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THE STRUCTURE OF SCHUR ALGEBRAS Sk(n,p) FOR n>p 

CHANGCHANG XI 

ABSTRACT. By exploiting the known quasi-heredity of Schur algebras, the structure 
of basic algebras of the Schur algebras Sk(n,p) for n > p over an algebraically closed 
field k is completely determined. 

Let k be an algebraically closed field and n > r positive integers. Following 

J. A. Green [G, 2.6c], the Schur algebra S(n, r) can be defined as the endomorphism ring 

of the r-fold tensor product of an «-dimensional &-space E considered as a right kG(r)-

module; where G(r) is the symmetric group of degree r (acting on the tensor product 

canonically). 

It is known (see [G], 6.5g) that the Schur algebra S(n, r) is Morita equivalent to S(r, r). 

Moreover, if the characteristic p of the field k is zero or r < /?, then the Schur algebra 

S(r, r) is semisimple ([G], 2.6e). In this paper we consider the case p > 0 and r = p. The 

main result is the following theorem. 

THEOREM. Let k be an algebraically closed field with characteristic p > 0. Then 

each block of the Schur algebra S(n,p) with n > p is either simple or Morita equivalent 

to the path algebra P (over k) of 

o i—) o <—Î o • • • o 4 o, m > 1 
Pi Pi Pm-l -

modulo the ideal generated by 

ocioct+u j3i+i/3i, oci+iPi+\ - facet, \<i<m- 1; a\Pu 

where m depends only on p. Moreover, there is only one non-simple block. Thus, in par­

ticular, S(n,p) is a quadratic algebra (i.e., the relations for the algebra are generated by 

elements of degree 2). 

Note that the non-trivial block of S(n,p) is Morita equivalent to the quotient of the 

quasi-Frobenius algebra B — P/ J with 

J= (aiOCi+uf3i+if3h(Xi+\(3i+\ - f t a / , 1 <i<m- \;<xil3\aul3m-\am-\l3m-\) 

by the simple ideal (oc\/3\ +J), and that, in turn, B is a trivial extension of the path algebra 

of 
a\ am-\ 

O y O • • • O • O, m > 2 
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modulo the ideal ( ctiCti+\ | 1 < i < m — 2). 
The proof of the theorem is based on the description of the quasi-hereditary endomor-

phism algebras of the form End^ (AA © Af), where A is a symmetric algebra (Section 2) 
and the following description of the Schur algebras. 

PROPOSITION. The Schur algebra S(n,p)for n > p is Morita equivalent to an alge­
bra of the form EndkG(p)\kG(p) 0 M\ where M is a simple kG(p)-module. 

Indeed, since S(n,p) is quasi-hereditary (see e.g. [P]), the basic algebra of S(n,p) can 
be deduced from Theorem 2.8 of Section 2. 

1. Preliminaries: definitions and basic facts. Throughout this paper, all algebras 
are finite-dimensional algebras with 1 over an algebraically closed field k, all modules are 
finitely generated left modules. For an algebra A we denote by TV (or rad(A)) the Jacobson 
radical of A. For a module M, Soc(M) is the largest semisimple submodule of M, Top(M) 
is the largest semisimple factor module of M. 

If an algebra A is given by a quiver Q = (Qo, Q\) with relations, we denote by P(x), 
S(x) and ex, for x G QQ, the indecomposable projective module, the simple module and 
the primitive idempotent corresponding to the vertex JC, respectively. For the other nota­
tions about quivers in this paper we refer to [R, 2.2]. 

Let / be an ideal of an algebra A and a E A (or J C A). By à (or J) we denote the 
image of a (or J) under the canonical map A-^A/I. 

Let us now recall some definitions. 
(1) An ideal / of an algebra A is called a heredity ideal of A if 

0) I=I\ 
(ii) INI = 0, 

(iii) /J is a projective A-module. 
(2) An algebra A is called quasi-hereditary (see [CPS]) if there is a chain 

0 = / 0 C / i C - C / „ = A 

of ideals of A for some natural number n such that /// /;_i is a heredity ideal of A/ /,_i, 
for / G { 1, . . . , n} . In this case, the chain is called a heredity chain. If a heredity chain 
cannot be refined to another heredity chain, then it is called maximal. 

Recall that quasi-hereditary algebras are introduced by Cline, Parshall and Scott in or­
der to study highest weight categories arising in the representation theory of Lie algebras 
and algebraic groups. We shall frequently use the results on quasi-hereditary algebras in 
[DR]. 

