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Abstract

For an infinite set X, denote by I'(X) the semigroup of all injective mappings from X to X. For
ael(X),let C(a) ={B e I'(X) : o = B} be the centralizer of « in I'(X). For an arbitrary o € I'(X),
we characterize the elements of C(«) and determine Green'’s relations in C («), including the partial orders
of L-, R-, and [J-classes.
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1. Introduction

For a semigroup S and an element a of S, the centralizer C(a) of a in S is defined by
C(a) ={x € S :ax = xa}. Itis clear that C(a) is a subsemigroup of S.

A significant amount of research has been devoted to studying centralizers in
semigroups of transformations on a finite set X. (For details and references concerning
this research, see [8, Introduction].) These investigations have been motivated by the
fact that, if S is a semigroup of transformations on X that contains the identity idy,
then for any « € S, the centralizer C(«) is a generalization of § in the sense that § =
C(idy). It is therefore of interest to find out which ideas, approaches, and techniques
used to study S can be extended to the centralizers of its elements. Recent research
indicates that centralizers of transformation semigroups are also important because
they play a role in finding the group of automorphisms of a general semigroup [3,
Theorem 2.23].

In contrast with the case of finite sets, little has been done regarding centralizers
of transformations on an infinite set. The only exceptions, as far as this author was
able to discover, are the studies of the centralizers of idempotent transformations
in the full transformation semigroup in [1, 2, 20]. The present paper investigates
the centralizers in the semigroup I'(X) of all injective transformations on an infinite
set X. (When X is finite, I'(X) is of no interest as a semigroup since it is equal
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to the symmetric group Sym(X).) The semigroup I'(X) is a subsemigroup of the
three very well-known semigroups of transformations: the semigroup 7 (X) of full
transformations, the semigroup P(X) of partial transformations, and the symmetric
inverse semigroup I (X) of partial injective transformations on X. All four semigroups
have the symmetric group Sym(X) of permutations on X as their group of units.

Numerous papers have been written about semigroups 7 (X), P(X), and I(X).
Much less research has been devoted to I'(X). One reason may be that 7 (X),
P(X), and I1(X) are all regular semigroups, whereas I'(X) is highly nonregular
since it contains only one idempotent (the identity idx). Many problems, such
as finding subsemigroups generated by idempotents, determining maximal inverse
subsemigroups, and so on, therefore do not apply to I'(X). The semigroup I'(X)
is universal for right cancelative semigroups with no idempotents (except possibly
the identity): that is, any such semigroup can be embedded in I'(X) for some X [4,
Lemma 1.0]. It has been studied mainly in the context of: ideals and congruences
(see, for example, [12, 18]); G(X)-normal semigroups (see [10, 11, 16]); Baer-Levi
semigroups (see [13, 14]), that is, 7 -classes of I'(X) with a prescribed infinite defect
(see Remark 2.4 below); and BQ-semigroups (see [7, 17]).

Our objective is to study the centralizers in I'(X). In Section 2 we describe
Green’s relations in I'(X) to see how Green’s relations in centralizers differ from
those in I'(X). In Section 3 we describe the elements of C(«) in I'(X) (for an
arbitrary element o of I'(X)) using the unique decomposition of « into disjoint rays,
double rays, and cycles. If X is finite, then this decomposition reduces to the usual
decomposition of « into disjoint cycles. In Section 4 we determine Green’s relations
in any centralizer C (), including the partial orders of £-, R-, and 7-classes.

Although our results are true for an arbitrary set X, they are only new for an
infinite X. Suppose X is finite. Then I'(X) = Sym(X), and the description of the
elements of C(«) (Theorem 3.9) reduces to that obtained in [19, Section 2]. For every
a € Sym(X), the centralizer C(«) is a group, so Green’s relations in C(«) are all equal
to the universal relation on C ().

For the rest of this paper, we assume that X is an arbitrary infinite set.

2. The semigroup I' (X)

In this section, we describe Green’s relations in the semigroup I'(X). If § is
a semigroup and a, b € S, we say that alb if S'a = S'b, aRb if aS' =bS', and
a Jbif S'aS' = $'bS!, where S! is the semigroup S with an identity adjoined. We
define H as the intersection of £ and R, and D as the join of £ and R, that is, the
smallest equivalence relation on S containing both £ and R. These five equivalence
relations are known as Green’s relations [0, p. 45]. The relations £ and R commute [0,
Proposition 2.1.3], and consequently D = L o R =R o L. Green’s relations are one
of the most important tools in studying semigroups.

If 7 is one of Green’s relations and a € S, we denote the equivalence class of @ with
respect to 7 by T,. Since £, R, and J are defined in terms of principal ideals in S,
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which are partially ordered by inclusion, we have the induced partial orders in the
sets of the equivalence classes of £, R, and J : L, < Ly if Sla € S'b, R, <Ry, if
aS' € bS!, and J, < J, if S'aS' € S'bS.

DEFINITION 2.1. Let o € I'(X). We denote the image of @ by im(«), the cardinality
of im(w), called the rank of «, by rank(«), and the cardinality of X ~\ im(«), called
the defect of a, by def(a). We will denote by S(«) the set of elements shifted by «
and by F () the set of elements fixed by «, that is,

S)={xeX:xa#x} and F(a)={xe€ X:xa=x}.

(We will write mappings on the right and compose from left to right; that is, for
functions f: A — B and g: B — C, we will write xf, rather than f(x), and x(fg),
rather than g(f(x)).)

PROPOSITION 2.2. Let o, B € I'(X). Then:
(1) Ly <Lp < im(e) Cim(B);
(2) Ry < Rg & def(a) > def(B).

