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Abstract

The Cognitive Bias (CogBIAS) hypothesis proposes that cognitive biases develop as a function of environmental influences (which determine
the valence of biases) and the genetic susceptibility to those influences (which determines the potency of biases). The current study employed a
longitudinal, polygenic-by-environment approach to examine the CogBIAS hypothesis. To this end, measures of life experiences and
polygenic scores for depression were used to assess the development of memory and interpretation biases in a three-wave sample of
adolescents (12–16 years) (N= 337). Using mixed effects modeling, three patterns were revealed. First, positive life experiences (PLEs) were
found to diminish negative and enhance positive forms of memory and social interpretation biases. Second, and against expectation, negative
life experiences and depression polygenic scores were not associated with any cognitive outcomes, upon adjusting for psychopathology.
Finally, and most importantly, the interaction between high polygenic risk and greater PLEs was associated with a stronger positive
interpretation bias for social situations. These results provide the first line of polygenic evidence in support of the CogBIAS hypothesis, but also
extend this hypothesis by highlighting positive genetic and nuanced environmental influences on the development of cognitive biases across
adolescence.
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Introduction

By skewing information processing resources toward a negative (or
positive) mental perspective, cognitive biases are instrumental to
the development and maintenance of psychopathology (or
wellbeing) (Beck et al., 1985; Williams et al., 1988, 1997).
Although the protective and deleterious qualities of cognitive
biases are well documented (e.g., Booth et al., 2022; Songco et al.,
2020), less is known about what influences their development.
Understanding how cognitive biases proliferate, particularly
during key developmental periods like adolescence, could point
toward effective prevention and intervention strategies that
enhance their positive and diminish their negative effects.

The Cognitive Bias (CogBIAS) framework offers an interdisci-
plinary approach for exploring the development of cognitive biases
(Fox&Beevers, 2016; Fox&Keers, 2019). Integrating cognitive and
genetic research, the CogBIASmodel proposes that cognitive biases
develop as a function of environmental qualities (which determine

the valence of biases) and the genetic sensitivity to those qualities
(which determines the potency of biases). A large body of research
has established the role of adversity in the development of negative
cognitive biases (Fani et al., 2011; Pine et al., 2005; Pollak & Kistler,
2002; Pollak & Tolley-Schell, 2003; Zavos et al., 2012). While less
research has explored genetic influences to their development, twin
studies have established their genetic basis and overlap with
internalizing conditions (Anokhin et al., 2011; Eley et al., 2007,
2008; Rijsdijk et al., 2009). However, further molecular inves-
tigations have been limited and confined to studies of individual
candidate genes. Such studies have focused on linking “popular”
genetic variants (such as the serotonin transporter polymorphism)
with “popular” cognitive biases (e.g., in the attention and
interpretation of information) (Beevers et al., 2007, 2009; Fox
et al., 2009; Fox & Standage, 2012; Pergamin-Hight et al., 2012).
Similarly, studies investigating gene-by-environment interactions
have focusedmostly on candidate genes and their effects on risk for
particular psychopathologies, but not their cognitive endopheno-
types (e.g., Assary et al., 2018; Caspi & Moffitt, 2006; Manuck &
McCaffery, 2014).

Crucially, genetic research has thus far been guided by the
diathesis-stress model (Monroe & Simons, 1991), focusing
exclusively on genes implicated in negative outcomes. Over the
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last decade, however, researchers have expanded the diathesis-
stress model by suggesting that some psychiatric genetic variants
might confer sensitivity to positive environmental influences (i.e.,
vantage sensitivity) (Pluess & Belsky, 2013), or to both positive and
negative influences (i.e., differential sensitivity) (Belsky et al., 2007;
Belsky, 1997). This broader model of “differential susceptibility”
proposes that individuals are not merely “vulnerable” to negative
life circumstances, but rather “susceptible” to both negative and
positive life circumstances (see Belsky & Pluess, 2009; Ellis et al.,
2011). In this sense, an individual is not only likely to wither under
adverse conditions but is simultaneously likely to disproportion-
ately prosper under enriching life conditions.

To our knowledge, only one study examined cognitive biases
using such a general susceptibility approach. This study, by Fox
et al. (2011), supported the notion of differential susceptibility, by
showcasing that individuals with a vulnerability to depression
could be trained to develop a strong attentional bias to either
positive or negative affective stimuli. However, much like other
studies in this area, Fox et al.’s (2011) investigation was severely
limited, since its operationalization of “vulnerability”was confined
to a single genetic variant (the serotonin transporter gene)
(see Britton & Rauch, 2011 for commentary). In contrast, the
genetic architecture of psychological phenotypes is increasingly
recognized to be “polygenic,” meaning that it comprises hundreds
of thousands of such variants (with each exerting a small effect on
phenotypic outcomes) (see O’Donovan & Owen, 2016). Thus,
composite measures that summarize the effects of many variants
(such as “polygenic risk scores”) are considered better proxies of
genetic “risk” (Ronald, 2020).

