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A MORE COMPREHENSIVE COMPLEMENTARY
THEOREM FOR THE ANALYSIS OF
POISSON POINT PROCESSES
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Abstract

In this paper we discuss the complementary theorem applied to the typical n-tuple of a
Poisson point process. The theorem was first presented by Miles in 1970 and discussed
by Santaló in 1976 and, within a Palm measure framework, by Møller and Zuyev in
1996. The theorems put forward by these authors are not correct for all the examples that
they present, suggesting that further consideration of their work is needed if one wishes
to bring all those examples within the ambit of the complementary theorem. We give
alternative analyses of the errant examples and, with a modification of the technicalities
in the work of the above authors, move toward a more comprehensive complementary
theorem. Some open issues still remain.
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1. Introduction

Consider firstly a Poisson point process in R2 of intensity ρ. This is also called a Poisson
particle process by some authors, to allow easy distinction between the random ‘particles’ of
the process and other points of the space.

Miles [5] showed that a random domain � constructed from a typical n-tuple of Poisson
particles and containing m ≥ 0 other particles (or ‘m-filled’ in Miles’ terminology) has �(n +
m − 1, ρ)-distributed area. He required some regularity conditions (which we discuss below
in Section 2) on the way that � is created, but these conditions still allow a vast repertoire of
imaginative and intricate constructions. Consider Figure 1(a), which shows a 5-filled realisation
of a domain � constructed as follows.

Example 1. Define the diametrical disk of two particles x1, x2 ∈ R2 as the disk having the
line-segment x1x2 as a diameter. Let n = 3. Draw all three diametrical disks based on the
three possible pairs of particles and construct � as the union of the two largest disks minus the
smallest disk.

Miles’ powerful result tells us that the area of such a 5-filled � has a �(7, ρ) distribution,
if the selected 3-tuple of particles on which it is based is ‘typical’. A direct verification of this
result using not Miles’ theorem but, rather, routine methods of integral calculus and geometry
would be very complicated indeed.

Miles called his result the complementary theorem because the problem of finding the
distribution of the area of a random domain filled with a given number of particles is the
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(a) (b) (c)

Figure 1: Three examples for � based on typical 3-tuples. In each, � is the shaded domain. (a) A typical
� for Example 1. It happens to be 5-filled. (b) A 7-filled � based on Example 2, below. (c) A 2-filled
� based on Example 3, below. The realised Poisson process extends beyond the observation window in

each figure.

complement of a more direct problem, namely finding the distribution of the random count of
particles within a given domain. In his later work [6], Miles generalised the theorem to deal
with the volumes of domains constructed from Poisson particle processes in Rd – with further
generalisation to constructions based on Poisson flat processes. His definition of a typical
collection of n particles (or flats) was an ergodic one.

In Theorem 4 of Møller and Zuyev [8], the result of Miles for s-dimensional flats within
d-dimensional space is given, proved by those authors using a Palm measure definition of
typicality. When s = 0, that is, when the flats are points (or, as we say, particles), the result is
a domain with �(n + m − 1, ρ)-distributed volume – in agreement with Miles.

One difference between the authors is in the constructive use of information given in the
n-tuple. Miles allowed � to depend on the order of the particles within the typical n-tuple;
Møller and Zuyev did not, but their approach can be adjusted easily to allow this feature and
we do this below when establishing our technical framework.

Another difference is the provision in [5] for domains � which could have zero volume for
some n-tuples; the mathematics in [8] makes no allowance for this feature. Care on this issue
is only important when m = 0; Miles is careful in such cases to state the gamma-distributional
results for volume V as being conditional upon V > 0 (thus avoiding the obvious mass of
probability that would accrue at V = 0 due to domains � of zero volume being 0-filled almost
certainly). The spirit of his complementary theorem requires a focus on domains of positive
volume, which have a positive chance of being hit by other particles. Our treatment will allow
this provision of Miles.

Two examples worked through in both [5] and [8], and again in [9, pp. 18–19], are for n = 3
and d = 2. One of these is treated incorrectly in all three studies.

Example 2. Define � as the closed circumdisk having the three particles on its boundary. See
Figure 1(b).

