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Abstract

For an infinite set X , denote by 0(X) the semigroup of all injective mappings from X to X . For
α ∈ 0(X), let C(α)= {β ∈ 0(X) : αβ = βα} be the centralizer of α in 0(X). For an arbitrary α ∈ 0(X),
we characterize the elements of C(α) and determine Green’s relations in C(α), including the partial orders
of L-, R-, and J -classes.
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1. Introduction

For a semigroup S and an element a of S, the centralizer C(a) of a in S is defined by
C(a)= {x ∈ S : ax = xa}. It is clear that C(a) is a subsemigroup of S.

A significant amount of research has been devoted to studying centralizers in
semigroups of transformations on a finite set X . (For details and references concerning
this research, see [8, Introduction].) These investigations have been motivated by the
fact that, if S is a semigroup of transformations on X that contains the identity idX ,
then for any α ∈ S, the centralizer C(α) is a generalization of S in the sense that S =
C(idX ). It is therefore of interest to find out which ideas, approaches, and techniques
used to study S can be extended to the centralizers of its elements. Recent research
indicates that centralizers of transformation semigroups are also important because
they play a role in finding the group of automorphisms of a general semigroup [3,
Theorem 2.23].

In contrast with the case of finite sets, little has been done regarding centralizers
of transformations on an infinite set. The only exceptions, as far as this author was
able to discover, are the studies of the centralizers of idempotent transformations
in the full transformation semigroup in [1, 2, 20]. The present paper investigates
the centralizers in the semigroup 0(X) of all injective transformations on an infinite
set X . (When X is finite, 0(X) is of no interest as a semigroup since it is equal
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to the symmetric group Sym(X).) The semigroup 0(X) is a subsemigroup of the
three very well-known semigroups of transformations: the semigroup T (X) of full
transformations, the semigroup P(X) of partial transformations, and the symmetric
inverse semigroup I (X) of partial injective transformations on X . All four semigroups
have the symmetric group Sym(X) of permutations on X as their group of units.

Numerous papers have been written about semigroups T (X), P(X), and I (X).
Much less research has been devoted to 0(X). One reason may be that T (X),
P(X), and I (X) are all regular semigroups, whereas 0(X) is highly nonregular
since it contains only one idempotent (the identity idX ). Many problems, such
as finding subsemigroups generated by idempotents, determining maximal inverse
subsemigroups, and so on, therefore do not apply to 0(X). The semigroup 0(X)
is universal for right cancelative semigroups with no idempotents (except possibly
the identity): that is, any such semigroup can be embedded in 0(X) for some X [4,
Lemma 1.0]. It has been studied mainly in the context of: ideals and congruences
(see, for example, [12, 18]); G(X)-normal semigroups (see [10, 11, 16]); Baer–Levi
semigroups (see [13, 14]), that is, J -classes of 0(X) with a prescribed infinite defect
(see Remark 2.4 below); and BQ-semigroups (see [7, 17]).

Our objective is to study the centralizers in 0(X). In Section 2 we describe
Green’s relations in 0(X) to see how Green’s relations in centralizers differ from
those in 0(X). In Section 3 we describe the elements of C(α) in 0(X) (for an
arbitrary element α of 0(X)) using the unique decomposition of α into disjoint rays,
double rays, and cycles. If X is finite, then this decomposition reduces to the usual
decomposition of α into disjoint cycles. In Section 4 we determine Green’s relations
in any centralizer C(α), including the partial orders of L-, R-, and J -classes.

Although our results are true for an arbitrary set X , they are only new for an
infinite X . Suppose X is finite. Then 0(X)= Sym(X), and the description of the
elements of C(α) (Theorem 3.9) reduces to that obtained in [19, Section 2]. For every
α ∈ Sym(X), the centralizer C(α) is a group, so Green’s relations in C(α) are all equal
to the universal relation on C(α).

For the rest of this paper, we assume that X is an arbitrary infinite set.

2. The semigroup 0(X)

In this section, we describe Green’s relations in the semigroup 0(X). If S is
a semigroup and a, b ∈ S, we say that aLb if S1a = S1b, aRb if aS1

= bS1, and
a J b if S1aS1

= S1bS1, where S1 is the semigroup S with an identity adjoined. We
define H as the intersection of L and R, and D as the join of L and R, that is, the
smallest equivalence relation on S containing both L and R. These five equivalence
relations are known as Green’s relations [6, p. 45]. The relations L and R commute [6,
Proposition 2.1.3], and consequently D = L ◦R=R ◦ L. Green’s relations are one
of the most important tools in studying semigroups.

If T is one of Green’s relations and a ∈ S, we denote the equivalence class of a with
respect to T by Ta . Since L, R, and J are defined in terms of principal ideals in S,
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which are partially ordered by inclusion, we have the induced partial orders in the
sets of the equivalence classes of L, R, and J : La ≤ Lb if S1a ⊆ S1b, Ra ≤ Rb if
aS1
⊆ bS1, and Ja ≤ Jb if S1aS1

⊆ S1bS1.

DEFINITION 2.1. Let α ∈ 0(X). We denote the image of α by im(α), the cardinality
of im(α), called the rank of α, by rank(α), and the cardinality of X r im(α), called
the defect of α, by def(α). We will denote by S(α) the set of elements shifted by α
and by F(α) the set of elements fixed by α, that is,

S(α)= {x ∈ X : xα 6= x} and F(α)= {x ∈ X : xα = x}.

(We will write mappings on the right and compose from left to right; that is, for
functions f : A→ B and g : B→ C , we will write x f , rather than f (x), and x( f g),
rather than g( f (x)).)

PROPOSITION 2.2. Let α, β ∈ 0(X). Then:
(1) Lα ≤ Lβ ⇔ im(α)⊆ im(β);
(2) Rα ≤ Rβ ⇔ def(α)≥ def(β).

PROOF. Regarding (1), we can use the proof for L on T (X) [4, Lemma 2.5], which
carries over to 0(X). Statement (2) has been proved in [17, Lemma 2]. 2

THEOREM 2.3. Let α, β ∈ 0(X). Then:
(1) αLβ⇔ im(α)= im(β);
(2) αRβ⇔ def(α)= def(β);
(3) H= L and R=D = J ;
(4) Jα ≤ Jβ ⇔ def(α)≥ def(β);
(5) the J -classes in 0(X) form a chain.

PROOF. Statements (1) and (2) follow from Proposition 2.2.
Suppose αLβ. Then, by (1), im(α)= im(β), and so we have

def(α)= |X r im(α)| = |X r im(β)| = def(β).