To date, though, only a few studies have used polygenic risk
scores (PRSs) to examine psychological outcomes from the
differential susceptibility perspective. The first polygenic study
on the matter was conducted by Keers et al. (2016) and revealed
that genetic sensitivity predicts greater response to cognitive
behavioral therapy in children with anxiety disorders. A related
study by Keers and Pluess (2017) highlighted the importance of
such sensitivity during early development. However, no further
research has employed a similar polygenic approach to investigate
intermediary phenotypes, such as cognitive biases, which could lie
on the pathway between sensitivity and either psychopathology
(e.g., Songco et al., 2020) or resilience (e.g., Booth et al., 2022).

In this study, we adopted such a polygenic approach to assess the
development of memory and interpretation biases in an adolescent
sample from the CogBIAS Longitudinal Study (CogBIAS-L-S)
(Booth et al., 2017). In keeping with evidence regarding the shared
genetic architecture of cognitive biases and depression (see Vincent,
2019), we conceptualized genetic “risk” (or sensitivity) using a PRS
for major depressive disorder (MDD). Our PRS was constructed
using summary statistics from a recent genome-wide association
study (GWAS) (Wrayet al., 2018),which featuresbetterphenotyping
of cases and controls than related GWAS that focus on broad or
minimal phenotyping criteria (Cai et al., 2020). Beyond polygenic
scores, we also employed measures of life experiences. Using these
measures, we examined the extent towhich positive and negative life
experiences, polygenic risk for depression, and their gene-by-
environment (G × E) interaction influenced the development of
cognitive biases across adolescence. We hypothesized that life
experiences and polygenic risk for depression will be independently
and interactively associated with cognitive biases across adolescence,
and preregistered these hypotheses on the Open Science Framework
(onwhich our code, some null results, and additional supplementary
information is further available).

Methods

Sample

We used data from the CogBIAS-L-S (see Booth et al., 2017
for a full description of measures and study protocol). The
CogBIAS-L-S is a three-wave study that tracked the psychological
development of 504 adolescents across South England, UK. The
first assessment occurred during early secondary school (ages 12 to
14), with two follow-up assessments occurring at 12- to 18-month
intervals. Dropout rates were low (11% at Wave 2, N = 450; 19% at
Wave 3, N = 411) and largely due to school absences. While most
participants were White Europeans (74.33%), the sample also
included Asians (12.22%), Africans (2.67%), as well as individuals
of mixed ancestry (6.16%) and others (3.49%). However, because
our polygenic scores were derived from a GWAS of primarily
European populations (which are not generalizable to individuals
of other ancestry) (Roberts et al., 2019), our analyses were
conducted only on the White European sample. Demographic
characteristics of this sample (N= 337) are outlined at Table 1 (see
also Table S1 and Booth et al., 2019).

Ethical considerations

Ethical approval for the CogBIAS project was acquired from the
National Research Ethics Service (NRES) of NHS (National Health
Service) England. In particular, the NRES Committee South
Central (14/SC/0128) approved the collection of genetic informa-
tion and administration of psychological tests on the 30 September
2014 (Project ID: 141833). Informed consent was obtained in
written format by parents and adolescents.

Procedure

Testing sessions were conducted either within participants’ schools
or at the Department of Experimental Psychology, University of
Oxford. Assessments consisted of two sessions (1 hour each),
completed in a row or over separate days. Each session was
completed in computer labs, under exam conditions. Prior to the
assessment, participants were briefed on the study procedure,
before written assent was collected (informing them that they
could stop their participation, at any point). Parental consent was
obtained in writing, prior to data-collection. In each session,
participants completed a battery of measurement instruments
(both self-report and behavioral). For this study, we used data
from six measures (Table 1). (1) DNA samples were collected at
wave 1. Self-reported measures of (2) life events, (3) anxiety, and
(4) depression scores were collected at all waves. Behavioral
assessments of (5) memory and (6) interpretation biases were also
collected at all waves.

Genotyping
Saliva samples were collected with the use ofDNAGenotek Oragene
OG-500 collection kits. Genomic data were then extracted and
stored at –80 °C, in accordance with established protocols.
A total of 496 participants provided adequate DNA samples
(200mg). This sample was genotyped using the Illumina Human
Omni express-24. Genome-wide data were subject to standard
quality control using a well-established pipeline (Coleman et al.,
2016). This included the removal of any duplicate single-nucleotide
polymorphisms (SNPs), the exclusion of SNPs with minor allele
frequencies (MAFs) <0.05, SNP missingness >0.01, and any
deviating from Hardy–Weinberg equilibrium p< 1 × 10−8.
Individuals were excluded due to gender mismatches; heterogeneity
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Table 1. Demographic characteristics of cohort and descriptive statistics of measurement instruments

Wave 1 (N= 377) Wave 2 (N= 337) Wave 3 (N= 311)

Age

Mean (SD) 13.4 (0.7) 14.6 (0.7) 15.7 (0.5)

Year Group

Median [Min, Max] 8 [7, 9] 9 [8, 10] 10 [9, 11]

Gender

Male 185 (49%) 163 (48%) 142 (46%)