Example 3. Define � as the convex hull of the three particles or, in other words, the triangle
having the particles as vertices. See Figure 1(c).

In both these examples, the theorem says that an m-filled � has an area which is �(m+2, ρ)-
distributed. We show below that this claim is unsustainable in the second problem, Example 3.
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The area derived in our analysis, admittedly one based on a new theory which is not yet complete
in all aspects, is actually �(m + 1, ρ)-distributed.

We have found other examples where the shape parameter of the gamma distribution is not
what one would expect from a cursory application of the existing complementary theorems
of [5] and [8]. These examples are presented in the course of our discussion.

The classical complementary theorem for typical n-tuples was discussed in [1], but none of
the examples considered there violate the classical theorem of Miles, and so do not concern
us here. Some different complementary theorems, for domains which are not constructed
from typical n-tuples, have been presented: for domains which evolve as stopping sets, by
Zuyev [12]; and, for domains uniquely determined by the realised Poisson process, in the early
sections of [8]. The current paper does not discuss these.

We now proceed to develop our technical framework. In doing so, we define the main
regularity condition of Miles (called the equivariance condition). We also introduce other
conditions implicitly used by Miles and by Møller and Zuyev, being necessary for their and our
results.

In due course we re-establish the ‘classical’ theorem, but with more clearly stated conditions;
see Theorem 1. These conditions (perhaps not initially meaningful to the reader in this early
statement of Theorem 1) will be clarified by definitions and examples in Sections 2–6 (and by
the proof in Section 6).

Theorem 1. (The classical complementary theorem revisited.) Consider a Poisson particle
process in Rd . For a typical n-tuple whose associated domain � has positive volume and is
m-filled, the volume, V , of � is �(n + m − 1, ρ)-distributed provided that

• the transformation, �, which defines the construction of � is equivariant, nonrandom,
and with no superfluous arguments;

• the resulting domain � has finite volume with probability 1; and

• λ, the intensity of the point process formed by anchors of all qualifying n-tuples, is finite
and positive.

In Sections 7–12, further new results and discussions give insights into Theorem 1 and
offer suggestions for extending the domain of applicability of the ‘complementary theorem
techniques’ – especially to the case where λ is not finite.

2. Technical framework for the theorem

Our notation follows the text of [11] in most respects, with some changes as our needs
dictate. We are also conscious of compatibility with the logical flow of [5] and [8] (especially
the latter, in this early stage of our discussion).

Let (�, A, P) be the probability field and let (Rd , Bd , νd) be the usual measure space for
d-dimensional space, νd being the Lebesgue measure on the Borel sets Bd . Let N be the set of
all σ -finite measures on Bd of the form ϕ = ∑

i niδxi
, where the points xi ∈ Rd are distinct

and the integers ni ≥ 1 are the point multiplicities. Here δx is the Dirac measure on Bd and,
so, each ϕ ∈ N is a counting measure. We endow N with a σ -field N which is generated by all
sets of the form {ϕ ∈ N : ϕ(B) = n} for B ∈ Bd and n = 0, 1, 2, . . . .

Let � be the stationary Poisson particle process on Rd with intensity ρ > 0. In other
words, � is a mapping from � to N having the defining characteristic of a stationary Poisson
particle process, namely that, for disjoint sets B1, . . . , Bk ∈ Bd , the counts �(B1), . . . , �(Bk)
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Figure 2: At the top is the realisation of a Poisson particle process on R shown within I := [−L, L].
Below is the product process on J × J ⊂ R2, where J ⊂ I . Heavier dots in the product process indicate
that the associated domain �, using the example mapping in Example 4, below, is 0-filled. At the bottom
are two marked point processes constructed from the product process in a manner discussed in the text.
The marks are given by the lengths of lines extending upward from the points. Note that germs in the

darkly shaded region have domains � with volume (length) less than v.

are mutually independent random variables. These counts are also Poisson distributed, �(Bi)

having mean ρνd(Bi). The particles xi each have multiplicity ni = 1 in the process �.
Since we have an interest in n-tuples of distinct particles of �, we consider an n-fold product

process: a Cartesian product of �, modified to remove n-tuples which have two or more equal
components. For example, when n = 2 we define

�[2](A × B) := �(A)�(B) − �(A ∩ B)

for A, B ∈ Bd and extend this to (Bd)2, all Borel sets of Rd × Rd . The random counting
measure �[2] is a particle process (not Poisson) on Rd × Rd having intensity ρ2. Figure 2
shows the ‘product process’ for an example in which d = 1 and n = 2.

