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A note on cyclic vectors in Dirichlet-type
spaces in the unit ball of Cn

Dimitrios Vavitsas

Abstract. We characterize model polynomials that are cyclic in Dirichlet-type spaces in the unit ball
of Cn , and we give a sufficient capacity condition in order to identify noncyclic vectors.

1 Introduction

Studying Dirichlet-type spaces in the unit ball of Cn , we can draw conclusions for
classical Hilbert spaces of holomorphic functions such as the Hardy, Bergman, and
Dirichlet spaces. General introduction to this theory can be found in [18, 22].

The purpose of this note is to characterize model polynomials and to study special
families of functions that are cyclic for the shift operators on these spaces. Moreover,
we give a sufficient capacity condition in order to identify noncyclic functions. Norm
comparisons, sharp decay of norms for special subspaces, capacity conditions studied
in [3, 4, 6, 21] are the main motivation for this work. The cyclicity of a function f in a
space of holomorphic functions is connected also with the problem of approximating
1/ f (see [19, 20] for the study of this subject).

Full characterization of polynomials in more than two variables looks like a hard
problem either in the unit ball or the polydisk. The cyclicity problem of polynomials
for the bidisk was solved in [5] and shortly after extended in [13]. The corresponding
problem in the setting of the unit ball of C2 was solved in [14].

1.1 Dirichlet-type spaces in the unit ball

Denote the unit ball by

Bn = {z ∈ Cn ∶ ∣∣z∣∣ < 1},

and its boundary, the unit sphere by

Sn = {z ∈ Cn ∶ ∣∣z∣∣ = 1},
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A note on cyclic vectors in Dirichlet-type spaces in the unit ball of Cn 887

where ∣∣z∣∣ =
√
∣z1∣2 +⋯+ ∣zn ∣2 is the associated norm of the usual Euclidean inner

product ⟨z, w⟩ = z1w̄1 +⋯+ znw̄n . Denote the class of holomorphic functions in Bn by
Hol(Bn). Any function f ∈ Hol(Bn) has a power series expansion

f (z) =
∞

∑
k=0

ak zk =
∞

∑
k1=0

⋯
∞

∑
kn=0

ak1 , . . . ,kn zk1
1 ⋯zkn

n , z ∈ Bn ,(1)

where k = (k1 , . . . , kn) is an n-tuple index of nonnegative integers, k! = k1!⋯kn!
and zk = zk1

1 ⋯zkn
n . The power series in (1) exist, converges normal in Bn and it is

unique since the unit ball is a connected Reinhardt domain containing the origin,
i.e., (z1 , . . . , zn) ∈ Bn implies (e iθ 1 z1 , . . . , e iθ n zn) ∈ Bn for arbitrary real θ1 , . . . , θn
(see [12]).

To simplify the notation, we may write (1) as follows:

f (z) =
∞

∑
m=0

∞

∑
∣k∣=m

ak zk =
∞

∑
∣k∣=0

ak zk , z ∈ Bn ,(2)

where ∣k∣ = k1 +⋯+ kn .
Let f ∈ Hol(Bn). We say that f belongs to the Dirichlet-type space Dα(Bn), where

α ∈ R is a fixed parameter, if

∣∣ f ∣∣2α ∶=
∞

∑
∣k∣=0

(n + ∣k∣)α (n − 1)!k!
(n − 1 + ∣k∣)!

∣ak ∣2 < ∞.(3)

General introduction to the theory of Dirichlet-type spaces in the unit ball of Cn

can be found in [1, 2, 15, 16, 20–22]. One variable Dirichlet-type spaces are discussed in
the textbook [11]. The weights in the norm in (3) are chosen in such a way that D0(Bn)
and D−1(Bn) coincide with the Hardy and Bergman spaces of the ball, respectively. The
Dirichlet space having Möbius invariant norm corresponds to the parameter choice
α = n.

By the definition, Dα(Bn) ⊂ Dβ(Bn), when α ≥ β. Polynomials are dense in the
spaces Dα(Bn), α ∈ R, and z i ⋅ f ∈ Dα(Bn), i = 1, . . . , n whenever f ∈ Dα(Bn).

A multiplier in Dα(Bn) is a holomorphic function ϕ ∶ Bn → C that satisfies ϕ ⋅ f ∈
Dα(Bn) for all f ∈ Dα(Bn). Polynomials, as well as holomorphic functions in a
neighbourhood of the closed unit ball, are multipliers in every space Dα(Bn).

1.2 Shift operators and cyclic vectors

Consider the bounded linear operators S1 , . . . , Sn ∶ Dα(Bn) → Dα(Bn) defined by
S i ∶ f ↦ z i ⋅ f . We say that f ∈ Dα(Bn) is a cyclic vector if the closed invariant
subspace, i.e.,

[ f ] ∶= clos span{zk1
1 ⋯zkn

n f ∶ k1 , . . . , kn = 0, 1, . . .}

coincides with Dα(Bn) (the closure is taken with respect to the Dα(Bn) norm). An
equivalent definition is that f is cyclic if and only if 1 ∈ [ f ].

Since Dα(Bn) enjoys the bounded point evaluation property a function that is
cyclic cannot vanish inside the unit ball. Thus, we focus on functions nonvanishing
in the domain. Also, nonzero constant functions are cyclic in every space Dα(Bn).
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888 D. Vavitsas

More information regarding cyclic vectors in Dirichlet-type spaces over the disk, the
polydisk and the unit ball can be found in [3–6, 8, 11, 13, 14, 19, 21].