Female 192 (51%) 174 (52%) 169 (54%)

Anxiety

Mean (SD) 13.4 (7.66) 14.3 (7.93) 13.9 (7.82)

McDonald’s ω .75 .74 .72

Depression

Mean (SD) 8.25 (5.39) 9.44 (6.14) 10.2 (6.34)

McDonald’s ω .87 .89 .90

Negative Life Events

Mean (SD) 5.51 (4.16) 5.31 (4.04) 5.01 (3.48)

Median [Min, Max] 5.00 [0, 26.0] 5.00 [0, 27.0] 4.00 [0, 18.0]

Positive Life Events

Mean (SD) 6.89 (3.37) 6.35 (3.36) 6.09 (3.02)

Median [Min, Max] 7.00 [0, 26.0] 6.00 [0, 30.0] 6.00 [0, 28.0]

Memory Bias

Mean (SD) −0.499 (0.449) −0.337 (0.434) −0.301 (0.439)

Negative Recall

Mean (SD) 2.40 (2.29) 3.59 (2.70) 3.93 (2.89)

Intra-Class Correlation [95% CI] .68 [.59, .75]

Positive Recall

Mean (SD) 6.76 (2.84) 6.99 (3.00) 7.07 (3.12)

Intra-Class Correlation [95% CI] .72 [.67, .77]

Social Interpretation Bias

Mean (SD) 0.686 (1.20) 0.611 (1.25) 0.561 (1.25)

Negative Social Interpretation

Mean (SD) 3.26 (0.878) 3.13 (0.941) 3.11 (0.967)

McDonald’s ω .78 .81 .84

Positive Social Interpretation

Mean (SD) 2.57 (0.630) 2.52 (0.645) 2.55 (0.666)

McDonald’s ω .56 .55 .64

Non-Social Interpretation Bias

Mean (SD) −0.346 (1.03) −0.413 (1.00) −0.529 (1.00)

Negative Non-Social Interpretation

Mean (SD) 3.16 (0.710) 3.09 (0.698) 3.07 (0.724)

McDonald’s ω .56 .54 .57

Positive Non-Social Interpretation

Mean (SD) 3.51 (0.642) 3.50 (0.694) 3.60 (0.675)

McDonald’s ω .46 .57 .60
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>3 standard deviations; individual missingness >0.01; and cryptic
relatedness assessed as a proportion of identity by descent (IBD
>0.1875). This resulted in the retention of 594,667 SNPs across 491
participants. An additional 5,129,755 SNPswere then imputed using
the 1000 Genomes phase 3 reference panel (The 1000 Genomes
Project Consortium, 2015). Further quality control in line with the
Coleman, Euesden, et al., (2016) protocol, was then conducted,
excluding poorly imputed SNPs (INFO <0.3), those with a MAF
<0.05, and SNP missingness <0.01. This resulted in a total of
5,596,260 genotyped and imputed SNPs remained for analysis (see
Appendix S1). For the purpose of the current study, and for reasons
previously highlighted, the sample was then reduced to include only
individuals of European descent (N= 391).

Measures

Exogenous variables
Life events. Endorsed life experiences were measured using the
Child Adolescent Survey of Experiences (CASE; Allen & Rapee,
2012). This questionnaire comprised 38 life experiences, relevant
to the adolescent life (e.g., “I broke up with my boyfriend/girlfriend”
or “I did well in an important test”). Participants were asked to
report whether any of these events had occurred in their lives in the
past 12 months; if so, they were then asked to rate that event on a
6-point Likert scale (1= “Really bad”, 2= “Quite bad”, 3= “A little
bad”, 4 = “A little good”, 5 = “Quite good”, 6 = “Really good”). An
option to rate another two life experiences from their lives was also
given. Unlike other measures, this scoring allows participants to
choose the valence of each life event. Variables representing
positive and negative life experiences were calculated using the
total number of endorsed life events that were rated in a positive
manner (i.e., ratings of 4, 5, or 6) and negative manner (i.e., ratings
of 1, 2, or 3), respectively (see Table 1).

Polygenic scoring. The polygenic scores for depression were
constructed using publicly available summary statistics from a
GWAS meta-analysis of MDD (Wray et al., 2018), obtained from
the psychiatric genomic consortium (http://pgc.unc.edu). The
GWAS summary statistics were subject to standard quality control
procedures, including the removal of duplicate and ambiguous
SNPs, and the exclusion of any SNPs with a MAF <0.05 (see
Appendix S1 for details). The PRSice v1.25 (Euesden et al., 2015)
was then used to create nine PRS variables, at incremental p value
thresholds: 0.001 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.00 (see
Appendix S1 for number of SNPs in each threshold).

Depression and anxiety. To measure internalizing psychopa-
thology, we used the Revised Children’s Anxiety and Depression
Scale, Short Form (Ebesutani et al., 2012), a psychometrically
validated, self-report questionnaire that comprises 25 items
relating to depression and anxiety (recorded on a 4-point Likert
scale). Total scores, indicative of higher levels of depression and
anxiety, were created by summing up the items of each scale.