For a general n, we can use the following construct as our definition of �[n] on (Bd)n,
creating a random ‘product process’ on (Rd)n with intensity ρn:

�[n](dx1 × · · · × dxn) := �(dx1)(� − δx1)(dx2) · · ·
(

� −
n−1∑
i=1

δxi

)
(dxn).

For ease of reference, we call these particles in the product process germs.
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For each germ in the product process or, equivalently, for each n-tuple of original Poisson
particles, we wish to define a domain � ∈ Bd of finite volume. We do this by defining a mapping
� from (Rd)n to Bd such that the resulting domain, � := �(x1, x2, . . . , xn), has finite volume
for all (x1, x2, . . . , xn) ∈ (Rd)n. We also impose the condition that � be nonrandom, have
no superfluous arguments (that is, any � defined by a proper subset of the components of the
n-tuple is not allowed), and have a form of ‘scale and translation equivariance’ as follows.

Let a be a transformation of the space Rd of the form ax = αx + y for all x ∈ Rd , where
α > 0 and y ∈ Rd . The set of all such transformations is denoted by T . Note that T is a subset
of the set of affine transformations. We require that � satisfy

�(ax1, ax2, . . . , axn) = a�(x1, x2, . . . , xn) (1)

for all a ∈ T . Miles, who imposed this condition, referred to such � as homothetically
invariant but we shall use the term equivariant. Each germ is associated to its domain � via
the equivariant mapping �.

We note in passing that this form of equivariance implies that n ≥ 2 (except in the trivial
n = 1 case, where �(x1) = {x1}, a one-point set) and that the domain � does not use any points
of Rd , other than those in the n-tuple argument of �, in its definition. Note also that ‘affine
invariance’ of �, by which we mean the identity (1) holding for any a in the affine class, is not
implied by equivariance. An equivariant transformation � may, however, have the additional
property of affine invariance, as in Example 3.

Example 4. An equivariant � illustrating, for n = 2, a dependence on the order within the
n-tuple, a feature allowed in [5] but not in [8], is the following ‘annulus’ centred on x1, where
Br(x) is the closed ball with centre x and radius r:

�(x1, x2) := B‖x1−x2‖(x1) \ B‖x1−x2‖/2(x1).

There is, of course, no superfluity of arguments.

Example 5. Let d = 2 and n = 2 and define � as the rectangle having the two particles
as opposite corners and sides parallel to the Cartesian axes. We have equivariance and order
invariance; the lack of ‘rotational invariance’, that is, the failure of (1) to hold when a is an affine
transformation with a rotational component, does not invalidate the complementary theorem.

Example 6. Let �(x1, . . . , xn) := ⋃n
i=1 B1(xi). This is not equivariant, as the common radius

of the balls is fixed in the definition of �.

Example 7. Let d = 2 and n = 2 and define � as the closed circumdisk having both particles
and the origin, O, on its boundary. This is not equivariant. Note that a reference point outside
the n-tuple is used in the construction.

Example 8. Let d = 2 and n = 3 and define � as either the circumdisk of the three particles
or the domain that we used in Example 1, the choice being decided by a random coin toss. The
complementary theorem does not apply here, because � is random.

Example 9. Let n = 3. Define � by the equivariant map

�(x1, x2, x3) = B‖x3−x1‖∨‖x2−x1‖(x1) \ B‖x3−x1‖∧‖x2−x1‖(x1).

This is an annulus centred on x1 with radii dictated by the other two particles. Thus, the
definition is order dependent. We show later that the complementary theorem of earlier authors
cannot be applied to this example.
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Example 10. Use the mapping of Example 9 if the volume of the annulus is greater than the
volume of its hole; otherwise, define � := ∅. This mapping is still equivariant.

Example 11. This is a censored version of Example 3. Define � as in Example 3 when the
triangle formed by the 3-tuple is acute angled; if not, define � := ∅. The mapping is equivariant
and order invariant.

