐷 𝑗

𝑥ℎ(𝑡)‖𝐿2
𝑥
;

https://doi.org/10.1017/fmp.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.7


28 F. Shao, D. Wei and Z. Zhang

Similarly, by (4.7) and Poincaré’s inequality, we have���𝐷 𝑗
𝑥 (𝑁∗ℎ) (𝑡)

���
𝐿2
𝑥

� 𝑗 (𝑇 − 𝑡)−1‖𝐷 𝑗
𝑥ℎ(𝑡)‖𝐿2

𝑥
.

Therefore, for each 𝑗 ∈ Z≥0, there holds���𝐷 𝑗
𝑥Lℎ(𝑡)

���
𝐿2
𝑥

� 𝑗 (𝑇 − 𝑡)−1‖𝐷 𝑗
𝑥ℎ(𝑡)‖𝐿2

𝑥
+ ‖𝐷 𝑗

𝑥 𝑓 (𝑡)‖𝐿2
𝑥
. (4.43)

By (4.43), (4.22), for any 𝑗 ∈ Z≥0 and 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇) we have

√
𝐸 𝑗 [ℎ] (𝑡) � 𝑗

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1 𝑗∑
𝑖=0

(𝑇 − 𝑠)−1‖𝐷𝑖
𝑥ℎ(𝑠)‖𝐿2

𝑥
+ ‖𝐷𝑖

𝑥 𝑓 (𝑠)‖𝐿2
𝑥

(𝑇 − 𝑠) ( 𝑗−𝑖)𝛽
d𝑠. (4.44)

It follows from Poincaré’s inequality and supp𝑥 ℎ(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3} that

(𝑇 − 𝑡)−1‖𝐷 𝑗
𝑥ℎ(𝑡)‖𝐿2

𝑥
� ‖𝐷 𝑗+1

𝑥 ℎ(𝑡)‖𝐿2
𝑥
≤

√
2𝐸 𝑗 [ℎ] (𝑡), ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇), 𝑗 ∈ Z≥0. (4.45)

Here we also used the definitions of 𝐸0 and 𝐸 𝑗 in (4.20) and (4.21). Next we use the induction argument
to prove (4.40).

For 𝑗 = 0, by (4.44) and (4.45), there exists a constant 𝐶 ′
0 > 0 satisfying

√
𝐸0 [ℎ] (𝑡) ≤ 𝐶 ′

0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1 (√
𝐸0 [ℎ] (𝑠) + ‖ 𝑓 (𝑠)‖𝐿2

𝑥

)
d𝑠, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇).

By Grönwall’s lemma, we get

(𝑇 − 𝑡)−𝑀1
√
𝐸0 [ℎ] (𝑡) ≤ 𝐶 ′

0

∫ 𝑇

𝑡
(𝑇 − 𝑠)−𝑀1 e𝐶

′
0 (𝑠−𝑡) ‖ 𝑓 (𝑠)‖𝐿2

𝑥
d𝑠

≤ 𝐶 ′
0e𝐶

′
0𝑇

∫ 𝑇

𝑡
(𝑇 − 𝑠)−𝑀1 ‖ 𝑓 (𝑠)‖𝐿2

𝑥
d𝑠

for all 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇). This proves (4.40) for 𝑗 = 0. Let 𝑛 ∈ Z+, assume that (4.40) holds for
𝑗 ∈ Z ∩ [0, 𝑛 − 1]. By (4.20), (4.21) and 𝛽 > 1, we have

(𝑇 − 𝑠)−1‖𝐷𝑛
𝑥ℎ(𝑠)‖𝐿2

𝑥
≤ (𝑇 − 𝑠)−1

√
2𝐸𝑛−1 [ℎ] (𝑠) ≤ (𝑇 − 𝑠)−𝛽

√
2𝐸𝑛−1 [ℎ] (𝑠),

for 𝑠 ∈ [𝑇 − 𝑇∗, 𝑇). Then by (4.44) for 𝑗 = 𝑛, (4.45) for 𝑗 = 𝑖 < 𝑛, and the induction assumption, we
have (as 0 < 𝑇 − 𝑡 ≤ 𝑇∗ < 𝑐0 < 1)

√
𝐸𝑛 [ℎ] (𝑡) �𝑛

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1 �� ‖𝐷𝑛
𝑥 𝑓 (𝑠)‖𝐿2

𝑥
+
𝑛−1∑
𝑗=0

√
𝐸 𝑗 [ℎ] (𝑠) + ‖𝐷 𝑗

𝑥 𝑓 (𝑠)‖𝐿2
𝑥

(𝑇 − 𝑠) (𝑛− 𝑗)𝛽
!"# d𝑠

�𝑛

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝑠

)𝑀1 𝑛∑
𝑗=0

‖𝐷 𝑗
𝑥 𝑓 (𝑠)‖𝐿2

𝑥

(𝑇 − 𝑠) (𝑛− 𝑗)𝛽
d𝑠 + 𝐼𝑛 (𝑡),
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where

𝐼𝑛 (𝑡) :=
𝑛−1∑
𝑗=0

∫ 𝑇

𝑡

(
(𝑇 − 𝑡)/(𝑇 − 𝑠)

)𝑀1

(𝑇 − 𝑠) (𝑛− 𝑗)𝛽

∫ 𝑇

𝑠

(
𝑇 − 𝑠

𝑇 − 𝜏

)𝑀1 𝑗∑
𝑖=0

‖𝐷𝑖
𝑥 𝑓 (𝜏)‖𝐿2

𝑥

(𝑇 − 𝜏) ( 𝑗−𝑖)𝛽
d𝜏 d𝑠

=
𝑛−1∑
𝑗=0

𝑗∑
𝑖=0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝜏

)𝑀1 ‖𝐷𝑖
𝑥 𝑓 (𝜏)‖𝐿2

𝑥

(𝑇 − 𝜏) ( 𝑗−𝑖)𝛽

∫ 𝜏

𝑡

d𝑠
(𝑇 − 𝑠) (𝑛− 𝑗)𝛽

d𝜏

≤
𝑛−1∑
𝑗=0

𝑗∑
𝑖=0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝜏

)𝑀1 ‖𝐷𝑖
𝑥 𝑓 (𝜏)‖𝐿2

𝑥

(𝑇 − 𝜏) ( 𝑗−𝑖)𝛽
1

(𝑇 − 𝜏) (𝑛− 𝑗)𝛽
d𝜏

≤ 𝑛
𝑛−1∑
𝑖=0

∫ 𝑇

𝑡

(
𝑇 − 𝑡

𝑇 − 𝜏

)𝑀1 ‖𝐷𝑖
𝑥 𝑓 (𝜏)‖𝐿2

𝑥

(𝑇 − 𝜏) (𝑛−𝑖)𝛽
d𝜏.

Thus, (4.40) holds for 𝑗 = 𝑛. Therefore, by the the induction, (4.40) holds for all 𝑗 ∈ Z≥0.
As |𝐷 𝑗

𝑥 𝑓 | ≤ |𝐷 𝑗
𝑥𝑁∗ | for all 𝑗 ∈ Z≥0, by (4.4) and (4.8), for all 𝑗 ∈ Z≥0 and 𝜆 > 0 there exists

a constant 𝑀 𝑗 ,𝜆 > 0 which is independent of f and 𝑇∗ such that ‖𝐷 𝑗
𝑥 𝑓 (𝑡)‖𝐿2 ≤ 𝑀 𝑗 ,𝜆 (𝑇 − 𝑡)𝜆 for all

𝑡 ∈ [𝑇 − 𝑇∗, 𝑇). Using (4.40), (4.21) and (4.45), for all 𝑗 ∈ Z≥0 and 𝜆 > 0 there exists a constant
𝑀 ′

𝑗 ,𝜆 > 0 independent of f and 𝑇∗ (depending on 𝑀 𝑗 ,𝜆′ for some 𝜆′ > 𝜆) such that

‖ℎ(𝑡)‖
𝐻
𝑗
𝑥
+ ‖𝜕𝑡ℎ(𝑡)‖𝐻 𝑗

𝑥
≤ 𝑀 ′

𝑗 ,𝜆 (𝑇 − 𝑡)𝜆, ∀ 𝑡 ∈ [𝑇 − 𝑇∗, 𝑇).

By Sobolev’s embedding theorem (𝐻𝑑
𝑥 (R𝑑) ↩→ 𝐿∞

𝑥 (R𝑑)), we have (4.37). It remains to prove (4.36).
By (4.41), (4.35), (4.32), (4.37), (4.7) ( 𝑗 = 0) and (4.8) ( 𝑗 = 0, 𝜆 = 1), we know that there there exist
constants 𝐶 ′

2 > 0, 𝐶 ′
3 > 0 such that

|�ℎ| ≤ 𝐶 ′
2 (𝑇 − 𝑡)−2𝛽 |𝐷≤1ℎ| + | 𝑓 | ≤ 𝐶 ′

2 (𝑇 − 𝑡)−2𝛽 (𝐶0,2𝛽 + 𝐶1,2𝛽) (𝑇 − 𝑡)2𝛽 + |𝑁∗ | ≤ 𝐶 ′
3

on [𝑇 − 𝑇∗, 𝑇) × R𝑑 , which implies (4.36). �

4.4. Solving nonlinear wave equation

Proof of Proposition 2.8. Let 𝜉1 = 1 − 𝜉, then 𝜉1 |[0,4/5] = 0, 𝜉1 |[1,+∞) = 1. Let

𝜀𝑛 := 𝑐2/2𝑛, 𝑓𝑛 (𝑡, 𝑥) := 𝑁∗(𝑡, 𝑥)𝜉1 ((𝑇 − 𝑡)/𝜀𝑛), ∀ [𝑇 − 𝑐0, 𝑇) × R𝑑 , ∀ 𝑛 ∈ Z+.

Then for each 𝑛 ∈ Z+, we have 𝑓𝑛 ∈ 𝐶∞([𝑇 − 𝑐0, 𝑇) × R𝑑;C) and supp 𝑓𝑛 ⊂ {(𝑡, 𝑥) ∈ [𝑇 − 𝑐0,
𝑇 −4𝜀𝑛/5] ×R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3}, hence 𝑓𝑛 ∈ 𝐶∞

𝑐 ([𝑇 − 𝑐0, 𝑇) ×R𝑑;C); as 𝑓𝑛 equals to 𝑁∗ multiplied
by a function in t that takes values in [0, 1], we have |𝐷 𝑗

𝑥 𝑓𝑛 | ≤ |𝐷 𝑗
𝑥𝑁∗ | for all 𝑗 ∈ Z+. By Lemma 4.4,

for each 𝑛 ∈ Z+, there exists ℎ𝑛 ∈ 𝐶∞
𝑐 ([𝑇 − 𝑐2, 𝑇) × R𝑑;C) satisfying

�ℎ𝑛 + 2i𝑋ℎ𝑛 + 2𝑌ℎ𝑛 −𝑉∗(ℎ𝑛)r −
1

𝑝 − 1
𝑉∗𝜑1(ℎ𝑛) − 𝑁∗ℎ𝑛 = 𝑓𝑛 = 𝑁∗𝜉1

(
𝑇 − 𝑡

𝜀𝑛

)
(4.46)

on [𝑇 − 𝑐2, 𝑇) × R𝑑 . Moreover, for 𝑛 ∈ Z+, we have

supp𝑥 ℎ𝑛 (𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3}, ∀ 𝑡 ∈ [𝑇 − 𝑐2, 𝑇), (4.47)

and for 𝑗 ∈ Z≥0, 𝜆 > 0 we have

|�ℎ𝑛 (𝑡, 𝑥) | ≤ 𝐶�, ∀ 𝑡 ∈ [𝑇 − 𝑐2, 𝑇), ∀ 𝑥 ∈ R𝑑 , (4.48)

|𝐷 𝑗
𝑥ℎ𝑛 (𝑡, 𝑥) | + |𝜕𝑡𝐷 𝑗

𝑥ℎ𝑛 (𝑡, 𝑥) | ≤ 𝐶 𝑗 ,𝜆 (𝑇 − 𝑡)𝜆, ∀ 𝑡 ∈ [𝑇 − 𝑐2, 𝑇), ∀ 𝑥 ∈ R𝑑 , (4.49)
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where 𝐶� and 𝐶 𝑗 ,𝜆 are given by Lemma 4.4. By ℎ𝑛 ∈ 𝐶∞
𝑐 ([𝑇 − 𝑐2, 𝑇) × R𝑑;C), (4.47), (4.48),

(4.49) and the Arzelà–Ascoli theorem, there exists a subsequence of {ℎ𝑛}∞𝑛=1, which is still denoted by
{ℎ𝑛}∞𝑛=19, such that ℎ𝑛 → ℎ in 𝐶1([𝑇 − 𝑐0, 𝑇) × R𝑑) for some ℎ ∈ 𝐶1([𝑇 − 𝑐0, 𝑇) × R𝑑;C) and (here
𝐷≤1 𝑓 := ( 𝑓 , 𝐷 𝑓 )) ��𝐷≤1 (ℎ𝑛 − ℎ𝑛+1)

��
𝐿∞ ( [𝑇 −𝑐0 ,𝑇 )×R𝑑) ≤ 2−𝑛, ∀ 𝑛 ∈ Z+. (4.50)

Letting 𝑗 = 2, 𝜆 = 1 in (4.49), by (4.50) and the Gagliardo–Nirenberg inequality, we have

‖𝐷𝑥𝐷 (ℎ𝑛 − ℎ𝑛+1)‖𝐿∞ ( [𝑇 −𝑐0 ,𝑇 )×R𝑑) ≤ 𝐶02−𝑛/2, ∀ 𝑛 ∈ Z+ (4.51)

for some constant 𝐶0 > 0 which is independent of 𝑛 ∈ Z+. Letting 𝑗 = 0 and 𝜆 = 1 in (4.49), by the
definition of 𝜑1, there exists a constant 𝐶1 > 0 such that for all 𝑛 ∈ Z+ and (𝑡, 𝑥) ∈ [𝑇 − 𝑐2, 𝑇) ×R𝑑 , we
have

|𝜑1 (ℎ𝑛) − 𝜑1 (ℎ𝑛+1) | ≤ 𝐶1 |ℎ𝑛 − ℎ𝑛+1 |.

Combining this with (4.46), (4.49), (4.7) ( 𝑗 = 0), and (4.8) ( 𝑗 = 0, 𝜆 = 1), we know that there exist
constants 𝐶2 > 0, 𝐶3 > 0 such that for all 𝑛 ∈ Z+, we have10

|�ℎ𝑛 − �ℎ𝑛+1 | ≤ 𝐶2 (𝑇 − 𝑡)−2𝛽 ��𝐷≤1(ℎ𝑛 − ℎ𝑛+1)
�� + 𝐶2𝜀𝑛

(4.49)
≤

(4.50)
𝐶2 (𝑇 − 𝑡)−2𝛽 min

(
2−𝑛, 2(𝐶0,4𝛽 + 𝐶1,4𝛽) (𝑇 − 𝑡)4𝛽

)
+ 𝐶2𝜀𝑛

≤ 𝐶3 (2−𝑛/2 + 𝜀𝑛)

on [𝑇−𝑐2, 𝑇)×R𝑑 . Hence, by (4.50) and (4.51) we know that {ℎ𝑛}∞𝑛=1 is Cauchy in𝐶2 ([𝑇−𝑐2, 𝑇)×R𝑑;C),
hence ℎ ∈ 𝐶2([𝑇 − 𝑐2, 𝑇) × R𝑑;C) and ℎ𝑛 → ℎ in 𝐶2. Moreover, by (4.49), (4.50) and the Gagliardo–
Nirenberg inequality we know that {𝐷 𝑗

𝑥𝐷
≤1ℎ𝑛} is Cauchy in 𝐿∞([𝑇 − 𝑐2, 𝑇) × R𝑑) for all 𝑗 ∈ Z≥0.

Hence (also using (4.47)) ℎ(𝑡, ·), 𝜕𝑡ℎ(𝑡, ·) ∈ 𝐶∞
𝑐 (R𝑑) with supp𝑥 ℎ(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 4(𝑇 − 𝑡)/3}.

Moreover, h solves the equation (as 𝑓𝑛 → 𝑁∗)

�ℎ + 2i𝑋ℎ + 2𝑌ℎ −𝑉∗ℎr −
1

𝑝 − 1
𝑉∗𝜑1 (ℎ) − 𝑁∗ℎ = 𝑁∗ on [𝑇 − 𝑐2, 𝑇) × R𝑑 . (4.52)

By (4.49), we have

|ℎ(𝑡, 𝑥) | ≤ 𝐶0,1 (𝑇 − 𝑡), ∀ (𝑡, 𝑥) ∈ [𝑇 − 𝑐2, 𝑇) × R𝑑 .

Let 𝑐1 ∈ (0, 𝑐2) ⊂ (0, 𝑇) be such that𝐶0,1𝑐1 < 1/2, hence |ℎ(𝑡, 𝑥) | < 1/2 for all (𝑡, 𝑥) ∈ [𝑇−𝑐1, 𝑇)×R𝑑 .
Let

𝑢(𝑡, 𝑥) := (1 + ℎ(𝑡, 𝑥))𝑤∗(𝑡, 𝑥)𝜉
(

3|𝑥 |
5(𝑇 − 𝑡)

)
exp

(
iΦ∗(𝑡, 𝑥)𝜉

(
3|𝑥 |

5(𝑇 − 𝑡)

))
for (𝑡, 𝑥) ∈ [𝑇 − 𝑐1, 𝑇) × R𝑑 . Then 𝑢 ∈ 𝐶2([𝑇 − 𝑐1, 𝑇) × R𝑑;C) with 𝑢(𝑡, ·), 𝜕𝑡𝑢(𝑡, ·) ∈ 𝐶∞

𝑐 (R𝑑)
and supp𝑥 𝑢(𝑡, ·), supp𝑥 𝜕𝑡𝑢(𝑡, ·) ⊂ {𝑥 ∈ R𝑑 : |𝑥 | ≤ 5(𝑇 − 𝑡)/3} for 𝑡 ∈ [𝑇 − 𝑐1, 𝑇). Moreover, on

9Then {𝜀𝑛 } becomes its subsequence satisfying 𝜀𝑛 ≤ 𝑐2/2𝑛.
10Here, we need to estimate | 𝑓𝑛 − 𝑓𝑛+1 |, which is achieved by combining (4.8) ( 𝑗 = 0, 𝜆 = 1) and����𝜉1

(
𝑇 − 𝑡
𝜀𝑛

)
− 𝜉1

(
𝑇 − 𝑡
𝜀𝑚

)���� ≤ ∫ 𝜀𝑛

𝜀𝑚

𝑇 − 𝑡
𝜀2

����𝜉 ′1 (
𝑇 − 𝑡
𝜀

)���� d𝜀 ≤ ‖𝑧2 𝜉 ′1 (𝑧) ‖𝐿∞ (𝑇 − 𝑡)−1𝜀𝑛

for all positive integers 𝑚 > 𝑛, where we have used the fact that supp 𝜉 ′1 ⊂ [−1, 1].
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C0 := {(𝑡, 𝑥) ∈ (𝑇 − 𝑐1, 𝑇) ×R𝑑 : |𝑥 | ≤ 𝑇 − 𝑡} we have 𝑢 = (1+ ℎ)𝑤∗eiΦ∗ , and by (4.2), (4.3) and (4.52),
we know that h satisfies (4.1) on C0, hence by Lemma 4.1 we know that �𝑢 = |𝑢 |𝑝−1𝑢 on C0. Finally, by
|ℎ| < 1/2, (2.28) (for 𝑗 = 0) and (2.29) we have (2.31) on C0.

This completes the proof of Proposition 2.8. �

5. The linearized operator 𝓛

5.1. Functional spaces

In this subsection, we define some functional spaces consisting of smooth functions. Let 𝐼 ⊂ [0, +∞)
be an interval. We denote 𝐼2 := {𝑥2 : 𝑥 ∈ 𝐼} and11

𝐶∞
e (𝐼) :=

{
𝑓 ∈ 𝐶∞(𝐼;C) : ∃ �̃� ∈ 𝐶∞(𝐼2) s.t. 𝑓 (𝑍) = �̃� (𝑍2), ∀ 𝑍 ∈ 𝐼

}
, (5.1)

𝐶∞
o (𝐼) :=

{
𝑓 ∈ 𝐶∞(𝐼;C) : ∃ �̃� ∈ 𝐶∞(𝐼2) s.t. 𝑓 (𝑍) = 𝑍 �̃� (𝑍2), ∀ 𝑍 ∈ 𝐼

}
. (5.2)

Then 𝐶∞
e (𝐼) is a ring, and 𝐶∞

o (𝐼) is a linear vector space. Note that when 𝐼 = [0, +∞), the definitions
in (5.1), (5.2) are the same as in (2.10), (2.11). For example, we have 𝑓 (𝑍) = 𝑍 ∈ 𝐶∞

o ([0, +∞)) \
𝐶∞

e ([0, +∞)) and 𝑓 (𝑍) = 𝑍2 ∈ 𝐶∞
e ([0, +∞)) \ 𝐶∞

o ([0, +∞)).

Lemma 5.1. Let 𝑓 ∈ 𝐶∞
e ([0, +∞)). Define 𝐹 (𝑥) = 𝑓 (|𝑥 |) for 𝑥 ∈ R𝑑 , then 𝐹 ∈ 𝐶∞(R𝑑).

Proof. As 𝑓 ∈ 𝐶∞
e ([0, +∞)), there exists a function �̃� ∈ 𝐶∞([0, +∞)) such that 𝑓 (𝑍) = �̃� (𝑍2) for all

𝑍 ∈ [0, +∞), hence 𝐹 (𝑥) = �̃� (|𝑥 |2) for all 𝑥 ∈ R𝑑 . The smoothness of F follows from the smoothness
of �̃� and 𝑥 ↦→ |𝑥 |2. �

We also have the following fundamental properties. Let 𝐼 ⊂ [0, +∞) be an interval, then

𝑓 ∈ 𝐶∞
e (𝐼) =⇒ 𝑓 ′ ∈ 𝐶∞

o (𝐼); (5.3)
𝑓 ∈ 𝐶∞

o (𝐼) =⇒ 𝑓 ′ ∈ 𝐶∞
e (𝐼); (5.4)

𝑓1 ∈ 𝐶∞
e (𝐼), 𝑓2 ∈ 𝐶∞

e (𝐼) =⇒ 𝑓1 𝑓2 ∈ 𝐶∞
e (𝐼); (5.5)

𝑓1 ∈ 𝐶∞
o (𝐼), 𝑓2 ∈ 𝐶∞

o (𝐼) =⇒ 𝑓1 𝑓2 ∈ 𝐶∞
e (𝐼); (5.6)

𝑓1 ∈ 𝐶∞
e (𝐼), 𝑓2 ∈ 𝐶∞

o (𝐼) =⇒ 𝑓1 𝑓2 ∈ 𝐶∞
o (𝐼). (5.7)

Moreover, if Ω ⊂ C is open, 𝜑 ∈ 𝐶∞(Ω;C) (not necessary to be holomorphic), and 𝑓 ∈ 𝐶∞
e (𝐼) with

𝑓 (𝑍) ∈ Ω for all 𝑍 ∈ 𝐼, then the composition 𝜑 ◦ 𝑓 ∈ 𝐶∞
e (𝐼). In particular,

𝑓 ∈ 𝐶∞
e (𝐼) with 𝑓 (𝑍) ≠ 0 ∀ 𝑍 ∈ 𝐼 =⇒ 1/ 𝑓 ∈ 𝐶∞

e (𝐼), (5.8)

𝑓 ∈ 𝐶∞
e (𝐼) =⇒ exp 𝑓 ∈ 𝐶∞

e (𝐼), (5.9)

𝑎 ∈ R, 𝑓 ∈ 𝐶∞
e (𝐼) with 𝑓 (𝑍) > 0 for all 𝑍 ∈ 𝐼 =⇒ 𝑓 𝑎 ∈ 𝐶∞

e (𝐼). (5.10)

Lemma 5.2. If 𝑓 ∈ 𝒳0, then 𝜕𝜏 𝑓 , 𝑍𝜕𝑍 𝑓 , 𝜕2
𝑍 𝑓 , 𝜕𝑍 𝑓 /𝑍 ∈ 𝒳0.