Endogenous variables
Memory bias. The Self-Referential Encoding Task (SRET; see
Booth et al., 2019) was used to measure memory bias. The SRET
comprises three phases: encoding, distraction, and surprise recall.
In the encoding phase, participants viewed 44 self-referent
adjectives (half positive, half negative), which were displayed
successively for 200 ms (each) on a monitor, answering with “yes”
or “no” the query: “Describes me?”. In the distraction phase,
participants were asked to solve three simple mathematical
questions (e.g., “What is 2 × 3?”), the responses of which were

irrelevant to the task. Finally, in the surprise-recall phase,
participants were asked to type as many words as they could
recall from the first phase within a 3-minute period. Three
outcomes were calculated and used in our analyses: (1) the number
of negative words recalled (“Negative Recall”), (2) the number of
positive words recalled (“Positive Recall”), and (3) an overall
Memory Bias score, computed as: (Negative Recall – Positive
Recall)/(Total recall). (Positive scores on theMemory Bias indicate
preferential processing of negative information; negative scores on
the Memory Bias indicate preferential processing for positive
information; finally, a score of “0” implies no bias at all.)

Interpretation bias. The Adolescent Interpretation and Belief
Questionnaire (AIBQ; Miers et al., 2008) was used to measure
interpretation bias. Participants were asked to imagine themselves
in 10 ambiguous scenarios (five social and five non-social), and
rate how likely each of three possible interpretations (positive,
negative, or neutral) was to “pop into their mind,” using a 5-point
Likert scale (1 = “Doesn't pop up in my mind,” 3= ”Might pop
up in my mind,” 5 = “Definitely pops up in my mind”). Six
outcome measures were calculated and used in our analyses.
Four interpretation scores: (1) Negative Social, (2) Positive
Social, (3) Negative Non-Social, and (4) Positive Non-Social
Interpretations (based on the average of their respective items).
And two bias scores: (5) Social Interpretation Bias (calculated as:
Negative Social Interpretation – Positive Social Interpretation) and
(6) Non-Social Interpretation Bias (calculated as: Negative
Non-Social Interpretation – Positive Non-Social Interpretation),
which reflected the degree of a bias for negative over positive
interpretations, in the social and non-social domains, respectively.

Statistical analyses
Longitudinal modeling. To examine the longitudinal development
of cognitive biases, we used two linear mixed effects models: for
independent and interactive effects. In both models, we included
random intercepts for participants and random slopes for time to
account for the covariance of repeatedmeasures (Fitzmaurice et al.,
2011; Laird & Ware, 1982). Likelihood ratio tests supported this
random-effects structure (see Table S2 in Supplement).

Our first model examined the “unique” effects of life experiences
and PRSs on each cognitive bias. We designated these effects as
fixed and in separate models. In the life experiences model, we
adjusted for the highest PRS threshold 1.0 (to adjust for possible
confounding genetic effects). In each PRSmodel (nine, in total), we
adjusted for both negative and positive life experiences (PLEs)
(i.e., the environmental effects).

In our second model, we examined the interaction between life
experiences and the genetic risk scores (at all 9 thresholds),
while adjusting for their independent effects. In this model, we
considered significant G × E (interaction) effects to be supportive
of the CogBIAS hypothesis and followed them up using simple
slopes for individuals at the lowest and highest polygenic
thresholds (e.g., Assary et al., 2018).

Age, sex, depression, and anxiety were included as covariates in
all models. Where significant, time effects (see Appendix S3) were
further included as covariates. To account for multiple testing, we
adjusted our p values at 5%, using the Benjamini–Hochberg false
discovery rate (FDR) method (Benjamini & Hochberg, 1995).
Missing values (at Wave 3) were assumed to be missing at random
and handled via maximum likelihood estimation. Our analyses
were conducted in STATA-13 (StataCorp, 2011).

Sensitivity analyses. To examine the robustness of our results,
we performed several sensitivity checks. First, we examined
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whether some control variables were not confounding but instead
collider. An example collider case could involve depression, which
instead of exerting “causal” effects on predictors (e.g., life
experiences) and outcomes (i.e., biases), it could be “caused” by
them (e.g., Elwert &Winship, 2014). To examine potential collider
cases, we re-fitted all models excluding psychopathology (see
Appendix S6).

Second, although a particular strength of the CASE measure for
life experiences is the option for respondents to rate the valence
(i.e., positive, or negative) of life experiences, descriptive analyses
revealed substantial variability in the manner by which respon-
dents rated certain items (e.g., “I stayed away from home overnight”
could either be described as a very positive or a very negative life
experience). Inferential analyses further revealed that cognitive
biases “explained” significant variation in some of these items,
suggesting that certain life experiences could have been “con-
taminated” by cognitive biases (as their responding was, at least
partly, a function of these biases). To check the robustness of our
findings, vis-à-vis this case of reverse-causality, we repeated our
significant analyses without these contaminated items (see
Appendix S7).