(3) An algebra A is called a quasi-Frobenius algebra if the projective modules coincide 
with the injective modules. 

(4) An algebra A is called symmetric if A admits a non-degenerate bilinear form/: A x 
A —• k which is associative: 

f(ab, c) = f(a, be) 
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and symmetric: 
f(a,b)=f(b9a) 

Observe that symmetric algebras are quasi-Frobenius algebras and that connected 
non-simple quasi-Frobenius algebras have no heredity ideals (this follows easily from 
the part ( 1 ) of the following Proposition 1.1). 

Concerning basic facts on symmetric algebras and quasi-Frobenius algebras we refer 
to [K] and [CR]. 

The following proposition is easy to prove: 

PROPOSITION 1.1. (I) Let e be a primitive idempotent of an algebra A such that AeA 
is a heredity ideal. Then every non-zero homomorphismfromAe to a projective A-module 
is a monomorphism. 

(2) Let M be an A-module such that addSoc(M) = addTop(M), and End^M) is 
quasi-hereditary. Then M has a simple direct summand. 

As a consequence of the above proposition we have the following fact. 

THEOREM 1.2. Let A be a connected non-simple quasi-Frobenius algebra and M 
a non-zero A-module. If the endomorphism algebra End^dA 0 M) is quasi-hereditary, 
then M has a simple direct summand. 

This result reduces the investigation of whether there is an indecomposable module 
M over a given symmetric algebra A such that End^A 0 M) is quasi-hereditary to the 
case where M is a simple module. In the next section we shall deal with this question in 
detail. 

COROLLARY 1.3. Let G be a finite group. We denote by b(G) the number of blocks 
of the group algebra A := IcGofG which has non-zero radicals. If there is a module M 
such that End^CiA 0 M) is quasi-hereditary, then the number of non-isomorphic simple 
summands of M is not smaller than b(G). 

In general, we have the following fact. 

REMARK 1.4. Let A be an algebra which has no heredity ideal and M be an indecom­
posable module such that End^A 0 M) is quasi-hereditary. Then Misa non-projective 
torsionless module (i.e. a submodule of a free A-module). 

PROOF. AS A has no heredity ideal, the one point extension of A by M can never 
become a quasi-hereditary algebra. By Proposition 1.1 (1), M is a torsionless module. 

2. Quasi-heredity of End(^A 0 M). In this section we shall study connected basic 
symmetric algebras A with the property that there is an indecomposable module M such 
that EndAGiA 0 M) is quasi-hereditary. We may assume that M = Soc(P(l)) and AA = 
P(l) 0 • • • 0 P(n). Put E := End^GiA 0 M). Throughout this section we shall keep these 
assumptions and notations. 
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In general, given a symmetric algebra B, the algebra End^Z? 0 M) need not be a 
quasi-hereditary algebra for any indecomposable module M. Consider, for example, the 
symmetric algebra given by the following quiver with the relation: 

O a, a3 = 0. 
Assume that End#(# 0 M) is quasi-hereditary. Then M must be simple, but one can 

easily see that Endfi(##0M) is not quasi-hereditary. This algebra is representation finite. 
Later we shall see that for representation infinite symmetric algebras B, End^Z? 0 M) 
is never quasi-hereditary. 

Before we state our next result, we need the following well-known fact. 

LEMMA 2.1. Let B be a basic, quasi-Frobenius algebra and P an indecomposable 
projective left ideal ofB. Then socle Soc(P) ofP is an ideal ofB. 

PROPOSITION 2.2. Let Abe a symmetric algebra. Then E is quasi-hereditary if and 
only if A/ M is quasi-hereditary. 

PROOF. Let us denote by fn+\ the idempotent of E which projects AA(& M canon-
ically onto M. Note that M is an ideal of A by Lemma 2.1 and that the algebra E is 
quasi-hereditary if and only if Ej Efn+\E is quasi-hereditary. Since Top(P(l)) = M — 
Soc(P( 1)) is a simple module, the latter is equivalent to that Aj M is quasi-hereditary. 

LEMMA 2.3. Let A be a symmetric algebra such that Aj M is quasi-hereditary. Then 
(1) dimHom(P(l),P(l)) = 2. 
(2) Aj Ae\A is quasi-hereditary. 