Thus αRβ by (2), and so αHβ (since H= L ∩ R ). Thus, we have proved that
L⊆H, which implies that H= L since H⊆ L in every semigroup. Let 0 = 0(X) and
suppose αJ β, that is, 0α0 = 0β0. By [18, Theorem 6], every right ideal of 0 is a
left ideal. Applying this result to the right ideal β0, we obtain 0(α0)= 0(β0)⊆ β0.
Thus α ∈ β0 and similarly β ∈ α0, so αRβ. We have proved J ⊆R, which implies
that R=D = J since R⊆D ⊆ J in every semigroup. We have proved (3).

Statement (4) follows from (3) and Proposition 2.2. Finally, (5) follows from (4). 2

REMARK 2.4. Let p = |X | and let q be a cardinal such that 0≤ q ≤ p. By
Theorem 2.3, the transformations α ∈ 0(X) with defect q form a single J -class. We
will denote this J -class by Jq . Moreover, by Theorem 2.3, for all cardinals q, r with
0≤ q, r ≤ p,

Jq ≤ Jr ⇔ q ≥ r. (2.1)
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It follows from (2.1) that the chain of J -classes in 0(X) is anti-isomorphic to the chain
of cardinals {q : 0≤ q ≤ p}. Every J -class of 0(X) of infinite defect q is a semigroup,
known in the literature as the Baer–Levi semigroup of type (p, q) [4, Section 8.1].

EXAMPLE 2.5. Let N= {1, 2, 3, . . .} be the set of positive integers. The J -classes
of 0(N) are J0, J1, J2, J3, . . . , Jn, . . . , Jℵ0 with

J0 > J1 > J2 > J3 > · · ·> Jn > · · ·> Jℵ0 .

The J -class J0 is the symmetric group Sym(N), which forms a single H-class. For
every n ∈ N, the J -class Jn is partitioned into countably many L-classes. Each
L-class L of Jn can be labeled with {m1, m2, . . . , mn}, where N r {m1, m2, . . . , mn}

is the image of each element of L . The bottom J -class Jℵ0 of 0(N) consists of all
injective mappings α : N→ N such that N r im(α) is infinite. This J -class is the
Baer–Levi semigroup of type (ℵ0, ℵ0).

3. Elements of C(α)

In this section we describe the elements of C(α) in 0(X) (for an arbitrary element
α of 0(X)) using the unique decomposition of α into disjoint rays, double rays, and
cycles.

DEFINITION 3.1. Let x0, x1, x2, . . . be pairwise distinct elements of X . We denote
by (x0 x1 x2 · · ·〉 the transformation η ∈ 0(X) such that xiη = xi+1 for i = 0, 1, . . .
and yη = y for all other y ∈ X . We call such an η a ray. Note that im(η)= X r {x0}.

Let . . . , x−1, x0, x1, . . . be pairwise distinct elements of X . We denote by
〈· · · x−1 x0 x1 · · ·〉 the transformation ω ∈ 0(X) such that xiω = xi+1 for all integers
i and yω = y for all other y ∈ X . We call such an ω a double ray.

Let x0, x1, . . . , xn−1 be pairwise distinct elements of X . We denote
by (x0 x1 · · · xn−1) the transformation λ ∈ 0(X) such that xiλ= xi+1 for i =
0, 1, . . . , n − 2, xn−1λ= x0, and yλ= y for all other y ∈ X . We call such a λ an
n-cycle or a cycle.

We adopted the names ‘ray’ and ‘double ray’ from graph theory [5, Section 8.1]. A
ray η = (x0 x1 x2 · · ·〉 and a double ray ω = 〈· · · x−1 x0 x1 · · ·〉 can be represented by
the following directed graphs:

x0→ x1→ x2→ · · · and · · · → x−1→ x0→ x1→ · · · .

The following definition is given in [9, Definition 1.1].

DEFINITION 3.2. We say that α, β ∈ 0(X) are disjoint if S(α) ∩ S(β)= ∅.
Let A be a set of pairwise disjoint transformations in 0(X). The formal product of

elements of A, denoted by
∏
α∈A α, is a transformation in 0(X) defined by

x

(∏
α∈A

α

)
=

{
xα if x ∈ S(α) for some α ∈ A,
x otherwise.

If A = ∅, we agree that
∏
α∈A α = idX , where idX is the identity transformation on X .
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We note that in [9] ‘rays’ are called ‘chains’ and ‘double rays’ are called ‘infinite
cycles’. The following result is proved in [9, Proposition 1.4].

PROPOSITION 3.3. Let α ∈ 0(X) with α 6= idX . Then there exist unique sets A
of rays, B of double rays, and C of cycles of length at least 2 such that the
transformations in A ∪ B ∪ C are pairwise disjoint and

α =

(∏
η∈A

η

)(∏
ω∈B

ω

)(∏
λ∈C

λ

)
. (3.1)

We will call the product (3.1) the ray–cycle decomposition of α. If α ∈ Sym(X),
then α = (

∏
ω∈B ω)(

∏
λ∈C λ) (since A = ∅), which is the decomposition given in [15,

Theorem 1.3.4].

REMARK 3.4. Let α ∈ 0(X) with the ray–cycle decomposition as in (3.1) and let η,
ω, and λ be a ray, a double ray, and a cycle in 0(X), respectively. Then:

η ∈ A⇔ η = (x xα xα2 xα3
· · ·〉 for some x ∈ X r im(α),

ω ∈ B⇔ ω = 〈· · · xα−2 xα−1 x xα xα2
· · ·〉 for some x ∈ X ,

λ ∈ C⇔ λ= (x xα · · · xαn−1) for some x ∈ X and some integer n ≥ 2.

DEFINITION 3.5. Let

η = (x0 x1 x2 · · ·〉, ω = 〈· · · x−1 x0 x1 · · ·〉, and λ= (x0 x1 · · · xn−1)

be a ray, a double ray, and a cycle, respectively, in 0(X). For β ∈ 0(X), we define
ηβ∗, ωβ∗, and λβ∗ as

ηβ∗ = (x0β x1β x2β · · ·〉,

ωβ∗ = 〈· · · x−1β x0β x1β · · ·〉,

λβ∗ = (x0β x1β · · · xn−1β).

Thus β∗ maps rays to rays, double rays to double rays, and n-cycles to n-cycles.

DEFINITION 3.6. For α, β ∈ 0(X), we will say that α is contained in β, and write
α @ β, if xα = xβ for every x ∈ S(α).

Note that all rays, double rays, and cycles from the ray–cycle decomposition of α
(see (3.1)) are contained in α.

NOTATION 3.7. For the rest of this paper we will fix the following notation. We
denote by X an arbitrary infinite set. For α ∈ 0(X), let A, B, and C be the sets that
occur in the ray–cycle decomposition of α (see (3.1)). By Aα , Bα , and Cα we will
mean the following sets:

Aα = A, Bα = B, Cα = C ∪ {{x} : x ∈ F(α)}.