Just as in the settings of the bidisk and the unit ball of two variables, the cyclicity
of a function f ∈ Dα(Bn) is inextricably linked with its zero set

Z( f ) = {z ∈ Cn ∶ f (z) = 0}.

The zeros of a function lying on the sphere are called the boundary zeros.

1.3 Plan of the paper

Section 3 studies Dirichlet-type spaces. In particular, we give a crucial relation among
them. Using fractional radial derivatives and the Cauchy formula of functions lying
in the ball algebra A(Bn) which contains functions that are continuous on the closed
unit ball and holomorphic in its interior, we give an equivalent characterization of
Dirichlet-type spaces for a wide range of parameters α.

Section 4 studies diagonal subspaces. In particular, we extend result from [21]. It
makes sense to define functions f ∈ Hol(Bn) using functions f̃ ∈ Hol(D(μ)) for a
proper μ > 0. Geometrically speaking, we are looking at a disk embedded in the ball
but not in a coordinate plane. Thus, we may switch the problem of cyclicity from the
ball to spaces of holomorphic functions of one variable that are well known. Then we
use optimal approximants in order to identify cyclicity.

Moreover, we prove cyclicity for model polynomials for proper parameters. In the
setting of the unit ball of two variables (see [21]), the model polynomials are the
following: 1 − z1 which vanishes in the closed unit ball on a singleton, i.e., Z(1 − z1) ∩
S2 = {(1, 0)}, and 1 − 2z1z2 which vanishes along an analytic curve, i.e.,Z(1 − 2z1z2) ∩
S2 = {(e iθ/

√
2, e−iθ/

√
2) ∶ θ ∈ R}. In our case, the corresponding candidates are the

following:

p(z) = 1 − mm/2z1⋯zm , 1 ≤ m ≤ n.

They vanish in the closed unit ball along the following analytic sets:

Z(p) ∩ Sn = {1/
√

m(e iθ 1 , . . . , e iθ m−1 , e−i(θ 1+⋯+θ m−1) , 0, . . . , 0) ∶ θ i ∈ R}.

These polynomials are also studied with respect to the Drury–Arveson space in [20].
In two variables, 1 − z1 is cyclic in Dα(B2) precisely when α ≤ 2, and 1 − 2z1z2

is cyclic in Dα(B2) precisely when α ≤ 3/2. Here, there are more than two
fixed parameters. The characterization of cyclicity of these two polynomials was
crucial in [14].

Section 5 studies the radial dilation of a polynomial. Using the equivalent char-
acterization of Section 3, we identify cyclicity for the model polynomials via the
powerful radial dilation method. In particular, we show that if p/pr → 1 weakly, where
pr(z) = p(rz) is a radial dilation of p, then p is cyclic (see [13] for the bidisk settings
and [14] for the unit ball in two variables). This method is quite interesting since it can
be applied to an arbitrary polynomial. Note that in [13, 14], the radial dilation method
is one of the main tools of solving cyclicity problem for polynomials. The main result
of this section verifies the arguments made about polynomials in Section 4.
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A note on cyclic vectors in Dirichlet-type spaces in the unit ball of Cn 889

Section 6 studies noncyclic vectors. We use the notion of Riesz α-capacity in
order to identify noncyclic functions. Moreover, we study Cauchy transforms of Borel
measures supported on zero sets of the radial limits of a given function f ∈ Dα(Bn)
and we give asymptotic expansions of their norms. Then employing a standard scheme
due to Brown and Shields [8], we prove the main result. Note that this sufficient
capacity condition for noncyclicity in Dirichlet-type spaces in the unit ball of two
variables was proved by Sola in [21].

2 Standard tools

Let us give some standard tools which will be useful in the sequel.
The binomial series

1
(1 − x)α =

∞

∑
k=0

�(k + α)
�(α)k!

xk ,

where ∣x∣ < 1 is a complex number and α is a nonnegative real number. The asymptotic
behavior of the �-function is the following: �(k + α) ≍ (k − 1)!kα , where the symbol
≍ denotes that the ratio of the two quantities either tends to a constant as k tends to
infinity or it is rather two sides bound by constants.

The multinomial formula

(x1 +⋯+ xn)k = ∑
∣ j∣=k

k!
j!

x j1
1 ⋯x jn

n ,

where j = ( j1 , . . . , jn) is an n-tuple index of nonnegative integers and x i are complex
numbers.

The Stirling formula that describes the asymptotic behavior of the gamma function

k! ≍ k1/2kk/ek .

Denote the normalized area measure on C
n = R

2n by du(z) and the normalized
rotation-invariant positive Borel measure on Sn by dσ(ζ) (see [18, 22]). The measures
du(z) and dσ(ζ) are related by the formula

∫
Cn

f (z)du(z) = 2n∫
∞

0
∫
Sn

ε2n−1 f (εζ)dσ(ζ)dε.

The holomorphic monomials are orthogonal to each other in L2(σ), that is, if k
and l are multiindices such that k ≠ l , then

∫
Sn

ζ k ζ̄ l dσ(ζ) = 0.

Moreover,

∫
Sn
∣ζ k ∣2dσ(ζ) = (n − 1)!k!