PROOF. Regarding (1), we can use the proof for £ on T (X) [4, Lemma 2.5], which
carries over to I'(X). Statement (2) has been proved in [17, Lemma 2]. O

THEOREM 2.3. Leta, B € I'(X). Then:
(1) oLB < im(a) =im(B);

2) aRp < def(a) =def(B),

B H=Land R=D=J,

@) Ju < Jp & def(@) > def(B);

(5) the J-classes in I'(X) form a chain.

PROOF. Statements (1) and (2) follow from Proposition 2.2.
Suppose « LS. Then, by (1), im(«) = im(f), and so we have

def(a) = | X ~ im(a)| = | X ~ im(B)| = def(B).

Thus aRB by (2), and so a’Hp (since H= L N R). Thus, we have proved that
L C'H, which implies that H = £ since H C £ in every semigroup. LetI' = I'(X) and
suppose a7 B, that is, Cal’ =T'BT". By [18, Theorem 6], every right ideal of I" is a
left ideal. Applying this result to the right ideal ST", we obtain I'(«I") = I"'(BI") C BT".
Thus @ € BT" and similarly B € «I", so e RB. We have proved J C R, which implies
that R =D = J since R €D C J in every semigroup. We have proved (3).
Statement (4) follows from (3) and Proposition 2.2. Finally, (5) follows from (4). O

REMARK 2.4. Let p=|X| and let ¢ be a cardinal such that 0 <g <p. By
Theorem 2.3, the transformations « € I'(X) with defect ¢ form a single [J-class. We
will denote this J-class by J,. Moreover, by Theorem 2.3, for all cardinals g, r with
0<gq,r=p,

Jg=J&q=r (2.1)
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It follows from (2.1) that the chain of [7-classes in I' (X) is anti-isomorphic to the chain
of cardinals {g : 0 < g < p}. Every [J-class of I'(X) of infinite defect g is a semigroup,
known in the literature as the Baer—Levi semigroup of type (p, q) [4, Section 8.1].

ExXAMPLE 2.5. Let N= {1, 2, 3, ...} be the set of positive integers. The J-classes
of '(N) are Jo, J1, J2, J3, ..., Ju, ..., Iy, With

Jo>Ji>h>T> > Ty > > Uy

The J-class Jy is the symmetric group Sym(N), which forms a single H-class. For
every n € N, the J-class J, is partitioned into countably many L-classes. Each
L-class L of J,, can be labeled with {m, ma, ..., m,}, where N \ {m, map, ..., m,}
is the image of each element of L. The bottom [J-class Jx, of I'(N) consists of all
injective mappings « : N — N such that N \ im(«) is infinite. This J-class is the
Baer—Levi semigroup of type (RXg, Np).

3. Elements of C (a)

In this section we describe the elements of C(«) in I'(X) (for an arbitrary element
a of I'(X)) using the unique decomposition of « into disjoint rays, double rays, and
cycles.

DEFINITION 3.1. Let xg, x1, X2, . . . be pairwise distinct elements of X. We denote
by (xg x1 x2 - - -) the transformation n € I'(X) such that x;n = x;41 fori =0, 1, ...
and yn = y for all other y € X. We call such an n a ray. Note that im(n) = X \ {xo}.

Let ..., x_1, x0, X1, ... be pairwise distinct elements of X. We denote by
(-+-x_1x0x1 - - ) the transformation w € I'(X) such that x;w = x;4 for all integers
i and yw =y for all other y € X. We call such an w a double ray.

Let xg, x1,...,x,—1 be pairwise distinct elements of X. We denote
by (xox1---xy—1) the transformation X € I'(X) such that x;A =x;41 for i =
0,1,...,n—2, x,_1A=x0, and yA =y for all other y € X. We call such a A an

n-cycle or a cycle.

We adopted the names ‘ray’ and ‘double ray’ from graph theory [5, Section 8.1]. A
ray n = (xo x1 x2 - - -) and a double ray w = (- - - x_1 xg X1 - - -) can be represented by
the following directed graphs:

Xo—>x{—>xp—>--+- and - -—>x_|—>Xx90—>X]—> - .
The following definition is given in [9, Definition 1.1].

DEFINITION 3.2. We say that «, 8 € I'(X) are disjoint if S(x) N S(B) = 0.
Let A be a set of pairwise disjoint transformations in I'(X). The formal product of
elements of A, denoted by [, 4 @, is a transformation in I"(X) defined by

x(l_[ oc) _ {xa if x € S(a) for some @ € A,

X otherwise.
a€A

If A =, we agree that ]_[a <4 @ =idx, where idy is the identity transformation on X.
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We note that in [9] ‘rays’ are called ‘chains’ and ‘double rays’ are called ‘infinite
cycles’. The following result is proved in [9, Proposition 1.4].

PROPOSITION 3.3. Let o € I'(X) with o #1idyx. Then there exist unique sets A
of rays, B of double rays, and C of cycles of length at least 2 such that the
transformations in AU B U C are pairwise disjoint and

= (M) (1) (1),

We will call the product (3.1) the ray—cycle decomposition of a. If o € Sym(X),
then o = ([[,c5 @) ([ [ ec ») (since A = ), which is the decomposition given in [15,
Theorem 1.3.4].