(Recall that F(α) is the set of fixed points of α.) For every integer n ≥ 2, we denote
by Cn

α the set of n-cycles that are contained in α, that is,

Cn
α = {λ ∈ Cα : λ is a cycle of length n}.
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We also define
C1
α = {{x} : x ∈ F(α)}.

For β ∈ 0(X), we extend the definition of β∗ by {x}β∗ = {xβ} for every {x} ∈ C1
α . For

λ ∈ Cn
α , we will write λ= (x0 x1 · · · xn−1). It should be understood that if n = 1, then

we mean λ= {x0} and agree that S({x0})= {x0}.
Finally, for x, y ∈ X , we will write x

α
−→ y to mean y = xα.

LEMMA 3.8. Let α, β ∈ 0(X). Then

β ∈ C(α)⇔∀x, y ∈ X, if x
α
−→ y then xβ

α
−→ yβ.

PROOF. Suppose β ∈ C(α). Let x
α
−→ y, that is, y = xα. Then, since αβ = βα, we

have yβ = (xα)β = (xβ)α, and so xβ
α
−→ yβ.

Conversely, suppose that β satisfies the given condition. Let x ∈ X . Since
x

α
−→ xα, we have xβ

α
−→ (xα)β. But this means that (xα)β = (xβ)α, which implies

αβ = βα. Hence β ∈ C(α). 2

We can now characterize the elements of the centralizer C(α).

THEOREM 3.9. Let α, β ∈ 0(X). Then β ∈ C(α) if and only if for all η ∈ Aα , ω ∈ Bα ,
and λ ∈ Cα .
(1) Either there is a unique η1 ∈ Aα such that ηβ∗ @ η1 or there is a unique ω1 ∈ Bα

such that ηβ∗ @ ω1, and
(2) ωβ∗ ∈ Bα and λβ∗ ∈ Cα .

PROOF. Suppose β ∈ C(α). Let η = (x0 x1 x2 · · ·〉 ∈ Aα . Then

x0
α
−→ x1

α
−→ x2

α
−→ · · · ,

and so, by Lemma 3.8,

x0β
α
−→ x1β

α
−→ x2β

α
−→ · · · .

Suppose there exists y0 ∈ X r im(α) such that x0β = y0α
k for some integer k ≥ 0.

Then
η1 = (y0 y0α · · · y0α

k−1 y0α
k
= x0β x1β x2β · · ·〉 ∈ Aα

(by Remark 3.4) and ηβ∗ = (x0β x1β x2β · · ·〉@ η1. Suppose such a y0 does not exist.
Then x0β ∈ im(α) since otherwise we could take y0 = x0β and k = 0. Thus there
exists y−1 ∈ X such that x0β = y−1α. The element y−1 is not in im(α) since otherwise
we could take y0 = y−1 and k = 1. Continuing by induction, we can construct an
infinite sequence . . . , y−3, y−2, y−1 of elements of x such that

· · ·
α
−→ y−3

α
−→ y−2

α
−→ y−1

α
−→ x0β

α
−→ x1β

α
−→ x2β

α
−→ · · · .

Then ω = 〈· · · y−3 y−2 y−1 x0β x1β x2β · · ·〉 ∈ Bα (by Remark 3.4) and ηβ∗ @ ω1.
The uniqueness of η1 and ω1 follows from the fact that the rays and double rays that
occur in the ray–cycle decomposition of α are pairwise disjoint. We have proved (1).
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Let ω = 〈· · · x−1 x0 x1 · · ·〉 ∈ Bα . Then

· · · x−1
α
−→ x0

α
−→ x1

α
−→ · · · ,

and so, by Lemma 3.8,

· · · x−1β
α
−→ x0β

α
−→ x1β

α
−→ · · · .

Thus, by Remark 3.4, ωβ∗ = 〈· · · x−1β x0β x1β · · ·〉 ∈ Bα . The proof that λβ∗ ∈ Cα
for every λ ∈ Cα is similar. We have proved (2).

Conversely, suppose that β satisfies (1) and (2). Then it follows immediately that
for all x, y ∈ X , x

α
−→ y implies xβ

α
−→ yβ, and so β ∈ C(α) by Lemma 3.8. 2

4. Green’s relations

In this section we determine Green’s relations in C(α), for an arbitrary α ∈ 0(X),
including the partial orders of L-, R-, and J -classes.

DEFINITION 4.1. Let α ∈ 0(X). For β ∈ C(α), we define a mapping hβ : Aα ∪ Bα ∪
Cα→ Aα ∪ Bα ∪ Cα by:

δhβ =

η if δ ∈ Aα and δβ∗ @ η for some η ∈ Aα ,
ω if δ ∈ Aα and δβ∗ @ ω for some ω ∈ Bα ,
δβ∗ if δ ∈ Bα ∪ Cα .

Note that hβ is well defined by Theorem 3.9.

We will frequently use the following lemma.

LEMMA 4.2. Let α ∈ 0(X), let β, γ ∈ C(α) and let η ∈ Aα , ω ∈ Bα , and λ ∈ Cα .
Then:
(1) hβ is injective;
(2) hβγ = hβhγ ;
(3) if η = (x0 x1 · · ·〉, then

ηhβ = (· · · x0β x1β · · ·〉 ∈ Aα or ηhβ = 〈· · · x0β x1β · · ·〉 ∈ Bα;

(4) if ω = 〈· · · x−1 x0 x1 · · ·〉, then ωhβ = 〈· · · x−1β x0β x1β · · ·〉 ∈ Bα;
(5) if λ= (x0 · · · xn−1) ∈ Cn

α , then λhβ = (x0β · · · xn−1β) ∈ Cn
α;

(6) if Bα is finite, then Bαhβ = Bα , Bα ∩ Aαhβ = ∅, and hβ restricted to Aα is a
mapping from Aα to Aα .

PROOF. This follows immediately from the definition of hβ and Theorem 3.9. 2

4.1. Relation L. Green’s relation L in C(α) is simply the restriction of the relation L
in 0(X) to C(α). This result will follow from the following proposition.
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PROPOSITION 4.3. Let α ∈ 0(X) and β, γ ∈ C(α). Then

Lγ ≤ Lβ ⇔ im(γ )⊆ im(β).

PROOF. Suppose that Lγ ≤ Lβ . Then γ = δβ for some δ ∈ C(α), and so im(γ )=
im(δβ)⊆ im(β). Conversely, suppose that im(γ )⊆ im(β). Then Proposition 2.2(1)
implies that γ = δβ for some δ ∈ 0(X). Then

αδβ = αγ = γα = δβα = δαβ,

and so αδ = δα since 0(X) is right cancelative. That is, δ ∈ C(α) as required. 2

THEOREM 4.4. Let α ∈ 0(X) and let β, γ ∈ C(α). Then βLγ in C(α) if and only if
im(β)= im(γ ).