(n − 1 + ∣k∣)!
and ∫

Bn
∣zk ∣2du(z) = n!k!

(n + ∣k∣)!
.
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3 Relation among Dirichlet-type spaces and an equivalent
characterization

We study the structure of Dirichlet-type spaces. Note that

R( f )(z) = z1∂z1 f (z) +⋯ + zn ∂zn f (z)
is the radial derivative of a function f. The radial derivative plays a key role in the
function theory of the unit ball. A crucial relation among these spaces is the following.

Proposition 1 Let f ∈ Hol(Bn) and α ∈ R be fixed. Then

f ∈ Dα(Bn) if and only if nq f + Rq( f ) + q
q−1

∑
i=1

n i Rq−i( f ) ∈ Dυ(Bn),

where α = 2q + υ, q ∈ N, and Rq is the q-image of the operator R.

Proof Indeed, it is enough to check that

∣∣n f + R( f )∣∣2α−2 =
∞

∑
∣k∣=0

(n + ∣k∣)α−2 (n − 1)!k!
(n − 1 + ∣k∣)!

(n + ∣k∣)2∣ak ∣2 = ∣∣ f ∣∣2α . ∎

We continue by giving an equivalent characterization of Dirichlet-type spaces. In
Dirichlet-type spaces in the unit ball, one of the Dirichlet-type integrals is achieved
in a limited range of parameters.

Lemma 2 (See [16]) If α ∈ (−1, 1), then f ∈ Dα(Bn) if and only if

∣ f ∣2α ∶= ∫
Bn

∣∣∇( f )(z)∣∣2 − ∣R( f )(z)∣2
(1 − ∣∣z∣∣2)α du(z) < ∞.

Above, ∇( f )(z) = (∂z1 f (z), . . . , ∂zn f (z)) denotes the holomorphic gradient of a
holomorphic function f. Note that Proposition 1 allows us to use Lemma 2 whenever
υ ∈ (−1, 1). Let γ, t ∈ R be such that neither n + γ nor n + γ + t is a negative integer.
If f = ∑∞∣k∣=0 ak zk is the homogeneous expansion of a function f ∈ Hol(Bn), then
we may define an invertible continuous linear operator with respect to the topology
of uniform convergence on compact subsets of Bn , denoted by Rγ ,t ∶ Hol(Bn) →
Hol(Bn) and having expression

Rγ ,t f (z) =
∞

∑
∣k∣=0

C(γ, t, k)ak zk , z ∈ Bn ,

where

C(γ, t, k) = �(n + 1 + γ)�(n + 1 + ∣k∣ + γ + t)
�(n + 1 + γ + t)�(n + 1 + ∣k∣ + γ) ≍ ∣k∣

t .(4)

See [22] for more information regarding these fractional radial derivatives.

Lemma 3 Let t ∈ R be such that n − 1 + t ≥ 0. If f ∈ A(Bn), then

R−1,t f (z) = ∫
Sn

f (ζ)
(1 − ⟨z, ζ⟩)n+t dσ(ζ), z ∈ Bn .
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Proof The continuous linear operator Rγ ,t (see [22]) satisfies

Rγ ,t( 1
(1 − ⟨z, w⟩)n+1+γ ) =

1
(1 − ⟨z, w⟩)n+1+γ+t

for all w ∈ Bn . Next, define fε for ε ∈ (0, 1) by

fε(z) = ∫
Sn

f (ζ)
(1 − ⟨z, εζ⟩)n dσ(ζ), z ∈ Bn .

The Cauchy formula holds for f ∈ A(Bn) and hence f = limε→1− fε . It follows that

R−1,t f (z) = R−1,t( lim
ε→1− ∫Sn

f (ζ)
(1 − ⟨z, εζ⟩)n dσ(ζ))

= lim
ε→1−

R−1,t(∫
Sn

f (ζ)
(1 − ⟨z, εζ⟩)n dσ(ζ))

= lim
ε→1− ∫Sn

f (ζ)R−1,t( 1
(1 − ⟨z, εζ⟩)n )dσ(ζ)

= lim
ε→1− ∫Sn

f (ζ)
(1 − ⟨z, εζ⟩)n+t dσ(ζ)

= ∫
Sn

f (ζ)
(1 − ⟨z, ζ⟩)n+t dσ(ζ),

and the assertion follows. ∎

Theorem 4 Let α ∈ R be such that n − 1 + α/2 ≥ 0 and f ∈ A(Bn). Then f ∈ Dα(Bn)
if and only if

∫
Bn
(1 − ∣∣z∣∣2)∣∫

Sn

f (ζ)ζ̄p

(1 − ⟨z, ζ⟩)n+α/2+1 dσ(ζ)∣
2
du(z) < ∞

and

∫
Bn
∣ ∫

Sn

(zpζq − zq ζp) f (ζ)
(1 − ⟨z, ζ⟩)n+α/2+1 dσ(ζ)∣

2
du(z) < ∞,

where p, q = 1, . . . , n.

Proof Choose t so that α = 2t. Note that n, t are fixed and hence

∣∣ f ∣∣2α ≍
∞

∑
∣k∣=0

(n − 1)!k!
(n − 1 + ∣k∣)!

∣∣k∣t ak ∣2 .