Proof. By the definition of 𝒳0 in (2.20), it suffices to prove the result for 𝑓 = �̂� (𝑍)𝜏𝑛 for some
�̂� ∈ 𝐶∞

e ([0, +∞)) and some 𝑛 ∈ Z≥0.
As 𝜕𝜏 𝑓 = 𝑛 �̂� (𝑍)𝜏𝑛−1, we have 𝜕𝜏 𝑓 ∈ 𝒳0 (𝜕𝜏 𝑓 = 0 for 𝑛 = 0).
Note that 𝑍𝜕𝑍 𝑓 = 𝑍 �̂� ′(𝑍)𝜏𝑛, 𝜕2

𝑍 𝑓 = �̂� ′′(𝑍)𝜏𝑛, 𝜕𝑍 𝑓 /𝑍 = 1
𝑍 �̂� ′(𝑍)𝜏𝑛. As �̂� ∈ 𝐶∞

e ([0, +∞)),
by (5.3) we have �̂� ′ ∈ 𝐶∞

o ([0, +∞)), then by the definitions of 𝐶∞
e ([0, +∞)) and 𝐶∞

o ([0, +∞))

11In (5.1), “e” stands for “even”; In (5.2), “o” stands for “odd”. Please don’t confuse 𝐶∞
o (𝐼 ) with “𝐶∞

0 (𝐼 )”.
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we have 𝑍 �̂� ′(𝑍), 1
𝑍 �̂� ′(𝑍) ∈ 𝐶∞

e ([0, +∞)), by (5.4) we have �̂� ′′ ∈ 𝐶∞
e ([0, +∞)). Thus, 𝑍𝜕𝑍 𝑓 , 𝜕2

𝑍 𝑓 ,
𝜕𝑍 𝑓 /𝑍 ∈ 𝒳0. �

Now we prove Lemma 2.3.

Proof.

(i) Let 𝑓 (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆 �̂� (𝜏, 𝑍) for some �̂� ∈ 𝒳0 and 𝑔(𝑡, 𝑥) = (𝑇 − 𝑡)𝜇 �̂�(𝜏, 𝑍) for some �̂� ∈ 𝒳0.
Then ( 𝑓 𝑔) (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆+𝜇 ( �̂� �̂�) (𝜏, 𝑍). As 𝒳0 is a ring, we have �̂� �̂� ∈ 𝒳0 and then 𝑓 𝑔 ∈ 𝒳𝜆+𝜇.
It is direct to check that

𝜕𝑡 𝑓 = (𝑇 − 𝑡)𝜆−1 (𝜕𝜏 + 𝑍𝜕𝑍 − 𝜆) �̂� , Δ 𝑓 = (𝑇 − 𝑡)𝜆−2
(
𝜕2
𝑍 + (𝑘/𝑍)𝜕𝑍

)
�̂� .

Since �̂� ∈ 𝒳0, by Lemma 5.2 we have 𝜕𝜏 �̂� , 𝑍𝜕𝑍 �̂� , 𝜕2
𝑍 �̂� , 𝜕𝑍 �̂� /𝑍 ∈ 𝒳0, which gives

(𝜕𝜏 + 𝑍𝜕𝑍 − 𝜆) �̂� ∈ 𝒳0,
(
𝜕2
𝑍 + (𝑘/𝑍)𝜕𝑍

)
�̂� ∈ 𝒳0.

Thus, 𝜕𝑡 𝑓 ∈ 𝒳𝜆−1, Δ 𝑓 ∈ 𝒳𝜆−2. As a consequence, we have 𝜕2
𝑡 𝑓 ∈ 𝒳𝜆−2, � 𝑓 = −𝜕2

𝑡 𝑓 +Δ 𝑓 ∈ 𝒳𝜆−2
and (also using 𝑓 𝑔 ∈ 𝒳𝜆+𝜇 for 𝑓 ∈ 𝒳𝜆, 𝑔 ∈ 𝒳𝜇)

�( 𝑓 𝑔) ∈ 𝒳(𝜆+𝜇)−2, (� 𝑓 )𝑔 ∈ 𝒳(𝜆−2)+𝜇, 𝑓�𝑔 ∈ 𝒳𝜆+(𝜇−2) ,

hence,

𝜕𝛼 𝑓 𝜕𝛼𝑔 = [�( 𝑓 𝑔) − (� 𝑓 )𝑔 − 𝑓�𝑔]/2 ∈ 𝒳𝜆+𝜇−2,

𝜕𝛼 ( 𝑓 𝜕𝛼𝑔) = 𝜕𝛼 𝑓 𝜕𝛼𝑔 + 𝑓�𝑔 ∈ 𝒳𝜆+𝜇−2.

(iii) Let 𝜆, 𝜇 ∈ R and 𝑗 ∈ Z≥0 be such that 𝜆 ≥ 𝑗 + 𝜇. Let 𝑓 (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆 �̂� (𝑍) for some
�̂� ∈ 𝐶∞

e ([0, +∞)). Assume that 𝛼0, 𝛼1, · · · , 𝛼𝑑 ∈ Z≥0 are such that 𝛼0 + · · · + 𝛼𝑑 = 𝑗 . We only
need to prove that

(𝑇 − 𝑡)−𝜇𝜕𝛼0
𝑡 𝜕𝛼1

𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 𝑓 ∈ 𝐿∞(C). (5.11)

Let �̃� (𝑥) := �̂� (|𝑥 |) for 𝑥 ∈ R𝑑 , then by Lemma 5.1 we have �̃� ∈ 𝐶∞(R𝑑). Let 𝑗 ′ = 𝛼1 + · · · + 𝛼𝑑 ∈
Z ∩ [0, 𝑗], and we let

𝑓𝛼 := (−(𝜆 − 𝑗 ′) + 𝑥 · ∇𝑥) (−(𝜆 − 𝑗 ′ − 1) + 𝑥 · ∇𝑥) · · · (−(𝜆 − 𝑗 + 1) + 𝑥 · ∇𝑥)𝜕𝛼1
𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 �̃� .

Then 𝑓𝛼 ∈ 𝐶∞(R𝑑) and one can check by direct computation that

𝜕𝛼0
𝑡 𝜕𝛼1

𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 𝑓 (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆− 𝑗 𝑓𝛼 (𝑥/(𝑇 − 𝑡)), ∀ (𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 .

As |𝑥/(𝑇 − 𝑡) | < 2 for (𝑡, 𝑥) ∈ C and 𝜆 − 𝑗 − 𝜇 ≥ 0, we have (5.11).
(ii) Let 𝜆, 𝜇 ∈ R and 𝑗 ∈ Z≥0 be such that 𝜆 > 𝑗 + 𝜇. By the definitions of 𝒳0 and 𝒳𝜆, it suffices

to prove (𝑇 − 𝑡)−𝜇𝐷 𝑗 𝑓 ∈ 𝐿∞(C) for 𝑓 (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆 �̂� (𝑍)𝜏𝑛 for some �̂� ∈ 𝐶∞
e ([0, +∞)) and

some 𝑛 ∈ Z≥0. Let 𝑃(𝜏) := 𝜏𝑛 and 𝑃(𝑡) := 𝑃(𝜏) = 𝑃(− ln(𝑇 − 𝑡)). Then by the induction, for any
𝑖 ∈ Z≥0, there is a polynomial 𝑃𝑖 (𝜏) such that 𝑃 (𝑖) (𝑡) = (𝑇 − 𝑡)−𝑖𝑃𝑖 (𝜏). Hence,

(𝑇 − 𝑡)𝑖+𝜀𝑃 (𝑖) (𝑡) ∈ 𝐿∞([0, 𝑇)), ∀ 𝑖 ∈ Z≥0, ∀ 𝜀 > 0. (5.12)

Let �̃� (𝑡, 𝑥) := (𝑇−𝑡)𝜆 �̂� (𝑍) for (𝑡, 𝑥) ∈ [0, 𝑇)×R𝑑 , then 𝑓 (𝑡, 𝑥) = �̃� (𝑡, 𝑥)𝑃(𝑡) for (𝑡, 𝑥) ∈ [0, 𝑇)×R𝑑 ,
and by (iii) we have

(𝑇 − 𝑡)𝑖−𝜆𝐷𝑖 �̃� ∈ 𝐿∞(C), ∀ 𝑖 ∈ Z≥0. (5.13)
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Assume that 𝛼0, 𝛼1, · · · , 𝛼𝑑 ∈ Z≥0 are such that 𝛼0 + · · · + 𝛼𝑑 = 𝑗 . It suffices to prove

(𝑇 − 𝑡)−𝜇𝜕𝛼0
𝑡 𝜕𝛼1

𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 ( �̃� (𝑡, 𝑥)𝑃(𝑡)) ∈ 𝐿∞(C). (5.14)

By Leibnitz’s product rule, we have

(𝑇 − 𝑡)−𝜇𝜕𝛼0
𝑡 𝜕𝛼1

𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 ( �̃� (𝑡, 𝑥)𝑃(𝑡))

= (𝑇 − 𝑡)−𝜇
𝛼0∑
𝑖=0

(
𝛼0
𝑖

)
𝑃 (𝑖) (𝑡)𝜕𝛼0−𝑖

𝑡 𝜕𝛼1
𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 �̃� (𝑡, 𝑥)

=
𝛼0∑
𝑖=0

(
𝛼0
𝑖

)
(𝑇 − 𝑡)𝜆− 𝑗−𝜇+𝑖𝑃 (𝑖) (𝑡) · (𝑇 − 𝑡) 𝑗−𝑖−𝜆𝜕𝛼0−𝑖

𝑡 𝜕𝛼1
𝑥1 · · · 𝜕𝛼𝑑𝑥𝑑 �̃� (𝑡, 𝑥).

Then (5.14) follows from 𝜆 − 𝑗 − 𝜇 > 0, (5.12) and (5.13).

This completes the proof of Lemma 2.3. �

5.2. 𝓛 acting on 𝓧𝝀

Let’s first compute the linear operator ℒ𝜆 induced by ℒ acting on 𝒳𝜆. The following lemma relies
highly on the properties of the leading order profile (𝜌0, 𝜙0). For readers’ convenience, we recall some
notations. The linear operator ℒ is defined in (2.19):

ℒ(𝜙) := 𝜕𝛼
(
𝜌2

0𝜕𝛼𝜙 − 4
𝑝 − 1

𝜌3−𝑝
0 𝜕𝛼𝜙0𝜕

𝛼𝜙0𝜕𝛼𝜙

)
, 𝜙 = 𝜙(𝑡, 𝑥) = 𝜙(𝑡, 𝑟),

where according to (2.7),

𝜙0(𝑡, 𝑟) = (𝑇 − 𝑡)1−𝛽𝜙0(𝑍), 𝜌0(𝑡, 𝑥) = (𝑇 − 𝑡)−
2𝛽
𝑝−1 �̂�0(𝑍), 𝑍 =

𝑟

𝑇 − 𝑡
, 𝑟 = |𝑥 |.

By (3.13), 𝜙0 satisfies

𝜙′
0(𝑍) =

(𝛽 − 1)𝜙0(𝑍)𝑣(𝑍)
1 − 𝑍𝑣(𝑍) , 𝑍𝜙′

0 (𝑍) + (𝛽 − 1)𝜙0(𝑍) =
(𝛽 − 1)𝜙0(𝑍)

1 − 𝑍𝑣(𝑍) ,

and �̂�0 is defined by (2.12):

�̂�0 (𝑍) :=
(𝛽 − 1)

2
𝑝−1 𝜙0(𝑍)

2
𝑝−1 (1 − 𝑣(𝑍)2)

1
𝑝−1

(1 − 𝑍𝑣(𝑍))
2
𝑝−1

.

Lemma 5.3. There exist real-valued 𝐴0, 𝐵0, 𝐷1, 𝐷2 ∈ 𝐶∞
e ([0, +∞)) and 𝐵0 ∈ 𝐶∞

o ([0, +∞)) with

𝐴0 (𝑍) = �̂�0(𝑍)2 (1 − 𝑍𝑣(𝑍))2 − ℓ(𝑣(𝑍) − 𝑍)2

1 − 𝑣(𝑍)2 = �̂�0(𝑍)2 Δ𝑍 (𝑍, 𝑣(𝑍))
𝑍 (1 − 𝑣(𝑍)2)

, (5.15)

such that if we define

𝐵0 (𝑍;𝜆) := 𝑍−1𝐵0 (𝑍) + 𝜆𝐵0(𝑍), 𝐷0 (𝑍;𝜆) := 𝜆𝐷1(𝑍) + 𝜆2𝐷2 (𝑍)

and

(ℒ𝜆 𝑓 ) (𝑍) := 𝐴0 (𝑍) 𝑓 ′′(𝑍) + 𝐵0(𝑍;𝜆) 𝑓 ′(𝑍) + 𝐷0 (𝑍;𝜆) 𝑓 (𝑍), (5.16)
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then there hold (here ℒ is defined in (2.19) and 𝛾 := 4𝛽/(𝑝 − 1) + 2 = 𝛽(ℓ − 1) + 2)

ℒ((𝑇 − 𝑡)𝜆 𝑓 (𝑍)) = (𝑇 − 𝑡)𝜆−𝛾 (ℒ𝜆 𝑓 ) (𝑍) for 𝑓 ∈ 𝐶∞
e ([0, +∞)), 𝜆 ∈ C,

and

𝐴0(0) = 1, 𝐴0(𝑍1) = 0, 𝐴′
0(𝑍1) < 0, (5.17)

𝐴0(𝑍) > 0 ∀ 𝑍 ∈ [0, 𝑍1), 𝐴0 (𝑍) < 0 ∀ 𝑍 ∈ (𝑍1, +∞), (5.18)

𝐵0(𝑍) > 0 for all 𝑍 > 0, 𝐵0 (0) = 𝑘 ∈ Z+. (5.19)

Proof. We first consider the functions in the form of (𝑇 − 𝑡)𝜆 𝑓 (𝜏, 𝑍), where f is a smooth function and

𝜏 = ln
1

𝑇 − 𝑡
, 𝑍 =

𝑟

𝑇 − 𝑡
, 𝑟 = |𝑥 |. (5.20)

Let 𝛾 := 4𝛽/(𝑝 − 1) + 2 = 𝛽(ℓ− 1) + 2, and let 𝑓 = 𝑓 (𝜏, 𝑍) and 𝜆 ∈ C. Now we compute ℒ
(
(𝑇 − 𝑡)𝜆 𝑓

)
.

We will use the following identities: for 𝜆, 𝜇 ∈ C, 𝑓 = 𝑓 (𝜏, 𝑍), 𝑔 = 𝑔(𝜏, 𝑍),

𝜕𝛼
(
(𝑇 − 𝑡)𝜆 𝑓

)
𝜕𝛼 ((𝑇 − 𝑡)𝜇𝑔)

= (𝑇 − 𝑡)𝜆+𝜇−2
[
− (𝜕𝜏 𝑓 + 𝑍𝜕𝑍 𝑓 − 𝜆 𝑓 ) (𝜕𝜏𝑔 + 𝑍𝜕𝑍𝑔 − 𝜇𝑔) + 𝜕𝑍 𝑓 𝜕𝑍𝑔

]
, (5.21)

𝜕𝛼
(
(𝑇 − 𝑡)𝜆 𝑓 𝜕𝛼 ((𝑇 − 𝑡)𝜇𝑔)

)
= (𝑇 − 𝑡)𝜆+𝜇−2

[
−

(
𝜕𝜏 + 𝑍𝜕𝑍 − (𝜆 + 𝜇 − 1)

) (
𝑓 (𝜕𝜏𝑔

+ 𝑍𝜕𝑍𝑔 − 𝜇𝑔)
)
+ (𝜕𝑍 + 𝑘/𝑍) ( 𝑓 𝜕𝑍𝑔)

]
. (5.22)

Readers can check (5.21) and (5.22) by using direct computation.
By (2.7), (5.22) and 𝛾 = 4𝛽/(𝑝 − 1) + 2, we have

𝜕𝛼
(
𝜌2

0𝜕𝛼

(
(𝑇 − 𝑡)𝜆 𝑓

))
= (𝑇 − 𝑡)𝜆−𝛾

{
−

(
𝜕𝜏 + 𝑍𝜕𝑍 − (𝜆 − 𝛾 + 1)

) [
�̂�0 (𝑍)2(𝜕𝜏 + 𝑍𝜕𝑍 − 𝜆) 𝑓

]
+ (𝜕𝑍 + 𝑘/𝑍)

(
�̂�0(𝑍)2𝜕𝑍 𝑓

) }
.

By (2.7) and (5.21), we have

𝜕𝛼𝜙0𝜕𝛼

(
(𝑇 − 𝑡)𝜆 𝑓

)
= (𝑇 − 𝑡)𝜆−𝛽−1

[
−(𝑍𝜕𝑍𝜙0 − (1 − 𝛽)𝜙0) (𝜕𝜏 + 𝑍𝜕𝑍 − 𝜆) 𝑓 + 𝜕𝑍𝜙0𝜕𝑍 𝑓

]
.

It follows from (3.13) that

−(𝑍𝜕𝑍𝜙0 − (1 − 𝛽)𝜙0) (𝜕𝜏 + 𝑍𝜕𝑍 − 𝜆) 𝑓 + 𝜕𝑍𝜙0𝜕𝑍 𝑓 =
(𝛽 − 1)𝜙0
1 − 𝑍𝑣(𝑍)

(
− 𝜕𝜏 + (𝑣 − 𝑍)𝜕𝑍 + 𝜆

)
𝑓

=: 𝑔(𝜏, 𝑍),

and then 𝜕𝛼𝜙0𝜕𝛼
(
(𝑇 − 𝑡)𝜆 𝑓

)
= (𝑇 − 𝑡)𝜆−𝛽−1𝑔(𝜏, 𝑍). By (2.7) and (5.22), we have

𝜕𝛼
(
𝜌3−𝑝

0 𝜕𝛼𝜙0𝜕
𝛼𝜙0𝜕𝛼

(
(𝑇 − 𝑡)𝜆 𝑓

))
= 𝜕𝛼

(
(𝑇 − 𝑡)𝜇 �̂�3−𝑝

0 𝑔𝜕𝛼

(
(𝑇 − 𝑡)1−𝛽𝜙0

))
= (𝑇 − 𝑡)𝜆−𝛾

{
−

(
𝜕𝜏 + 𝑍𝜕𝑍 − (𝜆 − 𝛾 + 1)

) [
�̂�3−𝑝

0 𝑔
(
𝑍𝜕𝑍𝜙0 − (1 − 𝛽)𝜙0

) ]
+ (𝜕𝑍 + 𝑘/𝑍)

(
�̂�3−𝑝

0 𝑔𝜕𝑍𝜙0

) }
,
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where 𝜇 = − 2𝛽
𝑝−1 (3 − 𝑝) + 𝜆 − 𝛽 − 1 satisfies 𝜇 + (1 − 𝛽) − 2 = 𝜆 − 𝛾. By (2.12) and (3.13),

�̂�0(𝑍)3−𝑝 (𝛽 − 1)𝜙0(𝑍)
1 − 𝑍𝑣(𝑍)

(
𝑍𝜕𝑍𝜙0 − (1 − 𝛽)𝜙0

)
= �̂�0(𝑍)2 �̂�0 (𝑍)1−𝑝 (𝛽 − 1)2𝜙0(𝑍)2

(1 − 𝑍𝑣(𝑍))2 =
�̂�0(𝑍)2

1 − 𝑣(𝑍)2 ,

�̂�0(𝑍)3−𝑝 (𝛽 − 1)𝜙0(𝑍)
1 − 𝑍𝑣(𝑍) 𝜕𝑍𝜙0 =

�̂�0 (𝑍)2𝑣(𝑍)
1 − 𝑣(𝑍)2 ,

thus

�̂�3−𝑝
0 𝑔

(
𝑍𝜕𝑍𝜙0 − (1 − 𝛽)𝜙0

)
=

�̂�0(𝑍)2

1 − 𝑣(𝑍)2
(
− 𝜕𝜏 + (𝑣(𝑍) − 𝑍)𝜕𝑍 + 𝜆

)
𝑓 ,

�̂�3−𝑝
0 𝑔𝜕𝑍𝜙0 =

�̂�0(𝑍)2𝑣(𝑍)
1 − 𝑣(𝑍)2

(
− 𝜕𝜏 + (𝑣(𝑍) − 𝑍)𝜕𝑍 + 𝜆

)
𝑓 .

Therefore,

𝜕𝛼
(
𝜌3−𝑝

0 𝜕𝛼𝜙0𝜕
𝛼𝜙0𝜕𝛼

(
(𝑇 − 𝑡)𝜆 𝑓

))
= (𝑇 − 𝑡)𝜆−𝛾

{
−

(
𝜕𝜏 + 𝑍𝜕𝑍 − (𝜆 − 𝛾 + 1)

) [ �̂�0(𝑍)2

1 − 𝑣(𝑍)2
(
− 𝜕𝜏 + (𝑣(𝑍) − 𝑍)𝜕𝑍 + 𝜆

)
𝑓

]
+
(
𝜕𝑍 + 𝑘

𝑍

) [
�̂�0(𝑍)2𝑣(𝑍)
1 − 𝑣(𝑍)2

(
− 𝜕𝜏 + (𝑣(𝑍) − 𝑍)𝜕𝑍 + 𝜆

)
𝑓

] }
.

Finally, recall that ℒ(𝜙) = 𝜕𝛼
(
𝜌2

0𝜕𝛼𝜙 − 4
𝑝−1 𝜌

3−𝑝
0 𝜕𝛼𝜙0𝜕

𝛼𝜙0𝜕𝛼𝜙
)
, 4
𝑝−1 = ℓ − 1, we obtain

ℒ
(
(𝑇 − 𝑡)𝜆 𝑓

)
= (𝑇 − 𝑡)𝜆−𝛾

{
−

(
𝜕𝜏 + 𝑍𝜕𝑍 − (𝜆 − 𝛾 + 1)

) [
�̂�0 (𝑍)2 (𝜕𝜏 + 𝑍𝜕𝑍 − 𝜆) 𝑓

]
+ (𝜕𝑍 + 𝑘/𝑍)

(
�̂�0 (𝑍)2𝜕𝑍 𝑓

)
+ (ℓ − 1)

(
𝜕𝜏 + 𝑍𝜕𝑍 − (𝜆 − 𝛾 + 1)

) [ �̂�0 (𝑍)2

1 − 𝑣(𝑍)2
(
− 𝜕𝜏 + (𝑣(𝑍) − 𝑍)𝜕𝑍 + 𝜆

)
𝑓

]
− (ℓ − 1)

(
𝜕𝑍 + 𝑘

𝑍

) [
�̂�0 (𝑍)2𝑣(𝑍)
1 − 𝑣(𝑍)2

(
− 𝜕𝜏 + (𝑣(𝑍) − 𝑍)𝜕𝑍 + 𝜆

)
𝑓

] }
.