REMARK 3.4. Let o € I'(X) with the ray—cycle decomposition as in (3.1) and let n,
w, and A be a ray, a double ray, and a cycle in I'(X), respectively. Then:

neA@nz(xxaxazxa3-'-) for some x € X ~ im(«),

—2 - 2
)

weEB&Sw={(--xa “xa  xxaxa“---) forsomexeX,

reC e r=(xxa---xa" ') forsomex € X and some integer n > 2.
DEFINITION 3.5. Let

n=oxx2--), @=(--x_1xx1--:), and A= (x0x1---Xp-1)
be a ray, a double ray, and a cycle, respectively, in I'(X). For g € I'(X), we define
nB*, wp*, and AB* as

np* = (xoB x18 x2B - - ),
wf*= (- x_1Bxofx1B--),
AF = (xoB x1B - -+ Xn—1B).
Thus 8* maps rays to rays, double rays to double rays, and n-cycles to n-cycles.
DEFINITION 3.6. For «, B € I'(X), we will say that « is contained in B, and write
o C B, if xaa = xp for every x € S(a).
Note that all rays, double rays, and cycles from the ray—cycle decomposition of «

(see (3.1)) are contained in «.

NOTATION 3.7. For the rest of this paper we will fix the following notation. We
denote by X an arbitrary infinite set. For o« € I'(X), let A, B, and C be the sets that
occur in the ray—cycle decomposition of « (see (3.1)). By Ay, By, and C, we will
mean the following sets:

Ay=A, By=B, Cyo=CU{{x}:xe F(a)}

(Recall that F(«) is the set of fixed points of «.) For every integer n > 2, we denote
by C/ the set of n-cycles that are contained in «, that is,

Cl,, ={r € Cy : Ais acycle of length n}.
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We also define
Cl={{x}):x e F(a)}.

For € I'(X), we extend the definition of 8* by {x}8* = {x8} for every {x} € Coll. For
A e Cl, we will write A = (xp x1 - - - x,—1). It should be understood that if n = 1, then
we mean A = {xo} and agree that S({xo}) = {xo0}.

Finally, for x, y € X, we will write x 2 y tomean y = x«.

LEMMA 3.8. Leta, B € I'(X). Then
BeCa) & Vx,yeX, ifxi>ythenx,8i>y,8.

PROOF. Suppose B € C(«). Let x N y, that is, y = xa. Then, since o8 = B, we
have y8 = (xa)B = (xB)a, and s0 xB —> yB.
Conversely, suppose that g satisfies the given condition. Let x € X. Since
x —> xa, we have xB N (xa) 8. But this means that (xa)B = (xB)«, which implies
aff = Ba. Hence B € C(w). O
We can now characterize the elements of the centralizer C ().

THEOREM 3.9. Leta, B € I'(X). Then B € C(w) ifand only if foralln € Ay, w € By,

and A € Cg.

(1)  Either there is a unique 1| € Ay such that nB* T ny or there is a unique w| € By
such that n* C w1, and

(2) wpB* € By and AB* € Cy.

PROOF. Suppose B € C(o). Letn = (xg x; x2 - - -) € Ay. Then
o o o
X0 —> X1 —> X2 —> -,
and so, by Lemma 3.8,
xoﬂi>x1ﬂi>x2ﬂi>--- .

Suppose there exists yg € X ~ im(a) such that xo8 = ypar* for some integer k > 0.
Then
m = (o Yoo - - yoo 7! oot =xoBx1Bx2B ) € Ag

(by Remark 3.4) and nB* = (xo8 x18 x28 - - -) C n1. Suppose such a yg does not exist.
Then xgf € im(«) since otherwise we could take yg = xof and k =0. Thus there
exists y_1 € X such that xo8 = y_j«. The element y_ is not in im(«) since otherwise
we could take yg = y_; and k = 1. Continuing by induction, we can construct an
infinite sequence . . ., y_3, y_2, y—1 of elements of x such that

o o o o o o o
---—>y_3—>y_2—>y_]—>x0,B—>x1,3—>xzﬂ—>~~- .

Then w=(---y_3y_2y_1x08 x18x28--) € By (by Remark 3.4) and n8* C w;.
The uniqueness of n; and w; follows from the fact that the rays and double rays that
occur in the ray—cycle decomposition of « are pairwise disjoint. We have proved (1).
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Letw=(--x_1x0x1 ) € By. Then
o o o
X > X)—> X] —> -,
and so, by Lemma 3.8,
o o o
e x_1B—xof— x1B— - .

Thus, by Remark 3.4, wf* = (- - - x_18 x0B x18 - - -} € By. The proof that Af* € C,,
for every A € C,, is similar. We have proved (2).
Conversely, suppose that g satisfies (1) and (2). Then it follows immediately that

forall x, y € X, x —> y implies x —> yB, and so B € C(«) by Lemma 3.8. O

4. Green’s relations

In this section we determine Green’s relations in C(«), for an arbitrary « € I'(X),
including the partial orders of £-, R-, and [J-classes.

DEFINITION 4.1. Leta € I'(X). For 8 € C(a), we define a mapping hg : Ay U B, U
Cy —> Ay U By UCy by:

n if § € A, and 88™  n for some 1 € Ay,
Shg = J @ if § € Ay and 8™ C w for some w € By,
8% if8 e By UC,.

Note that hg is well defined by Theorem 3.9.
We will frequently use the following lemma.

LEMMA 4.2. Let ¢ € I'(X), let B,y € C(a) and let n € Ay, w € By, and A € Cy,.
Then:

(1)  hg is injective;

(2 hgy =hghy;

(3) ifn=(xoxy---), then

nhg=(--xoBx1B---) €Ay or nhg={(--x0Bx1B---) € By;

@) fo=(--x_1xox1---), thenwhg =(---x_1 xof x1B - - ) € By,

S) ifr=(x0---xp_1) € CY, then Ahg = (xoB - - - x,—18) € Cly;

(6) if By is finite, then Byhg = By, By N Aghg =, and hg restricted to Ay is a
mapping from Ay to Ag.