Finally, another possibility of reverse-causality is cognitive
biases giving rise to certain life experiences. Indeed, the CASE
measure makes a distinction between independent events (which
occur independent-of-someone’s-actions, e.g., “Someone in my
family died”), dependent events (which are, at least partly,
dependent on someone’s actions, e.g., “I broke up with my
boyfriend/girlfriend”), and ambiguous events (which could be
either of those, e.g., “I changed schools”) (see Allen & Rapee, 2009).
Since the latter two sets of life events could, at least partly, ensue
due to cognitive biases, we repeated our significant analyses by
excluding “dependent,” “ambiguous,” and “contaminated” life
experiences (see Appendix S8).

Results

Descriptive statistics are outlined at Table 1. The internal
consistency (or reliability) of our measures ranged from acceptable
(ω < 75) to high (ω > 80). Upon accounting for attrition, our final
sample comprised N = 337 individuals at Waves 1 and 2, and
N= 311 at Wave 3, all of whom were White Europeans (to
accommodate our genetic analyses). Missing data at Wave 3 were
handled via maximum-likelihood. Included participants did not
differ significantly from excluded ones on any measures (see
Table S1).

Effects of life experiences on cognitive biases

Positive Life Experiences (PLEs) were associated with lower
Memory and Social Interpretation Biases, at FDR-adjusted p
values. Crucially, these effects were driven by the positive
components of these biases, that is, the Positive Recall and
Positive Social Interpretation, respectively, which were both
positively associated with PLEs (see Table 2). These effects were
robust to a sensitivity check, which adjusted for the most
significant PRS threshold (i.e., PRS 0.01) (see Appendix S4).
There was only one effect from negative life experiences (on the
Positive Social Interpretation); however, this effect did not survive
our sensitivity analyses (please see sensitivity analyses section).
(Additional effects from negative life events on cognitive biases
were also detected in supplementary models that did not adjust for
psychopathology (Table S7); however, these effects did not remain

significant upon adjusting for psychopathology (see Appendix S10
for non-significant findings)).

Effects of polygenic scores on cognitive biases

Our polygenic score for depression was not significantly associated
with any cognitive biases (at none of its nine PRS thresholds), in
neither our environment-adjusted nor environment-unadjusted
models (see Appendix S5). In our psychopathology-unadjusted
models, we found that some polygenic thresholds had positive
effects on Negative Recall, and negative effects on Positive Recall
and Positive Social Interpretation (see Table S8). However, as with
the effects of negative life experiences, these polygenic effects were
not significant after adjusting for psychopathology (see Appendix
S10 for non-significant findings).

Interactive polygenic-by-experience effects on cognitive
biases

Cross-over interaction effects between polygenic risk and life
experiences (G × E) were found between PLEs and various
polygenic thresholds for Social Interpretation Bias and Positive
Social and Non-Social Interpretation (Table 3). In particular, PLEs
interacted with PRSs at eight thresholds (all except the lowest,
0.001) to predict a lower Social Interpretation Bias and a greater
Positive Social Interpretation; and at four thresholds (0.01, 0.05, 0.1,
and 0.2) to predict a greater Positive Non-Social Interpretation.
Crucially, no significant G × E interaction effects were found
between polygenic scores and negative life events (although some
effects existed in supplementary models that did not adjust for
psychopathology) (see Tables S11 and S12).

To understand the nature of significant interactions, we
calculated simple slopes for those individuals who scored at the
high- and low-PRS quartiles (Figure 1). Results from these analyses
suggested that the above interaction effects were only significant at
the high-PRS quartile (Table 4). Notably, this pattern was most
robust for the Social Interpretation Bias and its positive
component (both significant at eight PRS thresholds), and less
robust for the Positive Non-Social Interpretation (which was
significant at four PRS thresholds and did not survive our
sensitivity tests) (see next section).

Sensitivity analyses

To ensure robustness of the above results, we ran three sensitivity
analyses. First, to explore the possibility of false positive patterns
due to “collider” effects, we re-fitted all models without adjusting
for psychopathology. Apart from some patterns becoming
significant (due to the exclusion of psychopathology), these
analyses revealed that one previous effect, from negative life
experiences to the Positive Social Interpretation, was no longer
significant. This suggests that our psychopathology variables may
have induced a spurious relation between negative life experiences
and this positive bias, by not being a true confounder, but rather a
collider variable (see Appendix S6 for more information).

Second, we distinguished “contaminated” and “uncontami-
nated” life experiences and repeated our main analyses without the
former. Contaminated items were those that were significantly
predicted by at least one cognitive bias. Logistic regression analyses
revealed nine such items (out of 38) (see Table S14). Repeating our
previously significant analyses without these 9 “contaminated” life
experiences revealed two “null” results. Namely, the above
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“collider” pattern (Table S16) and the positive G × E effect toward
the Positive Non-Social Interpretation (see Tables S17 and S18).