For any 𝜆 ∈ C, we define a linear operator ℒ𝜆 by

(ℒ𝜆 𝑓 ) (𝑍) := −
(
𝑍𝜕𝑍 − (𝜆 − 𝛾 + 1)

) [
�̂�0(𝑍)2 (𝑍𝜕𝑍 − 𝜆) 𝑓

]
+ (𝜕𝑍 + 𝑘/𝑍)

(
�̂�0(𝑍)2𝜕𝑍 𝑓

)
+ (ℓ − 1)

(
𝑍𝜕𝑍 − (𝜆 − 𝛾 + 1)

) [ �̂�0(𝑍)2

1 − 𝑣(𝑍)2
(
(𝑣(𝑍) − 𝑍)𝜕𝑍 + 𝜆

)
𝑓

]
− (ℓ − 1)

(
𝜕𝑍 + 𝑘

𝑍

) [
�̂�0 (𝑍)2𝑣(𝑍)
1 − 𝑣(𝑍)2

(
(𝑣(𝑍) − 𝑍)𝜕𝑍 + 𝜆

)
𝑓

]
, (5.23)

where 𝑓 = 𝑓 (𝑍) depends only on 𝑍 ∈ [0, +∞) (not on 𝜏). Assume that 𝑓 = 𝑓 (𝑍) = 𝑓 (𝑍;𝜆) satisfies
(ℒ𝜆 𝑓 ) (𝑍) = 𝑔(𝑍) = 𝑔(𝑍;𝜆), then (here ℒ and ℒ𝜆 do not act on 𝜆)

ℒ
(
(𝑇 − 𝑡)𝜆 𝑓

)
= (𝑇 − 𝑡)𝜆−𝛾𝑔(𝑍). (5.24)
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Now it is enough to prove that ℒ𝜆 defined in (5.23) can be written in the form of (5.16) with
𝐵0 (𝑍;𝜆) = 𝑍−1𝐵0(𝑍) + 𝜆𝐵0(𝑍), 𝐷0 (𝑍;𝜆) = 𝜆𝐷1(𝑍) + 𝜆2𝐷2 (𝑍) and 𝐴0(𝑍), 𝐵0 (𝑍), 𝐷1 (𝑍), 𝐷2 (𝑍) ∈
𝐶∞

e ([0, +∞)), 𝐵0 ∈ 𝐶∞
o ([0, +∞)) satisfying (5.15), (5.17), (5.18), (5.19).

Comparing the coefficients of 𝜕 𝑗
𝑍 ( 𝑗 = 0, 1, 2) in (5.23) and (5.16), we find

𝐴0 (𝑍) = �̂�0(𝑍)2(1 − 𝑍2) + (ℓ − 1) �̂�0(𝑍)2

1 − 𝑣(𝑍)2 𝑍 (𝑣(𝑍) − 𝑍) − (ℓ − 1) �̂�0(𝑍)2𝑣(𝑍)
1 − 𝑣(𝑍)2 (𝑣(𝑍) − 𝑍)

= �̂�0(𝑍)2
(
(1 − 𝑍2) − (ℓ − 1) (𝑣(𝑍) − 𝑍)2

1 − 𝑣(𝑍)2

)
= �̂�0 (𝑍)2 (1 − 𝑍𝑣(𝑍))2 − ℓ(𝑣(𝑍) − 𝑍)2

1 − 𝑣(𝑍)2 ,

𝐵0(𝑍;𝜆) = −𝑍2𝜕𝑍 ( �̂�2
0) − 𝑍 �̂�2

0 + 𝜆𝑍 �̂�2
0 + (𝜆 − 𝛾 + 1)𝑍 �̂�2

0 + 𝜕𝑍 ( �̂�2
0) + (𝑘/𝑍) �̂�2

0

+ (ℓ − 1)𝑍𝜕𝑍

(
�̂�2

0
1 − 𝑣2

)
(𝑣 − 𝑍) +

(ℓ − 1) �̂�2
0

1 − 𝑣2
(
𝑍𝑣′ − 𝑍 − (𝜆 − 𝛾 + 1) (𝑣 − 𝑍) + 𝜆𝑍

)
− (ℓ − 1)𝜕𝑍

(
�̂�2

0𝑣

1 − 𝑣2

)
(𝑣 − 𝑍) − (ℓ − 1)

�̂�2
0𝑣

1 − 𝑣2
(
𝑣′ − 1 + (𝑘/𝑍) (𝑣 − 𝑍) + 𝜆

)
,

𝐷0 (𝑍;𝜆) = −
(
𝑍𝜕𝑍 − (𝜆 − 𝛾 + 1)

) (
−𝜆�̂�0(𝑍)2

)
+ (ℓ − 1)

(
𝑍𝜕𝑍 − (𝜆 − 𝛾 + 1)

) (
𝜆

�̂�0(𝑍)2

1 − 𝑣(𝑍)2

)
− (ℓ − 1)

(
𝜕𝑍 + 𝑘

𝑍

) (
𝜆
�̂�0(𝑍)2𝑣(𝑍)
1 − 𝑣(𝑍)2

)
.

Then (5.23) and (5.16) are equivalent and 𝐴0 satisfies (5.15).
By the expression of 𝐵0 (𝑍;𝜆), we have 𝐵0 (𝑍;𝜆) = 𝑍−1𝐵0(𝑍) + 𝜆𝐵0(𝑍) with

𝐵0 (𝑍) = 2𝑍 �̂�2
0 +

(ℓ − 1) �̂�2
0

1 − 𝑣2 (2𝑍 − 𝑣) −
(ℓ − 1) �̂�2

0𝑣

1 − 𝑣2 =
2�̂�2

0
1 − 𝑣2

(
𝑍 (1 − 𝑣2) + (ℓ − 1) (𝑍 − 𝑣)

)
.

𝐵0 (𝑍) = 𝑘 �̂�2
0 + (1 − 𝑍2)𝑍𝜕𝑍 ( �̂�2

0) − 𝛾𝑍2 �̂�2
0 + (ℓ − 1) (𝑣 − 𝑍)

[
𝑍2𝜕𝑍

(
�̂�2

0
1 − 𝑣2

)
− 𝑍𝜕𝑍

(
�̂�2

0𝑣

1 − 𝑣2

) ]
+ (ℓ − 1)

�̂�2
0

1 − 𝑣2

(
𝑍 (𝑍 − 𝑣)𝑣′ + (𝑘 + 𝛾)𝑍𝑣 − 𝛾𝑍2 − 𝑘𝑣2

)
.

By the expression of 𝐷0 (𝑍;𝜆), we have 𝐷0 (𝑍;𝜆) = 𝜆𝐷1(𝑍) + 𝜆2𝐷2 (𝑍) with

𝐷1 (𝑍) =
(
𝑍𝜕𝑍 + 𝛾 − 1

) (
�̂�0 (𝑍)2

)
+ (ℓ − 1)

(
𝑍𝜕𝑍 + 𝛾 − 1

) ( �̂�0 (𝑍)2

1 − 𝑣(𝑍)2

)
− (ℓ − 1)

(
𝜕𝑍 + 𝑘

𝑍

) (
�̂�0 (𝑍)2𝑣(𝑍)
1 − 𝑣(𝑍)2

)
,

𝐷2 (𝑍) = − �̂�0(𝑍)2 − (ℓ − 1) �̂�0(𝑍)2

1 − 𝑣(𝑍)2 = −�̂�0(𝑍)2 ℓ − 𝑣(𝑍)2

1 − 𝑣(𝑍)2 .

It remains to prove that 𝐴0 (𝑍), 𝐵0(𝑍), 𝐷1 (𝑍), 𝐷2 (𝑍) ∈ 𝐶∞
e ([0, +∞)), 𝐵0 ∈ 𝐶∞

o ([0, +∞)) and (5.17),
(5.18), (5.19).

By Lemma A.6 we have �̂�0 ∈ 𝐶∞
e ([0, +∞)), 𝑣 ∈ 𝐶∞

o ([0, +∞)); by (5.5) and (5.6) we have �̂�2
0 ∈

𝐶∞
e ([0, +∞)), (𝑣(𝑍) − 𝑍)2 ∈ 𝐶∞

e ([0, +∞)) and 1 − 𝑣(𝑍)2 ∈ 𝐶∞
e ([0, +∞)); by (5.6) we have 𝑍𝑣(𝑍) ∈

𝐶∞
e ([0, +∞)), hence 1 − 𝑍𝑣(𝑍) ∈ 𝐶∞

e ([0, +∞)), then using (5.5) we get (1 − 𝑍𝑣(𝑍))2 ∈ 𝐶∞
e ([0, +∞)).

Therefore, by 𝑣 ∈ (−1, 1) (see Assumption 1), (5.8) and (5.15) we have 𝐴0(𝑍) ∈ 𝐶∞
e ([0, +∞)).

Similarly, by Lemma A.6 and (5.3)–(5.8) we have 𝐵0(𝑍) ∈ 𝐶∞
o ([0, +∞)) and 𝐵0 (𝑍), 𝐷1 (𝑍),

𝐷2 (𝑍) ∈ 𝐶∞
e ([0, +∞)).
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It follows from �̂�0(0) = 1 and 𝑣(0) = 0 that 𝐴0(0) = 1. By Remark 2.2 and �̂�0 (𝑍) > 0 for all
𝑍 ∈ [0, +∞), we have 𝐴0(𝑍1) = 0 and (5.18). Let Δ0(𝑍) = Δ𝑍 (𝑍, 𝑣(𝑍)), then by Δ0 (𝑍1) = 0 and
Remark 2.2, 𝐴′

0(𝑍1) = �̂�0(𝑍1)2Δ ′
0(𝑍1)/(𝑍1(1 − 𝑣(𝑍1)2)) ≠ 0. This along with 𝐴0(𝑍1) < 𝐴0(𝑍) for all

𝑍 ∈ [0, 𝑍1) implies 𝐴′
0(𝑍1) < 0. So we have (5.17).

As 𝑣(𝑍) ∈ (0, 1), 𝑣(𝑍) < 𝑍 for all 𝑍 > 0 (see Remark 2.2) and 𝜙0(𝑍) > 0 for all 𝑍 ∈ [0, +∞),
we have 𝐵0(𝑍) > 0 for all 𝑍 > 0; as �̂�0(0) = 1 and 𝑣(0) = 0 we have 𝐵0 (0) = 𝑘 ∈ Z+. This proves
(5.19). �

Next we compute the dual operator of ℒ𝜆. For any 𝜆 ∈ C, we define an operator ℒ∗
𝜆 , called the dual

operator of ℒ𝜆, by∫ ∞

0
(ℒ𝜆 𝑓 ) (𝑍)𝑔(𝑍)𝑍 𝑘 d𝑍 =

∫ ∞

0
𝑓 (𝑍) (ℒ∗

𝜆𝑔) (𝑍)𝑍
𝑘 d𝑍, ∀ 𝑓 , 𝑔 ∈ 𝐶∞

𝑐 ((0, +∞)). (5.25)

Lemma 5.4. For any 𝜆 ∈ C, we have ℒ∗
𝜆 = ℒ−𝜆+𝛾−𝑘−2.

Proof. By the definition (5.25), it is enough to prove that∫ ∞

0
(ℒ𝜆 𝑓 ) (𝑍)𝑔(𝑍)𝑍 𝑘 d𝑍 =

∫ ∞

0
𝑓 (𝑍) (ℒ−𝜆+𝛾−𝑘−2𝑔) (𝑍)𝑍 𝑘 d𝑍 (5.26)

for all 𝜆 ∈ C and 𝑓 , 𝑔 ∈ 𝐶∞
𝑐 ((0, +∞)). We fix 𝜆 ∈ C and 𝑓 , 𝑔 ∈ 𝐶∞

𝑐 ((0, +∞)). Let

�̃� (𝑡, 𝑥) := (𝑇 − 𝑡)𝜆 𝑓 (𝑍), �̃�(𝑡, 𝑥) := (𝑇 − 𝑡)−𝜆+𝛾−𝑘−2𝑔(𝑍), ∀ (𝑡, 𝑥) ∈ [0, 𝑇) × R𝑑 ,

recalling 𝑍 = |𝑥 |/(𝑇−𝑡). Then by Lemma 5.3, we have ℒ �̃� (𝑡, 𝑥) = (𝑇−𝑡)𝜆−𝛾 (ℒ𝜆 𝑓 ) (𝑍) andℒ�̃�(𝑡, 𝑥) =
(𝑇 − 𝑡)−𝜆−𝑘−2(ℒ−𝜆+𝛾−𝑘−2𝑔) (𝑍), thus (ℒ �̃� · �̃�) (𝑡, 𝑥) = (𝑇 − 𝑡)−𝑘−2(ℒ𝜆 𝑓 ) (𝑍)𝑔(𝑍), and ( �̃� ·ℒ�̃�) (𝑡, 𝑥) =
(𝑇 − 𝑡)−𝑘−2 𝑓 (𝑍) (ℒ−𝜆+𝛾−𝑘−2𝑔) (𝑍). Recall that 𝑑 = 𝑘 + 1, 𝑍 = |𝑥 |/(𝑇 − 𝑡), then we have (here |𝑆𝑘 | is
the area of the unit sphere 𝑆𝑘 in R𝑑 = R𝑘+1)∫

R𝑑
(ℒ �̃� · �̃�) (𝑡, 𝑥)𝑑𝑥 = (𝑇 − 𝑡)−1 |𝑆𝑘 |

∫ ∞

0
(ℒ𝜆 𝑓 ) (𝑍)𝑔(𝑍)𝑍 𝑘 d𝑍,∫

R𝑑
( �̃� ·ℒ�̃�) (𝑡, 𝑥)𝑑𝑥 = (𝑇 − 𝑡)−1 |𝑆𝑘 |

∫ ∞

0
𝑓 (𝑍) (ℒ−𝜆+𝛾−𝑘−2𝑔) (𝑍)𝑍 𝑘 d𝑍,

for all 𝑡 ∈ [0, 𝑇). Thus, it is enough to prove that∫
R𝑑

(ℒ �̃� · �̃�) (𝑡, 𝑥) d𝑥 =
∫
R𝑑

( �̃� ·ℒ�̃�) (𝑡, 𝑥) d𝑥, ∀ 𝑡 ∈ [0, 𝑇). (5.27)

Let J := ℒ �̃� · �̃� − �̃� ·ℒ�̃�. Then (5.27) is further reduced to∫
R𝑑

J (𝑡, 𝑥) d𝑥 = 0, ∀ 𝑡 ∈ [0, 𝑇). (5.28)

By the definition of ℒ in (2.19), we can write J in the divergence form J = 𝜕𝛼𝑃𝛼 with

𝑃𝛼 := 𝜌2
0 (𝜕𝛼 �̃� �̃� − �̃� 𝜕𝛼�̃�) −

4
𝑝 − 1

𝜌3−𝑝
0 𝜕𝛼𝜙0(𝜕𝛼𝜙0𝜕𝛼 �̃� �̃� − �̃� 𝜕𝛼𝜙0𝜕𝛼�̃�), ∀ 𝛼 ∈ Z ∩ [0, 𝑑] .

Let 𝐸 (𝑡) :=
∫
R𝑑

𝑃0 (𝑡, 𝑥) d𝑥 for 𝑡 ∈ [0, 𝑇). By the divergence theorem (recalling 𝜕0 = −𝜕0 = −𝜕𝑡 and the
fact that supp𝑥 𝑃𝛼 (𝑡, ·) is compact for each t and 𝛼), we have

− d
d𝑡
𝐸 (𝑡) =

∫
R𝑑

𝜕0𝑃0 (𝑡, 𝑥) d𝑥 =
∫
R𝑑

𝜕𝛼𝑃𝛼 (𝑡, 𝑥) d𝑥 =
∫
R𝑑

J (𝑡, 𝑥) d𝑥, ∀ 𝑡 ∈ [0, 𝑇). (5.29)
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Thus, it is enough to prove that 𝐸 (𝑡) is constant in t. We can write 𝑃0 = 𝑃0,1 − 4
𝑝−1𝑃0,2 with

𝑃0,1 := 𝜌2
0 (𝜕𝑡 �̃� �̃� − �̃� 𝜕𝑡 �̃�), 𝑃0,2 := 𝜌3−𝑝

0 𝜕𝑡𝜙0(𝜕𝛼𝜙0𝜕𝛼 �̃� �̃� − �̃� 𝜕𝛼𝜙0𝜕𝛼�̃�).

As �̃� (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆 𝑓 (𝑍), �̃�(𝑡, 𝑥) = (𝑇 − 𝑡)−𝜆+𝛾−𝑘−2𝑔(𝑍), we have

𝜕𝑡 �̃� (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆−1 𝑓1(𝑍) with 𝑓1 (𝑍) := −𝜆 𝑓 (𝑍) + 𝑍 𝑓 ′(𝑍),
𝜕𝑡 �̃�(𝑡, 𝑥) = (𝑇 − 𝑡)−𝜆+𝛾−𝑘−3𝑔1(𝑍) with 𝑔1(𝑍) := −(−𝜆 + 𝛾 − 𝑘 − 2)𝑔(𝑍) + 𝑍𝑔′(𝑍).

Then by (2.7), 𝛾 = 4𝛽
𝑝−1 + 2 and 𝑑 = 𝑘 + 1, we get

𝑃0,1 (𝑡, 𝑥) = (𝑇 − 𝑡)−
4𝛽
𝑝−1+𝛾−𝑘−3 �̂�0(𝑍)2 [ 𝑓1 (𝑍)𝑔(𝑍) − 𝑓 (𝑍)𝑔1(𝑍)]

= (𝑇 − 𝑡)−𝑑 �̂�0 (𝑍)2 [ 𝑓1(𝑍)𝑔(𝑍) − 𝑓 (𝑍)𝑔1(𝑍)] .

As �̃� (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆 𝑓 (𝑍), �̃�(𝑡, 𝑥) = (𝑇 − 𝑡)−𝜆+𝛾−𝑘−2𝑔(𝑍), we get by (2.7) and (5.21) that

𝜕𝛼𝜙0𝜕𝛼 �̃� (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆−𝛽−1 𝑓2 (𝑍), 𝜕𝛼𝜙0𝜕𝛼�̃�(𝑡, 𝑥) = (𝑇 − 𝑡)−𝜆+𝛾−𝑘−3−𝛽𝑔2 (𝑍),

where

𝑓2 := −(𝑍𝜕𝑍𝜙0 − (1 − 𝛽)𝜙0) (𝑍𝜕𝑍 − 𝜆) 𝑓 + 𝜕𝑍𝜙0𝜕𝑍 𝑓 ,

𝑔2 := −(𝑍𝜕𝑍𝜙0 − (1 − 𝛽)𝜙0) (𝑍𝜕𝑍 + 𝜆 − 𝛾 + 𝑘 + 2)𝑔 + 𝜕𝑍𝜙0𝜕𝑍𝑔.

Then by (2.7), (A.2) and 𝛾 = 4𝛽
𝑝−1 + 2 = 2(3−𝑝)𝛽

𝑝−1 + 2𝛽 + 2, 𝑑 = 𝑘 + 1, we have

𝑃0,2 (𝑡, 𝑥)

= (𝑇 − 𝑡)−
2(3−𝑝)𝛽
𝑝−1 −2𝛽+𝛾−𝑘−3 �̂�0 (𝑍)3−𝑝 [(𝛽 − 1)𝜙0(𝑍) + 𝑍𝜙′

0(𝑍)] [ 𝑓2(𝑍)𝑔(𝑍) − 𝑓 (𝑍)𝑔2(𝑍)]
= (𝑇 − 𝑡)−𝑑 �̂�0(𝑍)3−𝑝 [(𝛽 − 1)𝜙0(𝑍) + 𝑍𝜙′

0 (𝑍)] [ 𝑓2 (𝑍)𝑔(𝑍) − 𝑓 (𝑍)𝑔2(𝑍)] .

As 𝑃0 = 𝑃0,1 − 4
𝑝−1𝑃0,2, we have 𝑃0 (𝑡, 𝑥) = (𝑇 − 𝑡)−𝑑𝐻 (𝑍) with

𝐻 (𝑍) := �̂�0 (𝑍)2 [ 𝑓1(𝑍)𝑔(𝑍) − 𝑓 (𝑍)𝑔1(𝑍)]

− 4
𝑝 − 1

�̂�0(𝑍)3−𝑝 [(𝛽 − 1)𝜙0(𝑍) + 𝑍𝜙′
0 (𝑍)] [ 𝑓2 (𝑍)𝑔(𝑍) − 𝑓 (𝑍)𝑔2(𝑍)] .

Then by 𝑑 = 𝑘 + 1, 𝑍 = |𝑥 |/(𝑇 − 𝑡), we have 𝐸 (𝑡) =
∫
R𝑑

𝑃0 (𝑡, 𝑥) d𝑥 = |𝑆𝑘 |
∫ ∞

0 𝐻 (𝑍)𝑍 𝑘 d𝑍 , which is
constant in t. By (5.29), we have (5.28), thus (5.27) and (5.26). �

5.3. Surjection of 𝓛

This subsection is devoted to the proof of Proposition 2.4, i.e., ℒ : 𝒳𝜆 → 𝒳𝜆−𝛾 is surjective for all
𝜆 ∈ C. For this, it suffices to show that

Lemma 5.5. If 𝑅 ∈ (𝑘, +∞), then the linear operator ℒ : 𝒳𝜆 → 𝒳𝜆−𝛾 is surjective for all 𝜆 ∈ 𝐵𝑅 :=
{𝜆 ∈ C : |𝜆 | < 𝑅}, where 𝛾 := 4𝛽/(𝑝 − 1) + 2 = 𝛽(ℓ − 1) + 2.

From here until the end of this section, we fix an 𝑅 ∈ (𝑘, +∞).
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We consider functions depending analytically on a complex number 𝜆. Let 𝐼 ⊂ [0, +∞) be an interval
and let Ω ⊂ C be an open set. We define

Hol(Ω) := {all holomorphic function on Ω},
H𝐼 (Ω) := { 𝑓 = 𝑓 (𝑍;𝜆) ∈ 𝐶∞(𝐼 ×Ω;C) : 𝑓 (𝑍; ·) ∈ Hol(Ω) for all 𝑍 ∈ 𝐼} ,
He

𝐼 (Ω) := { 𝑓 ∈ 𝐶∞(𝐼 ×Ω) : ∃ �̃� ∈ H𝐼 2 (Ω), s.t. 𝑓 (𝑍;𝜆) = �̃� (𝑍2;𝜆) ∀ 𝑍 ∈ 𝐼, 𝜆 ∈ Ω}.

Then Hol(Ω), H𝐼 (Ω), He
𝐼 (Ω) are rings. Moreover, we have

He
[0,+∞) (Ω) = He

[0,𝑎2) (Ω) ∩H(𝑎1 ,+∞) (Ω), ∀ 0 < 𝑎1 < 𝑎2 < +∞.

The proof of Lemma 5.5 is based on the following result, which will be proved in next subsection.

Lemma 5.6. There exists 𝜑 ∈ Hol(𝐵𝑅) \ {0} such that if 𝑔 ∈ 𝐶∞
e ([0, +∞)), then there exists

𝑓 = 𝑓 (𝑍;𝜆) ∈ He
[0,+∞) (𝐵𝑅) such that ℒ𝜆 𝑓 (·;𝜆) = 𝜑(𝜆) · 𝑔 on (0, +∞) (for all 𝜆 ∈ 𝐵𝑅).

Proof of Lemma 5.5. We first prove that ℒ maps 𝒳𝜆 to 𝒳𝜆−𝛾 .
Recall that ℒ(𝜙) = 𝜕𝛼

(
𝜌2

0𝜕𝛼𝜙 − 4
𝑝−1 𝜌

3−𝑝
0 𝜕𝛼𝜙0𝜕

𝛼𝜙0𝜕𝛼𝜙
)
, 𝜌2

0 ∈ 𝒳2𝜇0 , 𝜌3−𝑝
0 ∈ 𝒳(3−𝑝)𝜇0 , 𝜙0 ∈ 𝒳𝜆0 ,

𝜆0 = 1 − 𝛽, 𝜇0 = − 2𝛽
𝑝−1 (see (2.22)) and 𝛾 = 4𝛽/(𝑝 − 1) + 2. If 𝜙 ∈ 𝒳𝜆, by Lemma 2.3 (i), we have

𝜕𝛼 (𝜌2
0𝜕𝛼𝜙) ∈ 𝒳𝜆−𝛾 , 𝜕𝛼 (𝜌3−𝑝

0 𝜕𝛼𝜙0𝜕
𝛼𝜙0𝜕𝛼𝜙) ∈ 𝒳𝜆−𝛾 , where we have used that 𝜆 + 2𝜇0 − 2 = 𝜆 − 𝛾 =

𝜆 + 𝜆0 − 2 + (3 − 𝑝)𝜇0 + 𝜆0 − 2, thus ℒ(𝜙) ∈ 𝒳𝜆−𝛾 .
Now we prove that ℒ is surjective. By the definitions of 𝒳0 and 𝒳𝜆, it suffices to prove that

for every 𝑔 ∈ 𝐶∞
e ([0, +∞)), 𝑛 ∈ Z≥0 and 𝜆∗ ∈ 𝐵𝑅, there exists 𝐹𝑛 ∈ 𝒳𝜆∗ such that ℒ𝐹𝑛 (𝑡, 𝑥) =

(𝑇 − 𝑡)𝜆∗−𝛾𝑔(𝑍)𝜏𝑛/𝑛!. Now we fix 𝑔 ∈ 𝐶∞
e ([0, +∞)) and 𝜆∗ ∈ 𝐵𝑅.