Example 12. Let n ≥ 3 and d = 2. Define � as the diametrical disk of x1 and x2. The
remaining points in the n-tuple are obviously superfluous; if counted, they lead to a false
conclusion regarding the shape parameter of the gamma distribution (except when all xj ∈
�, 3 ≤ j ≤ n).

Figure 2 shows, with heavier dots, the germs whose associated domains � (using the map
� of Example 4) are 0-filled.

3. Anchors, marks, and typicality

The concept of ‘typical n-tuple’can be best introduced by establishing a marked point process
derived from the realised Poisson particle process. We can then draw upon the comprehensive
discussion of typicality (within the context of marked point processes) in [11, pp. 105–109],
and use notation compatible with that reference.

Let us assign a reference point (or anchor) for each � or, more precisely, for each germ
(x1, . . . , xn). One choice, used by Miles and named the base particle, is the first component
of the n-tuple, namely x1. More generally, we define an anchor map z : (Rd)n → Rd , which
is equivariant under scaling and translation; by this we mean (as before) that

z(ax1, ax2, . . . , axn) = az(x1, x2, . . . , xn)

for all transformations a ∈ T . The base particle is a valid anchor, but sometimes other choices
are more natural or more convenient technically. Obviously the mapping z may depend on the
order of particles in the germ.

We now focus attention on a new marked point process, in the original space Rd , generated
from the germs of the product process which have m-filled associated domains �. Commence
by fixing the constants n and m and the mappings z and � in advance. Then, for each germ
with an m-filled � of positive volume, place a point in Rd at the location of that germ’s anchor.
Endow that point with a (necessarily positive) mark which is the volume, V , of �.

For Example 4, in Figure 2 two versions of this marked point process (using m = 0) are
shown beneath the product process. The first version uses the base particle as anchor, which
is a seemingly natural choice; with this choice, the region in product space where germs have
their anchor in B is shown as a lightly shaded rectangle. We also see that the marked point
process has points with multiplicities (shown in a vertical stack of dots). Furthermore, each
germ contributing to a point’s multiplicity provides a mark (shown schematically in Figure 2
by the length of a slanted line extending from the anchor generated by that germ). If we instead
define the anchor of (x1, x2) by (x1 + 3x2)/4, the second version pertains. Note that this has
no multiple points and only one, vertically drawn, mark per location.

Why do we emphasise that the mark V must be positive for the inclusion of a marked point
at the anchor? This stipulation deals with an issue that arises when m = 0. Examples 10 and 11
have � := ∅ for some n-tuples. These empty domains will be 0-filled with certainty. When
m = 0, our theorems are based (following the style of Miles) on domains of positive volume
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which are 0-filled by chance, not simply because they are the null set or have zero volume for
other reasons (for example being of lower dimension).

Marked point processes were discussed in [11, Section 4.2]. A marked point process is
an ordinary point process, 
 say, on the space Rd × M, where M is the mark space (a space
endowed with its σ -algebra M). We say that Rd is the carrier space. A marked point process
creates a point process in the carrier space, called the projected process, when the marks are
ignored.

Our concern is with stationary marked point processes. A marked point process 
 is
stationary if the distribution of 
 is invariant under any translation applied within the carrier
space. In such circumstances, the projected process is also stationary with intensity denoted
by (say) λ. Stationarity implies that, for any L ∈ M, E 
(·, L) is proportional to the Lebesgue
measure; we let λL be the proportionality constant (so λ is short for λM).

In general, the projected process may have multiplicities, though this aspect was not empha-
sised in [11]. The structures in [11] do, however, accommodate multiple points in the projected
point process (if the reader thinks of the simple counting-measure space N in [11] as being
allowed multiplicities, as is our N). Following [11], let M be the Palm distribution of marks.
For each L ∈ M, this is defined (in the stationary case) as

M(L) := E(count of points in B with marks in L)

E(count of points in B)

= E 
(B × L)

E 
(B × M)

= λLνd(B)

λνd(B)

= λL

λ
, (2)

provided that both numerator and denominator are finite and positive. Here B ∈ Bd is an
arbitrary Borel set of positive, finite volume. The typical mark is defined as a random variable
on (�, A, P) having M(·) as its distribution.