PROOF. This follows immediately from Proposition 4.3. 2

4.2. Relation R. Unlike the relation L, Green’s relation R in C(α) is not the
restriction of the relation R in 0(X) to C(α).

For a mapping f : Y → Z and A ⊆ Y , we denote by A f the image of A under f ,
that is, A f = {a f : a ∈ A}.

LEMMA 4.5. Let α ∈ 0(X) and β, γ, δ ∈ C(α) with γ = βδ. Let A = Aα , B = Bα ,
and Cn = Cn

α (n ≥ 1). Then:
(1) (A r Ahβ)hδ ⊆ (A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ ));
(2) (B r (Ahβ ∪ Bhβ))hδ ⊆ B r (Ahγ ∪ Bhγ );
(3) for every n ≥ 1, (Cn r Cnhβ)hδ ⊆ Cn r Cnhγ .

PROOF. Let µ ∈ (A r Ahβ)hδ . Then there is η ∈ A r Ahβ such that µ= ηhδ . By
Lemma 4.2, µ ∈ A ∪ B. Suppose µ ∈ A. We claim that µ ∈ A r Ahγ . Suppose to the
contrary that µ ∈ Ahγ . Then µ= η1hγ for some η1 ∈ A. Thus

(η1hβ)hδ = η1(hβhδ)= η1hβδ = η1hγ = µ= ηhδ,

which implies that η1hβ = η (since hδ is injective). But this is a contradiction since
η1hβ ∈ Ahβ and η /∈ Ahβ . We have proved that if µ ∈ A then µ ∈ A r Ahγ .

Suppose thatµ ∈ B. We claim thatµ ∈ B r (Ahγ ∪ Bhγ ). Suppose to the contrary
that µ ∈ Ahγ ∪ Bhγ . Then either µ= η2hγ for some η2 ∈ A or µ= ωhγ for some
ω ∈ B. Suppose that µ= η2hγ . Then

(η2hβ)hδ = η2(hβhδ)= η2hβδ = η2hγ = µ= ηhδ,

which implies that η2hβ = η. But this is a contradiction since η2hβ ∈ Ahβ and η /∈ Ahβ .
Suppose that µ= ωhγ . Then

(ωhβ)hδ = ω(hβhδ)= ωhβδ = ωhγ = µ= ηhδ,

which implies that ωhβ = η. But this is a contradiction since ωhβ ∈ B and η /∈ B.
We have proved that if µ ∈ B then µ ∈ B r (Ahγ ∪ Bhγ ). It follows that µ ∈
(A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ )), which proves (1). The proofs of (2) and (3) are
similar. 2
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We will also need the following lemma from set theory (whose proof is straight-
forward).

LEMMA 4.6. Let A1, B1, A2, and B2 be sets such that

A1 ∩ B1 = ∅, A2 ∩ B2 = ∅, |A1| + |B1| ≥ |A2| + |B2|,

and |B1| ≥ |B2|. Then there is an injective mapping f : A2 ∪ B2→ A1 ∪ B1 such that
b f ∈ B1 for every b ∈ B2.

Let α ∈ 0(X) and β ∈ C(α). Let η = (x0 x1 · · ·〉 ∈ Aα and suppose η1 = ηhβ =
(y0 · · · yk−1 x0β x1β · · ·〉 ∈ Aα . Then note that

S(η1)r im(β) = {y0, . . . , yk−1, x0β, x1β, . . .}r {x0β, x1β, . . .}

= {y0, . . . , yk−1},

and so k = |S(η1)r im(β)|.
The following theorem characterizes the partial order of R-classes in C(α).

THEOREM 4.7. Let α ∈ 0(X) and β, γ ∈ C(α). Let A = Aα , B = Bα , and Cn = Cn
α

(n ≥ 1). Then Rγ ≤ Rβ if and only if the following conditions are satisfied.
(1) For every η ∈ A, if ηhγ ∈ A, then ηhβ ∈ A and |S(ηhγ )r im(γ )| ≥ |S(ηhβ)r

im(β)|.
(2) |A r Ahγ | + |B r (Ahγ ∪ Bhγ )| ≥ |A r Ahβ | + |B r (Ahβ ∪ Bhβ)|.
(3) |B r (Ahγ ∪ Bhγ )| ≥ |B r (Ahβ ∪ Bhβ)|.
(4) |Cn r Cnhγ | ≥ |Cn r Cnhβ | for every n ≥ 1.

PROOF. Suppose Rγ ≤ Rβ , that is, γ = βδ for some δ ∈ C(α). Let η = (x · · ·〉 ∈ A
and suppose ηhγ = (y0 · · · yk−1 xγ · · ·〉 ∈ A. Then (ηhβ)hδ = η(hβhδ)= ηhβδ =
ηhγ ∈ A, and so we must have ηhβ ∈ A (since ωhδ ∈ B for every ω ∈ B). By
Lemma 4.2, ηhβ = (z0 · · · zm−1 xβ · · ·〉. We have (ηhβ)hδ = ηhγ and xγ = (xβ)δ
(since γ = βδ). Thus, by Lemma 4.2 again, we must have zm−1δ = yk−1, zm−2δ =

yk−2, . . . . But this is possible only if k ≥ m. We have proved (1).
By Lemma 4.5,

(A r Ahβ)hδ ∪ (B r (Ahβ ∪ Bhβ))hδ ⊆ (A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ )),

and so

|(A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ ))| ≥ |(A r Ahβ)hδ ∪ (B r (Ahβ ∪ Bhβ))hδ|.
(4.1)

Since (A r Ahγ ) ∩ (B r (Ahγ ∪ Bhγ ))= ∅,

|(A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ ))| = |A r Ahγ | + |B r (Ahγ ∪ Bhγ )|. (4.2)

Since (A r Ahβ) ∩ (B r (Ahβ ∪ Bhβ))= ∅ and hδ is injective,

|(A r Ahβ)hδ ∪ (B r (Ahβ ∪ Bhβ))hδ|

= |(A r Ahβ)hδ| + |(B r (Ahβ ∪ Bhβ))hδ| (4.3)

= |A r Ahβ | + |B r (Ahβ ∪ Bhβ)|.

https://doi.org/10.1017/S0004972710000304 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000304


314 J. Konieczny [10]

Now, (4.1)–(4.3) imply condition (2). Conditions (3) and (4) follow from Lemma 4.5
in a similar way.

Conversely, suppose that conditions (1)–(4) are satisfied. We will construct δ ∈
C(α) such that γ = βδ. We first define δ on S(µ) for every µ ∈ im(hβ).

Let η ∈ A ∩ Ahβ . Then there is a unique η1 = (x · · ·〉 ∈ A such that

η = η1hβ = (z0 · · · zm−1 xβ · · ·〉.