By Lemma 5.6, there exist 𝜑 ∈ Hol(𝐵𝑅) \ {0} and a function 𝑓 = 𝑓 (𝑍;𝜆) ∈ He
[0,+∞) (𝐵𝑅) such that

ℒ𝜆 𝑓 (𝑍;𝜆) = 𝜑(𝜆)𝑔(𝑍) for 𝑍 ∈ (0, +∞), 𝜆 ∈ 𝐵𝑅. As 𝑓 ∈ He
[0,+∞) (𝐵𝑅) there exists �̃� ∈ H[0,+∞) (𝐵𝑅)

such that 𝑓 (𝑍;𝜆) = �̃� (𝑍2;𝜆) for 𝑍 ∈ [0, +∞), 𝜆 ∈ 𝐵𝑅. As 𝜆∗ ∈ 𝐵𝑅, there exist 𝛿∗ > 0 and 𝑚∗ ∈ Z≥0
such that 𝐵2𝛿∗ (𝜆∗) ⊂ 𝐵𝑅 and

𝜑(𝜆) = (𝜆 − 𝜆∗)𝑚∗𝜑(𝜆) with 𝜑(𝜆) ≠ 0, ∀ 𝜆 ∈ Ω∗ := 𝐵2𝛿∗ (𝜆∗), where 𝜑 ∈ Hol(Ω∗).

Here 𝐵2𝛿∗ (𝜆∗) := {𝜆 ∈ C : |𝜆 − 𝜆∗ | < 2𝛿∗} and we have used the fact that if 𝜑 ∈ Hol(Ω) \ {0}, then the
zero set Z (𝜑) := {𝜆 ∈ Ω : 𝜑(𝜆) = 0} is discrete.

Let 𝐹 (𝑍;𝜆) := �̃� (𝑍;𝜆)/𝜑(𝜆), 𝐹 (𝑍;𝜆) := 𝐹 (𝑍2;𝜆) for 𝑍 ∈ [0, +∞),𝜆 ∈ 𝐵𝑅. Then 𝐹 ∈ H[0,+∞) (Ω∗),
𝐹 ∈ He

[0,+∞) (Ω∗), 𝐹 (𝑍;𝜆) = 𝑓 (𝑍;𝜆)/𝜑(𝜆), and

ℒ𝜆𝐹 (𝑍;𝜆) = 𝜑(𝜆)𝑔(𝑍)/𝜑(𝜆) = (𝜆 − 𝜆∗)𝑚∗𝑔(𝑍), ∀ 𝑍 ∈ (0, +∞), 𝜆 ∈ Ω∗.

By Lemma 5.3, we have

ℒ((𝑇 − 𝑡)𝜆𝐹 (𝑍;𝜆)) = (𝑇 − 𝑡)𝜆−𝛾ℒ𝜆𝐹 (𝑍;𝜆) = (𝑇 − 𝑡)𝜆−𝛾 (𝜆 − 𝜆∗)𝑚∗𝑔(𝑍)

for all 𝜆 ∈ Ω∗ and 𝑍 ∈ (0, +∞). Let

𝐹∗(𝑡, 𝑥;𝜆) := (𝑇 − 𝑡)𝜆𝐹 (𝑍;𝜆) = (𝑇 − 𝑡)𝜆𝐹 (𝑍2;𝜆), 𝐺 (𝑡, 𝑥;𝜆) := (𝑇 − 𝑡)𝜆−𝛾 (𝜆 − 𝜆∗)𝑚∗𝑔(𝑍).

Then 𝐹∗, 𝐺 ∈ 𝐶∞([0, 𝑇) ×R𝑑 ×Ω∗) (as 𝑍2 = |𝑥 |2/(𝑇 − 𝑡)2 is smooth on [0, 𝑇) ×R𝑑) and ℒ𝐹∗(𝑡, 𝑥;𝜆) =
𝐺 (𝑡, 𝑥;𝜆) on [0, 𝑇) × R𝑑 ×Ω∗ (the case 𝑍 = 0 follows by continuity).
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Recall that 𝜏 = ln 1
𝑇 −𝑡 and then

𝐺 (𝑡, 𝑥;𝜆) = (𝑇 − 𝑡)𝜆∗−𝛾e−(𝜆−𝜆∗)𝜏 (𝜆 − 𝜆∗)𝑚∗𝑔(𝑍) =
∞∑
𝑛=0

(𝑇 − 𝑡)𝜆∗−𝛾 (−𝜏)
𝑛

𝑛!
(𝜆 − 𝜆∗)𝑚∗+𝑛𝑔(𝑍)

locally uniformly on [0, 𝑇) ×R𝑑 ×𝐵𝛿∗ (𝜆∗). By Cauchy’s integration formula (Theorem 4.4 in Chapter 2
of [69]), we have (for 𝑛 ∈ Z≥0)

(𝑇 − 𝑡)𝜆∗−𝛾𝑔(𝑍) 𝜏
𝑛

𝑛!
=

(−1)𝑛
2𝜋i

∮
|𝜆−𝜆∗ |=𝛿∗

𝐺 (𝑡, 𝑥;𝜆)
(𝜆 − 𝜆∗)𝑚∗+𝑛+1 d𝜆

=
𝛿−𝑚∗−𝑛
∗

2𝜋(−1)𝑛

∫ 2𝜋

0
𝐺 (𝑡, 𝑥;𝜆∗ + 𝛿∗ei𝜃 )e−i(𝑚∗+𝑛) 𝜃 d𝜃.

Now let (for 𝑛 ∈ Z≥0)

𝐹𝑛 (𝑡, 𝑥) :=
(−1)𝑛
2𝜋i

∮
|𝜆−𝜆∗ |=𝛿∗

𝐹∗(𝑡, 𝑥;𝜆)
(𝜆 − 𝜆∗)𝑚∗+𝑛+1 d𝜆

=
𝛿−𝑚∗−𝑛
∗

2𝜋(−1)𝑛

∫ 2𝜋

0
𝐹∗(𝑡, 𝑥;𝜆∗ + 𝛿∗ei𝜃 )e−i(𝑚∗+𝑛) 𝜃 d𝜃.

Then 𝐹𝑛 ∈ 𝐶∞([0, 𝑇) ×R𝑑) and ℒ𝐹𝑛 (𝑡, 𝑥) = (𝑇 − 𝑡)𝜆∗−𝛾𝑔(𝑍)𝜏𝑛/𝑛!. It remains to prove that 𝐹𝑛 ∈ 𝒳𝜆∗ .
As 𝜏 = ln 1

𝑇 −𝑡 , 𝐹∗(𝑡, 𝑥;𝜆) = (𝑇 − 𝑡)𝜆𝐹 (𝑍2;𝜆) then

𝐹∗(𝑡, 𝑥;𝜆) = (𝑇 − 𝑡)𝜆∗e−(𝜆−𝜆∗)𝜏𝐹 (𝑍2;𝜆) =
∞∑
𝑗=0

(𝑇 − 𝑡)𝜆∗ (−𝜏)
𝑗

𝑗!
(𝜆 − 𝜆∗) 𝑗𝐹 (𝑍2;𝜆),

locally uniformly on [0, 𝑇) × R𝑑 × 𝐵𝛿∗ (𝜆∗), so we have

𝐹𝑛 (𝑡, 𝑥) =
∞∑
𝑗=0

(𝑇 − 𝑡)𝜆∗ (−𝜏)
𝑗

𝑗!
𝐹𝑛, 𝑗 (𝑍2), where

𝐹𝑛, 𝑗 (𝑍) :=
(−1)𝑛
2𝜋i

∮
|𝜆−𝜆∗ |=𝛿∗

(𝜆 − 𝜆∗) 𝑗𝐹 (𝑍 ;𝜆)
(𝜆 − 𝜆∗)𝑚∗+𝑛+1 d𝜆

=
𝛿
𝑗−𝑚∗−𝑛
∗

2𝜋(−1)𝑛

∫ 2𝜋

0
𝐹 (𝑍;𝜆∗ + 𝛿∗ei𝜃 )ei( 𝑗−𝑚∗−𝑛) 𝜃 d𝜃.

As 𝐹 ∈ H[0,+∞) (Ω∗) ⊂ 𝐶∞([0, +∞) × Ω∗), we have 𝐹𝑛, 𝑗 ∈ 𝐶∞([0, +∞)), 𝑍 ↦→ 𝐹𝑛, 𝑗 (𝑍2) ∈
𝐶∞

e ([0, +∞)) for every 𝑛, 𝑗 ∈ Z≥0; moreover by Cauchy’s theorem (Corollary 2.3 in Chapter 2 of [69]),
we have 𝐹𝑛, 𝑗 = 0 for 𝑗 > 𝑚∗ + 𝑛, 𝑛, 𝑗 ∈ Z≥0. Thus,

𝐹𝑛 (𝑡, 𝑥) =
𝑚∗+𝑛∑
𝑗=0

(𝑇 − 𝑡)𝜆∗ (−𝜏)
𝑗

𝑗!
𝐹𝑛, 𝑗 (𝑍2) ∈ 𝒳𝜆∗ .

This completes the proof of Lemma 5.5. �

5.4. Solvability of 𝓛𝝀

In this subsection, we prove Lemma 5.6.
Lemma 5.7. For 𝑔 ∈ 𝐶∞

e ([0, 𝑍1)), there exists 𝐹 = 𝐹 (𝑍;𝜆) ∈ He
[0,𝑍1) (𝐵𝑅) satisfying ℒ𝜆𝐹 = 𝑔 on

(0, 𝑍1) and 𝐹 (0;𝜆) = 1 for all 𝜆 ∈ 𝐵𝑅.
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Proof. By Lemma 5.3, we have 𝐵0 ∈ 𝐶∞
o ([0, +∞)) and 𝐴0, 𝐵0, 𝐷1, 𝐷2 ∈ 𝐶∞

e ([0, +∞)). Thus,
there exist 𝐴0, 𝐵1, 𝐵2, 𝐷1, 𝐷2 ∈ 𝐶∞([0, +∞)) such that 𝐴0 (𝑍) = 𝐴0 (𝑍2), 𝐵0 (𝑍) = 𝐵1 (𝑍2), 𝐵0 (𝑍) =
𝑍𝐵2 (𝑍2), 𝐷1 (𝑍) = 𝐷1 (𝑍2), 𝐷2 (𝑍) = 𝐷2 (𝑍2). Then 𝐵0(𝑍;𝜆) = 𝑍−1𝐵0(𝑍) + 𝜆𝐵0(𝑍) = 𝑍−1𝐵1 (𝑍2) +
𝜆𝑍𝐵2 (𝑍2), 𝐷0 (𝑍;𝜆) = 𝜆𝐷1 (𝑍) + 𝜆2𝐷2 (𝑍) = 𝜆𝐷1(𝑍2) + 𝜆2𝐷2 (𝑍2). Let 𝑍 := 𝑍2. Then for 𝑓 (𝑍) =
�̃� (𝑍2) = �̃� (𝑍), we have 𝑓 ′(𝑍) = 2𝑍 �̃� ′(𝑍), 𝑓 ′′(𝑍) = 2 �̃� ′(𝑍) + 4𝑍2 �̃� ′′(𝑍), and by (5.16),

(ℒ𝜆 𝑓 ) (𝑍) = 𝐴0(𝑍) 𝑓 ′′(𝑍) + 𝐵0(𝑍;𝜆) 𝑓 ′(𝑍) + 𝐷0 (𝑍;𝜆) 𝑓 (𝑍)
= 𝐴0 (𝑍2) [2 �̃� ′(𝑍) + 4𝑍2 �̃� ′′(𝑍)] + [𝑍−1𝐵1 (𝑍2) + 𝜆𝑍𝐵2 (𝑍2)] · 2𝑍 �̃� ′(𝑍)
+ [𝜆𝐷1 (𝑍2) + 𝜆2𝐷2 (𝑍2)] �̃� (𝑍)

= 4𝑍𝐴0 (𝑍) �̃� ′′(𝑍) + 2[𝐴0 (𝑍) + 𝐵1 (𝑍) + 𝜆𝑍𝐵2(𝑍)] �̃� ′(𝑍) + [𝜆𝐷1 (𝑍) + 𝜆2𝐷2 (𝑍)] �̃� (𝑍).

Let

𝐴(𝑍) = 4𝑍𝐴0 (𝑍), 𝐵(𝑍 ;𝜆) = 2[𝐴0 (𝑍) + 𝐵1 (𝑍) + 𝜆𝑍𝐵2(𝑍)], 𝐷 (𝑍 ;𝜆) = 𝜆𝐷1 (𝑍) + 𝜆2𝐷2 (𝑍).

Then we get

(ℒ𝜆 𝑓 ) (𝑍) = 𝐴(𝑍) �̃� ′′(𝑍) + 𝐵(𝑍 ;𝜆) �̃� ′(𝑍) + 𝐷 (𝑍 ;𝜆) �̃� (𝑍), for 𝑓 (𝑍) = �̃� (𝑍), 𝑍 = 𝑍2. (5.30)

Let 𝐼1 = [0, 𝑍2
1 ). As 𝐴0, 𝐵1, 𝐵2, 𝐷1, 𝐷2 ∈ 𝐶∞([0, +∞)), we have 𝐴 ∈ 𝐶∞(𝐼1), 𝐵, 𝐷 ∈ H𝐼1 (C), and

𝐴′(0) = 4𝐴0 (0) = 4𝐴0 (0) = 4 ≠ 0 (using (5.17)). By (5.18), we have 𝐴0 (𝑍2) = 𝐴0(𝑍) > 0 for
𝑍 ∈ [0, 𝑍1). Thus, 𝐴(𝑍) = 4𝑍𝐴0 (𝑍) = 0 has a unique solution 𝑍 = 0 in 𝐼1 = [0, 𝑍2

1 ).
Moreover, we have 𝐵(𝑍 ;𝜆) = 𝐵1(𝑍) + 𝜆𝐵2(𝑍), where 𝐵1(𝑍) := 2[𝐴0 (𝑍) + 𝐵1 (𝑍)], 𝐵2 (𝑍) :=

2𝑍𝐵2 (𝑍), then 𝐵1 (0) = 2[𝐴0 (0) + 𝐵1 (0)] = 2[𝐴0 (0) + 𝐵0 (0)] = 2(1+ 𝑘) > 0 (using (5.17) and (5.19))
and 𝐵2 (0) = 0. As a consequence, for any𝜆 ∈ C and 𝑛 ∈ Z≥0 we have 𝑛𝐴′(0)+𝐵(0;𝜆) = 4𝑛+2(1+𝑘) ≠ 0.
As 𝑔 ∈ 𝐶∞

e ([0, 𝑍1)), there exists �̃� ∈ 𝐶∞([0, 𝑍2
1 )) such that 𝑔(𝑍) = �̃�(𝑍2). By Proposition B.4, there

exists 𝐹 = 𝐹 (𝑍;𝜆) ∈ H𝐼1 (𝐵𝑅) satisfying

𝐴(𝑍)𝐹 ′′(𝑍 ;𝜆) + 𝐵(𝑍;𝜆)𝐹 ′(𝑍 ;𝜆) + 𝐷 (𝑍 ;𝜆)𝐹 (𝑍 ;𝜆) = �̃�(𝑍), 𝐹 (0;𝜆) = 1,

where the prime ′ denotes the derivative with respect to 𝑍 . Now we define

𝐹 (𝑍;𝜆) := 𝐹 (𝑍2;𝜆), ∀ 𝑍 ∈ [0, 𝑍1),∀ 𝜆 ∈ 𝐵𝑅,

then 𝐹 ∈ He
[0,𝑍1) (𝐵𝑅), 𝐹 (0;𝜆) = 𝐹 (0;𝜆) = 1 and ℒ𝜆𝐹 = 𝑔 in (0, 𝑍1) by recalling (5.30). �

In view of Lemma 5.3 and Proposition B.4, we let

Λ∗ := {𝜆 ∈ C : 𝑛𝐴′
0 (𝑍1) + 𝐵0 (𝑍1;𝜆) = 0 for some 𝑛 ∈ Z≥0}. (5.31)

By 𝐵0 (𝑍1;𝜆) = 𝑍−1
1 𝐵0(𝑍1)+𝜆𝐵0(𝑍1) and 𝐵0 (𝑍1) > 0, we know thatΛ∗ ⊂ C is a non-empty (countable)

discrete set.

Lemma 5.8. There exists a nonzero polynomial 𝜓1(𝜆) satisfying {𝜆 ∈ 𝐵𝑅 : 𝜓1 (𝜆) = 0} = Λ∗ ∩𝐵𝑅 such
that for 𝑔 ∈ 𝐶∞((0, +∞)), there exists a function𝐹 = 𝐹 (𝑍;𝜆) ∈ H(0,+∞) (𝐵𝑅) satisfyingℒ𝜆𝐹 = 𝜓1(𝜆)·𝑔
on (0, +∞) and 𝐹 (𝑍1;𝜆) = 𝜓1 (𝜆) for all 𝜆 ∈ 𝐵𝑅.

Proof. By Lemma 5.3, we have 𝐴0(𝑍1) = 0, 𝐴′
0 (𝑍1) ≠ 0, 𝐵0 (𝑍1) > 0 and 𝑍1 is the unique solution of

𝐴0 (𝑍) = 0 in (0, +∞). Hence Lemma 5.8 follows from Proposition B.4. �

Taking 𝑔 = 0 in Lemma 5.7 we know that there exists Ψ1 = Ψ1(𝑍;𝜆) ∈ He
[0,𝑍1) (𝐵𝑅) satisfying

ℒ𝜆Ψ1 = 0 on (0, 𝑍1) and Ψ1(0;𝜆) = 1 for all 𝜆 ∈ 𝐵𝑅. Taking 𝑔 = 0 in Lemma 5.8 we know that there
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exists Ψ2 = Ψ2(𝑍;𝜆) ∈ H(0,+∞) (𝐵𝑅) satisfying ℒ𝜆Ψ2 = 0 on (0, +∞) and Ψ2(𝑍1;𝜆) = 𝜓1(𝜆) for all
𝜆 ∈ 𝐵𝑅. We define the Wronski

𝑊 (𝑍;𝜆) := Ψ1(𝑍;𝜆)Ψ′
2(𝑍;𝜆) − Ψ′

1(𝑍;𝜆)Ψ2(𝑍;𝜆), ∀ 𝑍 ∈ (0, 𝑍1), ∀ 𝜆 ∈ 𝐵𝑅, (5.32)

where the prime ′ denotes the derivative with respect to Z. Then we have

𝐴0 (𝑍)𝑊 ′(𝑍;𝜆) + 𝐵0(𝑍;𝜆)𝑊 (𝑍;𝜆) = 0, ∀ 𝑍 ∈ (0, 𝑍1), 𝜆 ∈ 𝐵𝑅 . (5.33)

Lemma 5.9. Fix 𝑍0 ∈ (0, 𝑍1). Let 𝜓2 (𝜆) := 𝑊 (𝑍0;𝜆) for all 𝜆 ∈ 𝐵𝑅 and 𝜆∗0 := 𝛾 − 𝑘 − 2. Then
𝜓2 ∈ Hol(𝐵𝑅), 0 < −𝜆∗0 < 𝑘 < 𝑅 and 𝜓2 (𝜆∗0) ≠ 0.

Proof. As Ψ1(𝑍;𝜆) ∈ He
[0,𝑍1) (𝐵𝑅), Ψ2(𝑍;𝜆) ∈ H(0,+∞) (𝐵𝑅), by (5.32) we have 𝑊 (𝑍;𝜆) ∈

H(0,𝑍1) (𝐵𝑅), then by 𝑍0 ∈ (0, 𝑍1) we have 𝜓2 (𝜆) = 𝑊 (𝑍0;𝜆) ∈ Hol(𝐵𝑅). As 𝛽 > 0, ℓ > 1,
𝛾 = 𝛽(ℓ − 1) + 2, 𝜆∗0 = 𝛾 − 𝑘 − 2, we get by (2.9) that

𝜆∗0 = 𝛾 − 𝑘 − 2 = 𝛽(ℓ − 1) + 2 − 𝑘 − 2 = 𝛽(ℓ − 1) − 𝑘 < 𝛽(ℓ − 1) − 𝛽(ℓ +
√
ℓ) < 0, (5.34)

and 𝑅 > 𝑘 > 𝑘 − 𝛽(ℓ − 1) = −𝜆∗0 > 0, then 𝜆∗0 ∈ 𝐵𝑅. It remains to prove that 𝜓2 (𝜆∗0) ≠ 0.
We consider the dual ℒ∗

0 of ℒ0, defined by (5.25). On one hand, we get by Lemma 5.4 that

ℒ∗
0 = ℒ𝜆∗0

= 𝐴0𝜕
2
𝑍 + 𝐵0(·;𝜆∗0)𝜕𝑍 + 𝐷0 (·;𝜆∗0). (5.35)

On the other hand, by (recalling that 𝐷0 (·; 0) = 0)

ℒ0 𝑓 = 𝐴0𝜕
2
𝑍 + 𝐵0 (·; 0)𝜕𝑍 = 𝐴0𝜕

2
𝑍 + 𝑍−1𝐵0𝜕𝑍

and (5.25), we compute that

(ℒ∗
0 𝑓 ) (𝑍) = 1

𝑍 𝑘

(
𝜕2
𝑍 (𝑍

𝑘𝐴0 𝑓 ) (𝑍) − 𝜕𝑍 (𝑍 𝑘−1𝐵0 𝑓 ) (𝑍)
)
, ∀ 𝑍 ∈ (0, +∞). (5.36)

Comparing the coefficients of 𝜕𝑍 in (5.35) and (5.36), we obtain

𝑍−1𝐵0(𝑍) + 𝜆∗0𝐵0(𝑍) = 𝐵0 (𝑍;𝜆∗0) = [2𝜕𝑍 (𝑍 𝑘𝐴0) (𝑍) − 𝑍 𝑘−1𝐵0 (𝑍)]/𝑍 𝑘

= 2𝑘𝑍−1𝐴0(𝑍) + 2𝐴′
0 (𝑍) − 𝑍−1𝐵0(𝑍)

for all 𝑍 ∈ (0, +∞). Letting 𝑍 = 𝑍1, we get(as 𝐴0 (𝑍1) = 0, see (5.17))

𝑍−1
1 𝐵0 (𝑍1) + 𝜆∗0𝐵0(𝑍1)/2 = 𝐴′

0 (𝑍1). (5.37)

For any 𝑛 ∈ Z≥0, by (5.37), (5.17), (5.19) and 𝜆∗0 < 0 (i.e. (5.34)), we have

𝑛𝐴′
0 (𝑍1) + 𝐵0 (𝑍1;𝜆∗0) = 𝑛𝐴′

0 (𝑍1) + 𝑍−1
1 𝐵0(𝑍1) + 𝜆∗0𝐵0(𝑍1)

= (𝑛 + 1)𝐴′
0(𝑍1) + 𝜆∗0𝐵0(𝑍1)/2 < 0,

(5.38)