PROOF. This follows immediately from the definition of 4z and Theorem 3.9. O

4.1. Relation £. Green’s relation £ in C(«) is simply the restriction of the relation £
in I'(X) to C(«). This result will follow from the following proposition.
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PROPOSITION 4.3. Letw € I'(X) and B, y € C(a). Then
Ly, < Lg & im(y) Cim(B).
PROOF. Suppose that L, < Lg. Then y =3B for some § € C(x), and so im(y) =

im(6B) € im(B). Conversely, suppose that im(y) € im(8). Then Proposition 2.2(1)
implies that y = §B for some § € I'(X). Then

adf=ay =ya =88a =dap,

and so @$ = S« since I'(X) is right cancelative. That is, § € C () as required. O

THEOREM 4.4. Let o € I'(X) and let B, y € C(«). Then BLy in C(a) if and only if
im(B) = im(y).

PROOF. This follows immediately from Proposition 4.3. O

4.2. Relation R. Unlike the relation £, Green’s relation R in C(«) is not the
restriction of the relation R in I'(X) to C ().

For a mapping f:Y — Z and A C Y, we denote by Af the image of A under f,
thatis, Af = {af :a € A}.

LEMMA 4.5. Let e« e I'(X) and B, v, § € C(a) with y = B8S. Let A= Ay, B = By,
and C, = C}} (n > 1). Then:

(1) (AN Ahg)hs C (AN Ahy)U (B~ (Ahy, U Bhy));

(2) (B~ (AhgUBhg))hs € B ~ (Ahy, U Bhy);

(3) foreveryn=>1, (Cy, \ Cpyhg)hs € Cy \ Cyhyy.

PROOF. Let € (A \ Ahg)hs. Then there is n € A \ Ahg such that u =nhs. By
Lemma4.2, u € AU B. Suppose 4 € A. We claim that © € A \. Ah,,. Suppose to the
contrary that u € Ah,. Then u = n1h, for some n; € A. Thus

(mhg)hs = n1(hghs) = mhgs = mhy, = u = nhs,

which implies that 71hg = n (since h; is injective). But this is a contradiction since
nihg € Ahg and n ¢ Ahg. We have proved that if u € A then u € A \ Ah,,.

Suppose that © € B. We claim that u € B ~\ (Ah, U Bh, ). Suppose to the contrary
that u € Ah,, U Bh,,. Then either u = noh,, for some n; € A or u = wh, for some
€ B. Suppose that i = n2h, . Then

(mhg)hs = n2(hghs) = nahgs = mhy, = = nhs,

which implies that n2sg = 1. But this is a contradiction since n2hg € Ahg and n ¢ Ahg.
Suppose that ;& = wh,,. Then

(whg)hs = w(hghs) = whgs = wh, = w = nhs,

which implies that whg = 7. But this is a contradiction since whg € B and 1 ¢ B.
We have proved that if u € B then u € B\ (Ah, U Bh,). It follows that u €
(A~ Ahy) U (B~ (Ahy, U Bhy)), which proves (1). The proofs of (2) and (3) are
similar. O
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We will also need the following lemma from set theory (whose proof is straight-
forward).

LEMMA 4.6. Let A, By, Ay, and By be sets such that
AiNB =0, AxNBy=0, |Ail+I|Bi|>|A2|+ B,

and |B1| = | Bz|. Then there is an injective mapping f : A, U By — A1 U By such that
bf € By for every b € B.

Let o € I'(X) and B € C(x). Let n=(xpx1---) € Ay and suppose 11 = nhg =
(yo - - - Yk—1 x0B x1B8 - - -) € Ag. Then note that
S(m) ~im(B) = {yo, - - ., Yk—1, X0B, x1B, .. .} ~ {x0B, x18, .. .}
= {y0, - s Yk—1},
and so k = |S(n1) ~ im(B)].

The following theorem characterizes the partial order of R-classes in C(«).
THEOREM 4.7. Leta € I'(X) and B, y € C(a). Let A= Ay, B= By, and C, = C),
(n>1). Then R, < Rg if and only if the following conditions are satisfied.
(1) Forevery n€ A, if nhy, € A, then nhg € A and |S(nhy,) ~im(y)| > [S(nhg) ~

im(B)|.

(2) |ANAhy|+|B~ (Ah, UBh,)|>|A~ Ahg| + |B ~ (Ahg U Bhg)|.
(3) B~ (Ahy, UBhy,)|>|B ~ (Ahg U Bhg)|.
4)  |Cy ~ Cuhy| = |Cy \ Cyhg| for every n > 1.
PROOF. Suppose R, < Rg, thatis, y = B for some § € C(a). Letn=(x---) € A
and suppose nh, = (Yo -+ - yk—1 Xy ---) € A. Then (nhg)hs =n(hghs) = nhps =
nh, € A, and so we must have nhg € A (since whs € B for every w € B). By
Lemma 4.2, nhg = (zo - - - Zm—1 XB - - -). We have (nhg)hs =nh, and xy = (xB)$
(since y = B6). Thus, by Lemma 4.2 again, we must have z,,_18 = yx—1, Zm—26 =
Yk—2, . . . . But this is possible only if k > m. We have proved (1).

By Lemma 4.5,

(AN Ahg)hs U (B \ (Ahg U Bhg))hs € (A . Ahy,) U (B \ (Ah, U Bhy)),
and so

I(A~ Ah,) U (B~ (Ah, U Bhy))| > |(A ~ Ahg)hs U (B ~ (Ahg U Bhg))hs|.
(4.1)
Since (A . Ah,) N (B ~ (Ah, U Bh,)) =1,

(AN Ahy)U (B~ (Ahy, UBhy))|=|A N Ahy,|+|B ~ (Ah, UBh))|. (4.2)
Since (A \ Ahg) N (B \ (Ahg U Bhg)) =) and h; is injective,
[(A N Ahg)hs U (B \ (Ahg U Bhg))hs|
= [(A ~ Ahg)hs| + |(B ~ (Ahg U Bhg))hs| 4.3)
=|A N Ahg| + |B \ (Ahg U Bhg)|.
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Now, (4.1)—(4.3) imply condition (2). Conditions (3) and (4) follow from Lemma 4.5
in a similar way.