We also label our marked point process (marks being positive volumes of m-filled domains �

placed at n-tuple anchors) using the symbol 
. Now M = (0, ∞) and a well-behaved Palm
distribution (2) satisfying the provision that accompanies (2) gives the following distribution
function for marks, for v > 0:

F(v) := P{typical mark is less than or equal to v}
= M((0, v])
= E 
(B × (0, v])

E 
(B × (0, ∞))

= λ(0,v]
λ

. (3)

Thus, the typical volume V is defined as a random variable defined on (�, A, P) and having
distribution function given by (3).

Here λ is the intensity of anchors for n-tuples whose domain � is m-filled with positive
volume, and λ(0,v] is the intensity of the subset whose volume lies in (0, v]. Both of these
intensities are independent of the choice of z used, a fact proved at the end of this section. Now,
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λ(0,v]νd(B) equals

E
∫

· · ·
∫

z(x1,...,xn)∈B
νd(�(x1,...,xn))>0

1
(

νd(�(x1, . . . , xn)) ≤ v,

(
� −

n∑
i=1

δxi

)
�(x1, . . . , xn) = m

)

× �[n](dx1 × · · · × dxn), (4)

using the indicator function 1(·). The denominator of (3) can be found similarly, but with the
constraint involving v removed. Accordingly,

λνd(B) = E
∫

· · ·
∫

z(x1,...,xn)∈B
νd(�(x1,...,xn))>0

1
((

� −
n∑

i=1

δxi

)
�(x1, . . . , xn) = m

)

× �[n](dx1 × · · · × dxn). (5)

Our definition (3) for the distribution of volume for m-filled domains �, augmented by (4)
and (5), is essentially the same as that used by Møller and Zuyev [8], except that our technical
setting using marked point processes differs from theirs. Moreover, they omitted the condition-
ing on {V > 0} and the possible order dependence. There can be problems with definition (3),
however, and the similar definitions of [8], if the numerator and denominator in (3) are infinite.
We shall see that this is the case in some examples, notably Example 3.

Another representation of the distribution of the ‘volume’ mark V is given by the moment
generating function. Using just � as shorthand for �(x1, . . . , xn), without forgetting the
dependence on the germ, E esV equals

1

λνd(B)
E

∫
· · ·

∫
z(x1,...,xn)∈B

νd(�)>0

esνd (�) 1
((

� −
n∑

i=1

δxi

)
� = m

)
�[n](dx1 × · · · × dxn). (6)

Marks can, of course, be more general. The most general for our purposes is the full
configuration of each n-tuple of particles whose domain � is m-filled. The configuration cn of
an n-tuple lists the position of each particle relative to the anchor z; thus, cn = (x1 − z, x2 −
z, . . . , xn − z), where order may be important. The space of configurations, denoted by C with
its σ -algebra C, is the space of all n-tuples of points (which may or may not be particles) in
Rd whose anchor lies at the origin. Because a configuration is invariant under translations of
its defining n-tuple in the carrier space, the resulting marked point process, 
∗ say (arising
from n-tuples of particles whose domains � are m-filled with positive volume), is stationary
and (2) can be used to provide the distribution, M∗, of the typical ‘configuration mark’. From
(2), with λL now equal to λ{cn : cn∈L},

M∗(L) = E 
∗(B × L)

E 
∗(B × M)
= λL

λ
, (7)

where we note that the denominator is the same as in (3). A ‘typical configuration’cn is defined
as a C-valued random variable on (�, A, P) having M∗(·) as its distribution.

When V > 0, we may have an interest in g(cn), where g is a real-valued function on C; V

itself is an example of such. Note that any function g on (Rd)n invariant under translations has
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a restriction to C, and that any g on C has a unique extension to a translation-invariant function
on (Rd)n. An expression similar to (6) provides the expectation of g(cn) (when � is m-filled
with positive volume, of course):

E g(cn) = 1

λνd(B)
E

∫
· · ·

∫
z(x1,...,xn)∈B

νd(�)>0

g(cn) 1
((

� −
n∑

i=1

δxi

)
� = m

)

× �[n](dx1 × · · · × dxn). (8)

Formula (8) with g(cn) := 1(cn ∈ L) provides a way of calculating (7).
We conclude this section by noting that λ and λL (and, hence, λ(0,v]) are independent of the

choice of z used. One can prove this using Campbell’s theorem for marked point processes (see
Equation 4.2.4 of [11]). The equivariant property is an essential condition used in the proof.
(Møller [7, p. 46] discussed an equivalent issue for the choice of centroids (i.e. anchors) of the
facets in d-dimensional tessellations.)