It follows from (5.31) and (5.38) that 𝜆∗0 ∉ Λ∗. Then by 𝜆∗0 ∈ 𝐵𝑅 and Lemma 5.8, we have 𝜓1 (𝜆∗0) ≠ 0.
Let 𝑓1 = Ψ1(·;𝜆∗0) and 𝑓2 = Ψ2(·;𝜆∗0), then 𝑓1 ∈ 𝐶∞

e ([0, 𝑍1)), 𝑓2 ∈ 𝐶∞((0, +∞)) and (ℒ𝜆∗0
𝑓 𝑗 ) (𝑍) = 0

for 𝑍 ∈ (0, 𝑍1), 𝑗 ∈ {1, 2}. By (5.35) and (5.36), we get

𝜕2
𝑍 (𝑍

𝑘𝐴0 𝑓 𝑗 ) (𝑍) − 𝜕𝑍 (𝑍 𝑘−1𝐵0 𝑓 𝑗 ) (𝑍) = 0, ∀ 𝑍 ∈ (0, 𝑍1), 𝑗 ∈ {1, 2}.
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By 𝑓1, 𝐴0, 𝐵0 ∈ 𝐶∞
e ([0, 𝑍1)), 𝑘 ≥ 3 we have [𝜕𝑍 (𝑍 𝑘𝐴0 𝑓1) (𝑍) − 𝑍 𝑘−1𝐵0(𝑍) 𝑓1(𝑍)] |𝑍=0 = 0, so

𝜕𝑍 (𝑍 𝑘𝐴0 𝑓1) (𝑍) − 𝑍 𝑘−1𝐵0 (𝑍) 𝑓1(𝑍) = 0, ∀ 𝑍 ∈ (0, 𝑍1). (5.39)

For 𝑓2, since 𝐴0 (𝑍1) = 0 (see (5.17)), we have

𝜕𝑍 (𝑍 𝑘𝐴0 𝑓2) (𝑍) − 𝑍 𝑘−1𝐵0(𝑍) 𝑓2(𝑍) = [𝜕𝑍 (𝑍 𝑘𝐴0 𝑓2) (𝑍) − 𝑍 𝑘−1𝐵0(𝑍) 𝑓2(𝑍)] |𝑍=𝑍1

= 𝑍 𝑘1 𝐴
′
0 (𝑍1) 𝑓2 (𝑍1) − 𝑍 𝑘−1

1 𝐵0 (𝑍1) 𝑓2(𝑍1) = 𝑍 𝑘1 (𝐴
′
0 (𝑍1) − 𝑍−1

1 𝐵0(𝑍1))𝜓1(𝜆∗0) =: 𝐶 ′ (5.40)

for all 𝑍 ∈ (0, 𝑍1), where we have used 𝑓2(𝑍1) = Ψ2(𝑍1;𝜆∗0) = 𝜓1(𝜆∗0) (recalling Lemma 5.8).
Moreover, by (5.37), 𝜆∗0 < 0 (in (5.34)) and 𝐵0 (𝑍1) > 0 (in (5.19)), we have 𝐴′

0(𝑍1) − 𝑍−1
1 𝐵0 (𝑍1) =

𝜆∗0𝐵0 (𝑍1)/2 < 0, then by 𝜓1 (𝜆∗0) ≠ 0 we have 𝐶 ′ ≠ 0. We claim that

𝑓1(𝑍) ≠ 0, ∀ 𝑍 ∈ (0, 𝑍1). (5.41)

Indeed, if 𝑓1(𝑍∗) = 0 for some 𝑍∗ ∈ (0, 𝑍1), by the uniqueness of solutions to (5.39) in (0, 𝑍1) with
𝑓1(𝑍∗) = 0, we have 𝑓1(𝑍) = 0 for all 𝑍 ∈ (0, 𝑍1), which contradicts with 1 = 𝑓1 (0) = lim𝑍→0+ 𝑓1(𝑍).
This proves (5.41). As 𝑓1 = Ψ1(·;𝜆∗0), 𝑓2 = Ψ2(·;𝜆∗0), by (5.32), (5.39), (5.40), (5.41) and 𝐶 ′ ≠ 0, we
have

𝑍 𝑘𝐴0 (𝑍)𝑊 (𝑍;𝜆∗0) = 𝑍 𝑘𝐴0(𝑍) [ 𝑓1(𝑍) 𝑓 ′2 (𝑍) − 𝑓 ′1 (𝑍) 𝑓2 (𝑍)]
= 𝑓1(𝑍)𝜕𝑍 (𝑍 𝑘𝐴0 𝑓2) (𝑍) − 𝜕𝑍 (𝑍 𝑘𝐴0 𝑓1) (𝑍) 𝑓2(𝑍)
= 𝑓1(𝑍) [𝑍 𝑘−1𝐵0(𝑍) 𝑓2 (𝑍) + 𝐶 ′] − 𝑍 𝑘−1𝐵0 (𝑍) 𝑓1(𝑍) 𝑓2(𝑍) = 𝐶 ′ 𝑓1(𝑍) ≠ 0,

for all 𝑍 ∈ (0, 𝑍1). Thus, 𝑊 (𝑍;𝜆∗0) ≠ 0 for all 𝑍 ∈ (0, 𝑍1), and 𝜓2(𝜆∗0) = 𝑊 (𝑍0;𝜆∗0) ≠ 0. �

Now we fix 𝑍0 ∈ (0, 𝑍1), 𝜓2(𝜆) = 𝑊 (𝑍0;𝜆), 𝜆∗0 := 𝛾 − 𝑘 − 2. Let 𝜓1 (𝜆) be given by Lemma 5.8 and
𝜑(𝜆) := 𝜓1 (𝜆)𝜓2(𝜆) for all 𝜆 ∈ 𝐵𝑅. Let 𝑔 ∈ 𝐶∞

e ([0, +∞)), we need to prove that there exists a function
𝑓 = 𝑓 (𝑍;𝜆) ∈ He

[0,+∞) (𝐵𝑅) such that ℒ𝜆 𝑓 (·;𝜆) = 𝜑(𝜆) · 𝑔 on (0, +∞).
We first consider the case when g is supported near 𝑍 = 0.

Lemma 5.10. Assume that 𝑔 ∈ 𝐶∞
e ([0, +∞)) satisfies supp 𝑔 ⊂ [0, 𝑍1), then there exists a function

𝑓 = 𝑓 (𝑍;𝜆) ∈ He
[0,+∞) (𝐵𝑅) such that ℒ𝜆 𝑓 (·;𝜆) = 𝜑(𝜆) · 𝑔 on (0, +∞).

Proof. By Lemma 5.7, there exists 𝑓0 ∈ He
[0,𝑍1) (𝐵𝑅) such thatℒ𝜆 𝑓0 = 𝑔 on (0, 𝑍1) with 𝑓0(0;𝜆) = 1 for

all 𝜆 ∈ 𝐵𝑅. We assume that supp 𝑔 ⊂ [0, 𝛿) for some 𝛿 ∈ (0, 𝑍1), then (ℒ𝜆 𝑓0) (𝑍) = 0 for 𝑍 ∈ [𝛿, 𝑍1).
For 𝜆 ∈ 𝐵𝑅, let

𝐶1 (𝜆) := 𝑓0(𝛿;𝜆)Ψ′
2(𝛿;𝜆) − 𝑓 ′0 (𝛿;𝜆)Ψ2(𝛿;𝜆) ∈ C, (5.42)

𝐶2 (𝜆) := 𝑓 ′0 (𝛿;𝜆)Ψ1(𝛿;𝜆) − 𝑓0 (𝛿;𝜆)Ψ′
1(𝛿;𝜆) ∈ C. (5.43)

Then 𝐶1, 𝐶2 are holomorphic functions on 𝐵𝑅 and for all 𝜆 ∈ 𝐵𝑅 there holds

𝑊 (𝛿;𝜆) 𝑓0(𝛿;𝜆) = 𝐶1 (𝜆)Ψ1(𝛿;𝜆) + 𝐶2 (𝜆)Ψ2(𝛿;𝜆),
𝑊 (𝛿;𝜆) 𝑓 ′0 (𝛿;𝜆) = 𝐶1 (𝜆)Ψ′

1(𝛿;𝜆) + 𝐶2 (𝜆)Ψ′
2(𝛿;𝜆).

By the uniqueness of the solution on [𝛿, 𝑍1), we have

𝑊 (𝛿;𝜆) 𝑓0(𝑍;𝜆) = 𝐶1 (𝜆)Ψ1(𝑍;𝜆) + 𝐶2 (𝜆)Ψ2(𝑍;𝜆), ∀ 𝑍 ∈ [𝛿, 𝑍1), ∀ 𝜆 ∈ 𝐵𝑅 .
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For 𝜆 ∈ 𝐵𝑅, let

𝑓∗(𝑍;𝜆) :=

{
𝑊 (𝛿;𝜆) 𝑓0(𝑍;𝜆) − 𝐶1 (𝜆)Ψ1(𝑍;𝜆) if 𝑍 ∈ [0, 𝑍1),
𝐶2 (𝜆)Ψ2(𝑍;𝜆) if 𝑍 ∈ [𝛿, +∞).

Then 𝑓∗ ∈ He
[0,+∞) (𝐵𝑅) and ℒ𝜆 𝑓∗ = 𝑊 (𝛿;𝜆) · 𝑔 on (0, +∞). By (5.33), we have 𝑊 (𝑍;𝜆) =

𝑊 (𝑍0;𝜆)e−𝐴∗ (𝑍 ;𝜆) = 𝜓2(𝜆)e−𝐴∗ (𝑍 ;𝜆) with 𝐴∗(𝑍;𝜆) :=
∫ 𝑍

𝑍0

𝐵0 (𝑍 ;𝜆)
𝐴0 (𝑍 ) d𝑍 ∈ H(0,𝑍1) (𝐵𝑅) (using

Lemma 5.3). Recall that 𝜑 = 𝜓1𝜓2, 𝜓1 is a polynomial, then 𝜑(𝜆) = 𝜓1(𝜆)𝑊 (𝛿;𝜆)e𝐴∗ (𝛿;𝜆) , and the
result follows by taking 𝑓 (𝑍;𝜆) := 𝜓1 (𝜆)e𝐴∗ (𝛿;𝜆) 𝑓∗(𝑍;𝜆) for 𝑍 ∈ [0, +∞), 𝜆 ∈ 𝐵𝑅. �

Now we consider the case when g is supported away from 𝑍 = 0.

Lemma 5.11. Assume that 𝑔 ∈ 𝐶∞
e ([0, +∞)) satisfies supp 𝑔 ⊂ (0, +∞), then there exists a function

𝑓 = 𝑓 (𝑍;𝜆) ∈ He
[0,+∞) (𝐵𝑅) such that ℒ𝜆 𝑓 (·;𝜆) = 𝜑(𝜆) · 𝑔 on (0, +∞).

Proof. By Lemma 5.8, there exists 𝑓0 = 𝑓0(𝑍;𝜆) ∈ H(0,+∞) (𝐵𝑅) such thatℒ𝜆 𝑓0 = 𝜓1(𝜆) ·𝑔 on (0, +∞).
We assume that supp 𝑔 ⊂ (𝛿, +∞) for some 𝛿 ∈ (0, 𝑍1), then (ℒ𝜆 𝑓0) (𝑍) = 0 for 𝑍 ∈ (0, 𝛿]. For 𝜆 ∈ 𝐵𝑅,
let 𝐶1 (𝜆), 𝐶2 (𝜆) be defined by (5.42) and (5.43) respectively. For the same reason as in the proof of
Lemma 5.10, we have

𝑊 (𝛿;𝜆) 𝑓0(𝑍;𝜆) = 𝐶1 (𝜆)Ψ1(𝑍;𝜆) + 𝐶2 (𝜆)Ψ2(𝑍;𝜆), ∀ 𝑍 ∈ (0, 𝛿], ∀ 𝜆 ∈ 𝐵𝑅 .

For 𝜆 ∈ 𝐵𝑅, let

𝑓∗(𝑍;𝜆) :=

{
𝑊 (𝛿;𝜆) 𝑓0(𝑍;𝜆) − 𝐶2 (𝜆)Ψ2(𝑍;𝜆) if 𝑍 ∈ (0, +∞),
𝐶1 (𝜆)Ψ1(𝑍;𝜆) if 𝑍 ∈ [0, 𝛿] .

Then 𝑓∗ ∈ He
[0,+∞) (𝐵𝑅) and ℒ𝜆 𝑓∗ = 𝑊 (𝛿;𝜆)𝜓1(𝜆) · 𝑔 on (0, +∞). As in the proof of Lemma 5.10,

we have 𝜑(𝜆) = 𝜓1 (𝜆)𝑊 (𝛿;𝜆)e𝐴∗ (𝛿;𝜆) and 𝐴∗(𝑍;𝜆) ∈ H(0,𝑍1) (𝐵𝑅), then the result follows by taking
𝑓 (𝑍;𝜆) := e𝐴∗ (𝛿;𝜆) 𝑓∗(𝑍;𝜆) for 𝑍 ∈ [0, +∞), 𝜆 ∈ 𝐵𝑅. �

Now we are in a position to prove Lemma 5.6.

Proof of Lemma 5.6. We fix 𝑍0 ∈ (0, 𝑍1), 𝜓2 (𝜆) = 𝑊 (𝑍0;𝜆), 𝜆∗0 := 𝛾 − 𝑘 − 2. Let 𝜓1 (𝜆) be given
by Lemma 5.8 and 𝜑(𝜆) := 𝜓1(𝜆)𝜓2(𝜆) for all 𝜆 ∈ 𝐵𝑅. By Lemma 5.9, we have 𝜆∗0 ∈ 𝐵𝑅 and
𝜓2 ∈ Hol(𝐵𝑅) \ {0}. By Lemma 5.8 we have 𝜓1 ∈ Hol(𝐵𝑅) \ {0}. Thus, 𝜑 = 𝜓1𝜓2 ∈ Hol(𝐵𝑅) \ {0}.

Let 𝜁 ∈ 𝐶∞(R; [0, 1]) satisfy supp 𝜁 ⊂ (𝑍1/2, +∞) and 𝜁 (𝑍) = 1 for 𝑍 ∈ [3𝑍1/4, +∞). Let
𝑔1 (𝑍) = 𝑔(𝑍) (1 − 𝜁 (𝑍)), 𝑔2 (𝑍) = 𝑔(𝑍)𝜁 (𝑍) for all 𝑍 ∈ [0, +∞). Then

supp 𝑔1 ⊂ [0, 3𝑍1/4], supp 𝑔2 ⊂ [𝑍1/2, +∞), 𝑔1, 𝑔2 ∈ 𝐶∞
e ([0, +∞)), 𝑔 = 𝑔1 + 𝑔2.

By Lemma 5.10, there exists 𝑓1 = 𝑓1(𝑍;𝜆) ∈ He
[0,+∞) (𝐵𝑅) such that ℒ𝜆 𝑓1 = 𝜑(𝜆)𝑔1 on (0, +∞). By

Lemma 5.11, there exists 𝑓2 = 𝑓2 (𝑍;𝜆) ∈ He
[0,+∞) (𝐵𝑅) such that ℒ𝜆 𝑓2 = 𝜑(𝜆)𝑔2 on (0, +∞). Let

𝑓 = 𝑓1 + 𝑓2, then 𝑓 ∈ He
[0,+∞) (𝐵𝑅) satisfies ℒ𝜆 𝑓 = 𝜑(𝜆)𝑔 on (0, +∞). �

A. The derivation and properties of ODE (2.8)

A.1. The derivation of ODE (2.8)

Lemma A.1. Let 𝛽 > 1 and 𝑣 = 𝑣(𝑍) ∈ 𝐶∞([0, +∞); (−1, 1)) be given by Assumption 1. We define
𝜙0(𝑍), �̂�0(𝑍) according to (2.12) and we define 𝜙0(𝑡, 𝑥), 𝜌0 (𝑡, 𝑥) by (2.7). Then (𝜙0, 𝜌0) solves the
leading order equation (2.6).
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Proof. Recall that 𝑍 = 𝑟/(𝑇 − 𝑡) with 𝑟 = |𝑥 |, we know that 𝜙0 = 𝜙0(𝑡, 𝑟) and 𝜌0 = 𝜌0 (𝑡, 𝑟) are radially
symmetric. Hence, (2.6) is equivalent to

𝜌𝑝−1
0 − |𝜕𝑡𝜙0 |2 + |𝜕𝑟𝜙0 |2 = 0, −𝜕𝑡 (𝜌2

0𝜕𝑡𝜙0) + 𝜕𝑟 (𝜌2
0𝜕𝑟𝜙0) +

𝑘

𝑟
𝜌2

0𝜕𝑟𝜙0 = 0, (A.1)

where 𝑘 = 𝑑 − 1 ∈ Z≥1. It follows from (2.7) that

𝜕𝑡𝜙0(𝑡, 𝑥) = (𝑇 − 𝑡)−𝛽
(
(𝛽 − 1)𝜙0(𝑍) + 𝑍𝜙′

0 (𝑍)
)
, 𝜕𝑟𝜙0(𝑡, 𝑥) = (𝑇 − 𝑡)−𝛽𝜙′

0(𝑍), (A.2)

where the prime ′ stands for the derivative with respect to Z. By (2.12), we have

𝜙′
0(𝑍) =

(𝛽 − 1)𝜙0(𝑍)𝑣(𝑍)
1 − 𝑍𝑣(𝑍) ⇐⇒

(
(𝛽 − 1)𝜙0(𝑍) + 𝑍𝜙′

0 (𝑍)
)
𝑣(𝑍) = 𝜙′

0(𝑍), (A.3)

thus

𝜕𝑡𝜙0(𝑡, 𝑥) =
(𝑇 − 𝑡)−𝛽 (𝛽 − 1)𝜙0(𝑍)

1 − 𝑍𝑣(𝑍) , 𝜕𝑟𝜙0(𝑡, 𝑥) =
(𝑇 − 𝑡)−𝛽 (𝛽 − 1)𝜙0(𝑍)𝑣(𝑍)

1 − 𝑍𝑣(𝑍) ,

and then we have

|𝜕𝑡𝜙0 |2 − |𝜕𝑟𝜙0 |2 =
(𝑇 − 𝑡)−2𝛽 (𝛽 − 1)2𝜙0(𝑍)2(1 − 𝑣(𝑍)2)

(1 − 𝑍𝑣(𝑍))2 .

Using (2.7) and (2.12) for 𝜌0 and �̂�0, we obtain the first equation in (A.1).
Now we define

ℓ =
4

𝑝 − 1
+ 1 > 1, 𝜙0(𝑍) :=

𝜙0(𝑍)ℓ (1 − 𝑣(𝑍)2)
2
𝑝−1

(1 − 𝑍𝑣(𝑍))ℓ
=
𝜙0(𝑍)ℓ (1 − 𝑣(𝑍)2) ℓ−1

2

(1 − 𝑍𝑣(𝑍))ℓ
> 0. (A.4)

Then we compute that

𝜌2
0𝜕𝑡𝜙0(𝑡, 𝑥) = (𝑇 − 𝑡)−𝛽ℓ (𝛽 − 1)ℓ𝜙0(𝑍),

𝜌2
0𝜕𝑟𝜙0(𝑡, 𝑥) = (𝑇 − 𝑡)−𝛽ℓ (𝛽 − 1)ℓ𝜙0(𝑍)𝑣(𝑍),

𝜕𝑡 (𝜌2
0𝜕𝑡𝜙0) (𝑡, 𝑥) = (𝑇 − 𝑡)−𝛽ℓ−1(𝛽 − 1)ℓ

(
𝛽ℓ𝜙0(𝑍) + 𝑍𝜙′

0(𝑍)
)
,

𝜕𝑟 (𝜌2
0𝜕𝑟𝜙0) (𝑡, 𝑥) = (𝑇 − 𝑡)−𝛽ℓ−1(𝛽 − 1)ℓ (𝜙0𝑣)′(𝑍),

𝑘

𝑟
𝜌2

0𝜕𝑟𝜙0(𝑡, 𝑥) = (𝑇 − 𝑡)−𝛽ℓ−1(𝛽 − 1)ℓ 𝑘
𝑍
(𝜙0𝑣) (𝑍).

Therefore, the second equation in (A.1) is equivalent to

𝛽ℓ𝜙0 + 𝑍𝜙′
0 = (𝜙0𝑣)′ +

𝑘

𝑍
(𝜙0𝑣) ⇐⇒ (𝛽ℓ − 𝑣′ − 𝑘𝑣/𝑍)𝜙0 = (𝑣 − 𝑍)𝜙′

0. (A.5)

Recall from (A.3) and (A.4) that

𝜙′
0

𝜙0
= ℓ

𝜙′
0

𝜙0
− (ℓ − 1) 𝑣𝑣′

1 − 𝑣2 + ℓ
𝑣 + 𝑍𝑣′

1 − 𝑍𝑣

= ℓ
(𝛽 − 1)𝑣
1 − 𝑍𝑣

+ ℓ
𝑣

1 − 𝑍𝑣
− (ℓ − 1) 𝑣𝑣′

1 − 𝑣2 + ℓ
𝑍𝑣′

1 − 𝑍𝑣

=
𝛽ℓ𝑣

1 − 𝑍𝑣
+ 𝑣𝑣′

1 − 𝑣2 + ℓ(𝑍 − 𝑣)𝑣′

(1 − 𝑣2) (1 − 𝑍𝑣)
,
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hence (A.5) is equivalent to

𝛽ℓ − 𝑣′ − 𝑘𝑣

𝑍
= (𝑣 − 𝑍)

𝜙′
0

𝜙0
=

𝛽ℓ𝑣(𝑣 − 𝑍)
1 − 𝑍𝑣

+ 𝑣(𝑣 − 𝑍)𝑣′

1 − 𝑣2 − ℓ(𝑣 − 𝑍)2𝑣′

(1 − 𝑣2) (1 − 𝑍𝑣)
,

or equivalently,

𝛽ℓ − 𝛽ℓ𝑣(𝑣 − 𝑍)
1 − 𝑍𝑣

− 𝑘𝑣

𝑍
= 𝑣′ + 𝑣(𝑣 − 𝑍)𝑣′

1 − 𝑣2 − ℓ(𝑣 − 𝑍)2𝑣′

(1 − 𝑣2) (1 − 𝑍𝑣)
,

𝛽ℓ(1 − 𝑣2)
1 − 𝑍𝑣

− 𝑘𝑣

𝑍
=

(1 − 𝑍𝑣)𝑣′

1 − 𝑣2 − ℓ(𝑣 − 𝑍)2𝑣′

(1 − 𝑣2) (1 − 𝑍𝑣)
,

which is a direct consequence of (2.8). �

A.2. Properties of solutions to ODE (2.8)

In this part, we prove Remark 2.2.

Lemma A.2. Under Assumption 1, we have 𝑣(𝑍1) = 𝑣1, where

𝑍1 =
𝑘

√
ℓ(𝑘 − 𝛽(ℓ − 1))

, 𝑣1 =
𝛽
√
ℓ

𝑘 − 𝛽ℓ
. (A.6)

Proof. We define a function 𝐹0 ∈ 𝐶∞([0, +∞)) by

𝐹0 (𝑍) := 1 − 𝑍𝑣(𝑍) +
√
ℓ(𝑣(𝑍) − 𝑍), ∀ 𝑍 ∈ [0, +∞). (A.7)

Then 𝐹0 (0) = 1 and 𝐹0 (1) = (
√
ℓ − 1) (𝑣(1) − 1) < 0, where we have used that 𝑣(1) ∈ (−1, 1), recalling

Assumption 1. By the intermediate value theorem, there exists 𝑍0 ∈ (0, 1) such that 𝐹0 (𝑍0) = 0. Thus,
Δ𝑍 (𝑍0, 𝑣(𝑍0)) = 𝑍0𝐹0 (𝑍0)

(
1 − 𝑍0𝑣(𝑍0) −

√
ℓ(𝑣(𝑍0) − 𝑍0)

)
= 0. Then we have Δ 𝑣 (𝑍0, 𝑣(𝑍0)) =

Δ𝑍 (𝑍0, 𝑣(𝑍0))𝑣′(𝑍0) = 0, i.e., Δ 𝑣 (𝑍0, 𝑣(𝑍0)) = Δ𝑍 (𝑍0, 𝑣(𝑍0)) = 0. On the other hand, it is direct to
check that

{(𝑍, 𝑣) ∈ (0, +∞) × (−1, 1) : Δ 𝑣 (𝑍, 𝑣) = Δ𝑍 (𝑍, 𝑣) = 0} = {(𝑍1, 𝑣1)}, (A.8)

where 𝑍1, 𝑣1 are given by (A.6). Moreover, it follows from (2.9) that 0 < 𝑣1 < 𝑍1 < 1. Hence, we must
have (𝑍0, 𝑣(𝑍0)) = (𝑍1, 𝑣1), which implies that 𝑣(𝑍1) = 𝑣1. �

Lemma A.3. Under Assumption 1, let Δ0(𝑍) := Δ𝑍 (𝑍, 𝑣(𝑍)) for 𝑍 ∈ [0, +∞), then we haveΔ0 (𝑍) > 0
for 𝑍 ∈ (0, 𝑍1), Δ0 (𝑍) < 0 for 𝑍 ∈ (𝑍1, +∞) and Δ ′

0 (𝑍1) ≠ 0.