Conversely, suppose that conditions (1)—(4) are satisfied. We will construct § €
C(a) such that y = 5. We first define § on S(u) for every u € im(hg).

Let n € AN Ahg. Then there is a unique 11 = (x - - -) € A such that

n=mhg =0 zm-1xB---).

Let & =n1h,. Then either § € A or & € B. Suppose that § = (yo - - - yk—1 Xy - - -) is
in A. Then, by (1), k > m, and so we may define § on S(n) in such a way that né* C &
and (xB)é = xy. Suppose that £ = (-- - xy - - -) € B. In this case, we may certainly
define § on S(7) in such a way that né* C & and (x8)8 = xy.

Let w € B N Ahg. Then there is a unique n = (x - - -) € A such that

w=nhg={(--xB ).

Let wy =nhy, =(---xy ---). (Note that, by (1), nhg € B implies that nh, € B.) We
define § on S(w) in such a way that 8™ = w; and (x8)8 = xy.
Let w € Bhg. Then there is a unique w; = (- - - x_1 xg X1 - - -) € B such that

w=wrhg=(--x_18x08x18 ).

Let
w =wrhy ={---x_1y X0y Xx17 - - -).
We define § on S(w) in such a way that wé*™ = w; and (x; 8)8 = x;y forevery i € Z.

Let A € C,hg, where n > 1. Then there is a unique A1 = (xo - - - x,—1) € C;, such
that A = A1hg = (xoB - - - xp—18). Let Ao = A1hy, = (xoy - - - x4—1y). We define § on
S(A) in such a way that A8* = A, and (x; 8)8 = x;y foreveryi € {0,...,n — 1}.

So far, we have defined § on S(u) for every u € im(/g). In particular, § has been
defined for every x € im(8). Note that 8§ = y (regardless of how § will be defined
on the remaining elements of X) and that § satisfies (1) and (2) of Theorem 3.9 for all
neAyNALB, w € By N (A U ByB), and A € C,, N Cy B. It remains to complete
the definition of § in such a way that § € I'(X) and § € C(«).

By (2), (3), and Lemma 4.6, there is an injective mapping

k: (A~ Ahg) U (B~ (Ahg U Bhg)) — (A ~ Ah,) U (B ~ (A, U Bh,))

such that wk € B \. (Ah, U Bh,) for every w € B \. (Ahg U Bhg). By (4), we have
that for every integer n > 1, there is an injective mapping

gn:Cu ~ Colig — Cy ~ Cyhy.

If ne A~ Ahg, we define § on S(n) in such a way that né* C nk. (If nk e
A~ Ah,, it is possible to define § in such a way that n6* = nk, but this does not
matter.) If w € B \. (Ahg U Bhg), we define § on S(w) in such a way that w8* = wk.
(Note that wk € B \. (Ah,, U Bh,).) Finally, if A € C, \. C,hg for some n > 1, we
define § on S(X) in such a way that A6* = Ag,,.
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The construction of § is complete. By the definition of § and Theorem 3.9, we have
8 el'(X),8 € C(a), and y = B6. Hence R, < Rg, which completes the proof. O

By combining Theorem 4.7 and its dual, we immediately obtain a characterization
of the R relation in C(«): namely, rewrite (1) as: ‘for every n € A,

nhg € A and |S(nhg) ~im(B)| =k < nhy, € A and [S(nh,) \im(y)|=k’,
and replace ‘>’ with ‘=" in (2)—(4).

4.3. Relation 7. In the semigroup I'(X), we have R =D = J. It will follow from
this section that, in general, this is not true in the centralizer C («).
The following theorem describes the partial order of the 7-classes in C(«).

THEOREM 4.8. Letax € I'(X) and B,y € C(a). Let A=Ay, B= By, C =Cq, and

Cn=Cl (n>1). Then J, < Jg if and only if the following conditions are satisfied.

(1) There are injective mappings f:ANAh, — AN Ahg and g: BN Ah, —
(A U B)hg such that

IS(n) ~im(y)| = [S(nf) ~ im(B)
foralln € AN Ah,, im(f) Nim(g) =, and

|A~ Ahy| +|B ~ (Ah, U Bh,)|
> |A~ Ahg| + |B ~ (Ahg U Bhg)| + |Ahg ~ (im(f) Uim(g))|.

(2) |B~(Ahy,UBhy)|>|B~ (Ahg U Bhg)|.
3) |Cy ~Cyrhy| = |Cpy \ Cphg| for every n > 1.

PROOF. Suppose that J, < Jg, that is, y =¢B5 for some ¢, 5 € C(a). Let ne
A N Ah,. Then there is a unique ny = (x - - -) € A such that

n=nthy = o yk-1xy ---) € A.
Note that k = |S(n) ~\ im(y)|. By Lemma 4.2,
nhy, € A = niheggs € A
= ni(hehghs) € A
= ((mhe)hg)hs € A
= (mhe)hg e A
= nih, € A.