Finally, we repeated our analyses, excluding the “contami-
nated,” “dependent,” and “ambiguous” life events. Dependent life
events in the CASE measure have been defined as those events that
are, to some extent, influenced by an individual’s behavior, while
the ambiguous ones are “indeterminate” (Allen and Rapee, 2009).
By excluding the “contaminated” (9 events), “dependent” (14
events), and “ambiguous” (4 events) items, we reduced the original

CASEmeasure to 18 items (see Table S19). Despite reduced power,
most effects remained significant, except for the two above-
mentioned (see Tables S21−S23).

Discussion

Across adolescence, the number of positive, but not negative, life
experiences was associated with the development of cognitive
biases. A polygenic risk for depression was not significantly

Table 2. Effects of positive/negative life experiences on cognitive biases

Memory Bias Positive Recall Social Interpretation Bias Positive Social Interpretation

95% CI 95% CI 95% CI 95% CI

β Lower Upper p (FDR) β Lower Upper p (FDR) β Lower Upper p (FDR) β Lower Upper p (FDR)

Positive life experiences −.09 −.13 −.05 1.1E-4* .13 .08 .18 1.9E-6* −.10 −.14 −.06 4.5E-5* .10 .05 .16 2.0E-4*

Negative life experiences 0 −.04 .05 .88 .07 .02 .13 .05 −.03 −.07 .02 .27 .08 .03 .14 9.1E-3*

Note. β, standardized regression coefficient in SD; 95% CI, confidence intervals; p, FDR-adjusted p value for regression coefficient.
Each cognitive bias (outcome) was regressed, in turn, on negative and positive life experiences in a random interceptsmodel, while adjusting for age, gender, time, and depression and anxiety
scores.
*p< .05 (two-sided) after Benjamini–Hochberg FDR adjustment.

Table 3. G × E interaction effects (across all polygenic thresholds) on cognitive biases

Social Interpretation Bias Positive Social Interpretation Positive Non-Social Interpretation

95% CI 95% CI 95% CI

β Lower Upper p (FDR) β Lower Upper p (FDR) β Lower Upper p (FDR)

PRS 0.001 × PLE .01 −.04 .06 .10 .01 −.04 .07 .05 .04 −.01 .10 .11

PRS 0.01 × PLE −.05 −.09 −.01 3.1E-2* .06 .01 .12 2.1E-2* .07 .02 .13 6.2E-3*

PRS 0.05 × PLE −.05 −.10 −.01 2.2E-2* .10 .04 .15 1.2E-3* .09 .03 .15 1.9E-3*

PRS 0.1 × PLE −.06 −.11 −.01 1.1E-2* .11 .05 .17 2.6 E-4* .10 .04 .15 1.0E-3*

PRS 0.2 × PLE −.07 −.11 −.02 7.8E-3* .09 .04 .15 1.5E-3* .07 .01 .13 1.1E-2*

PRS 0.3 × PLE −.07 −.11 −.02 4.4E-3* .09 .03 .14 3.1E-3* .06 .00 .12 .06

PRS 0.4 × PLE −.07 −.11 −.02 3.5E-3* .08 .03 .14 4.7E-3* .05 .00 .11 .07

PRS 0.5 × PLE −.07 −.11 −.02 4.5E-3* .08 .02 .14 6.5E-3* .05 .00 .11 .07

PRS 1.00 × PLE −.07 −.11 −.02 6.1E-3* .08 .02 .14 6.5E-3* .06 .00 .11 .05

Note. PRS, polygenic risk score; PLE, positive life experiences; β, standardized regression coefficient in SD; 95% CI, confidence intervals; p, p value for regression coefficient.
Each cognitive bias (outcome) was regressed on the denoted (fixed) G× E interaction effect in a random intercepts model, while adjusting for age, gender, random time, depression, and anxiety
scores.
*p< .05 (two-sided) after Benjamini–Hochberg FDR adjustment.

Figure 1. Simple slopes for those individuals at the low and high quartiles of polygenic risk for depression (at 0.1 threshold, the most robust of all PRS thresholds in the G × E
analyses). These results suggest that the G × E interaction effects were significant only for those individuals at the high-PRS quartile, thereby supporting the notion of (vantage)
sensitivity.
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associated with any cognitive biases after adjusting for psychopa-
thology, but its G × E interaction with positive life experiences was
related to a social interpretation bias. Simple slopes further
revealed that G× E interaction effects were driven by genetic “risk,”
as they were only significant for those individuals who scored at the
highest polygenic quartile.

To our knowledge, this is the first study to demonstrate the
effects of positive life experiences on cognitive biases. Positive
events were shown to enhance positive recall and positive social
interpretation. Recent research has validated the protective
qualities of these biases. For instance, a 1 year, longitudinal study
showed that a “bias” to recall positive memories predicted lower
levels of cortisol and negative cognitions during stressful periods in
adolescence (Askelund et al., 2019). Similarly, a randomized
control trial of a brief psychosocial intervention suggested that
emphasizing the value of positive social experiences can lead to a
clinically significant reduction of depressive symptoms in
adolescents (see Goodyer et al., 2017). Our results extend these
findings by supporting the CogBIAS notion that positive life events
could promote these “wellbeing precursors” (see Fox & Beevers,
2016). Crucially, our results further implicated the absence of
positive life events to the presence of negative cognition. This has
important implications for psychopathology research in general,
and the CogBIAS model, in particular, as it suggests that the
absence of positive life experiences (not merely the presence of
negative ones) could be a significant contributor to psychopa-
thology during (and perhaps beyond) adolescence.