Proof. By the definition of Δ0 (𝑍), we have Δ0 ∈ 𝐶∞([0, +∞)) and (see (2.8))

Δ0(𝑍) = 𝑍𝐹0 (𝑍)𝐹0 (𝑍), ∀ 𝑍 ∈ [0, +∞), (A.9)

where 𝐹0 ∈ 𝐶∞([0, +∞)) is defined by (A.7) and 𝐹0 ∈ 𝐶∞([0, +∞)) is defined by

𝐹0 (𝑍) := 1 − 𝑍𝑣(𝑍) −
√
ℓ(𝑣(𝑍) − 𝑍), ∀ 𝑍 ∈ [0, +∞). (A.10)

If Δ0(𝑍∗) = 0 for some 𝑍∗ ∈ (0, +∞), then Δ 𝑣 (𝑍∗, 𝑣(𝑍∗)) = Δ0(𝑍∗)𝑣′(𝑍∗) = 0, and by (A.8) we
obtain 𝑍∗ = 𝑍1, hence (using Lemma A.2, (A.8) and (A.9))

{𝑍 ∈ [0, +∞) : Δ0(𝑍) = 0} = {0, 𝑍1}. (A.11)
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Now we prove that Δ ′
0(𝑍1) ≠ 0. By the proof of Lemma A.2, we have 𝐹0 (𝑍1) = 0. Then by (A.7)

and (A.10), we have 𝐹0 (𝑍1) = 2(1 − 𝑍1𝑣(𝑍1)) > 0. Thus (using (A.9)), Δ ′
0(𝑍1) = 𝑍1𝐹

′
0 (𝑍1)𝐹0(𝑍1).

Assume on the contrary that Δ ′
0 (𝑍1) = 0, then 𝐹 ′

0 (𝑍1) = 0.
Let Δ1 (𝑍) := Δ 𝑣 (𝑍, 𝑣(𝑍)). Then (2.8) becomes Δ0 (𝑍)𝑣′(𝑍) = Δ1 (𝑍). Taking derivative with

respect to Z at 𝑍 = 𝑍1 on both sides, we obtain(using Δ0(𝑍1) = 0) Δ ′
1 (𝑍1) = Δ ′

0(𝑍1)𝑣′(𝑍1) = 0
and Δ1(𝑍1) = 0. By (2.8), we have Δ1 (𝑍) = 𝐹1 (𝑍)𝐹1 (𝑍) with 𝐹1 (𝑍) := 𝑍 − 𝑔1 (𝑣(𝑍)), 𝐹1 (𝑍) :=
(1 − 𝑣(𝑍)2) (𝛽ℓ + (𝑘 − 𝛽ℓ)𝑣(𝑍)2), 𝑔1 (𝑣) := 𝑘𝑣/(𝛽ℓ + (𝑘 − 𝛽ℓ)𝑣2) (note that 0 < 𝛽ℓ < 𝑘 using (2.9)).
As 𝑣(𝑍1) ∈ (−1, 1), we have 𝐹1 (𝑍1) > 0, then by Δ ′

1 (𝑍1) = 0 and Δ1(𝑍1) = 0 we have 𝐹1 (𝑍1) = 0,
Δ ′

1 (𝑍1) = 𝐹 ′
1 (𝑍1)𝐹1(𝑍1) = 0 and 𝐹 ′

1 (𝑍1) = 0. Thus, 0 = 1−𝑔′1 (𝑣(𝑍1))𝑣′(𝑍1) = 1−𝑔′1 (𝑣1)𝑣′(𝑍1) (using
Lemma A.2).

Similarly, by (A.7), we have 𝐹0 (𝑍) = 𝐹2 (𝑍)𝐹2 (𝑍) with 𝐹2 (𝑍) := 𝑔2(𝑣(𝑍)) − 𝑍 , 𝐹2 (𝑍) := 𝑣(𝑍) + ℓ,
𝑔2 (𝑣) := (1 +

√
ℓ𝑣)/(𝑣 +

√
ℓ), and 𝐹2 (𝑍1) > 0. Thus, 𝐹2 (𝑍1) = 0, 𝐹 ′

2 (𝑍1) = 0 (using 𝐹0 (𝑍1) =
𝐹 ′

0 (𝑍1) = 0) and 0 = 𝑔′2(𝑣1)𝑣′(𝑍1) − 1.
Now we have 1 = 𝑔′1 (𝑣1)𝑣′(𝑍1) = 𝑔′2(𝑣1)𝑣′(𝑍1) and 𝑔′1 (𝑣1) = 𝑔′2(𝑣1). On the other hand,

𝑔1 (𝑣) − 𝑔2 (𝑣) =
𝑘𝑣

𝛽ℓ + (𝑘 − 𝛽ℓ)𝑣2 − 1 +
√
ℓ𝑣

𝑣 +
√
ℓ

=
(1 − 𝑣2) (𝑘𝑣

√
ℓ − 𝛽ℓ(1 +

√
ℓ𝑣)

(𝛽ℓ + (𝑘 − 𝛽ℓ)𝑣2) (𝑣 +
√
ℓ)

=
(1 − 𝑣2) (𝑘 − 𝛽ℓ)

√
ℓ(𝑣 − 𝑣1)

(𝛽ℓ + (𝑘 − 𝛽ℓ)𝑣2) (𝑣 +
√
ℓ)

,

here we used (A.6), thus

𝑔′1(𝑣1) − 𝑔′2 (𝑣1) =
(1 − 𝑣2

1) (𝑘 − 𝛽ℓ)
√
ℓ

(𝛽ℓ + (𝑘 − 𝛽ℓ)𝑣2
1) (𝑣1 +

√
ℓ)

> 0,

which is a contradiction. Therefore, Δ ′
0 (𝑍1) ≠ 0.

By 𝐹0 (0) = 𝐹0 (0) = 1 > 0, (A.9), and (A.11), we have Δ0 (𝑍) > 0 for 𝑍 ∈ (0, 𝑍1). Finally, using
Δ ′

0 (𝑍1) ≠ 0 and (A.11), we have Δ ′
0 (𝑍1) < 0 and Δ0(𝑍) < 0 for all 𝑍 ∈ (𝑍1, +∞). �

To finish the proof of Remark 2.2, it remains to show that 𝑣(𝑍) < 𝑍 and 𝑍𝑣(𝑍) < 1 for all
𝑍 ∈ (0, +∞). We use the barrier function method. For any 𝑉 ∈ 𝐶1 ((0, +∞)), we define

(𝒜𝑉) (𝑍) := −Δ𝑍 (𝑍,𝑉 (𝑍))𝑉 ′(𝑍) + Δ 𝑣 (𝑍,𝑉 (𝑍)), ∀ 𝑍 ∈ (0, +∞). (A.12)

Then 𝒜𝑣 = 0 if v is given by Assumption 1.

Lemma A.4. Under Assumption 1, we have 𝑣(𝑍) < 𝑍 for all 𝑍 ∈ (0, +∞).

Proof. Since 𝑣(𝑍) ∈ (−1, 1) for all 𝑍 ∈ (0, +∞) by Assumption 1, it suffices to prove 𝑣(𝑍) < 𝑍 for
all 𝑍 ∈ (0, 1). We first show that 𝑣(𝑍) < 𝑍 for all 𝑍 ∈ (𝑍1, 1). By (A.9), 𝐹0 (0) = 1, 𝐹0 (𝑍1) = 0 and
(A.11), we have

{𝑍 ∈ [0, +∞) : 𝐹0 (𝑍) = 0} = {𝑍1}.

As 𝐹0 (1) < 0 and 𝑍1 ∈ (0, 1), we have 𝐹0 (𝑍) < 0 for all 𝑍 ∈ (𝑍1, 1), hence

𝑣(𝑍) <
√
ℓ𝑍 − 1
√
ℓ − 𝑍

< 𝑍, ∀ 𝑍 ∈ (𝑍1, 1).

Next we prove that 𝑣(𝑍) < 𝑍 for all 𝑍 ∈ (0, 𝑍1). Let 𝑉1(𝑍) := 𝑍 for all 𝑍 ∈ [0, +∞), then we have

(𝒜𝑉1) (𝑍) = (𝛽ℓ − 𝑘 − 1)𝑍 (1 − 𝑍2)2 < 0, ∀ 𝑍 ∈ (0, 1), (A.13)

https://doi.org/10.1017/fmp.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.7


48 F. Shao, D. Wei and Z. Zhang

where we have used 𝛽ℓ − 𝑘 − 1 < 0, which follows from (2.9). On the other hand, letting 𝑍 → 0+ in
d𝑣/d𝑍 = Δ 𝑣 (𝑍, 𝑣(𝑍))/Δ𝑍 (𝑍, 𝑣(𝑍)), by L’Hôpital’s rule, we have

𝑣′(0) = 𝜕𝑍Δ 𝑣 (0, 0) + 𝜕𝑣Δ 𝑣 (0, 0)𝑣′(0)
𝜕𝑍Δ𝑍 (0, 0) + 𝜕𝑣Δ𝑍 (0, 0)𝑣′(0)

= 𝛽ℓ − 𝑘𝑣′(0),

hence 𝑣′(0) = 𝛽ℓ/(𝑘 + 1) < 1 = 𝑉 ′
1 (0). As 𝑣(0) = 0 = 𝑉1(0), there exists 𝛿 ∈ (0, 𝑍1) such that

𝑣(𝑍) < 𝑉1(𝑍) for all 𝑍 ∈ (0, 𝛿). Assume for contradiction that 𝑍∗ ∈ (0, 𝑍1) ⊂ (0, 1) satisfies
𝑣(𝑍) < 𝑉1(𝑍) for all 𝑍 ∈ (0, 𝑍∗) and 𝑣(𝑍∗) = 𝑉1 (𝑍∗) = 𝑍∗, then 𝑣′(𝑍∗) ≥ 𝑉 ′

1 (𝑍∗). Thus, by
Δ𝑍 (𝑍∗, 𝑉1(𝑍∗)) = Δ𝑍 (𝑍∗, 𝑣(𝑍∗)) = 𝑍∗(1 − 𝑍2

∗ )2 > 0, we have

(𝒜𝑉1) (𝑍∗) = −Δ𝑍 (𝑍∗, 𝑉1(𝑍∗))𝑉 ′
1 (𝑍∗) + Δ 𝑣 (𝑍∗, 𝑉1(𝑍∗))

≥ −Δ𝑍 (𝑍∗, 𝑣(𝑍∗))𝑣′(𝑍∗) + Δ 𝑣 (𝑍∗, 𝑣(𝑍∗)) = (𝒜𝑣) (𝑍∗) = 0,

which contradicts with (A.13). Therefore, we have 𝑣(𝑍) < 𝑉1(𝑍) = 𝑍 for all 𝑍 ∈ (0, 𝑍1).
Finally, by 𝑣(𝑍1) = 𝑣1 < 𝑍1 < 1, we obtain 𝑣(𝑍) < 𝑍 for all 𝑍 ∈ (0, 1). �

Lemma A.5. Under Assumption 1, we have 𝑣(𝑍) < 1/𝑍 for all 𝑍 ∈ (0, +∞).

Proof. Since 𝑣(𝑍) ∈ (−1, 1) for all 𝑍 ∈ (0, +∞) by Assumption 1, it suffices to prove 𝑣(𝑍) < 1/𝑍 for
all 𝑍 ∈ (1, +∞). Let 𝑉2(𝑍) := 1/𝑍 for 𝑍 ∈ (0, +∞), then we have

(𝒜𝑉2) (𝑍) = (𝛽 − 1)ℓ𝑍
(
1 − 1/𝑍2

)2
> 0, ∀ 𝑍 ∈ (1, +∞), (A.14)

where we have used 𝛽 > 1 by (2.9). As 𝑣(𝑍1) = 𝑣1 < 1 = 𝑉2(𝑍1), there exists 𝛿 > 0 such that 𝑣(𝑍) <
𝑉2 (𝑍) for 𝑍 ∈ [𝑍1, 𝑍1 + 𝛿). Assume for contradiction that 𝑍∗ ∈ (1, +∞) satisfies 𝑣(𝑍) < 𝑉2(𝑍) for all
𝑍 ∈ (𝑍1, 𝑍

∗) and 𝑣(𝑍∗) = 𝑉2(𝑍∗), then 𝑣′(𝑍∗) ≥ 𝑉 ′
2 (𝑍

∗). Thus, byΔ𝑍 (𝑍∗, 𝑉2(𝑍∗)) = Δ𝑍 (𝑍∗, 𝑣(𝑍∗)) =
−ℓ(1 − 𝑍2

∗ )2/𝑍∗ < 0, we have

(𝒜𝑉2) (𝑍∗) = −Δ𝑍 (𝑍∗, 𝑉2 (𝑍∗))𝑉 ′
2 (𝑍

∗) + Δ 𝑣 (𝑍∗, 𝑉2(𝑍∗))
≤ −Δ𝑍 (𝑍∗, 𝑣(𝑍∗))𝑣′(𝑍∗) + Δ 𝑣 (𝑍∗, 𝑣(𝑍∗)) = (𝒜𝑣) (𝑍∗) = 0,

which contradicts with (A.14). Therefore, 𝑣(𝑍) < 𝑉2(𝑍) = 1/𝑍 for all 𝑍 ∈ (1, +∞). �

The proof of Remark 2.2 is completed now. To conclude this appendix, we prove that 𝜙0, �̂�0 ∈
𝐶∞

e ([0, +∞)), where 𝜙0 and �̂�0 are defined by (2.12).

Lemma A.6. Let 𝑣 ∈ 𝐶∞
o ([0, +∞)) be given by Assumption 1, and define 𝜙0, �̂�0 by (2.12). Then we have

𝜙0, �̂�0 ∈ 𝐶∞
e ([0, +∞)).

Proof. We first claim that

𝑓 ∈ 𝐶∞
o ([0, +∞)) =⇒ 𝐹 (𝑍) :=

∫ 𝑍

0
𝑓 (𝑠) d𝑠 ∈ 𝐶∞

e ([0, +∞)). (A.15)

Now we prove that 𝜙0 ∈ 𝐶∞
e ([0, +∞)). By 𝑣 ∈ 𝐶∞

o ([0, +∞)), we have 1 − 𝑍𝑣(𝑍) ∈ 𝐶∞
e ([0, +∞)).

Since 𝑍𝑣(𝑍) < 1 for all 𝑍 ∈ [0, +∞) by Lemma A.5, it follows from (5.8) that 0 < 1
1−𝑍𝑣 (𝑍 ) ∈

𝐶∞
e ([0, +∞)), hence by 𝑣 ∈ 𝐶∞

o ([0, +∞)) and (5.7) we have 𝑣 (𝑍 )
1−𝑍𝑣 (𝑍 ) ∈ 𝐶∞

o ([0, +∞)), then by (A.15)
we obtain

(𝛽 − 1)
∫ 𝑍

0

𝑣(𝑠)
1 − 𝑠𝑣(𝑠) d𝑠 ∈ 𝐶∞

e ([0, +∞)).

Thus, by (5.9) and (2.12) we have 𝜙0 ∈ 𝐶∞
e ([0, +∞)).
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As for �̂�0, by 0 < 1
1−𝑍𝑣 (𝑍 ) ∈ 𝐶∞

e ([0, +∞)), and (5.10), we have 1/(1 − 𝑍𝑣(𝑍))
2
𝑝−1 ∈ 𝐶∞

e ([0, +∞)).
Similarly, using 𝜙0 ∈ 𝐶∞

e ([0, +∞)) and 𝜙0(𝑍) > 0 for all 𝑍 ∈ [0, +∞), we get 𝜙0(𝑍)2/(𝑝−1) ∈
𝐶∞

e ([0, +∞)). It follows from 1 − 𝑣(𝑍)2 ∈ 𝐶∞
e ([0, +∞)), 𝑣(𝑍) ∈ (−1, 1) for all 𝑍 ∈ [0, +∞) and (5.10)

that (1 − 𝑣(𝑍)2)
1
𝑝−1 ∈ 𝐶∞

e ([0, +∞)). Therefore, by (2.12) and (5.5), we have �̂�0 ∈ 𝐶∞
e ([0, +∞)).

Finally, it suffices to show the claim (A.15). By (2.11), there exists �̃� ∈ 𝐶∞([0, +∞)) such that
𝑓 (𝑍) = 𝑍 �̃� (𝑍2) for all 𝑍 ∈ [0, +∞). Let

𝐹 (𝑍) :=
1
2

∫ 𝑍

0
�̃� (𝑠) d𝑠, ∀ 𝑍 ∈ [0, +∞),

then 𝐹 ∈ 𝐶∞([0, +∞)). Moreover, we have

𝐹 (𝑍) =
∫ 𝑍

0
𝑓 (𝑠) d𝑠 =

∫ 𝑍

0
𝑠 �̃� (𝑠2) d𝑠 =

1
2

∫ 𝑍 2

0
�̃� (𝑠) d𝑠 = 𝐹 (𝑍2), ∀ 𝑍 ∈ [0, +∞).

Hence by (2.10), we have 𝐹 ∈ 𝐶∞
e ([0, +∞)). �

B. Linear ODEs with singular points

In this appendix, we establish the well-posedness theory for a class of second order linear ODEs with
singular points.

First of all, we introduce a preliminary lemma, which ensures that the functions we are considering
are smooth in the sense of multi-variable functions. Let 𝐼 ⊂ R be an interval and let Ω ⊂ C be an open
subset. We define

Hol(Ω) := {𝑥 = 𝑥(𝜆) is holomorphic (or equivalently, analytic) on Ω}, (B.1)
H0

𝐼 (Ω) :=
{
𝑥 = 𝑥(𝑡;𝜆) ∈ 𝐶 (𝐼 ×Ω;C) : 𝑥(·;𝜆) ∈ 𝐶∞(𝐼) for all 𝜆 ∈ Ω,

𝑥(𝑡; ·) ∈ Hol(Ω) for all 𝑡 ∈ 𝐼 and 𝜕
𝑗
𝑡 𝑥 ∈ 𝐿∞(𝐼 ×Ω) for all 𝑗 ∈ Z≥0

}
, (B.2)

H𝐼 (Ω) := {𝑥 = 𝑥(𝑡;𝜆) ∈ 𝐶∞(𝐼 ×Ω;C) : 𝑥(𝑡; ·) ∈ Hol(Ω) for all 𝑡 ∈ 𝐼} . (B.3)

Then Hol(Ω), H0
𝐼 (Ω), H𝐼 (Ω) are rings and the definitions in (B.1), (B.3) are the same as in section 5.3.

This appendix is only used in the proof of Lemma 5.6, which does not require the definition of Z in
𝑍 = |𝑥 |/(𝑇 − 𝑡).

So, with abuse of notation, we replace Z by t and use x to denote a general function of (𝑡;𝜆). We
stress that here (𝑡, 𝑥) has nothing to do with the coordinates in R1+𝑑 .

Lemma B.1. Let 𝐼 ⊂ R be an interval and Ω ⊂ C be an open subset. Then H0
𝐼 (Ω) ⊂ H𝐼 (Ω).

Proof. Let 𝑥 = 𝑥(𝑡;𝜆) ∈ H0
𝐼 (Ω). Pick 𝜆0 ∈ Ω and let 𝑟 ∈ (0, 1) be such that 𝐵𝑟 (𝜆0) := {𝜆 ∈ C :

|𝜆 − 𝜆0 | < 𝑟} ⊂ Ω. By Cauchy’s integration formula (Theorem 4.4 in Chapter 2 of [69]), for any
𝑡 ∈ 𝐼, 𝜆 ∈ Ω we have

𝑥(𝑡;𝜆) =
∞∑
𝑘=0

𝑥𝑘 (𝑡) (𝜆 − 𝜆0)𝑘 , (B.4)

where

𝑥𝑘 (𝑡) =
1

2𝜋i

∫
|𝜆−𝜆0 |=𝑟

𝑥(𝑡;𝜆)
(𝜆 − 𝜆0)𝑘+1 d𝜆 =

𝑟−𝑘

2𝜋

∫ 2𝜋

0
𝑥
(
𝑡;𝜆0 + 𝑟𝑒i𝜃

)
𝑒−i𝑘 𝜃 d𝜃 (B.5)
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for all 𝑡 ∈ 𝐼, 𝑘 ∈ Z≥0. Since 𝑥(·;𝜆) ∈ 𝐶∞(𝐼) for all 𝜆 ∈ Ω and 𝜕
𝑗
𝑡 𝑥 ∈ 𝐿∞(𝐼 × Ω), by (B.5) and the

dominated convergence theorem, we have 𝑥𝑘 ∈ 𝐶∞(𝐼) and���𝑥 ( 𝑗)𝑘

���
𝐿∞ (𝐼 )

≤ ‖𝜕 𝑗
𝑡 𝑥‖𝐿∞ (𝐼×Ω)𝑟

−𝑘 , ∀ 𝑗 ∈ Z≥0, ∀ 𝑘 ∈ Z≥0. (B.6)

Using (B.6), we know that
∑∞
𝑘=0 𝑥

( 𝑗)
𝑘 (𝑡)𝜕𝛼𝜆 ((𝜆−𝜆0)𝑘 ) is uniformly absolutely convergent on 𝐼×𝐵𝑟/2(𝜆0)

for all 𝑗 ∈ Z≥0 and 𝛼 ∈ (Z≥0)2, hence (B.4) implies that 𝑥 ∈ 𝐶∞(𝐼×𝐵𝑟/2(𝜆0)). Since 𝜆0 ∈ Ω is arbitrary,
we have 𝑥 ∈ 𝐶∞(𝐼 ×Ω). Hence 𝑥 ∈ H𝐼 (Ω). �

Remark B.2. As smoothness is a local property, we have H0
𝐼 ,loc (Ω) ⊂ H𝐼 (Ω), where

H0
𝐼 ,loc(Ω) :=

{
𝑥 = 𝑥(𝑡;𝜆) : 𝐼 ×Ω → C

���𝑥 ∈ H0
𝐽 (Ω) for any compact sub-interval 𝐽 ⊂ 𝐼

}
.

Moreover, we have H𝐼 (Ω) ⊂ H0
𝐼 ,loc(Ω

′) for any open subset Ω′ ⊂⊂ Ω (i.e. there exists a compact set
K such that Ω′ ⊂ 𝐾 ⊂ Ω).

Lemma B.3. Let 𝐼 ⊂ R be an interval and let 𝐴(𝑡) ∈ 𝐶∞(𝐼;C) be such that 𝐴(𝑡) = 0 has a unique
solution 𝑡 = 𝑡0 in I12 with 𝐴′(𝑡0) ≠ 0. LetΩ ⊂ C be an open subset and let 𝐵(𝑡;𝜆), 𝐷 (𝑡;𝜆) ∈ 𝐶∞(𝐼×Ω;C)
be such that 𝐵, 𝐷 ∈ H0

𝐼 ,loc(Ω), which implies

𝑁∗
0 := sup

𝜆∈Ω

(
max

{
3,−Re

(
𝐵(𝑡0;𝜆)
𝐴′(𝑡0)

)
+ 1

})
< +∞.