Let nihe = (wg - - - wyj—1 x& - --) and
(mhe)hg = (20 -+ - Zm—1 WP - - - wi—1p (x&)B - - -).
Note that m = [S((71h¢)hg) ~ im(B)|. We have

(zo - zm—1woB -+ wi—1B (x&)B - - -Yhs = ((N1he)hg)hs = n1hy,
=0 Yk—1XY )
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and xy = ((x&)B)é (since y = ¢B6). Thus we must have

(w18 =yr—1, ..., (WoB)S = Yk—i» Zm—10 = Yk—1-1, Zm—28 = Yk—1-2, - - .,

which implies that k >m +1>m. Recall that k =|S(n) ~im(y)| and m =
[S((m1he)hg) ~im(B)|. Define f: AN Ah, — AN Ahg by nf = (n1he)hg. Then
S is injective (since h, and hg are injective) and [S(n) \ im(y)| > [S(nf) ~\ im(B)]
(since k > m).

Let w € BN Ah,,. Then there is a unique n € A such that w =nh,,. Define g :
BN Ah, — (AU B)hg by wg = (nhg)hg. Then wg € (AU B)hg (since nhy € AU B)
and g is injective (since A, and hg are injective).

Suppose that n € im(f) Nim(g), that is, n=n1f and n = wg for some 75 €
ANAh, and w € BN Ah,. Thus n; =n2h, and v = n3h, for some 12, n3 € A. By
the definitions of f and g, we have n =0 f = (n2h:)hg and n = wg = (n3h,)hg. But
then, since hy, = hghghs,

nhs = ((m2he)hg)hs =mhy, =n1  and  nhs = ((n3he)hg)hs = n3h, = o,

which is a contradiction since 11 € A and w € B. Hence im(f) Nim(g) = @.

To prove the displayed inequality in (1), first note that, by the definitions of f
and g, we have im(f) Uim(g) = (Ahg)hg, and so Ahg ~. (im(f) Uim(g)) = Ahg
(Ahg)hg. Define a mapping

J (AN (Ahe)lg) U (B~ ((Ahe)hg U (Bhe)hg)) U (Ahg N (Ahe)hg)
— (AN Ahy) U (B ~ (Ahy, U Bhy))

by wj = whs. Then j is injective (since hgs is injective) but we must show that the
codomain of j is as stated.
Let
w € (AN (Ahg)hg) U (B \ ((Ahg)hg U (Bhg)hg)).

Then
wj = phs € (A~ Ahy,)U (B \ (Ahy, U Bh)))

by Lemma 4.5 (since y = (¢f)6 and hohg = heg).

Let i € Ahg \ (Ahg)hg, that is, ;t = nhg for some n € A, and u ¢ (Ahg)hg. Then
wj =uhs € AUB.

Suppose that phs € Ahy,, thatis, whs = n1h, for some n1 € A. Then (n1he)hghs =
nih, = phs, which implies that (n1h¢)hg = p (since hs is injective). But this is a
contradiction since (n1he)hg € (Ahg)hg and u & (Ahg)hg. Thus uhs ¢ Ah,,.

Suppose that uhs € Bh,,, thatis, uhs = wh,, for some w € B. Then (wh)(hghs) =
wh, = whs =n(hghs), which implies that wh, = n (since hghs is injective). But this
is a contradiction since wh, € B and n € A. Thus phs ¢ Bh,,.

Hence pj = puhs € (A~ Ahy,) U (B \ (Ah, U Bh,)), which concludes the proof
that j is well defined. Since j is injective,

(A~ Ah,) U (B ~ (Ah, U Bh,))| > |dom(j)|. (4.4)
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Since (A N Ahg)hg € Ahg and (Ahg)hg U (Bhe)hg © Ahg U Bhg, we also have that
(AN (Ahg)hg) U (B \ ((Ahg)hg U (Bhe)hg)) 2 (A N\ Ahg) U (B . (Ahg U Bhg)),
and so
|[dom(j)| > [(A ~\ Ahg) U (B \ (Ahg U Bhg)) U (Ahg . (Ahg)hg)|. (4.5)
Since (A~ Ahy)N (B \ (Ah, UBhy))=0 and A\ Ahg, B \. (Ahg U Bhg), and
Ahg . (Ahg)hg are pairwise disjoint, (4.4) and (4.5) imply the displayed inequality
in (1).

Proofs of (2) and (3) are similar to (but easier than) the proof of the inequality in
(1). For (2), we define an injection

k: B~ ((Ahe)hg U (Bhe)hg) — B~ (Ah, U Bh,)

by wk = whs; and for (3), an injection m : C,, \ (Cyhg)hg — C, \ Cyhy, by Am =
Ahs. Then k and m are well defined by Lemma 4.5, and (2) and (3) easily follow.

Conversely, suppose that conditions (1)—(3) are satisfied. We will construct ¢, § €
C () such that y = ¢85. We first define € on S(u) forevery u € AU B U C, and § on
S(w) for every u € im(hg) \ (Ahg ~ (im(f) Uim(g))).

Letn=(x---)€ Abesuchthat ny =nh, =g - yk—1xy---)€A. Letmp =
nmf € AN Ahg. Then there is a unique 73 = (w - --) € A such that n, =n3hg =
(zo - zZm—1 wB - - -). Define € on S(n) and § on S(n7) in such a way that ne* = n3
and 126 C 11 with (wB)d =xy. (Note that this definition of § is possible since
k=1S(m) ~im(y)| = |S(n2) ~ im(B)| =m by (1), and that x(¢86) = ((x&)p)d =
(wB)s = xy.)

To proceed with the definitions of € and §, we need to prove the following:

|Bhy|+ |[{w € BN Ahy, : wg € Bhg}| = |B|. (4.6)
We have |Bh, | = |B]| (since h,, is injective) and |{w € BN Ah,, : wg € Bhg}| <|B|.
Thus, if B is infinite, then |Bhy, | + [{w € B N Ah,, : wg € Bhg}| = |B|. Suppose B is
finite. Then Bh, = B since Bh, C B and |Bh, | = |B|. Hence

{we BN Ahy, : wg € Bhg} = {w € Bhy, N Ahy, : wg € Bhg} =0,
and so
|Bhy|+ |{w € BN Ahy, : wg € Bhg}| = |Bh,| +0=|Bh,|=|B]|.