4. The Mecke–Slivnyak formulae

The analysis of integrals like those in (4)–(8) would be rather difficult, were it not for an
identity established by Mecke [4] (and also establishable from earlier work of Slivnyak [10]). In
our context, for a stationary Poisson particle process � of intensity ρ on (Rd , Bd , νd), Mecke’s
identity is

E
∫

Rd

h(x, �)�(dx) = ρ

∫
Rd

E h(x, � + δx)νd(dx) (9)

for any nonrandom Borel function h : Rd ×N → [0, ∞). The domain of integration stated here
is the whole space Rd , but could be any nonrandom measurable subset because an indicator
function subsumed within the function h would provide the needed restriction. (Mecke also
established a converse result: a random counting measure satisfying (9) for all such h is a
stationary Poisson process.) Note that, although h is nonrandom in Mecke’s identity, h(x, �)

inherits the randomness of the counting measure � and is random.
We exploit an extension of this to integrals involving the product process of a stationary

Poisson process (an identity used earlier; see [3, p. 53] and [8]), namely

E
∫

· · ·
∫

(Rd )n

h(x1, . . . , xn, �)�[n](dx1 × · · · × dxn)

= ρn

∫
· · ·

∫
(Rd )n

E h

(
x1, . . . , xn, � +

n∑
i=1

δxi

)
νd(dx1) · · · νd(dxn), (10)

which holds for any nonrandom Borel function h : (Rd)n × N → [0, ∞). This result also
applies to nonrandom domains of integration which are subsets of (Rd)n. This important
extension is obviously the ideal tool for a study of the complementary theorem, that is, for
evaluation of expressions like (4)–(8).

Using (10), with

h(x1, . . . , xn, �) = 1(z(x1, . . . , xn) ∈ B, νd(�(x1, . . . , xn)) > 0, �� = m),
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from (5) we obtain

λνd(B) = ρn

∫
· · ·

∫
z(x1,...,xn)∈B

νd(�(x1,...,xn))>0

E(1(�� = m))νd(dx1) · · · νd(dxn)

= ρn

∫
· · ·

∫
z(x1,...,xn)∈B

νd(�(x1,...,xn))>0

P{�� = m}νd(dx1) · · · νd(dxn)

= ρn

∫
· · ·

∫
z(x1,...,xn)∈B

νd(�(x1,...,xn))>0

[ρνd(�(x1, . . . , xn))]m
m!

× exp[−ρνd

(
�(x1, . . . , xn))]νd(dx1) · · · νd(dxn) (11)

=
∫

· · ·
∫

z(u1/ρ
1/d ,...,un/ρ1/d )∈B

νd(�(u1/ρ
1/d ,...,un/ρ1/d ))>0

[ρνd(�(u1/ρ
1/d , . . . , un/ρ

1/d))]m
m!

× exp

[
−ρνd(�

(
u1

ρ1/d
, . . . ,

un

ρ1/d

))]
νd(du1) · · · νd(dun), (12)

where we have introduced the change of variable ui := ρ1/dxi , which implies that νd(dui) =
ρνd(dxi). Now, using the equivariant properties of the mappings � and z, (12) becomes∫

· · ·
∫

z(u1,...,un)∈ρ1/dB
νd (�(u1,...,un))>0

[νd(�(u1, . . . , un))]m
m! exp[−νd(�(u1, . . . , un))]νd(du1) · · · νd(dun)

= λ(1)νd(ρ1/dB), (13)

where λ(ρ) is λ augmented by an extra argument to emphasise the intensity of the Poisson
process; here, in (13), that intensity is 1. Thus, (12) and (13) lead to the identity

λ(ρ) = ρλ(1). (14)

Similar change-of-variable arguments and notational augmentations applied to (4) show that

λ
(ρ)

(0,v] = ρλ
(1)
(0,ρv], (15)

so we see, from (3), (14), and (15), that

F (ρ)(v) = λ
(ρ)

(0,v]
λ(ρ)

= λ
(1)
(0,ρv]
λ(1)

= F (1)(ρv). (16)

The functional relationship (16) does not identify F (ρ), but assists in later theory.