Let ξ = η1hγ . Then either ξ ∈ A or ξ ∈ B. Suppose that ξ = (y0 · · · yk−1 xγ · · ·〉 is
in A. Then, by (1), k ≥ m, and so we may define δ on S(η) in such a way that ηδ∗ @ ξ

and (xβ)δ = xγ . Suppose that ξ = 〈· · · xγ · · ·〉 ∈ B. In this case, we may certainly
define δ on S(η) in such a way that ηδ∗ @ ξ and (xβ)δ = xγ .

Let ω ∈ B ∩ Ahβ . Then there is a unique η = (x · · ·〉 ∈ A such that

ω = ηhβ = 〈· · · xβ · · ·〉.

Let ω1 = ηhγ = 〈· · · xγ · · ·〉. (Note that, by (1), ηhβ ∈ B implies that ηhγ ∈ B.) We
define δ on S(ω) in such a way that ωδ∗ = ω1 and (xβ)δ = xγ .

Let ω ∈ Bhβ . Then there is a unique ω1 = 〈· · · x−1 x0 x1 · · ·〉 ∈ B such that

ω = ω1hβ = 〈· · · x−1β x0β x1β · · ·〉.

Let
ω2 = ω1hγ = 〈· · · x−1γ x0γ x1γ · · ·〉.

We define δ on S(ω) in such a way that ωδ∗ = ω2 and (xiβ)δ = xiγ for every i ∈ Z.
Let λ ∈ Cnhβ , where n ≥ 1. Then there is a unique λ1 = (x0 · · · xn−1) ∈ Cn such

that λ= λ1hβ = (x0β · · · xn−1β). Let λ2 = λ1hγ = (x0γ · · · xn−1γ ). We define δ on
S(λ) in such a way that λδ∗ = λ2 and (xiβ)δ = xiγ for every i ∈ {0, . . . , n − 1}.

So far, we have defined δ on S(µ) for every µ ∈ im(hβ). In particular, δ has been
defined for every x ∈ im(β). Note that βδ = γ (regardless of how δ will be defined
on the remaining elements of X ) and that δ satisfies (1) and (2) of Theorem 3.9 for all
η ∈ Aα ∩ Aαβ, ω ∈ Bα ∩ (Aαβ ∪ Bαβ), and λ ∈ Cα ∩ Cαβ. It remains to complete
the definition of δ in such a way that δ ∈ 0(X) and δ ∈ C(α).

By (2), (3), and Lemma 4.6, there is an injective mapping

k : (A r Ahβ) ∪ (B r (Ahβ ∪ Bhβ))→ (A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ ))

such that ωk ∈ B r (Ahγ ∪ Bhγ ) for every ω ∈ B r (Ahβ ∪ Bhβ). By (4), we have
that for every integer n ≥ 1, there is an injective mapping

gn : Cn r Cnhβ→ Cn r Cnhγ .

If η ∈ A r Ahβ , we define δ on S(η) in such a way that ηδ∗ @ ηk. (If ηk ∈
A r Ahγ , it is possible to define δ in such a way that ηδ∗ = ηk, but this does not
matter.) If ω ∈ B r (Ahβ ∪ Bhβ), we define δ on S(ω) in such a way that ωδ∗ = ωk.
(Note that ωk ∈ B r (Ahγ ∪ Bhγ ).) Finally, if λ ∈ Cn r Cnhβ for some n ≥ 1, we
define δ on S(λ) in such a way that λδ∗ = λgn .
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The construction of δ is complete. By the definition of δ and Theorem 3.9, we have
δ ∈ 0(X), δ ∈ C(α), and γ = βδ. Hence Rγ ≤ Rβ , which completes the proof. 2

By combining Theorem 4.7 and its dual, we immediately obtain a characterization
of the R relation in C(α): namely, rewrite (1) as: ‘for every η ∈ A,

ηhβ ∈ A and |S(ηhβ)r im(β)| = k⇔ ηhγ ∈ A and |S(ηhγ )r im(γ )| = k’,

and replace ‘≥’ with ‘=’ in (2)–(4).

4.3. Relation J . In the semigroup 0(X), we have R=D = J . It will follow from
this section that, in general, this is not true in the centralizer C(α).

The following theorem describes the partial order of the J -classes in C(α).

THEOREM 4.8. Let α ∈ 0(X) and β, γ ∈ C(α). Let A = Aα , B = Bα , C = Cα , and
Cn = Cn

α (n ≥ 1). Then Jγ ≤ Jβ if and only if the following conditions are satisfied.
(1) There are injective mappings f : A ∩ Ahγ → A ∩ Ahβ and g : B ∩ Ahγ →

(A ∪ B)hβ such that

|S(η)r im(γ )| ≥ |S(η f )r im(β)|

for all η ∈ A ∩ Ahγ , im( f ) ∩ im(g)= ∅, and

|A r Ahγ | + |B r (Ahγ ∪ Bhγ )|

≥ |A r Ahβ | + |B r (Ahβ ∪ Bhβ)| + |Ahβ r (im( f ) ∪ im(g))|.

(2) |B r (Ahγ ∪ Bhγ )| ≥ |B r (Ahβ ∪ Bhβ)|.
(3) |Cn r Cnhγ | ≥ |Cn r Cnhβ | for every n ≥ 1.

PROOF. Suppose that Jγ ≤ Jβ , that is, γ = εβδ for some ε, δ ∈ C(α). Let η ∈
A ∩ Ahγ . Then there is a unique η1 = (x · · ·〉 ∈ A such that

η = η1hγ = (y0 · · · yk−1 xγ · · ·〉 ∈ A.

Note that k = |S(η)r im(γ )|. By Lemma 4.2,

η1hγ ∈ A⇒ η1hεβδ ∈ A

⇒ η1(hεhβhδ) ∈ A

⇒ ((η1hε)hβ)hδ ∈ A

⇒ (η1hε)hβ ∈ A

⇒ η1hε ∈ A.

Let η1hε = (w0 · · · wl−1 xε · · ·〉 and

(η1hε)hβ = (z0 · · · zm−1 w0β · · · wl−1β (xε)β · · ·〉.

Note that m = |S((η1hε)hβ)r im(β)|. We have

(z0 · · · zm−1 w0β · · · wl−1β (xε)β · · ·〉hδ = ((η1hε)hβ)hδ = η1hγ
= (y0 · · · yk−1 xγ · · ·〉
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and xγ = ((xε)β)δ (since γ = εβδ). Thus we must have

(wl−1β)δ = yk−1, . . . , (w0β)δ = yk−l , zm−1δ = yk−l−1, zm−2δ = yk−l−2, . . . ,

which implies that k ≥ m + l ≥ m. Recall that k = |S(η)r im(γ )| and m =
|S((η1hε)hβ)r im(β)|. Define f : A ∩ Ahγ → A ∩ Ahβ by η f = (η1hε)hβ . Then
f is injective (since hε and hβ are injective) and |S(η)r im(γ )| ≥ |S(η f )r im(β)|
(since k ≥ m).