We have proved (4.6).
Since Bhy, N{w € BN Ah, : wg € Bhg} =, then

|Bhy, U{w € BN Ahy, : wg € Bhg}| = |Bh,| + |{w € BN Ah, : wg € Bhg}|.

Thus, by (4.6), |[Bh, U{w € BN Ah,, : wg € Bhg}| = |B|. We also have that | Bhg| =
| B| (since hg is injective). Hence, there is a bijection

p:Bh,U{lwe BN Ahy, :wg € Bhg} — Bhg.

Let n=(x---) € A be such that w =nh, =(---xy ---) € BN Ah,. Then u =
wg € (AU B)hg.
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Suppose that i € Ahg. Then there is a unique 1 = (y - - -) € A such that u = nyhg.
fu=(z---z—1y8---) €A, then define ¢ on S(n) and § on S(w) in such a way
that ne* = n; and ué* C w with (yB)§ =xy. If u=(---yB ---) € B, then define ¢
on S(n) and § on S(w) in such a way that ne* = n; and ué* = w with (y8)é = xvy.
(Note that in both cases we have x(g88) = ((x&)8)é = (yB)d = xy.)

Suppose that u € Bhg. Thenw € B N Ah,, and wg = u € Bhg, thatis, w € dom(p).
Let w1 = wp € Bhg. Then there is a unique wy =(---y_1 Yo y1 - - -) € B such that
w1 =wrhg={(---y_18 yoB y1B - - -). Define £ on S(n) and § on S(w) in such a way
that ne* C wy with xe = yg and w8* = w with (y9B)é = xy.

Letw=1(--x_1xpx1---)€ B. Then

w1 =why, ={(---x_1y X0y X1Y - - -) € Bh,,.

Let w) = w1 p € Bhg. Then there is a unique w3 = (- - - y_1 Yo y1 - - -) € B such that
wy =w3hg =(---y_1B8 yoB y1B - - -). Define € on §(w) and 6 on S(w;) in such a way
that we* = w3 with x;& = y; (for every i € Z) and w28* = w; with (y; 8)8 = x; (for
every i € Z).

Let A= (xo---xy,—1) € Cy, where n > 1. Then Ay =Ah, = (xoy - - xp—1Y) €
Cnhy. Since |C,hy,|=|Cyphg|, there is a bijection k: Cph, — Cphg. Let Ay =
Ak € Cyhg. Then there is a unique A3 = (Yo - - - Yu—1) € Cy such that Ay = A3hg =
(yoB - - - yn—1B). Define ¢ on S(1) and § on S(X,) in such a way that Ae* = A3
with x;e = y; (for every 0 <i <n — 1) and A8* = A1 with (y; 8)8 = x;y (for every
0<i<n-—1).

So far, we have defined ¢ on the whole of X and § on S(u) for every u € im(hg)
except for those p that lie in Ahg ~ (im(f) Uim(g)). Also, by the construction of ¢
and &, we already have ¢ = y. It remains to define § on S(u) for every

[ € (A~ Ahg) U (B ~ (Ahg U Bhg)) U Ahg ~ (im(f) Uim(g)).

We proceed as in the proof of Theorem 4.7.
By (1), (2), and Lemma 4.6, there is an injective mapping

1:(A~ Ahg) U (B~ (Ahg U Bhg)) U (Ahg ~. (im(f) Uim(g)))
— (A~ Ahy) U (B ~ (Ah, U Bh,))

such that wt € B \. (Ah,, U Bh,) for every w € B \. (Ahg U Bhg). By (3), we have
that for every integer n > 1, there is an injective mapping

Gn : Cp ~ Cphg — Cp . Cyh,y,.

If ne A\ Ahg or n € Ahg . (im(f) Uim(g)), we define § on S(n) in such a way
that né* Cnt. If w € B\ (Ahg U Bhg), we define § on S(w) in such a way that
wé* = wt. Finally, if A € C,, \ C,hg for some n > 1, we define § on S(A) in such
a way that A6* = Ag,,.

The construction of ¢ and § is complete. By the definition of ¢ and § and
Theorem 3.9, we have ¢, § € I'(X), ¢, 6 € C(«), and y = ¢f86. Hence J,, < Jg, which
completes the proof. O
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By combining Theorem 4.8 and its dual, we can easily obtain a characterization of
the J relation in C(«): namely, rewrite (1) using two pairs of functions ( f1, g1 and
2, g2) and two inequalities, and replace ‘>’ with ‘=" in (2) and (3).

4.4. Relation D. This section shows that, in general, the relation D in C(x) is
strictly between the relations R and 7.

THEOREM 4.9. Leta € I'(X) and B, y € C(a). Let A= Ay, B= By, and C, = C),
(n>1). Then BDy in C() if and only if the following conditions are satisfied.
(1) Thereis a bijection f: AN Ahg — AN Ahy, such that for every n € AN Abhg,

|S(n) ~ im(B)| = [S(nf) ~ im(y)].
(2) BN Ahg|=|BN Ahy|.
(3) AN Ahgl+|B ~ (Ahg U Bhg)| =|A \ Ah, |+ |B ~ (Ah, U Bh,)|.
(4) |B~ (AhgUBhg)| =|B ~ (Ah, U Bh,)|.
(5) |Gy~ Cyuhg| =|Cy \ Cyhy| for everyn > 1.