Thus, (4) implies that ∣∣R−1,t f ∣∣0 ≍ ∣∣ f ∣∣α . One can apply then the equivalent integral
representation of Dirichlet-type norms to R−1,t f ∈ Hol(Bn), i.e., R−1,t f ∈ D0(Bn) if
and only if ∣R−1,t f ∣0 < ∞. According to Lemma 3, we get that

∂z p(R−1,t f )(z) = ∫
Sn

f (ζ)ζ̄p

(1 − ⟨z, ζ⟩)n+t+1 dσ(ζ), z ∈ Bn ,
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892 D. Vavitsas

where p = 1, . . . , n. Expand the term ∣∣∇( f )∣∣2 − ∣R( f )∣2 as follows:

∣∣∇( f )∣∣2 − ∣R( f )∣2 = (1 − ∣∣z∣∣2)∣∣∇( f )∣∣2 +∑
p,q
∣z̄p∂zq f − z̄q ∂z p f ∣2 .

The assertion follows by Lemma 2. ∎

4 Diagonal subspaces

In [3], a method of construction of optimal approximants via determinants in
Dirichlet-type spaces in the unit disk is provided. Similarly, we may define optimal
approximants in several variables (see [20]).

Fix N ∈ N. We define the space of polynomials p ∈ C[z1 , . . . , zn] with degree at
most nN as follows:

Pn
N ∶= {p(z) =

N
∑
k1=0

⋯
N
∑

kn=0
ak1 , . . . ,kn zk1

1 ⋯zkn
n }.

Remark 5 Let (X , ∣∣ ⋅ ∣∣) be a normed space and fix x ∈ X, C ⊂ X. The distance
between x and the set C is the following:

distX(x , C) ∶= inf{∣∣x − c∣∣ ∶ c ∈ C}.

It is well known that if X is a Hilbert space and C ⊂ X a convex closed subset, then for
any x ∈ X, there exists a unique y ∈ C such that ∣∣x − y∣∣ = distX(x , C). Let f ∈ Dα(Bn)
be nonzero constant. We deduce that for any N ∈ N, there exists exactly one pN ∈ Pn

N
satisfying

∣∣pN f − 1∣∣α = distDα(Bn)(1, f ⋅ Pn
N).

Let f ∈ Dα(Bn). We say that a polynomial pN ∈ Pn
N is an optimal approximant of

order N to 1/ f if pN minimizes ∣∣p f − 1∣∣α among all polynomials p ∈ Pn
N . We call

∣∣pN f − 1∣∣α the optimal norm of order N associated with f.
Let M = (M1 , . . . , Mn) be a multiindex, where M i are nonnegative integers, and

m ∈ {1, . . . , n}. Setting

μ(m) ∶= (M1 +⋯+ Mm)M1+⋯+Mm

MM1
1 ⋯MMm

m
,

we see that

μ(m)1/2∣z1∣M1⋯∣zm ∣Mm ≤ 1, z ∈ Bn .(5)

Using (5), we may construct polynomials that vanish in the closed unit ball along
analytic subsets of the unit sphere.

Remark 6 Let f̃ ∈ Hol(D(μ(m)−1/4)), where

D(μ) = {z ∈ C ∶ ∣z∣ < μ}, μ > 0.

According to (5), we define the following function:

f (z) = f (z1 , . . . , zn) = f̃ (μ(m)1/4zM1
1 ⋯zMm

m ), z ∈ Bn .
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Then f ∈ Hol(Bn) and it depends on m variables. Note that we may change the
variables z1 , . . . , zm by any other m variables. For convenience, we choose the m first
variables. The power 1/4 will be convenient in the sequel.

Thus, the question that arises out is if we may define closed subspaces of Dα(Bn)
passing through one variable functions. We shall see that these subspaces are called
diagonal subspaces due to the nature of the power series expansion of their elements.

Instead of the classical one variable Dirichlet-type spaces of the unit disk, we may
consider spaces dβ , β ∈ R, consisting of holomorphic functions f̃ ∈ Hol(D(μ−1/4)).
Moreover, such functions with power series expansion f̃ (z) = ∑∞l=0 a l z l are said to
belong to dβ if

∣∣ f̃ ∣∣2dβ
∶=
∞

∑
l=0

μ−l/2(l + 1)β ∣a l ∣2 < ∞.

There is a natural identification between the function theories of Dβ(D): one
variable Dirichlet-type spaces of the unit disk, and dβ , and one verifies that the results
in [3] are valid for dβ .

We are ready to define diagonal closed subspaces. Set

β(α) ∶= α − n + m + 1
2

.

Let α, M, m be as above. The diagonal closed subspace of Dα(Bn) is the following:

Jα ,M ,m ∶= { f ∈ Dα(Bn) ∶ ∃ f̃ ∈ dβ(α) , f (z) = f̃ (μ(m)1/4zM1
1 ⋯zMm

m )}.

The existence of a holomorphic function f̃ is unique by identity principle, and
hence there is no any amiss in the definition. Any function f ∈ Jα ,M ,m has an
expansion of the form

f (z) =
∞

∑
l=0

a l(zM1
1 ⋯zMm

m )l .

The relation of norms between one variable and diagonal subspaces follows.

Proposition 7 If f ∈ Jα ,M ,m , then ∣∣ f ∣∣α ≍ ∣∣ f̃ ∣∣dβ(α) .