Then there exists 𝑁0 > 𝑁∗
0 such that for all 𝑁 ∈ Z ∩ (𝑁0, +∞), if 𝑓 ∈ H0

𝐼 ,loc(Ω) is such that

| 𝑓 (𝑡;𝜆) |
|𝑡 − 𝑡0 |𝑁

∈ 𝐿∞(𝐽 ×Ω) for any compact sub-interval 𝐽 ⊂ 𝐼, (B.7)

then the linear ODE (here the prime ′ refers to the derivative with respect to t)

𝐴(𝑡)𝑥 ′′(𝑡;𝜆) + 𝐵(𝑡;𝜆)𝑥 ′(𝑡;𝜆) + 𝐷 (𝑡;𝜆)𝑥(𝑡;𝜆) = 𝑓 (𝑡;𝜆) (B.8)

has a (complex-valued) smooth solution 𝑥(𝑡;𝜆) on 𝐼 ×Ω such that 𝑥 ∈ H𝐼 (Ω).

Proof. Without loss of generality, we assume that 𝑡0 = 0 ∈ 𝐼, and there exists 𝛿0 ∈ (0, 1) such that
𝐼0 = [−𝛿0, 𝛿0] ⊂ 𝐼 or 𝐼0 = [0, 𝛿0] = 𝐼 ∩ [−𝛿0, 𝛿0].

Step 1. Existence of a 𝐶2 local solution. We define the Banach space

𝑌𝑁 :=
{
𝑦 ∈ 𝐶 (𝐼0 ×Ω;C) : 𝑦(𝑡;𝜆)/|𝑡 |𝑁 ∈ 𝐿∞(𝐼0 ×Ω) and 𝑦(𝑡; ·) ∈ Hol(Ω) ∀ 𝑡 ∈ 𝐼0

}
,

where 𝑁 ≥ 3 is an integer, with the norm ‖𝑦‖𝑌𝑁 :=
��𝑦(𝑡;𝜆)/|𝑡 |𝑁 ��

𝐿∞ (𝐼0×Ω) .

We define a linear operator T𝑁 : 𝑌𝑁 → 𝑌𝑁 by

(T𝑁 𝑦) (𝑡;𝜆) :=
∫ 𝑡

0

(
𝐵(𝑠;𝜆)
𝐴(𝑠) 𝑦(𝑠;𝜆) + 𝐷 (𝑠;𝜆)

𝐴(𝑠)

∫ 𝑠

0
𝑦(𝜏;𝜆) d𝜏

)
d𝑠, ∀ 𝑡 ∈ 𝐼0, ∀ 𝜆 ∈ Ω.

By the hypotheses on the coefficients 𝐴, 𝐵, 𝐷, we have

𝑀 := sup
𝑠∈𝐼0

���� 𝑠

𝐴(𝑠)

���� + sup
𝑠∈𝐼0 ,𝜆∈Ω

���� 𝑠𝐵(𝑠;𝜆)𝐴(𝑠)

���� + sup
𝑠∈𝐼0 ,𝜆∈Ω

���� 𝑠𝐷 (𝑠;𝜆)
𝐴(𝑠)

���� ∈ (0, +∞). (B.9)

12It means that {𝑡 ∈ 𝐼 : 𝐴(𝑡) = 0} = {𝑡0 }, and also for Proposition B.4.
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Hence, for all 𝑡 ∈ 𝐼0 ⊂ [−1, 1] and for all 𝜆 ∈ C we have

| (T𝑁 𝑦) (𝑡;𝜆) | =
����∫ 𝑡

0

(
𝑠𝐵(𝑠;𝜆)
𝐴(𝑠)

𝑦(𝑠;𝜆)
𝑠𝑁

𝑠𝑁−1 + 𝑠𝐷 (𝑠;𝜆)
𝐴(𝑠)

1
𝑠

∫ 𝑠

0

𝑦(𝜏;𝜆)
𝜏𝑁

𝜏𝑁 d𝜏
)

d𝑠
����

≤ 𝑀

𝑁
|𝑡 |𝑁 ‖𝑦‖𝑌𝑁 ,

which gives

‖T𝑁 ‖𝑌𝑁→𝑌𝑁 ≤ 𝑀

𝑁
, ∀ 𝑁 ∈ Z ∩ [3, +∞). (B.10)

We also define an operator F𝑁 : 𝑌𝑁 → 𝑌𝑁 by

(F𝑁 𝑓 ) (𝑡;𝜆) :=
∫ 𝑡

0

𝑓 (𝑠;𝜆)
𝐴(𝑠) d𝑠, ∀ 𝑡 ∈ 𝐼0, ∀ 𝜆 ∈ Ω.

Using (B.9), we know that F𝑁 : 𝑌𝑁 → 𝑌𝑁 is a bounded linear operator with ‖F𝑁 𝑓 ‖𝑌𝑁 ≤ 𝑀
𝑁 ‖ 𝑓 ‖𝑌𝑁

for all 𝑓 ∈ 𝑌𝑁 . Now we take 𝑁0 ∈ Z such that 𝑁0 > 𝑁∗
0 + 2𝑀 . For any 𝑁 ∈ Z∩ (𝑁0, +∞), by (B.10) we

know that ‖T𝑁 ‖𝑌𝑁→𝑌𝑁 ≤ 1/2, hence id+T𝑁 : 𝑌𝑁 → 𝑌𝑁 is invertible, then (id+T𝑁 )−1F𝑁 : 𝑌𝑁 → 𝑌𝑁
is a bounded linear operator with��(id+T𝑁 )−1F𝑁

��
𝑌𝑁→𝑌𝑁

≤
��(id+T𝑁 )−1��

𝑌𝑁→𝑌𝑁
‖F𝑁 ‖𝑌𝑁→𝑌𝑁 ≤ 2𝑀

𝑁
.

For any 𝑁 ∈ Z ∩ (𝑁0, +∞), given 𝑓 ∈ H0
𝐼 ,loc (Ω) satisfying (B.7) (then 𝑓 ∈ 𝑌𝑁 ), we define

𝑦 = (id+T𝑁 )−1F𝑁 𝑓 ∈ 𝑌𝑁 , 𝑥(𝑡;𝜆) =
∫ 𝑡

0
𝑦(𝑠;𝜆) d𝑠, ∀ 𝑡 ∈ 𝐼0, ∀ 𝜆 ∈ Ω,

then 𝑥 ∈ 𝐶 (𝐼0 ×Ω), 𝑥(·;𝜆) ∈ 𝐶1(𝐼0) for all 𝜆 ∈ Ω, 𝑥(𝑡; ·) ∈ Hol(Ω) for all 𝑡 ∈ 𝐼0,

𝑥 ′(𝑡;𝜆) =
∫ 𝑡

0

(
−𝐵(𝜏;𝜆)

𝐴(𝜏) 𝑥 ′(𝜏;𝜆) − 𝐷 (𝜏;𝜆)
𝐴(𝜏) 𝑥(𝜏;𝜆) + 𝑓 (𝜏;𝜆)

𝐴(𝜏)

)
d𝜏, ∀ 𝑡 ∈ 𝐼0, ∀ 𝜆 ∈ Ω,

and 𝑥 ′(𝑡;𝜆) = 𝑦(𝑡;𝜆), 𝑥(𝑡;𝜆) =
∫ 𝑡

0 𝑥 ′(𝑠;𝜆) d𝑠 for 𝑡 ∈ 𝐼0 and 𝜆 ∈ Ω. Moreover, we have (recalling 𝑡0 = 0)

𝑥(𝑡;𝜆)
|𝑡 |𝑁+1 ∈ 𝐿∞(𝐼0 ×Ω), 𝑥 ′(𝑡;𝜆)

|𝑡 |𝑁
∈ 𝐿∞(𝐼0 ×Ω). (B.11)

On the other hand, since 𝑥 ′(𝑡;𝜆) =
∫ 𝑡

0 𝑋 (𝑠;𝜆) d𝑠 for 𝑡 ∈ 𝐼0, 𝜆 ∈ Ω, where

𝑋 (𝑠;𝜆) := −𝐵(𝑠;𝜆)
𝐴(𝑠) 𝑥 ′(𝑠;𝜆) − 𝐷 (𝑠;𝜆)

𝐴(𝑠) 𝑥(𝑠;𝜆) + 𝑓 (𝑠;𝜆)
𝐴(𝑠)

= − 𝑠𝐵(𝑠;𝜆)
𝐴(𝑠)

𝑥 ′(𝑠;𝜆)
𝑠𝑁

𝑠𝑁−1 − 𝑠𝐷 (𝑠;𝜆)
𝐴(𝑠)

𝑥(𝑠;𝜆)
𝑠𝑁+1 𝑠𝑁 + 𝑠

𝐴(𝑠)
𝑓 (𝑠;𝜆)
𝑠𝑁

𝑠𝑁−1

for 𝑠 ∈ 𝐼0 \ {0} and 𝜆 ∈ Ω, thus there exists a constant 𝐶 > 0 such that we have |𝑋 (𝑠;𝜆) | ≤ 𝐶 |𝑠 |𝑁−1 for
𝑠 ∈ 𝐼0 \ {0}, 𝜆 ∈ Ω. As 𝑁 > 1, we know that 𝑥 ′(·;𝜆) ∈ 𝐶1 (𝐼0) (thus 𝑥(·;𝜆) ∈ 𝐶2(𝐼0)) and 𝑥 ′′(0;𝜆) = 0
for 𝜆 ∈ Ω. Hence, x solves (B.8) on (𝑡, 𝜆) ∈ 𝐼0 × C. We also have

𝑥 ′′(𝑡;𝜆)
|𝑡 |𝑁−1 ∈ 𝐿∞(𝐼0 ×Ω). (B.12)
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Step 2. Smoothness of the 𝐶2 local solution. In this step, we show that 𝑥(·;𝜆) ∈ 𝐶∞(𝐼0) for any
𝜆 ∈ Ω. By standard ODE theory, we have 𝑥(·;𝜆) ∈ 𝐶∞(𝐼0 \ {0}) for all 𝜆 ∈ Ω. We claim that for any
𝑘 ∈ Z ∩ [0, 𝑁], there exists a constant 𝐶𝑘 > 0 such that

𝑥 (𝑘) (0;𝜆) = 0 and |𝑥 (𝑘) (𝑡;𝜆) | ≤ 𝐶𝑘 |𝑡 |𝑁+1−𝑘 , ∀ 𝑡 ∈ 𝐼0, ∀ 𝜆 ∈ Ω. (B.13)

We use the induction. By (B.11) and (B.12), we know that (B.13) holds for 𝑘 ∈ {0, 1, 2}. Assume
that for some 𝐾 ∈ Z∩ [1, 𝑁 −1], (B.13) holds for all 𝑘 ∈ Z∩ [0, 𝐾]. Now we prove that (B.13) holds for
𝑘 = 𝐾+1. By our induction hypotheses, 𝑥(·;𝜆) ∈ 𝐶 (𝐾 ) (𝐼0) and 𝑥 (𝐾+1) (0;𝜆) = lim𝑡→0 (𝑥 (𝐾 ) (𝑡;𝜆)/𝑡) = 0
for all 𝜆 ∈ Ω. For 𝑡 ∈ 𝐼0 \ {0}, taking derivative 𝐾 − 1 times on both sides of (B.8) with respect to t, we
obtain

𝐴(𝑡)𝑥 (𝐾+1) (𝑡;𝜆) +
𝐾∑
𝑗=0

𝐴 𝑗 ,𝐾 (𝑡;𝜆)𝑥 ( 𝑗) (𝑡;𝜆) = 𝑓 (𝐾−1) (𝑡;𝜆), ∀ 𝑡 ∈ 𝐼0 \ {0}, ∀ 𝜆 ∈ Ω, (B.14)

where 𝐴 𝑗 ,𝐾 ’s are linear combinations of 𝐴, 𝐵, 𝐷 and their derivatives, hence 𝐴 𝑗 ,𝐾 (𝑡;𝜆) ∈ 𝐶∞(𝐼 ×Ω) ∩
𝐿∞(𝐼0 × Ω) for all 𝑗 ∈ Z ∩ [0, 𝐾].13 As 𝑓 ∈ H0

𝐼 ,loc(Ω) satisfies (B.7), we have14 𝑓 (𝑘) (𝑡;𝜆)/|𝑡 |𝑁−𝑘 ∈
𝐿∞(𝐼0 ×Ω) for all 𝑘 ∈ Z ∩ [0, 𝑁]. Therefore,��𝑥 (𝐾+1) (𝑡;𝜆)

��
|𝑡 |𝑁−𝐾 =

|𝑡 |
|𝐴(𝑡) |

��� 𝑓 (𝐾−1) (𝑡;𝜆) −
∑𝐾

𝑗=0 𝐴 𝑗 ,𝐾 (𝑡;𝜆)𝑥 ( 𝑗) (𝑡;𝜆)
���

|𝑡 |𝑁−(𝐾−1) ∈ 𝐿∞(𝐼0 ×Ω).

This proves (B.13) for 𝑘 = 𝐾 + 1. Hence, (B.13) holds by the induction and thus 𝑥(·;𝜆) ∈ 𝐶𝑁 (𝐼0) for
all 𝜆 ∈ Ω and

sup
𝑡 ∈𝐼0 ,𝜆∈Ω

|𝑥 (𝑘) (𝑡;𝜆) | < +∞, ∀ 𝑘 ∈ Z ∩ [0, 𝑁] . (B.15)

Next we claim that for 𝑘 ∈ Z ∩ [𝑁, +∞) we have

sup
𝑡 ∈𝐼0\{0},𝜆∈Ω

|𝑥 (𝑘) (𝑡;𝜆) | < +∞. (B.16)

By (B.13), we know that (B.16) holds for 𝑘 = 𝑁 . Assume that for some 𝑘 ∈ Z≥𝑁 we have

sup
𝑡 ∈𝐼0\{0},𝜆∈Ω

|𝑥 (𝑁 ) (𝑡;𝜆) | < +∞, · · · , sup
𝑡 ∈𝐼0\{0},𝜆∈Ω

|𝑥 (𝑘) (𝑡;𝜆) | < +∞. (B.17)

For 𝑡 ∈ 𝐼0 \ {0} and 𝜆 ∈ Ω, by (B.14) for 𝐾 = 𝑘 + 1 and footnote 13 we have

𝐴(𝑡)𝑥 (𝑘+2) (𝑡;𝜆) + (𝑘𝐴′(𝑡) + 𝐵(𝑡;𝜆))𝑥 (𝑘+1) (𝑡;𝜆) = 𝐹𝑘 (𝑡;𝜆), (B.18)

𝐹𝑘 (𝑡;𝜆) := 𝑓 (𝑘) (𝑡;𝜆) −
𝑘∑
𝑗=0

𝐴 𝑗 ,𝑘+1(𝑡;𝜆)𝑥 ( 𝑗) (𝑡;𝜆). (B.19)

Then by 𝑓 ∈ H0
𝐼0
(Ω), (B.15) and (B.17) we have sup𝑡 ∈𝐼0\{0},𝜆∈Ω |𝐹𝑘 (𝑡;𝜆) | < +∞. Let 𝐴(𝑡) :=∫ 1

0 𝐴′(𝑡𝑠) d𝑠 and 𝐵(𝑡;𝜆) := 𝐵(𝑡;𝜆) − 𝐵 (0;𝜆)
𝐴′ (0) 𝐴(𝑡) for 𝑡 ∈ 𝐼0, 𝜆 ∈ Ω, then 𝐵(0;𝜆) = 0, 𝐴 ∈ 𝐶∞(𝐼0),

13(B.14) and the properties of 𝐴 𝑗,𝐾 ’s holds for all 𝐾 ∈ Z+ (not merely for 𝐾 ∈ Z ∩ [1, 𝑁 − 1]), and we also have
𝐴𝐾,𝐾 (𝑡;𝜆) = (𝐾 − 1)𝐴′ (𝑡) + 𝐵 (𝑡;𝜆) for all 𝑡 ∈ 𝐼0 , 𝜆 ∈ Ω.

14Indeed, (B.7) implies that 𝑓 (𝑘) (0;𝜆) = 0 for any 𝑘 ∈ Z ∩ [0, 𝑁 − 1] and any 𝜆 ∈ Ω. As a consequence, we have
| 𝑓 (𝑁−1) (𝑡;𝜆) | =

���∫ 𝑡0 𝑓 (𝑁 ) (𝑠;𝜆) d𝑠
��� ≤

(
sup𝑠∈𝐼0 ,𝜆∈Ω | 𝑓 (𝑁 ) (𝑠;𝜆) |

)
|𝑡 | for all 𝑡 ∈ 𝐼0 , 𝜆 ∈ Ω, where we have used 𝑓 ∈

H0
𝐼0
(Ω) . Similarly one shows that 𝑓 (𝑘) (𝑡;𝜆)/ |𝑡 |𝑁−𝑘 ∈ 𝐿∞(𝐼0 ×Ω) for all 𝑘 ∈ Z ∩ [0, 𝑁 ].

https://doi.org/10.1017/fmp.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.7


Forum of Mathematics, Pi 53

𝐵 ∈ 𝐶 (𝐼0 × Ω) for 𝜆 ∈ Ω, 𝜕𝑡𝐵 ∈ 𝐿∞(𝐼0 × Ω) and 𝐴(𝑡) = 𝐴(𝑡)/𝑡 for 𝑡 ∈ 𝐼0 \ {0}. Thus,
𝐵(𝑡;𝜆)/𝑡 ∈ 𝐿∞(𝐼0 ×Ω) and 𝐵(𝑡;𝜆)/𝐴(𝑡) ∈ 𝐿∞(𝐼0 ×Ω) (using (B.9)).

Let 𝜂(𝑡;𝜆) := |𝑡 |
𝐵 (0;𝜆)
𝐴′ (0) exp

(∫ 𝑡

0
𝐵 (𝑠;𝜆)
𝐴(𝑠) d𝑠

)
then (here 𝜂 is different from the one in (2.23))

𝐶−1
𝜂 |𝑡 |Re 𝐵 (0;𝜆)

𝐴′ (0) ≤ |𝜂(𝑡;𝜆) | ≤ 𝐶𝜂 |𝑡 |Re 𝐵 (0;𝜆)
𝐴′ (0) , ∀ 𝑡 ∈ 𝐼0 \ {0}, ∀ 𝜆 ∈ Ω (B.20)

for some constant 𝐶𝜂 > 0. We also have 𝜂 ∈ 𝐶∞((𝐼0 \ {0}) ×Ω;C \ {0}) and

𝜂′(𝑡;𝜆)
𝜂(𝑡;𝜆) =

𝐵(𝑡;𝜆)
𝐴(𝑡) + 𝐵(0;𝜆)

𝐴′(0)𝑡 =
𝐵(𝑡;𝜆)
𝐴(𝑡) − 𝐵(0;𝜆)

𝐴′(0)
𝐴(𝑡)
𝐴(𝑡) +

𝐵(0;𝜆)
𝐴′(0)𝑡 =

𝐵(𝑡;𝜆)
𝐴(𝑡) , ∀ 𝑡 ∈ 𝐼0 \ {0}.

Here we used 𝐴(𝑡) = 𝐴(𝑡)/𝑡. It follows from (B.18) that(
𝐴(𝑡)𝑘𝜂(𝑡;𝜆)𝑥 (𝑘+1) (𝑡;𝜆)

) ′
= 𝐴(𝑡)𝑘−1𝜂(𝑡;𝜆)𝐹𝑘 (𝑡;𝜆), ∀ 𝑡 ∈ 𝐼0 \ {0}, ∀ 𝜆 ∈ Ω.

By (B.14) for 𝐾 = 𝑘 and (B.15), (B.17), we have 𝐴(𝑡)𝑥 (𝑘+1) (𝑡;𝜆) ∈ 𝐿∞((𝐼0 \ {0}) × Ω); using (B.20),
|𝐴(𝑡) | ∼ |𝑡 | as 𝑡 → 0 and

𝑘 ≥ 𝑁 > 𝑁0 > − inf
𝜆∈Ω

Re (𝐵(0;𝜆)/𝐴′(0)) + 1, (B.21)

we have

lim
𝑡→0

𝐴(𝑡)𝑘𝜂(𝑡;𝜆)𝑥 (𝑘+1) (𝑡;𝜆) = 0, ∀ 𝜆 ∈ Ω,

hence

𝐴(𝑡)𝑘𝜂(𝑡;𝜆)𝑥 (𝑘+1) (𝑡;𝜆) =
∫ 𝑡

0
𝐴(𝑠)𝑘−1𝜂(𝑠;𝜆)𝐹𝑘 (𝑠;𝜆) d𝑠, ∀ 𝑡 ∈ 𝐼0 \ {0}, ∀ 𝜆 ∈ Ω.

As a consequence, we have

���𝑥 (𝑘+1) (𝑡;𝜆)
��� =

���∫ 𝑡

0 𝐴(𝑠)𝑘−1𝜂(𝑠;𝜆)𝐹𝑘 (𝑠;𝜆) d𝑠
���

|𝐴(𝑡) |𝑘 |𝜂(𝑡;𝜆) |
≤ 𝐶𝑘+1

∫ |𝑡 |
0 𝑠𝑘−1𝑠Re(𝐵 (0;𝜆)/𝐴′ (0)) d𝑠

|𝑡 |𝑘 |𝑡 |Re(𝐵 (0;𝜆)/𝐴′ (0)) ≤ 𝐶𝑘+1

for all 𝑡 ∈ 𝐼0 \ {0} and 𝜆 ∈ Ω, where 𝐶𝑘+1 > 0 and 𝐶𝑘+1 > 0 are constants. Here we have used
𝑘 + inf𝜆∈Ω Re(𝐵(0;𝜆)/𝐴′(0)) > 0, which follows from (B.21). This proves (B.16).