Against our preregistered hypotheses, negative life experiences
were not associated with any cognitive biases. These patterns run
counter not only to the CogBIAS hypothesis, but also a wealth of
empirical evidence implicating negative environmental effects in
the development of cognitive biases (e.g., Pine et al., 2005; Zavos
et al., 2012). We consider two possibilities for this inconsistency.
First, in our unadjusted models, negative life experiences were
related to several cognitive outcomes; however, these effects were
not significant upon adjusting for psychopathology. Although
conclusions regarding temporal precedence cannot be drawn, a
potential interpretation could be that current negative

circumstances do not influence the development of cognitive
biases, over and above the effects of (preexisting) psychopathology.
This interpretation is also supported by a supplementary structural
equation model, which suggested that psychopathology partly
mediates the effects of negative life events to cognitive biases (see
Appendix S4).

A second possibility for the nonsignificant effects of negative
life experiences may be that their operationalization was not severe
“enough” for the proliferation of cognitive biases. Indeed, some of
the negative life experiences in the CASE measure appear to reflect
more “common,” rather than “severe,” adversity, for example, “I
broke up with my boyfriend / girlfriend.” If replicated, this “null”
pattern could provide evidence for prominent accounts on
resilience or antifragility which designate moderate, but not
severe, adversity as a precursor of resilience, not psychopathology
(e.g., see Rutter, 2012; Taleb, 2014).

Relatedly,we foundnomainpolygenic effects onto our cognitive
biases, in neither our adjusted nor unadjusted models. Although
some diathesis-stress patterns (i.e., negative G × E interactions)
were found in supplementary unadjusted models (see Appendix
S6), these effects were also no longer significant upon adjusting for
psychopathology. Previous studies have showcased that polygenic
effects attenuate upon adjusting for (general or PRS-specific)
psychopathology (Brikell et al., 2020; Waszczuk et al., 2021).
Moreover, while some polygenic scores have achieved endophe-
notypic predictions (e.g., attention-deficit or externalizing PRS),
others appear to be more disorder-specific (Docherty et al., 2018;
Krapohl et al., 2016; Luciano et al., 2018; Waszczuk et al., 2021).
Finally, although it has sometimes been argued that direct genetic
effects are necessary for interactive genetic effects (G × E), research
later established that the two are relatively independent (Caspi et al.,
2010; Dick, 2011); indeed, interactive effects are often amplified,
and thus more easily detected, than main genetic effects (see
Manuck andMcCaffery, 2014; Moffitt et al., 2006). Our “null” PRS
effects could reflect any of these patterns. Future studies could
therefore examine similar polygenic effects using other polygenic
scores (e.g., anxiety; Purves et al., 2020); at different developmental
periods (for instance, during early development, such as childhood,

Table 4. Simple slope analysis denoting the significant G × E interaction effects, conditional on the high polygenic risk/sensitivity quartile

High-PRS quartile

Social Interpretation Bias Positive Social Interpretation Positive Non-Social Interpretation

95% CI 95% CI 95% CI

β Lower Upper p (FDR) β Lower Upper p (FDR) β Lower Upper p (FDR)

PRS 0.001 × PLE – – – – – – – – – – – –

PRS 0.01 × PLE −.15 −.23 −.07 2.2E-4* .17 .08 .25 1.3E-4* .09 .01 .17 2.0E-2*

PRS 0.05 × PLE −.12 −.20 −.04 3.9E-3* .18 .09 .26 4.3E-5* .09 .01 .18 3.1E-2*

PRS 0.1 × PLE −.15 −.23 −.08 1.0E-4* .20 .11 .28 4.2E-6* .13 .04 .22 2.8E-3*

PRS 0.2 × PLE −.14 −.21 −.06 3.5E-4* .17 .09 .25 4.9E-5* .08 0 .17 3.1E-2*

PRS 0.3 × PLE −.12 −.19 −.04 3.1E-3* .16 .08 .25 1.9E-4* – – – –

PRS 0.4 × PLE −.11 −.19 −.03 4.3E-3* .16 .07 .24 2.7E-4* –

PRS 0.5 × PLE −.12 −.20 −.05 1.4E-3* .16 .07 .24 2.6E-4* –

PRS 1.00 × PLE −.11 −.19 −.04 3.0E-3* .15 .07 .24 4.4E-4* –

Note. PRSs, polygenic risk scores (at high quartile); PLE, positive life experiences; β, standardized regression coefficient in SD; 95% CI, confidence intervals; p, p value for regression coefficient.
Simple slopes of the significant G × E interaction effects, conditional on the high-PRS quartile, in a random intercepts model while adjusting for age, gender, random time, depression and
anxiety scores. No significant G × E interaction effects were detected at the lowest PRS quartile, hence their exclusion from the table.
*p< .05 (two-sided) after Benjamini–Hochberg FDR p value adjustment.
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when the confounding effects of psychopathology are less
pronounced) (Riglin et al., 2020); and with larger and more diverse
samples (to ensure high statistical power) (Dudbridge, 2013).