Proof If f ∈ Jα ,M ,m , then

∣∣ f ∣∣2α ≍
∞

∑
l=0
(l + 1)α (M1 l)!⋯(Mm l)!

(n − 1 + (M1 +⋯Mm)l)!
∣a l ∣2 .

By Stirling’s formula, we obtain

∣∣ f ∣∣2α ≍
∞

∑
l=0
(l + 1)α−n+m/2+1/2 μ(m)−l ∣a l ∣2 .
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On the other hand, define the function f ′(z) = ∑∞l=0 μ(m)−l/4a l z l . Then f ′(μ(m)1/4

zM1
1 ⋯zMm

m ) = f (z1 , . . . , zn) and

∣∣ f ′∣∣2dβ(α)
≍
∞

∑
l=0
(l + 1)α−n+m/2+1/2 μ(m)−l ∣a l ∣2 .

The assertion follows since f ′ coincides with f̃ . ∎

The corresponding Lemma 3.4 of [4] in our case is the following.

Lemma 8 Let f ∈ Jα ,M ,m , where α, M , m be as above. Let rN ∈ Pn
N with expansion

rN(z) =
N
∑
k1=0

⋯
N
∑

kn=0
ak1 , . . . ,kn zk1

1 . . . zkn
n ,

and consider its projection onto Jα ,M ,m

π(rN)(z) = ∑
{l ∶M1 l , . . . ,Mm l≤N}

cM1 l , . . . ,Mm l ,0, . . . ,0zM1 l
1 ⋯zMm l

m .

Then

∣∣rN f − 1∣∣α ≥ ∣∣π(rN) f − 1∣∣α .

Moreover, just as in Proposition 7, there is a relation of optimal approximants
between one variable and diagonal subspaces.

Proposition 9 If f ∈ Jα ,M ,m , then

distDα(Bn)(1, f ⋅ Pn
N) ≍ distdβ(α)(1, f̃ ⋅ P1

N).

Proof Let rN , π(rN) be as in Lemma 8. Then π(rN) f − 1 ∈ Jα ,M ,m . It follows that

∣∣rN f − 1∣∣α ≥ ∣∣π(rN) f − 1∣∣α ≍ ∣∣π̃(rN) f̃ − 1∣∣dβ(α) ≥ distdβ(α)(1, f̃ ⋅ P1
N),

since π̃(rN) ∈ P1
N . On the other hand, let

distdβ(α)(1, f̃ ⋅ P1
N) = ∣∣qN f̃ − 1∣∣dβ(α) , qN(z) =

N
∑
l=0

a l z l .

Then, the polynomial

q′N(z1 , . . . , zn) =
N
∑
l=0

μ(m)−l/4a l zM1 l
1 ⋯zMm l

m

satisfies q′N ∈ Jα ,M ,m ∩ Pn
N and q′N f − 1 ∈ Jα ,M ,m . Thus,

∣∣qN f̃ − 1∣∣dβ(α) = ∣∣q̃
′
N f̃ − 1∣∣dβ(α) ≍ ∣∣q

′
N f − 1∣∣α ≥ distDα(Bn)(1, f ⋅ Pn

N)

and the assertion follows. ∎

https://doi.org/10.4153/S0008439523000085 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000085


A note on cyclic vectors in Dirichlet-type spaces in the unit ball of Cn 895

Define the function ϕβ ∶ [0,∞) → [0,∞) by

ϕβ(t) =
⎧⎪⎪⎨⎪⎪⎩

t1−β , β < 1,
log+(t), β = 1,

where log+(t) ∶= max{log t, 0}. We have the following.

Theorem 10 Let α ∈ R be such that β(α) ≤ 1. Let f ∈ Jα ,M ,m be as above, and suppose
that the corresponding f̃ has no zeros inside its domain, has at least one zero on the
boundary, and admits an analytic continuation to a strictly bigger domain. Then f is
cyclic in Dα(Bn) whenever α ≤ 2n−m+1

2 and

dist2
Dα(Bn)(1, f ⋅ Pn

N) ≍ ϕβ(α)(N + 1)−1 .

Proof It is an immediate consequence of the identification between Dβ(D) and dβ
and previous lemmas and propositions. ∎

If we focus on polynomials, then the following is true.

Theorem 11 Consider the polynomial p(z) = 1 − mm/2z1⋯zm , where 1 ≤ m ≤ n. Then
p is cyclic in Dα(Bn) whenever α ≤ 2n+1−m

2 .

Note that the Theorem 11 is not a characterization. We shall study the case α >
2n+1−m

2 .

5 Cyclicity for model polynomials via radial dilation

The radial dilation of a function f ∶ Bn → C is defined for r ∈ (0, 1) by fr(z) = f (rz).
To prove Theorem 11, it is enough to prove the following lemma.

Lemma 12 Consider the polynomial p(z) = 1 − mm/2z1⋯zm , where 1 ≤ m ≤ n. Then
∣∣p/pr ∣∣α < ∞ as r → 1− whenever α ≤ 2n+1−m

2 .