PROOF. Suppose fDy. Then, since D =R o L in any semigroup [6, p. 46], there
is 6 € C(x) such that SRS and §Ly. Let n€ AN Ahs. Then there is a unique
N =(xoxy---)€Asuchthat n=n18=(yo-" - yr—1 X0 x16 - - -). Since 5Ly, we
have im(§) = im(y) by Theorem 4.4. Thus there is a unique 72 = (z9 z1 - - -) € A such
thatn =2y = (yo - - - yk—120¥ 21¥ -+ *)-

We have proved that for every n € AN Ahs, n€ AN Ah, and S(n) \ im(8) =
S(n) ~im(y). By symmetry, the previous statement is also true when we switch §
and y. It follows that

ANAhs=ANAh, and (Vne AN Ahs)(S(n) ~im(8) = S(n) \ im(y)).
4.7)
It follows from (4.7) that

AN Ahs=A~ (AN Ahs) = A~ (AN Ah,) = A~ Ah,. (4.8)

Let n € AN Ahg. Then there is a unique 1y € A such that n =n;hg. Define
a mapping f:ANAhg— ANAh, by nf=mnhs. Since BRS, we have,
by Theorem 4.7(1), that mhs € A and [S(n1hg) \im(B)| = [S(n1hs) \ im(5)].
Thus, by (4.7), nf € AN Ah,, and |[S(n) ~im(B)| = [S(nf) ~ im(y)|. The mapping
S is injective since hs is injective. Let uw € AN Ah,. Then, by (4.7), there is
n1 € A such that u=n1hs. Since BRS, mhs € A implies that nihg € A. Thus
(n1hg) f = n1hs = p, which shows that f is onto.

We have proved that (1) holds. Let w € BN Ahs. Then there is a unique n =
(xgx1---)€Asuchthatw =nhs=(---y_2 y_1 x06 x16 - - ). Since im(8) = im(y),
there is a unique 11 = (z9 z1 - - -) € A such that

w=n1h, =(--y2y-120V 21y ")

We have proved that B N Ahs € B N Ah,,. The reverse inclusion holds by symmetry,
and so
BN Ahs= BN Ah,,. (4.9)
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Since BR&, we have, by Theorem 4.7(1), that for every n € A, nhg € B if and only if
nhs € B. Hence |B N Ahg| = |B N Ahs|, and so (2) follows by (4.9).

Since D C J in any semigroup, we have that 8.7y, and so (4) and (5) are satisfied
by Theorem 4.8. Suppose that w € B \. (Ahs U Bhs). Then S(w) Nim(§) = @. Thus,
since im(8) =im(y ), we have S(w) Nim(y) =¥, and so w € B \. (Ah, U Bh,). We
have proved that B \. (Ahs U Bhs) € B \ (Ah, U Bh,). The reverse inclusion holds
by a similar argument, and so

B\ (Ahs U Bhs) = B ~. (Ah, U Bh,). (4.10)
Since SRS,
|A~ Ahg| + |B \ (Ahg U Bhg)| = |A ~\ Ahs| + |B \ (Ahs U Bhs)| 4.11)

by Theorem 4.7. It is now clear that condition (3) is satisfied by (4.8), (4.10),
and (4.11).

Conversely, suppose that § and y satisfy (1)-(5). By (2), there is a bijection
g:BNAhg — BN Ah,. We will construct § € C(«) such that BR(B6) and (B5)Ly .
We first define 6 on S(u) for every u € im(hg).

Let n € AN Ahg. Then there is a unique 1y = (x - - -) € A such that n =n1hg =
(20 Zm—1xB---). Let ;m=nf € AN Ahy,. Then, by (1), there is a unique
n3=(y---) € Asuch that n; =n3h, = (wp - - - Wy_1 yy - --). Define § on S(n) in
such a way that n6* C 2 and (xB)8 = yy.

Let w € BN Ahg. Then there is a unique n = (x - - -) € A such that w = nhg =
(---xB---). Let w; =wg € BN Ah,. Then there is a unique n, = (y - - -) € A such
that w; = nph, =(--- yy ---). Define § on S(w) in such a way that @6* = w; and
(xp)d =yy.

Let w € Bhg. Then there is a unique w; =(---x_1Xxg X1 ---) € B such that
w=whg=(--x_1Bxofx1p---). Letwy=wihy, =(---x_1y xoy x17 ---). We
define § on S(w) in such a way that wé* = w; and (x; 8)8 = x;y for every i € Z.

Let A € Cphg, where n > 1. Then there is a unique Ay = (xo - - - x,—1) € C;, such
that A = X]hﬂ = (x0B - - xp—18). Let Ay = )»1/1]/ = (xoy - -- xn_ly). We define § on
S(A) in such a way that A6* = A, and (x; )6 = x;y foreveryi € {0, ..., n — 1}.

So far, we have defined § on S(u) for every p € im(hg). In particular, § has been
defined for every x € im(f8). It remains to complete the definition of § in such a way
that § e I'(X) and § € C(«). This we do exactly as in the last part of the proof of
Theorem 4.7 (the part that starts with the line preceding the displayed definition of the
mapping k).

The construction of § is complete. By the definition of , Theorems 3.9, 4.4, and 4.7,
we have § e I'(X), 6 € C(«), BR(BS), and (B8)Ly. Thus, (B, y) e Ro L =D,
which completes the proof. O

In the semigroup I'(X), Green’s relations R, D, and J coincide and the 7-classes
form a chain (see Section 2). It is of interest to describe o € I'(X) for which Green’s
relations coincide in C(«), and @ € I'(X) for which the [J-classes form a chain. These
descriptions will be provided in a subsequent paper. In that paper, we will also find the
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structure of C(«) in terms of direct and wreath products of familiar semigroups in the
case where « is a permutation.
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