Let ω ∈ B ∩ Ahγ . Then there is a unique η ∈ A such that ω = ηhγ . Define g :
B ∩ Ahγ → (A ∪ B)hβ by ωg = (ηhε)hβ . Then ωg ∈ (A ∪ B)hβ (since ηhε ∈ A ∪ B)
and g is injective (since hε and hβ are injective).

Suppose that η ∈ im( f ) ∩ im(g), that is, η = η1 f and η = ωg for some η1 ∈

A ∩ Ahγ and ω ∈ B ∩ Ahγ . Thus η1 = η2hγ and ω = η3hγ for some η2, η3 ∈ A. By
the definitions of f and g, we have η = η1 f = (η2hε)hβ and η = ωg = (η3hε)hβ . But
then, since hγ = hεhβhδ ,

ηhδ = ((η2hε)hβ)hδ = η2hγ = η1 and ηhδ = ((η3hε)hβ)hδ = η3hγ = ω,

which is a contradiction since η1 ∈ A and ω ∈ B. Hence im( f ) ∩ im(g)= ∅.
To prove the displayed inequality in (1), first note that, by the definitions of f

and g, we have im( f ) ∪ im(g)= (Ahε)hβ , and so Ahβ r (im( f ) ∪ im(g))= Ahβ r
(Ahε)hβ . Define a mapping

j : (A r (Ahε)hβ) ∪ (B r ((Ahε)hβ ∪ (Bhε)hβ)) ∪ (Ahβ r (Ahε)hβ)

→ (A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ ))

by µj = µhδ . Then j is injective (since hδ is injective) but we must show that the
codomain of j is as stated.

Let
µ ∈ (A r (Ahε)hβ) ∪ (B r ((Ahε)hβ ∪ (Bhε)hβ)).

Then
µj = µhδ ∈ (A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ ))

by Lemma 4.5 (since γ = (εβ)δ and hεhβ = hεβ ).
Let µ ∈ Ahβ r (Ahε)hβ , that is, µ= ηhβ for some η ∈ A, and µ /∈ (Ahε)hβ . Then

µj = µhδ ∈ A ∪ B.
Suppose that µhδ ∈ Ahγ , that is, µhδ = η1hγ for some η1 ∈ A. Then (η1hε)hβhδ =

η1hγ = µhδ , which implies that (η1hε)hβ = µ (since hδ is injective). But this is a
contradiction since (η1hε)hβ ∈ (Ahε)hβ and µ /∈ (Ahε)hβ . Thus µhδ /∈ Ahγ .

Suppose that µhδ ∈ Bhγ , that is, µhδ = ωhγ for some ω ∈ B. Then (ωhε)(hβhδ)=
ωhγ = µhδ = η(hβhδ), which implies that ωhε = η (since hβhδ is injective). But this
is a contradiction since ωhε ∈ B and η ∈ A. Thus µhδ /∈ Bhγ .

Hence µj = µhδ ∈ (A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ )), which concludes the proof
that j is well defined. Since j is injective,

|(A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ ))| ≥ |dom( j)|. (4.4)
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Since (A ∩ Ahε)hβ ⊆ Ahβ and (Ahε)hβ ∪ (Bhε)hβ ⊆ Ahβ ∪ Bhβ , we also have that

(A r (Ahε)hβ) ∪ (B r ((Ahε)hβ ∪ (Bhε)hβ))⊇ (A r Ahβ) ∪ (B r (Ahβ ∪ Bhβ)),

and so

|dom( j)| ≥ |(A r Ahβ) ∪ (B r (Ahβ ∪ Bhβ)) ∪ (Ahβ r (Ahε)hβ)|. (4.5)

Since (A r Ahγ ) ∩ (B r (Ahγ ∪ Bhγ ))= ∅ and A r Ahβ , B r (Ahβ ∪ Bhβ), and
Ahβ r (Ahε)hβ are pairwise disjoint, (4.4) and (4.5) imply the displayed inequality
in (1).

Proofs of (2) and (3) are similar to (but easier than) the proof of the inequality in
(1). For (2), we define an injection

k : B r ((Ahε)hβ ∪ (Bhε)hβ)→ B r (Ahγ ∪ Bhγ )

by ωk = ωhδ; and for (3), an injection m : Cn r (Cnhε)hβ→ Cn r Cnhγ by λm =
λhδ . Then k and m are well defined by Lemma 4.5, and (2) and (3) easily follow.

Conversely, suppose that conditions (1)–(3) are satisfied. We will construct ε, δ ∈
C(α) such that γ = εβδ. We first define ε on S(µ) for every µ ∈ A ∪ B ∪ C , and δ on
S(µ) for every µ ∈ im(hβ)r (Ahβ r (im( f ) ∪ im(g))).

Let η = (x · · ·〉 ∈ A be such that η1 = ηhγ = (y0 · · · yk−1 xγ · · ·〉 ∈ A. Let η2 =

η1 f ∈ A ∩ Ahβ . Then there is a unique η3 = (w · · ·〉 ∈ A such that η2 = η3hβ =
(z0 · · · zm−1 wβ · · ·〉. Define ε on S(η) and δ on S(η2) in such a way that ηε∗ = η3
and η2δ @ η1 with (wβ)δ = xγ . (Note that this definition of δ is possible since
k = |S(η1)r im(γ )| ≥ |S(η2)r im(β)| = m by (1), and that x(εβδ)= ((xε)β)δ =
(wβ)δ = xγ .)

To proceed with the definitions of ε and δ, we need to prove the following:

|Bhγ | + |{ω ∈ B ∩ Ahγ : ωg ∈ Bhβ}| = |B|. (4.6)

We have |Bhγ | = |B| (since hγ is injective) and |{ω ∈ B ∩ Ahγ : ωg ∈ Bhβ}| ≤ |B|.
Thus, if B is infinite, then |Bhγ | + |{ω ∈ B ∩ Ahγ : ωg ∈ Bhβ}| = |B|. Suppose B is
finite. Then Bhγ = B since Bhγ ⊆ B and |Bhγ | = |B|. Hence

{ω ∈ B ∩ Ahγ : ωg ∈ Bhβ} = {ω ∈ Bhγ ∩ Ahγ : ωg ∈ Bhβ} = ∅,

and so

|Bhγ | + |{ω ∈ B ∩ Ahγ : ωg ∈ Bhβ}| = |Bhγ | + 0= |Bhγ | = |B|.

We have proved (4.6).
Since Bhγ ∩ {ω ∈ B ∩ Ahγ : ωg ∈ Bhβ} = ∅, then

|Bhγ ∪ {ω ∈ B ∩ Ahγ : ωg ∈ Bhβ}| = |Bhγ | + |{ω ∈ B ∩ Ahγ : ωg ∈ Bhβ}|.