We follow the arguments of [13, 14]. Indeed, if Lemma 12 holds, then ϕr ⋅ p → 1
weakly, where ϕr ∶= 1/pr . This is a consequence of a crucial property of Dirichlet-type
spaces: if { fn} ⊂ Dα(Bn), then fn → 0 weakly if and only if fn → 0 pointwise and
supn{∣∣ fn ∣∣α} < ∞. Since ϕr extends holomorphically past the closed unit ball, ϕr are
multipliers, and hence, ϕr ⋅ p ∈ [p]. Finally, 1 is weak limit of ϕr ⋅ p and [p] is closed
and convex or, equivalently, weakly closed. It is clear that 1 ∈ [p], and hence p is cyclic.

Moreover, it is enough to prove that ∣∣p/pr ∣∣α < ∞, as r → 1−, for α0 = 2n+1−m
2 . Then

the case α < α0 follows since the inclusion Dα0(Bn) ↪ Dα(Bn) is a compact linear
map and weak convergence in Dα0(Bn) gives weak convergence in Dα(Bn).

Proof of Lemma 12 By Theorem 4, it is enough to show the following:

Ip ∶= ∫
Bn
(1 − ∣∣z∣∣2)∣∫

Sn

(1 − λζ1⋯ζm)ζ̄p

(1 − rm λζ1⋯ζm)(1 − ⟨z, ζ⟩)β dσ(ζ)∣
2
du(z)
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and

Ip,q ∶= ∫
Bn
∣ ∫

Sn

(zpζq − zq ζp)(1 − λζ1⋯ζm)
(1 − rm λζ1⋯ζm)(1 − ⟨z, ζ⟩)β dσ(ζ)∣

2
du(z)

are finite, as r → 1−, where β = n + t + 1, t = 2n+1−m
4 , and λ = mm/2.

Denote

Sp ∶= ∫
Sn

(1 − λζ1⋯ζm)ζ̄p

(1 − rm λζ1⋯ζm)(1 − ⟨z, ζ⟩)β dσ(ζ),

where the last integral is equal to

1
2π ∫

Sn
∫

2π

0

(1 − λe imθ ζ1⋯ζm)e−iθ ζ̄p

(1 − rm λe imθ ζ1⋯ζm)(1 − e−iθ⟨z, ζ⟩)β dθdσ(ζ).

Let z, ζ be fixed. Then

∫
2π

0

e−iθ

(1 − e−iθ⟨z, ζ⟩)β dθ = 0.

Thus, replacing p(e iθ ζ)/p(re iθ ζ) by p(e iθ ζ)/p(re iθ ζ) − 1, we obtain

Sp =
λ(rm − 1)

2π ∫
Sn
∫

2π

0

ζ̄pζ1⋯ζm e i(m−1)θ

(1 − rm λe imθ ζ1⋯ζm)(1 − e−iθ⟨z, ζ⟩)β dθdσ(ζ).

Next, expand the binomials

∫
2π

0

e i(m−1)θ

(1 − rm λe imθ ζ1⋯ζm)(1 − e−iθ⟨z, ζ⟩)β dθ

=
∞

∑
k=0

∞

∑
l=0

�(k + β)
�(β)k!

(rm λζ1⋯ζm)l ⟨z, ζ⟩k ∫
2π

0
e i(m(l+1)−k−1)θ dθ

= 2π
∞

∑
k=0

�(m(k + 1) − 1 + β)
�(β)(m(k + 1) − 1)!

(rm λζ1⋯ζm)k⟨z, ζ⟩m(k+1)−1

= 2π
∞

∑
k=0

∑
∣ j∣=m(k+1)−1

�(m(k + 1) − 1 + β)
�(β) j!

(rm λζ1⋯ζm)k z j ζ̄ j .

Therefore,

Sp = λ(rm − 1)
∞

∑
k=0

∑
∣ j∣=m(k+1)−1

�(m(k + 1) − 1 + β)
�(β) j!

(rm λ)k z jc(k),

where c(k) = ∫Sn
ζα(k) ζ̄b(k)dσ(ζ), α(k) = (k + 1, . . . , k + 1(m-comp.), 0, . . . , 0) and

b(k) = ( j1 , . . . , jp−1 , jp + 1, jp+1 , . . . , jn). Whence, 1 ≤ p ≤ m. Since the holomorphic
monomials are orthogonal to each other in L2(σ), we get that

∣Sp ∣ ≍ (1 − rm)∣z′p
∞

∑
k=0
(k + 1)β−n(rm λz1⋯zm)k ∣,
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where z′p = z1⋯zp−1zp+1⋯zm . Hence, we obtain

Ip ≍ (1 − rm)2
∞

∑
k=0
(k + 1)2(β−n)(rm λ)2k ∫

Bn
(1 − ∣∣z∣∣2)∣z′p ∣2∣z1⋯zm ∣2k du(z),

where has been used again the orthogonality of the holomorphic monomials in L2(σ).
To handle the integral above, we use polar coordinates

∫
Bn
(1 − ∣∣z∣∣2)∣z′p ∣2∣z1⋯zm ∣2k du(z)

≍ ∫
1

0
∫
Sn

ε2n−1(1 − ε2)ε2km+2m−2∣ζ′p ∣2∣ζ1⋯ζm ∣2k dσ(ζ)dε

≍ [(k + 1)!]m−1k!
(n + m(k + 1) − 2)!

⋅ 1
(k + 1)2 .

If we recall that β = n + t + 1, t = 2n+1−m
4 and λ2k = mmk , then applying the Stirling

formula more than one time, we see that

Ip ≍ (1 − rm)2
∞

∑
k=0
(k + 1)r2mk .