PROOF. It is obvious that the ideal of À := Aj M generated by ë, = et+ M can not 
be a heredity ideal of À for / € { 2 , . . . , n}. Since A is symmetric and ë\Në\ — 0, we 
infer that dim Hom(P(l ), P(l)) = 2. It is clear that Aj Ae\A is quasi-hereditary, because 
Aj Ae\A = (Aj M)/(Ae\Aj M) and Ae\ Aj M is the first term of a heredity chain ofÂ. 

REMARK 2.4. Let A and M be as in 2.3. Set B = Aj Ae\ A. Suppose Be^B is a minimal 
heredity ideal of B. Then dimHom(P(2),F(2)) = 2 and dimHom(P(l),P(2)) = 1. 

PROOF. It follows from ë2Në2 = 0 and dimHom(P(l),P(l)) = 2, together with 
Hom(P(l), P(2)) ^ 0 that dimHom(P(2), P(2)) = 2. Thus the last claim in the remark 
becomes now trivial, because the ideal Â(e\ 0 M)Â is a minimal heredity ideal of Aj M. 

DEFINITION. A module M is called serial if the Loewy series 

MDNMD N2M D • • • D NrM = 0 

is the unique composition series of M. 
An algebra is called serial if for every primitive idempotent e, the module Ae and the 

right A-module eA are serial. 
Using 2.2 and 2.3, we can easily verify that for a serial symmetric algebra with more 

than two simple modules (this should mean two isomorphism classes of simple modules), 
there is no indecomposable module M such that End^U^ 0 M) is quasi-hereditary. 

As another consequence of 2.2, we have the following useful lemma. 
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LEMMA 2.5. Let A° denote the opposite algebra of A. Then for a symmetric algebra 

A, there is an indecomposable module M such that E n d ^ A 0 M) is quasi-hereditary if 

and only if this property holds for A°. 

PROOF. This follows from 2.2 and the facts that an algebra R is quasi-hereditary 

if and only if R° is quasi-hereditary, and that for any ideal / of R, it always holds that 

(R/l)° ^R°/l°. 

PROPOSITION 2.6. Let A be a symmetric algebra which possesses an indecomposable 

module M such that E is quasi-hereditary. Then there is an indecomposable projective 

module P which is serial and ofLoewy length L(P) < 3. 

PROOF. In the following we want to show that P : = P( 1 ) is a serial module. We may 

assume that n > 2. 

Let Â = A/ Soc(P) and 

0 C Aê\Â C À(ë\ + ë2)Â C • • • C À(ë\ + • • • + ën)Â = A 

be a heredity chain of A. By Proposition 1.1, theÂ-moduleÂëi is a submodule of Âë2 = 

Ae2. Thus the A-module Âë\ has a simple socle which is isomorphic to 5(2), that is, 

S o c V ) / Soc(P) ^ 5(2). Dually, we have that rad(P)/ rad2(/>) ^ 5(2). Since 

dim Hom(P(2), p ) = 1, the Loewy series of P must be of the following shape: 

P( l ) D rad(P(l)) D Soc(P(l)) D 0 

with P(\)j rad(P(l)) ^ 5(1), rad(/>(l))/ Soc(P(l)) ^ 5(2) and Soc(P(l)) = 5(1). 

This finishes the proof. 

The following theorem establishes a complete description of a symmetric algebra A 

with the property that the endomorphism algebra End^UA 0 M) of the module ^ © M 

is quasi-hereditary for every simple module M. 

THEOREM 2.7. Let A be a symmetric algebra with rad(A) ^ 0. If for every simple 

module M, the algebra End^UA 0 M) is quasi-hereditary, then A is one of the following 

algebras: 

(1) O a, a2 = 0; 
(2) o ^ o , aj3oc = (3a(3 = 0. 

PROOF. We denote by L(X) the Loewy length of a module X. By Proposition 2.6, 

P(i) is a serial module of L(P(/)) < 3 for all /. Since rad(A) ^ 0 and A is connected, we 

get L(P(/)) T̂  1. If there is one / such that L(P(i)) = 2, then A is of the form (1). Now 

we may assume that all P(i), i = 1 , . . . , n, have Loewy length equal to 3. In this case, we 

get from the remark before Lemma 2.5 that A must be of the form (2). 