Thus, by (4.6), |Bhγ ∪ {ω ∈ B ∩ Ahγ : ωg ∈ Bhβ}| = |B|. We also have that |Bhβ | =
|B| (since hβ is injective). Hence, there is a bijection

p : Bhγ ∪ {ω ∈ B ∩ Ahγ : ωg ∈ Bhβ} → Bhβ .

Let η = (x · · ·〉 ∈ A be such that ω = ηhγ = 〈· · · xγ · · ·〉 ∈ B ∩ Ahγ . Then µ=
ωg ∈ (A ∪ B)hβ .
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Suppose that µ ∈ Ahβ . Then there is a unique η1 = (y · · ·〉 ∈ A such that µ= η1hβ .
If µ= (z0 · · · zt−1 yβ · · ·〉 ∈ A, then define ε on S(η) and δ on S(µ) in such a way
that ηε∗ = η1 and µδ∗ @ ω with (yβ)δ = xγ . If µ= 〈· · · yβ · · ·〉 ∈ B, then define ε
on S(η) and δ on S(µ) in such a way that ηε∗ = η1 and µδ∗ = ω with (yβ)δ = xγ .
(Note that in both cases we have x(εβδ)= ((xε)β)δ = (yβ)δ = xγ .)

Suppose thatµ ∈ Bhβ . Then ω ∈ B ∩ Ahγ and ωg = µ ∈ Bhβ , that is, ω ∈ dom(p).
Let ω1 = ωp ∈ Bhβ . Then there is a unique ω2 = 〈· · · y−1 y0 y1 · · ·〉 ∈ B such that
ω1 = ω2hβ = 〈· · · y−1β y0β y1β · · ·〉. Define ε on S(η) and δ on S(ω1) in such a way
that ηε∗ @ ω2 with xε = y0 and ω1δ

∗
= ω with (y0β)δ = xγ .

Let ω = 〈· · · x−1 x0 x1 · · ·〉 ∈ B. Then

ω1 = ωhγ = 〈· · · x−1γ x0γ x1γ · · ·〉 ∈ Bhγ .

Let ω2 = ω1 p ∈ Bhβ . Then there is a unique ω3 = 〈· · · y−1 y0 y1 · · ·〉 ∈ B such that
ω2 = ω3hβ = 〈· · · y−1β y0β y1β · · ·〉. Define ε on S(ω) and δ on S(ω2) in such a way
that ωε∗ = ω3 with xiε = yi (for every i ∈ Z) and ω2δ

∗
= ω1 with (yiβ)δ = xiγ (for

every i ∈ Z).
Let λ= (x0 · · · xn−1) ∈ Cn , where n ≥ 1. Then λ1 = λhγ = (x0γ · · · xn−1γ ) ∈

Cnhγ . Since |Cnhγ | = |Cnhβ |, there is a bijection k : Cnhγ → Cnhβ . Let λ2 =

λ1k ∈ Cnhβ . Then there is a unique λ3 = (y0 · · · yn−1) ∈ Cn such that λ2 = λ3hβ =
(y0β · · · yn−1β). Define ε on S(λ) and δ on S(λ2) in such a way that λε∗ = λ3
with xiε = yi (for every 0≤ i ≤ n − 1) and λ2δ

∗
= λ1 with (yiβ)δ = xiγ (for every

0≤ i ≤ n − 1).
So far, we have defined ε on the whole of X and δ on S(µ) for every µ ∈ im(hβ)

except for those µ that lie in Ahβ r (im( f ) ∪ im(g)). Also, by the construction of ε
and δ, we already have εβδ = γ . It remains to define δ on S(µ) for every

µ ∈ (A r Ahβ) ∪ (B r (Ahβ ∪ Bhβ)) ∪ Ahβ r (im( f ) ∪ im(g)).

We proceed as in the proof of Theorem 4.7.
By (1), (2), and Lemma 4.6, there is an injective mapping

t : (A r Ahβ) ∪ (B r (Ahβ ∪ Bhβ)) ∪ (Ahβ r (im( f ) ∪ im(g)))

→ (A r Ahγ ) ∪ (B r (Ahγ ∪ Bhγ ))

such that ωt ∈ B r (Ahγ ∪ Bhγ ) for every ω ∈ B r (Ahβ ∪ Bhβ). By (3), we have
that for every integer n ≥ 1, there is an injective mapping

qn : Cn r Cnhβ→ Cn r Cnhγ .

If η ∈ A r Ahβ or η ∈ Ahβ r (im( f ) ∪ im(g)), we define δ on S(η) in such a way
that ηδ∗ @ ηt . If ω ∈ B r (Ahβ ∪ Bhβ), we define δ on S(ω) in such a way that
ωδ∗ = ωt . Finally, if λ ∈ Cn r Cnhβ for some n ≥ 1, we define δ on S(λ) in such
a way that λδ∗ = λqn .

The construction of ε and δ is complete. By the definition of ε and δ and
Theorem 3.9, we have ε, δ ∈ 0(X), ε, δ ∈ C(α), and γ = εβδ. Hence Jγ ≤ Jβ , which
completes the proof. 2
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By combining Theorem 4.8 and its dual, we can easily obtain a characterization of
the J relation in C(α): namely, rewrite (1) using two pairs of functions ( f1, g1 and
f2, g2) and two inequalities, and replace ‘≥’ with ‘=’ in (2) and (3).

4.4. Relation D. This section shows that, in general, the relation D in C(α) is
strictly between the relations R and J .

THEOREM 4.9. Let α ∈ 0(X) and β, γ ∈ C(α). Let A = Aα , B = Bα , and Cn = Cn
α

(n ≥ 1). Then βDγ in C(α) if and only if the following conditions are satisfied.
(1) There is a bijection f : A ∩ Ahβ→ A ∩ Ahγ such that for every η ∈ A ∩ Ahβ ,

|S(η)r im(β)| = |S(η f )r im(γ )|.

(2) |B ∩ Ahβ | = |B ∩ Ahγ |.
(3) |A r Ahβ | + |B r (Ahβ ∪ Bhβ)| = |A r Ahγ | + |B r (Ahγ ∪ Bhγ )|.
(4) |B r (Ahβ ∪ Bhβ)| = |B r (Ahγ ∪ Bhγ )|.
(5) |Cn r Cnhβ | = |Cn r Cnhγ | for every n ≥ 1.

PROOF. Suppose βDγ . Then, since D =R ◦ L in any semigroup [6, p. 46], there
is δ ∈ C(α) such that βRδ and δLγ . Let η ∈ A ∩ Ahδ . Then there is a unique
η1 = (x0 x1 · · ·〉 ∈ A such that η = η1δ = (y0 · · · yk−1 x0δ x1δ · · ·〉. Since δLγ , we
have im(δ)= im(γ ) by Theorem 4.4. Thus there is a unique η2 = (z0 z1 · · ·〉 ∈ A such
that η = η2γ = (y0 · · · yk−1 z0γ z1γ · · ·〉.