This proves the assertion made about Ip .
It remains to estimate the following term:

Ip,q = ∫
Bn
∣ ∫

Sn

(zpζq − zq ζp)(1 − λζ1⋯ζm)
(1 − rm λζ1⋯ζm)(1 − ⟨z, ζ⟩)β dσ(ζ)∣

2
du(z).

We shall show that Ip,q ≍ Ip . Denote again the inner integral by Sp,q which is con-
venient to expand it as Sp,q = z̄pSq − z̄q Sp . Recall that z′p = z1⋯zp−1zp+1⋯zm . Similar
calculations to the one above lead to

∣Sp,q ∣ ≍ (1 − rm)∣z̄pz′q − z̄qz′p ∣∣
∞

∑
k=0
(k + 1)β−n(rm λz1⋯zm)k ∣.

Moreover, the orthogonality of the holomorphic monomials in L2(σ) gives the
following estimation:

Ip,q ≍ (1 − rm)2
∞

∑
k=0
(k + 1)2β−2n(rm λ)2k ∫

Bn
∣z̄pz′q − z̄qz′p ∣2∣z1⋯zm ∣2k du(z).

It is easy to see that ∣z̄pz′q − z̄qz′p ∣2 = ∣zp ∣2∣z′q ∣2 + ∣zq ∣2∣z′p ∣2 − 2∣z1⋯zm ∣2. Let us estimate
the integral

∫
Bn
(∣zp ∣2∣z′q ∣2 − ∣z1⋯zm ∣2)∣z1⋯zm ∣2k du(z).

Passing through polar coordinates, we get, for p ≠ q, that

∫
Bn
∣zp ∣2∣z′q ∣2∣z1⋯zm ∣2k du(z)

≍ 2n(n − 1)! [(k + 1)!]m−1k!
(mk + n + m − 1)!

k + 2
2km + 2n + 2m
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and

∫
Bn
∣z1⋯zm ∣2(k+1)du(z)

= 2n(n − 1)! [(k + 1)!]m−1k!
(mk + n + m − 1)!

k + 1
2km + 2n + 2m

.

Hence, we obtain

∫
Bn
(∣zp ∣2∣z′q ∣2 − ∣z1⋯zm ∣2)∣z1⋯zm ∣2k du(z)

≍ [(k + 1)!]m−1k!
(mk + n + m − 2)!(k + 1)2 .

Again, applying the Stirling formula to the one above estimates, we obtain

Ip,q ≍ (1 − rm)2
∞

∑
k=0
(k + 1)r2mk .

This proves the assertion made about Ip,q . ∎

6 Sufficient conditions for noncyclicity via Cauchy transforms and
α-capacities

We consider the Cauchy transform of a complex Borel measure μ on the unit sphere
by

C[μ](z) = ∫
Sn

1
(1 − ⟨z, ζ̄⟩)n

dμ(ζ), z ∈ Bn .

Note that this definition differs from the classical one.
Let f ∈ Dα(Bn) and put a measure μ on Z( f ∗): the zero set in the sphere of the

radial limits of f. The results in [21] about Cauchy transforms and noncyclicity are
valid in our settings. We deduce that [ f ] ≠ Dα(Bn), and hence noncyclicity, whenever
C[μ] ∈ D−α(Bn). Thus, it is important to compute the Dirichlet-type norm of the
Cauchy transform.

Let μ be a Borel measure on Sn and set μ∗( j) = ∫Sn
ζ jdμ(ζ), μ̄∗( j) = ∫Sn

ζ̄ jdμ(ζ).
We have the following.

Lemma 13 Let μ be a Borel measure on Sn . Then

∣∣C[μ]∣∣2−α ≍
∞

∑
k=0

∑
∣ j∣=k

(k + 1)n−1−α k!
j!

∣μ̄∗( j)∣2 .

Proof Our Cauchy integral of μ on Bn has the following expansion:

C[μ](z) =
∞

∑
k=0

∑
∣ j∣=k

�(k + n)
�(n) j!

μ̄∗( j)z j .
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Therefore, one can compute the norm of C[μ] in the space D−α(Bn). The assertion
follows. ∎

The following lemma is crucial in the sequel. It is probably known, but we were not
able to locate it in the literature, and hence we include its proof.

Lemma 14 Let j1 , . . . , jn , k be nonnegative integers satisfying j1 +⋯+ jn = nk. Then

j1!⋯ jn! ≥ (k!)n .

Proof The �-function is logarithmically convex, and hence we may apply the
Jensen inequality to it:

log �(x1

n
+⋯+ xn

n
) ≤ log �(x1)

n
+⋯+ log �(xn)

n
.

Set x i ∶= j i + 1, i = 1, . . . , n. Since j1 +⋯+ jn = nk, the assertion follows. ∎

We may identify noncyclicity for model polynomials via Cauchy transforms.

Lemma 15 Consider the polynomial p(z) = 1 − mm/2z1⋯zm , where 1 ≤ m ≤ n. Then
p is not cyclic in Dα(Bn) whenever α > 2n+1−m

2 .

Proof Recall that the model polynomials vanish in the closed unit ball along
analytic sets of the form:

Z(p) ∩ Sn = {1/
√

m(e iθ 1 , . . . , e iθ m−1 , e−i(θ 1+⋯+θ m−1), 0, . . . , 0) ∶ θ i ∈ R}.