Finally, these limitations notwithstanding, a significant inter-
action was found between a high polygenic risk for depression and
a greater number of positive life events on the social interpretation
bias and its positive component. Notably, these genetic effects were
protective; driven by the positive social component of the
interpretation bias; and strongest for those who scored highest
on polygenic risk, in line with the CogBIAS notion of (vantage)
sensitivity. To our knowledge, this is the first time a psychiatric
polygenic score has been associated with positive psychological
outcomes, supporting the vantage sensitivity hypothesis (i.e.,
positive genetic effects). Although somewhat paradoxical, this
pattern can be interpreted in at least two ways. First, our
adjustment of internalizing psychopathology could have rendered
our polygenic predictions predominantly positive by adjusting for
their negative components (i.e., the depressive phenotype
accounting for its genotypic counterpart, leaving only positive
genetic variation). This interpretation was, in fact, supported by
our unadjusted analyses, which indicated that upon excluding
psychopathology from our models, the positive polygenic effects
were minimized (please see Appendix S6).

Notably, though, these effects were not minimized to
insignificance, suggesting that the adjustment of some negative
polygenic effects was not the sole reason for their positive effect. In
light of this, an alternative interpretation of these positive genetic
effects could concern the depressive genotype, itself; in particular,
that it might confer sensitivity to prosperity. Albeit somewhat
speculative, this interpretation is in keeping with a growing corpus
of data suggesting that people with a propensity for, or diagnosis of,
major depression can exhibit outcomes in a “for better or for worse”
manner: they are more vulnerable in response to adversity, yet also
more resilient in response to prosperity, compared to their
nondepressed counterparts (see Belsky et al., 2007; Belsky & Pluess,
2009; Ellis et al., 2011 for reviews). That being noted, wemust stress
nevertheless that previous polygenic studies on the matter (i.e.,
Chen et al., 2011; Keers et al., 2016; Keers & Pluess, 2017) have
demonstrated vantage genetic effects using polygenic scores of
“environmental sensitivity,” not psychiatric illness. This discrep-
ancy should be noted when interpreting our own vantage effect,
which must be casted as “suggestive,” rather than “conclusive,”
and, of course, replicated in order to provide strong support for the
vantage sensitivity hypothesis. Nevertheless, it is worth noting that
this effect survived our sensitivity tests, suggesting that it is unlikely
to be a function of collider and reverse-causality biases.

Strengths, limitations, and future directions

The main strength of our study lies in its comprehensive
assessment of both positive and negative gene-by-environment
effects. Our results extend a literature that has so far been
constrained to the negative spectrum of psychological develop-
ment and encourage the application of a (vantage) sensitivity
approach to other phenotypes.

Regarding limitations, we acknowledge our operationalization
of adversity (which might have been more “common” rather than
“severe”), as well as the confounding effects of psychopathology.
Future research could examine at what level of adversity negative
cognitive biases proliferate and do so particularly at earlier
developmental periods (e.g., childhood), when the confounding
effects of psychopathology are minimized. It would similarly be

beneficial to examine specific vantage, stress, and sensitivity effects,
using separate polygenic sets, as well as in larger and more diverse
samples.

To some extent, our study was a “proof-of-a-concept” one,
aimed to explore broad patterns of genetic sensitivity (using a
single PRS for depression) on hitherto unexamined cognitive
phenotypes. Nonetheless, accruing research has begun amalga-
mating the candidate gene and polygenic approaches to assemble
more homogenous polygenic sets (e.g., Pluess, 2015). Future
research could utilize these genetic sets to scrutinize specific
vantage or stress effects. Such polygenic sets could also be
preferably derived from adolescent-specific GWAS, although we
do recognize that sample sizes from such GWAS tend to be smaller
(and so, less well powered) than adult GWAS. Our study sample
was also relatively small and restricted to individuals with
European ancestry. With the advent of GWAS in diverse
populations, replication of our polygenic effects in non-
European cohorts will be of vital importance (Roberts et al., 2019).

Conclusion

To conclude, our results partly support but also extend the
CogBIAS model. First, the effects of life experiences on cognitive
biases (and psychopathology, more broadly) might be more
nuanced than previously thought. (For instance, the absence of
PLEs may lead to negative cognition, and more severe adversity
may be required for the proliferation of negative biases.) A second
implication of our results concerns the confounding effects of
psychopathology in polygenic predictions, and the use of larger
samples, varied polygenic scores, and examinations of different
developmental periods as remedies. Our final, and perhaps most
important, implication includes the interaction of such psychiatric
polygenic scores with positive, not negative, life experiences in the
prediction of positive psychological outcomes, across adolescence.
If replicated, this positive G × E effect could support the notion of
vantage sensitivity, painting a more holistic but also optimistic
picture of psychological development.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0954579423001645.
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