THEOREM 2.8. Let A be a connected basic symmetric algebra and M the socle of an 

indecomposable projective left ideal of A such that Aj M is quasi-hereditary. Then A is 

a simple algebra, or isomorphic to k[T]/ (T2)y where k[T] is the polynomial ring in one 
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variable T, or there is a natural number n > 2, such that A is the path algebra of the 
following quivers 

o < — - o <—- o • • • o « — > o, n > 2 

modulo the ideal generated by 

cti-\au /81/81-1, aiPi-Pi-\(Xi-ifori = 2,...,n-l; 

a\P\au pn-\an-\(3n-\. 

PROOF. Assume that rad(A) ^ 0. Let À = A/M and 

0 C ÂëiÂ C Â(êi + ê2)Â C • • • C Â(êi + • • • + ën)Â 

be a heredity chain for Â. If « = 1, then the algebra must be simple or of the form 
k[T]/ (T2). Suppose n>2. We denote by cy the Cartan-invariants (i.e. Qj = dime/Ae,-)-
If P(2) is serial, then A must be the algebra above in the case n — 2, because we know 
from 2.6 that q, = 0 for ally ^ {1,2}. Now suppose P{2) is not serial. Then it follows 
from the heredity of the ideal AêxA and 2.6 that rad(/>(2))/ Soc(P(2)) = 5(1) ® K2. 
Let I\ = Ae\A and Ai — A/1\. Since en = 0 and A\(e2 + h)A\ is a heredity ideal of 
A\, one gets that C23 ^ 0; thus dimHom(P(3),^2) 7̂  0- Since Ai is quasi-hereditary 
and the ideal A\ê2A\ is a heredity ideal of A1, we have, by Proposition 1.1, that A\ë2 is 
a submodule of Ai £3 = Ae^. Thus A^ has a simple socle which is isomorphic to 5(3). 
Dually, we can show that K2 has a simple top which is isomorphic to S(3). But from 
C22 = 2 and en = 0 it follows that C23 = 1 and C33 = 2. This means K2 = 5(3). So the 
structure of P(2) is completely determined. So if we repeat the above argument, then we 
get, after finitely many steps, the following Loewy structures of projective modules P(i), 
i = 1,... ,m: 

P(\) P(2) P(m) 

5(1) S(2) 

I / \ 
5(2) 5(1)5(3) 

I \ / 
5(1) 5(2) 

Since A/ A(e\ + • • • + em)A is quasi-hereditary, we deduce that m — n. From the 
above structures it follows easily that the algebra A is given by the quiver with relations 
described in the theorem. 

The converse of the above theorem holds. 

S(m) 

S(m- 1) 

S(m). 
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LEMMA 2.9. If A is given by the quiver with relations in 2.8, then there exists an 

indecomposable module M such that End^C^ 0 M) is quasi-hereditary. 

PROOF. Let M = Soc(P(l)) or M = Soc(PO)). Then one can readily verify that 

the algebra E n d ^ A © M ) is quasi-hereditary. 

COROLLARY 2.10. Let Abe a symmetric algebra which has infinite representation 

type. Then there is no indecomposable module M such that E n d ^ A 0 M) is quasi-

hereditary. 

PROOF. Note that the algebras given in 2.8 are representation-finite. Thus the corol­

lary follows. 

COROLLARY 2.11. Let A be a non-simple, connected basic algebra. Then the follow­

ing are equivalent: 

(i) A is symmetric and there is an indecomposable module M such that End^ (AA 0 M ) 

is quasi-hereditary, 

(ii) The algebra A is a Brauer tree algebra with an open polygon graph having no 

exceptional vertex (for the definition see [A]). 

PROOF OF THE MAIN THEOREM. We give first the proof of the proposition in the 

introduction. Let £ be a &-space of dimension n and E®p be the p-fo\d tensor power of 

E. Then kG(p) is a direct summand of the /cG(p)-module E^p. Thus S(n,p) is of the form 

EndkGip^kGip) 0 Mj for some fcG(p)-module M. Since S(p,p) has one simple module 

more than kG(p) does (see [G, 6.4b]), the proposition follows now by [G, 6.5g] and 

Theorem 1.2. 

Now we turn to the proof of the theorem. By the proposition, the algebra S(n,p) is of 

the form EIKUGIA 0 M) with A = kG(p) and M an indecomposable module. Since the 

Schur algebra is quasi-hereditary, the basic algebra of S(n,p) must be of the desired form 

in the theorem by Theorem 2.8. 
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