We have proved that for every η ∈ A ∩ Ahδ , η ∈ A ∩ Ahγ and S(η)r im(δ)=
S(η)r im(γ ). By symmetry, the previous statement is also true when we switch δ
and γ . It follows that

A ∩ Ahδ = A ∩ Ahγ and (∀η ∈ A ∩ Ahδ)(S(η)r im(δ)= S(η)r im(γ )).
(4.7)

It follows from (4.7) that

A r Ahδ = A r (A ∩ Ahδ)= A r (A ∩ Ahγ )= A r Ahγ . (4.8)

Let η ∈ A ∩ Ahβ . Then there is a unique η1 ∈ A such that η = η1hβ . Define
a mapping f : A ∩ Ahβ→ A ∩ Ahγ by η f = η1hδ . Since βRδ, we have,
by Theorem 4.7(1), that η1hδ ∈ A and |S(η1hβ)r im(β)| = |S(η1hδ)r im(δ)|.
Thus, by (4.7), η f ∈ A ∩ Ahγ and |S(η)r im(β)| = |S(η f )r im(γ )|. The mapping
f is injective since hδ is injective. Let µ ∈ A ∩ Ahγ . Then, by (4.7), there is
η1 ∈ A such that µ= η1hδ . Since βRδ, η1hδ ∈ A implies that η1hβ ∈ A. Thus
(η1hβ) f = η1hδ = µ, which shows that f is onto.

We have proved that (1) holds. Let ω ∈ B ∩ Ahδ . Then there is a unique η =
(x0 x1 · · ·〉 ∈ A such that ω = ηhδ = 〈· · · y−2 y−1 x0δ x1δ · · ·〉. Since im(δ)= im(γ ),
there is a unique η1 = (z0 z1 · · ·〉 ∈ A such that

ω = η1hγ = 〈· · · y−2 y−1 z0γ z1γ · · ·〉.

We have proved that B ∩ Ahδ ⊆ B ∩ Ahγ . The reverse inclusion holds by symmetry,
and so

B ∩ Ahδ = B ∩ Ahγ . (4.9)
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Since βRδ, we have, by Theorem 4.7(1), that for every η ∈ A, ηhβ ∈ B if and only if
ηhδ ∈ B. Hence |B ∩ Ahβ | = |B ∩ Ahδ|, and so (2) follows by (4.9).

Since D ⊆ J in any semigroup, we have that βJ γ , and so (4) and (5) are satisfied
by Theorem 4.8. Suppose that ω ∈ B r (Ahδ ∪ Bhδ). Then S(ω) ∩ im(δ)= ∅. Thus,
since im(δ)= im(γ ), we have S(ω) ∩ im(γ )= ∅, and so ω ∈ B r (Ahγ ∪ Bhγ ). We
have proved that B r (Ahδ ∪ Bhδ)⊆ B r (Ahγ ∪ Bhγ ). The reverse inclusion holds
by a similar argument, and so

B r (Ahδ ∪ Bhδ)= B r (Ahγ ∪ Bhγ ). (4.10)

Since βRδ,

|A r Ahβ | + |B r (Ahβ ∪ Bhβ)| = |A r Ahδ| + |B r (Ahδ ∪ Bhδ)| (4.11)

by Theorem 4.7. It is now clear that condition (3) is satisfied by (4.8), (4.10),
and (4.11).

Conversely, suppose that β and γ satisfy (1)–(5). By (2), there is a bijection
g : B ∩ Ahβ→ B ∩ Ahγ . We will construct δ ∈ C(α) such that βR(βδ) and (βδ)Lγ .
We first define δ on S(µ) for every µ ∈ im(hβ).

Let η ∈ A ∩ Ahβ . Then there is a unique η1 = (x · · ·〉 ∈ A such that η = η1hβ =
(z0 · · · zm−1 xβ · · ·〉. Let η2 = η f ∈ A ∩ Ahγ . Then, by (1), there is a unique
η3 = (y · · ·〉 ∈ A such that η2 = η3hγ = (w0 · · · wm−1 yγ · · ·〉. Define δ on S(η) in
such a way that ηδ∗ @ η2 and (xβ)δ = yγ .

Let ω ∈ B ∩ Ahβ . Then there is a unique η = (x · · ·〉 ∈ A such that ω = ηhβ =
〈· · · xβ · · ·〉. Let ω1 = ωg ∈ B ∩ Ahγ . Then there is a unique η2 = (y · · ·〉 ∈ A such
that ω1 = η2hγ = 〈· · · yγ · · ·〉. Define δ on S(ω) in such a way that ωδ∗ = ω1 and
(xβ)δ = yγ .

Let ω ∈ Bhβ . Then there is a unique ω1 = 〈· · · x−1 x0 x1 · · ·〉 ∈ B such that
ω = ω1hβ = 〈· · · x−1β x0β x1β · · ·〉. Let ω2 = ω1hγ = 〈· · · x−1γ x0γ x1γ · · ·〉. We
define δ on S(ω) in such a way that ωδ∗ = ω2 and (xiβ)δ = xiγ for every i ∈ Z.

Let λ ∈ Cnhβ , where n ≥ 1. Then there is a unique λ1 = (x0 · · · xn−1) ∈ Cn such
that λ= λ1hβ = (x0β · · · xn−1β). Let λ2 = λ1hγ = (x0γ · · · xn−1γ ). We define δ on
S(λ) in such a way that λδ∗ = λ2 and (xiβ)δ = xiγ for every i ∈ {0, . . . , n − 1}.

So far, we have defined δ on S(µ) for every µ ∈ im(hβ). In particular, δ has been
defined for every x ∈ im(β). It remains to complete the definition of δ in such a way
that δ ∈ 0(X) and δ ∈ C(α). This we do exactly as in the last part of the proof of
Theorem 4.7 (the part that starts with the line preceding the displayed definition of the
mapping k).

The construction of δ is complete. By the definition of δ, Theorems 3.9, 4.4, and 4.7,
we have δ ∈ 0(X), δ ∈ C(α), βR(βδ), and (βδ)Lγ . Thus, (β, γ ) ∈R ◦ L=D,
which completes the proof. 2

In the semigroup 0(X), Green’s relations R, D, and J coincide and the J -classes
form a chain (see Section 2). It is of interest to describe α ∈ 0(X) for which Green’s
relations coincide in C(α), and α ∈ 0(X) for which the J -classes form a chain. These
descriptions will be provided in a subsequent paper. In that paper, we will also find the
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structure of C(α) in terms of direct and wreath products of familiar semigroups in the
case where α is a permutation.
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