Next we use once again the induction to prove that

𝑥 (𝑘) (0;𝜆) exists and lim
𝑡→0

𝑥 (𝑘) (𝑡;𝜆) = 𝑥 (𝑘) (0;𝜆), ∀ 𝜆 ∈ Ω, ∀ 𝑘 ∈ Z ∩ [0, +∞). (B.22)

We know from (B.13) that (B.22) holds for 𝑘 ≤ 𝑁 . Now we assume that for some 𝑘 ∈ Z≥𝑁 , (B.22)
holds for 0, 1, · · · , 𝑘 . Then by (B.19), we have 𝐹𝑘 (·;𝜆) ∈ 𝐶 (𝐼0), by (B.16) with k replaced by 𝑘 + 2 and
𝐴(0) = 0 we have lim𝑡→0 𝐴(𝑡)𝑥 (𝑘+2) (𝑡;𝜆) = 0, and by (B.18) we have

lim
𝑡→0

𝑥 (𝑘+1) (𝑡;𝜆) = 𝐹𝑘 (0;𝜆)
𝑘𝐴′(0) + 𝐵(0;𝜆) ∈ C, ∀ 𝜆 ∈ Ω,

where we have used 𝑘𝐴′(0) + 𝐵(0;𝜆) ≠ 0, which follows from 𝑘 > − inf𝜆∈Ω Re(𝐵(0;𝜆)/𝐴′(0)) (see
(B.21)). Finally, we get by L’Hôpital’s rule that

𝑥 (𝑘+1) (0;𝜆) = lim
𝑡→0

𝑥 (𝑘) (𝑡;𝜆) − 𝑥 (𝑘) (0)
𝑡

= lim
𝑡→0

𝑥 (𝑘+1) (𝑡;𝜆), ∀𝜆 ∈ Ω.

https://doi.org/10.1017/fmp.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.7


54 F. Shao, D. Wei and Z. Zhang

This proves (B.22) for 𝑘+1. Then (B.22) holds for all 𝑘 ∈ Z≥𝑁 by the induction. Hence, 𝑥(·;𝜆) ∈ 𝐶∞(𝐼0)
for all 𝜆 ∈ Ω. Moreover, combining (B.15) and (B.16) gives that

𝜕
𝑗
𝑡 𝑥 ∈ 𝐿∞(𝐼0 ×Ω), ∀ 𝑗 ∈ Z≥0. (B.23)

Step 3. 𝑥 ∈ 𝐶∞(𝐼0 ×Ω). Recall that 𝑥 ∈ 𝐶 (𝐼0 ×Ω) satisfies 𝑥(𝑡; ·) ∈ Hol(Ω) for all 𝑡 ∈ 𝐼0 (in Step 1)
and 𝑥(·;𝜆) ∈ 𝐶∞(𝐼0) for all 𝜆 ∈ Ω (in Step 2). Using (B.23) we have 𝑥 ∈ H0

𝐼0
(Ω). Then Lemma B.1

implies that 𝑥 ∈ 𝐶∞(𝐼0 ×Ω).
Step 4. Extension of the smooth local solution. For any fixed 𝜆 ∈ Ω, we have constructed a local

solution 𝑥𝐿 (·;𝜆) ∈ 𝐶∞(𝐼0) of (B.8) on 𝐼0 ⊂ 𝐼. Moreover, we have 𝑥𝐿 ∈ 𝐶∞(𝐼0×Ω) and 𝑥𝐿 (𝑡; ·) ∈ Hol(Ω)
for all 𝑡 ∈ 𝐼0. By standard ODE theory, the initial value problem{

𝑥 ′′(𝑡;𝜆) + 𝐵 (𝑡;𝜆)
𝐴(𝑡) 𝑥 ′(𝑡;𝜆) + 𝐷 (𝑡;𝜆)

𝐴(𝑡) 𝑥(𝑡;𝜆) = 𝑓 (𝑡;𝜆)
𝐴(𝑡) ,

𝑥(𝛿0/2;𝜆) = 𝑥𝐿 (𝛿0/2;𝜆), 𝑥 ′(𝛿0/2;𝜆) = 𝑥 ′𝐿 (𝛿0/2;𝜆)

has a unique solution 𝑥 = 𝑥(𝑡;𝜆) on ((0, +∞) ∩ 𝐼) × Ω and 𝑥 ∈ 𝐶∞(((0, +∞) ∩ 𝐼) × Ω). Moreover, by
the analytic dependence on parameters (Lemma B.5), we have 𝑥(𝑡; ·) ∈ Hol(Ω) for all 𝑡 ∈ (0, +∞) ∩ 𝐼.
Hence, 𝑥𝐿 can be extended to be a smooth solution of (B.8) on ((0, +∞) ∩ 𝐼) × Ω; Similarly we can
extend 𝑥𝐿 on the negative direction (for the case 𝐼0 = [−𝛿0, 𝛿0]). And for the extended solution x, we
have 𝑥 ∈ H𝐼 (Ω). �

Proposition B.4. Let 𝐼 ⊂ R be an interval. Let 𝐴(𝑡) ∈ 𝐶∞(𝐼;C) be such that 𝐴(𝑡) = 0 has a unique
solution 𝑡 = 𝑡0 in I with 𝐴′(𝑡0) ≠ 0. Let 𝐵(𝑡;𝜆), 𝐷 (𝑡;𝜆) ∈ H𝐼 (C). Assume that 𝐵(𝑡;𝜆) = 𝐵(𝑡) + 𝜆𝐵(𝑡)
for 𝑡 ∈ 𝐼 and 𝜆 ∈ C, where 𝐵, 𝐵 ∈ 𝐶∞(𝐼;C). Suppose that

either 𝐵(𝑡0) ≠ 0 or 𝐵(𝑡0) = 0 and − 𝐵(𝑡0)/𝐴′(𝑡0) ∉ Z≥0. (B.24)

We define

Λ∗ := {𝜆 ∈ C : 𝑛𝐴′(𝑡0) + 𝐵(𝑡0;𝜆) = 0 for some 𝑛 ∈ Z≥0} . (B.25)

Then Λ∗ ⊂ C is a (probably empty) discrete set. Let 𝑅 ∈ (0, +∞). There exists a nonzero polynomial
𝜓1 (𝜆) satisfying {𝜆 ∈ 𝐵𝑅 : 𝜓1 (𝜆) = 0} = Λ∗ ∩ 𝐵𝑅 such that for every 𝑓 (𝑡;𝜆) ∈ H𝐼 (C), the
inhomogeneous ODE{

𝐴(𝑡)𝑥 ′′(𝑡;𝜆) + 𝐵(𝑡;𝜆)𝑥 ′(𝑡;𝜆) + 𝐷 (𝑡;𝜆)𝑥(𝑡;𝜆) = 𝜓1(𝜆) 𝑓 (𝑡;𝜆), 𝑡 ∈ 𝐼, 𝜆 ∈ 𝐵𝑅,

𝑥(𝑡0;𝜆) = 𝜓1 (𝜆), 𝜆 ∈ 𝐵𝑅,
(B.26)

where the prime ′ refers to the derivative with respect to 𝑡 ∈ 𝐼, has a solution 𝑥 = 𝑥(𝑡;𝜆) ∈ H𝐼 (𝐵𝑅).
Moreover, if 𝐵(𝑡0) = 0, then 𝜓1(𝜆) = 1.

Proof. We first show that Λ∗ is a discrete set. If 𝐵(𝑡0) ≠ 0, then Λ∗ = {−𝑛𝐴′(𝑡0)/𝐵(𝑡0) − 𝐵(𝑡0)/𝐵(𝑡0) :
𝑛 ∈ Z≥0}, hence Λ∗ is a discrete set. If 𝐵(𝑡0) = 0, then 𝜆∗ ∈ Λ∗ if and only if 0 = 𝑛𝐴′(𝑡0) + 𝐵(𝑡0;𝜆∗) =
𝑛𝐴′(𝑡0)+𝐵(𝑡0) = 0 for some 𝑛 ∈ Z≥0, which implies that−𝐵(𝑡0)/𝐴′(𝑡0) ∈ Z≥0, and this is a contradiction
with our assumption (B.24). As a consequence, if 𝐵(𝑡0) = 0 (and −𝐵(𝑡0)/𝐴′(𝑡0) ∉ Z≥0), then Λ∗ = ∅.

Next, we construct 𝜓1(𝜆). Let 𝑁0 be given by Lemma B.3 (for Ω = 𝐵𝑅) and fix an integer
𝑁 > max{𝑁0 + 1,− inf𝜆∈𝐵𝑅 Re (𝐵(𝑡0;𝜆)/𝐴′(𝑡0)) + 1}. Let 𝜓1(𝜆) := 1 for the case 𝐵(𝑡0) = 0 and
𝜓1 (𝜆) :=

∏𝑁−1
𝑗=0

(
𝑗 𝐴′(𝑡0) + 𝐵(𝑡0, 𝜆)

)
for the case 𝐵(𝑡0) ≠ 0.

Claim 1. 𝜓1(𝜆) is a nonzero polynomial. If 𝐵(𝑡0) = 0, then 𝜓1 (𝜆) ≡ 1 is a polynomial of degree 0; if
𝐵(𝑡0) ≠ 0, as 𝐵(𝑡0, 𝜆) = 𝐵(𝑡0) + 𝜆𝐵(𝑡0), then 𝜓1 (𝜆) is a polynomial of degree N.

Claim 2. {𝜆 ∈ 𝐵𝑅 : 𝜓1 (𝜆) = 0} = Λ∗ ∩ 𝐵𝑅. If 𝐵(𝑡0) = 0, then {𝜆 ∈ 𝐵𝑅 : 𝜓1 (𝜆) = 0} =
∅ = Λ∗ = Λ∗ ∩ 𝐵𝑅. For the case 𝐵(𝑡0) ≠ 0, if 𝜓1(𝜆) = 0 then 𝑗 𝐴′(𝑡0) + 𝐵(𝑡0, 𝜆) = 0 for
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some 𝑗 ∈ Z ∩ [0, 𝑁 − 1] and 𝜆 ∈ Λ∗, thus {𝜆 ∈ 𝐵𝑅 : 𝜓1 (𝜆) = 0} ⊆ Λ∗ ∩ 𝐵𝑅. On the other
hand, if 𝜆0 ∈ Λ∗ ∩ 𝐵𝑅 (and 𝐵(𝑡0) ≠ 0), then 𝑛𝐴′(𝑡0) + 𝐵(𝑡0;𝜆0) = 0 for some 𝑛 ∈ Z≥0, and
𝑛 = −𝐵(𝑡0;𝜆0)/𝐴′(𝑡0) ≤ − inf𝜆∈𝐵𝑅 Re (𝐵(𝑡0;𝜆)/𝐴′(𝑡0)) < 𝑁 − 1, thus 𝑛 ∈ Z ∩ [0, 𝑁 − 1] and
𝜓1 (𝜆0) = 0. So Λ∗ ∩ 𝐵𝑅 ⊆ {𝜆 ∈ 𝐵𝑅 : 𝜓1 (𝜆) = 0}.

It remains to construct 𝑥(𝑡;𝜆). For any 𝑛 ∈ Z ∩ [0, 𝑁] and 𝜆 ∈ C, let 𝜓1,𝑛 (𝜆) := 1 for the case
𝐵(𝑡0) = 0 and 𝜓1,𝑛 (𝜆) :=

∏𝑁−1
𝑗=𝑛

(
𝑗 𝐴′(𝑡0) + 𝐵(𝑡0, 𝜆)

)
(here 𝜓1,𝑁 (𝜆) := 1) for the case 𝐵(𝑡0) ≠ 0. Then

𝜓1 (𝜆) = 𝜓1,0 (𝜆) for all 𝜆 ∈ C.

Claim 3. If 𝑛 ∈ Z ∩ [0, 𝑁], 𝑔(𝑡;𝜆) ∈ H𝐼 (C), 𝜕𝑖𝑡 𝑔(𝑡0;𝜆) = 0 for 𝑖 ∈ Z, 0 ≤ 𝑖 < 𝑛. Then

𝐴(𝑡)𝑦′′(𝑡;𝜆) + 𝐵(𝑡;𝜆)𝑦′(𝑡;𝜆) + 𝐷 (𝑡;𝜆)𝑦(𝑡;𝜆) = 𝜓1,𝑛 (𝜆)𝑔(𝑡;𝜆), 𝑦(𝑡0;𝜆) = 0, 𝜆 ∈ 𝐵𝑅, (B.27)

has a solution 𝑦 = 𝑦(𝑡;𝜆) ∈ H𝐼 (𝐵𝑅).

Let 𝑔(𝑡;𝜆) = 𝑓 (𝑡;𝜆) − 𝐷 (𝑡;𝜆), 𝑛 = 0, then by Claim 3, (B.27) has a solution 𝑦 = 𝑦(𝑡;𝜆) ∈ H𝐼 (𝐵𝑅)
with 𝑛 = 0. 𝑥(𝑡;𝜆) = 𝑦(𝑡;𝜆) + 𝜓1 (𝜆) ∈ H𝐼 (𝐵𝑅) solves (B.26) (using 𝜓1(𝜆) = 𝜓1,0 (𝜆)).

It remains to prove Claim 3. We use the (backward) induction. We need to prove that:

(i) Claim 3 holds for 𝑛 = 𝑁;
(ii) if 𝑗 ∈ Z ∩ [0, 𝑁 − 1], Claim 3 holds for 𝑛 = 𝑗 + 1, then Claim 3 holds for 𝑛 = 𝑗 .

Proof of (i). As 𝑔 ∈ H𝐼 (C) ⊂ H0
𝐼 ,loc(𝐵𝑅), 𝑛 = 𝑁 , by Taylor’s theorem with integral remainders, we

have 𝑔(𝑡;𝜆)/|𝑡 − 𝑡0 |𝑁 ∈ 𝐿∞
loc(𝐼 × C), and we also have 𝜓1,𝑛 (𝜆) = 𝜓1,𝑁 (𝜆) = 1. Then the result follows

from Lemma B.3.
Proof of (ii). We fix 𝑗 ∈ Z ∩ [0, 𝑁 − 1] and assume 𝑔(𝑡;𝜆) ∈ H𝐼 (C), 𝜕𝑖𝑡 𝑔(𝑡0;𝜆) = 0 for 𝑖 ∈ Z,

0 ≤ 𝑖 < 𝑗 . For 𝑡 ∈ 𝐼, 𝜆 ∈ C, let 𝑥 𝑗 (𝑡) := (𝑡 − 𝑡0) 𝑗+1, 𝑦 𝑗 (𝑡;𝜆) := 𝐴(𝑡)𝑥 ′′𝑗 (𝑡) + 𝐵(𝑡;𝜆)𝑥 ′𝑗 (𝑡) + 𝐷 (𝑡;𝜆)𝑥 𝑗 (𝑡),
then 𝑥 𝑗 ∈ 𝐶∞(𝐼), 𝑥 𝑗 (𝑡0) = 0, 𝑦 𝑗 (𝑡;𝜆) ∈ H𝐼 (C), and

𝑦 𝑗 (𝑡;𝜆) = 𝐴(𝑡) 𝑗 ( 𝑗 + 1) (𝑡 − 𝑡0) 𝑗−1 + 𝐵(𝑡;𝜆) ( 𝑗 + 1) (𝑡 − 𝑡0) 𝑗 + 𝐷 (𝑡;𝜆) (𝑡 − 𝑡0) 𝑗+1.

By Taylor’s formula, we have 𝜕𝑖𝑡 𝑦 𝑗 (𝑡0;𝜆) = 0 for 𝑖 ∈ Z, 0 ≤ 𝑖 < 𝑗 and

𝜕
𝑗
𝑡 𝑦 𝑗 (𝑡0;𝜆) = 𝑗! lim

𝑡→𝑡0

𝑦 𝑗 (𝑡;𝜆)
(𝑡 − 𝑡0) 𝑗

= 𝑗! lim
𝑡→𝑡0

𝑗 ( 𝑗 + 1) 𝐴(𝑡)
𝑡 − 𝑡0

+ 𝑗!𝐵(𝑡0;𝜆) ( 𝑗 + 1)

= 𝑗! 𝑗 ( 𝑗 + 1)𝐴′(𝑡0) + ( 𝑗 + 1)!𝐵(𝑡0;𝜆) = ( 𝑗 + 1)!( 𝑗 𝐴′(𝑡0) + 𝐵(𝑡0;𝜆)).

For the case of 𝐵(𝑡0) ≠ 0, let 𝑎 𝑗 = ( 𝑗 + 1)!, 𝑏 𝑗 (𝜆) = 𝑗 𝐴′(𝑡0) + 𝐵(𝑡0;𝜆) then 𝑎 𝑗 ≠ 0, 𝑏 𝑗 ∈ Hol(C).
As 𝜓1,𝑛 (𝜆) =

∏𝑁−1
𝑗=𝑛

(
𝑗 𝐴′(𝑡0) + 𝐵(𝑡0;𝜆)

)
for 𝑛 ∈ Z ∩ [0, 𝑁] we have 𝜓1, 𝑗 (𝜆) = 𝑏 𝑗 (𝜆)𝜓1, 𝑗+1(𝜆) and

𝜕
𝑗
𝑡 𝑦 𝑗 (𝑡0;𝜆) = ( 𝑗 + 1)!( 𝑗 𝐴′(𝑡0) + 𝐵(𝑡0;𝜆)) = 𝑎 𝑗𝑏 𝑗 (𝜆) for all 𝜆 ∈ C.

For the case of 𝐵(𝑡0) = 0, we have 𝑗 𝐴′(𝑡0) + 𝐵(𝑡0, 𝜆) = 𝑗 𝐴′(𝑡0) + 𝐵(𝑡0) ≠ 0 (using (B.24)). Let
𝑎 𝑗 = ( 𝑗 + 1)!( 𝑗 𝐴′(𝑡0) + 𝐵(𝑡0)), 𝑏 𝑗 (𝜆) = 1 then 𝑎 𝑗 ≠ 0, 𝑏 𝑗 ∈ Hol(C), 𝜕 𝑗

𝑡 𝑦 𝑗 (𝑡0;𝜆) = 𝑎 𝑗 = 𝑎 𝑗𝑏 𝑗 . As
𝜓1,𝑛 (𝜆) = 1 for 𝑛 ∈ Z ∩ [0, 𝑁] we have 𝜓1, 𝑗 (𝜆) = 𝑏 𝑗 (𝜆)𝜓1, 𝑗+1(𝜆) for all 𝜆 ∈ C.

Thus, we always have 𝑎 𝑗 ≠ 0, 𝑏 𝑗 ∈ Hol(C), 𝜓1, 𝑗 (𝜆) = 𝑏 𝑗 (𝜆)𝜓1, 𝑗+1(𝜆), 𝜕 𝑗
𝑡 𝑦 𝑗 (𝑡0;𝜆) = 𝑎 𝑗𝑏 𝑗 (𝜆).

For 𝑡 ∈ 𝐼, 𝜆 ∈ C, let �̃�(𝑡;𝜆) := 𝑏 𝑗 (𝜆)𝑔(𝑡;𝜆) − 𝜕
𝑗
𝑡 𝑔(𝑡0;𝜆) · 𝑦 𝑗 (𝑡;𝜆)/𝑎 𝑗 then �̃� ∈ H𝐼 (C),15 and

𝜕
𝑗
𝑡 �̃�(𝑡0;𝜆) = 0. As 𝜕𝑖𝑡 𝑔(𝑡0;𝜆) = 0, 𝜕𝑖𝑡 𝑦 𝑗 (𝑡0;𝜆) = 0 for 𝑖 ∈ Z, 0 ≤ 𝑖 < 𝑗 , we have 𝜕𝑖𝑡 �̃�(𝑡0;𝜆) = 0, for 𝑖 ∈ Z,

0 ≤ 𝑖 < 𝑗 . Thus, 𝜕𝑖𝑡 �̃�(𝑡0;𝜆) = 0, for 𝑖 ∈ Z, 0 ≤ 𝑖 ≤ 𝑗 .
By the induction assumption (for 𝑛 = 𝑗 + 1), there exists �̃�(𝑡;𝜆) ∈ H𝐼 (𝐵𝑅) such that

𝐴(𝑡) �̃�′′(𝑡;𝜆) + 𝐵(𝑡;𝜆) �̃�′(𝑡;𝜆) + 𝐷 (𝑡;𝜆) �̃�(𝑡;𝜆) = 𝜓1, 𝑗+1 (𝜆)�̃�(𝑡;𝜆), �̃�(𝑡0;𝜆) = 0, 𝜆 ∈ 𝐵𝑅 .

15Here we use the fact that if 𝑥 ∈ H𝐼 (Ω) , then 𝑥 (𝑛) ∈ H𝐼 (Ω) for any 𝑛 ∈ Z≥0.
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For all 𝑡 ∈ 𝐼, 𝜆 ∈ 𝐵𝑅, let 𝑦(𝑡;𝜆) := �̃�(𝑡;𝜆)+𝜓1, 𝑗+1(𝜆)𝜕 𝑗
𝑡 𝑔(𝑡0;𝜆)·𝑥 𝑗 (𝑡)/𝑎 𝑗 , then 𝑦 ∈ H𝐼 (𝐵𝑅), 𝑦(𝑡0;𝜆) = 0

and

𝐴(𝑡)𝑦′′(𝑡;𝜆) + 𝐵(𝑡;𝜆)𝑦′(𝑡;𝜆) + 𝐷 (𝑡;𝜆)𝑦(𝑡;𝜆)
= 𝜓1, 𝑗+1 (𝜆)�̃�(𝑡;𝜆) + 𝜓1, 𝑗+1 (𝜆)𝜕 𝑗

𝑡 𝑔(𝑡0;𝜆) · 𝑦 𝑗 (𝑡;𝜆)/𝑎 𝑗 = 𝜓1, 𝑗+1 (𝜆)𝑏 𝑗 (𝜆)𝑔(𝑡;𝜆) = 𝜓1, 𝑗 (𝜆)𝑔(𝑡;𝜆),

where we have used 𝑦 𝑗 (𝑡;𝜆) = 𝐴(𝑡)𝑥 ′′𝑗 (𝑡)+𝐵(𝑡;𝜆)𝑥 ′𝑗 (𝑡)+𝐷 (𝑡;𝜆)𝑥 𝑗 (𝑡), �̃�(𝑡;𝜆)+𝜕 𝑗
𝑡 𝑔(𝑡0;𝜆) ·𝑦 𝑗 (𝑡;𝜆)/𝑎 𝑗 =

𝑏 𝑗 (𝜆)𝑔(𝑡;𝜆) and 𝜓1, 𝑗 (𝜆) = 𝑏 𝑗 (𝜆)𝜓1, 𝑗+1(𝜆). Thus, 𝑦 ∈ H𝐼 (𝐵𝑅) solves (B.27) for 𝑛 = 𝑗 . This completes
the proof. �

In the end of this appendix, we prove the analytic dependence on parameters of solutions to linear
regular ODEs. The following lemma has been used in Step 4 of the proof of Lemma B.3, to show that
the extended smooth solution is analytic with respect to the parameter 𝜆.

Lemma B.5. Let Ω ⊂ C be an open set and 𝐼 ⊂ R. Let 𝑝(𝑡;𝜆), 𝑞(𝑡;𝜆), 𝑓 (𝑡;𝜆) ∈ 𝐶∞(𝐼 ×Ω;C) be such
that 𝑝(𝑡; ·), 𝑞(𝑡; ·), 𝑓 (𝑡; ·) are analytic on Ω for each 𝑡 ∈ 𝐼. Let 𝑥0 (𝜆), 𝑥1 (𝜆) be two analytic functions on
Ω and let 𝑡0 ∈ 𝐼. For each 𝜆 ∈ Ω, let 𝑥(𝑡;𝜆) (𝑡 ∈ 𝐼) be the unique smooth solution to the initial value
problem

𝑥 ′′(𝑡;𝜆) + 𝑝(𝑡;𝜆)𝑥 ′(𝑡;𝜆) + 𝑞(𝑡;𝜆)𝑥(𝑡;𝜆) = 𝑓 (𝑡;𝜆), 𝑥(𝑡0;𝜆) = 𝑥0 (𝜆), 𝑥 ′(𝑡0;𝜆) = 𝑥1 (𝜆),

where the prime ′ refers to the derivative with respect to 𝑡 ∈ 𝐼. Then for each 𝑡 ∈ 𝐼, the function
𝜆 ∈ Ω ↦→ 𝑥(𝑡;𝜆) is analytic.

Proof. By the standard ODE theory, we know that 𝑥 ∈ 𝐶∞(𝐼×Ω). For any complex function 𝜑 = 𝜑(𝜆) :
C→ C of class 𝐶1 seen as a function on R2, we can define the Wirtinger derivatives

𝜕�̄�𝜑(𝜆) =
1
2
(
𝜕1𝜑(𝜆) + i𝜕2𝜑(𝜆)

)
, 𝜕𝜆𝜑(𝜆) =

1
2
(
𝜕1𝜑(𝜆) − i𝜕2𝜑(𝜆)

)
.

Now it suffices to show that 𝜕�̄�𝑥(𝑡;𝜆) = 0 for all (𝑡, 𝜆) ∈ 𝐼 × Ω. Since 𝑥 ∈ 𝐶∞(𝐼 × Ω), the derivative
with respect to t and 𝜕�̄� are commutable. By the analyticity of coefficients and the initial data, we know
that 𝜕�̄�𝑥 satisfies

(𝜕�̄�𝑥)′′(𝑡;𝜆) + 𝑝(𝑡;𝜆) (𝜕�̄�𝑥)′(𝑡;𝜆) + 𝑞(𝑡;𝜆)𝜕�̄�𝑥(𝑡;𝜆) = 0, 𝜕�̄�𝑥(𝑡0;𝜆) = (𝜕�̄�𝑥)′(𝑡0;𝜆) = 0.

By the uniqueness, we have 𝜕�̄�𝑥(𝑡;𝜆) = 0 for all (𝑡, 𝜆) ∈ 𝐼 ×Ω. �
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