It is easy to see that for a proper measure μ, μ∗( j) is nonzero, when m jm = k and
μ∗( j) ≍ m−k/2. By Stirling’s formula and Lemma 14, we get that

∣∣C[μ]∣∣2−α ≤ C
∞

∑
k=0

(mk + 1)n−1−α(mk)!
(k!)m mmk ≍

∞

∑
k=0
(k + 1)1/2(2n−m−1)−α .

Thus, p is not cyclic in Dα(Bn) for α > 2n+1−m
2 . ∎

We consider Riesz α-capacity for a fixed parameter α ∈ (0, n) with respect to the
anisotropic distance in Sn given by

d(ζ , η) = ∣1 − ⟨ζ , η⟩∣1/2

and the nonnegative kernel Kα ∶ (0,∞) → [0,∞) given by

Kα(t) =
⎧⎪⎪⎨⎪⎪⎩

tα−n , α ∈ (0, n),
log(e/t), α = n.

Note that we may extend the definition of K to 0 by defining K(0) ∶= limt→0+ K(t).
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Let μ be any Borel probability measure supported on some Borel set E ⊂ Sn . Then
the Riesz α-energy of μ is given by

Iα[μ] = ∬
Sn

Kα(∣1 − ⟨ζ , η⟩∣)dμ(ζ)dμ(η)

and the Riesz α-capacity of E by

capα(E) = inf{Iα[μ] ∶ μ ∈ P(E)}−1 ,

where P(E) is the set of all Borel probability measures supported on E. Note that if
capα(E) > 0, then there exist at least one probability measure supported on E having
finite Riesz α-energy. Moreover, any f ∈ Dα(Bn) has finite radial limits f ∗ on Sn ,
except possibly, on a set E having capα(E) = 0. Theory regarding to the above standard
construction in potential theory can be found in [1, 9, 11, 17].

The relation between noncyclicity of a function and the Riesz α-capacity of the
zeros of its radial limits follows.

Theorem 16 Fix α ∈ (0, n] and let f ∈ Dα(Bn). If capα(Z( f ∗)) > 0, then f is not
cyclic in Dα(Bn).

Proof Let μ be a probability measure supported in Z( f ∗), with finite Riesz n-
energy. If r ∈ (0, 1), then

log e
∣1 − r⟨ζ , η⟩∣ = 1 + Re( log 1

1 − r⟨ζ , η⟩)

= 1 + Re
∞

∑
k=1

∑
∣ j∣=k

rk k!
k j!

ζ jη j .

Note that μ is a probability measure, and hence

∬
Sn

log e
∣1 − r⟨ζ , η⟩∣dμ(ζ)dμ(η) = 1 +

∞

∑
k=1

∑
∣ j∣=k

rk k!
k j!

∣μ∗( j)∣2 .

Since ∣1 −w∣/∣1 − rw∣ ≤ 2 for r ∈ (0, 1) and w ∈ D, the dominated convergence theorem
and Lemma 13 give

∣∣C[μ]∣∣2−n ≍
∞

∑
k=1

∑
∣ j∣=k

k!
k j!

∣μ∗( j)∣2 < ∞.

The assertion follows.
We continue setting a probability measure μ, supported in Z( f ∗), with finite Riesz

α-energy, where α ∈ (0, n). If r ∈ (0, 1), then

1
(1 − r⟨ζ , η⟩)n−α =

∞

∑
k=0

∑
∣ j∣=k

�(k + n − α)k!rk

k!�(n − α) j!
ζ jη j .
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Similar arguments to the one above show that

Iα[μ] ≥ ∣∬
Sn

Re( 1
(1 − r⟨ζ , η⟩)n−α )dμ(ζ)dμ(η)∣

= ∣
∞

∑
k=0

∑
∣ j∣=k

�(k + n − α)k!rk

k!�(n − α) j! ∬
Sn

ζ jη jdμ(ζ)dμ(η)∣

≍
∞

∑
k=0

∑
∣ j∣=k

(k + 1)n−1−α k!
j!

rk ∣μ∗( j)∣2 .

Again, letting r → 1− by Lemma 13, we obtain that C[μ] ∈ D−α(Bn). The assertion
follows. ∎

Remark 17 According to [14], one can expect that the cyclicity problem of polyno-
mials in the unit ball of Cn depends on the real dimension of their zero set restricted
on the unit sphere: dimR(Z(p) ∩ Sn).

Let us point out the nature of the boundary zeros of a polynomial nonvanishing
in the ball. See [14] for the two-dimensional case where had been used the Curve
Selection Lemma of [10].

Let p ∈ C[z1 , . . . , zn] be a polynomial nonvanishing in the ball. Looking at Z(p) ∩
Sn as at a semi-algebraic set, we conclude that it is the disjoint union of a finite number
of Nash manifolds M i , each Nash diffeomorphic to an open hypercube (0, 1)dim(M i).
Note that the Nash diffeomorphisms over the closed field of the real numbers satisfy
some additional properties (see [7, Proposition 2.9.10]).

One can expect then that the characterization of cyclicity and the nature of
the boundary zeros of the model polynomials, as well as, the unitary invariance
of the Dirichlet norm and the sufficient capacity condition, will be crucial in the
characterization of cyclic polynomials in arbitrary dimension.
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