5. Calculations for some simple examples

To aid familiarity with our structure, some calculations are desirable. We firstly show the
calculations related to Example 4, illustrated in Figure 2. Other examples are discussed; we
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demonstrate that various expressions are infinite in the ‘misbehaving’ examples. The anchor
used in the calculations is always the base particle. The intensity is ρ throughout this section,
so the notational augmentation just introduced is not used; absence of the ‘intensity superscript’
implies that the intensity is ρ.

In Example 4, illustrated for d = 1 in Figure 2, we have n = 2 and ν1(�(x1, x2)) =
‖x1 − x2‖. Choose z(x1, x2) := x1. Then (11) becomes

λν1(B) = ρ2
∫

B

∫ ∞

−∞
(ρ‖x1 − x2‖)m

m! e−ρ‖x1−x2‖ dx2 dx1 (17)

= 2ρ2
∫

B

∫ x1

−∞
(ρ(x1 − x2))

m

m! e−ρ(x1−x2) dx2 dx1

= 2ρ

∫
B

∫ ∞

0

ρm+1um

m! e−ρu du dx1

= 2ρν1(B),

the integration region in (17) being the lightly shaded region in Figure 2, extending infinitely
in the vertical direction (and under the darker region). Thus, λ = 2ρ. Integration over the
intersection of the shaded regions yields a simplified version of (4), where, for k ≥ 1, Gk,ρ is
the distribution function of a �(k, ρ)-distributed variate:

λ(0,v]ν1(B) = ρ2
∫

B

∫ x1+v

x1−v

[ρ‖x1 − x2‖]m
m! e−ρ‖x1−x2‖ dx2 dx1

= 2ρ

∫
B

∫ v

0

ρm+1um

m! e−ρu du dx1

= 2ρGm+1,ρ(v)ν1(B).

Thus, from (3), F(v) = Gm+1,ρ(v) and, as anticipated, the distribution of the m-filled domain
is �(m + 1, ρ).

Example 3 has d = 2 and n = 3, and we let x1 be the anchor. We have ν2(�) = 1
2 r2r3| sin θ |,

where ri := ‖xi − x1‖ and θ is the angle x̂3x1x2. So, using these ‘polar’ coordinates relative
to x1,

λ(0,v]ν2(B) = ρ3
∫

B

∫ ∞

0

(
2

∫ π

0

∫ 2v/r2 sin θ

0

( 1
2ρr2r3 sin θ)m

m! e−(1/2)ρr2r3 sin θ r3 dr3 dθ

)

× 2πr2 dr2ν2(dx1)

= 2ρ3
∫

B

∫ ∞

0

4(m + 1)Gm+2,ρ(v)

r2
2 ρ2

(∫ π

0

dθ

sin2 θ

)
2πr2 dr2ν2(dx1). (18)

We note that the innermost integral is divergent, so the numerator of (3) is infinite, as is the
denominator (shown by (18) with v replaced by ∞). The integral diverges because of the
contribution from a vast number of very long, thin triangles that are m-filled and of small area.
The substantial effect of these very elongated triangles has been overlooked by others studying
the problem; in effect, huge numbers of particles x2 and x3 (at least one of which may be a
large distance from x1) must be counted.
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The analysis for Example 2 proceeds in the same way, but with

ν2(�) = π

4 sin2 θ
(r2

2 + r2
3 − 2r2r3 cos θ).

The calculations become lengthy and are thus omitted, but the large area of � when x2 and/or x3
are distant from z, combined with the e−ρ area(�) weighting of the integrand, mitigates against
the influence of distant particles x2 and x3 on the results. Similar considerations apply in
Example 1. Both the numerator and denominator of (3) are finite in these two examples.

In Example 9, n = 3 and we set d = 2 for simplicity. Now ν2(�) = π |r2
2 − r2

3 |, where
ri := ‖xi − x1‖, so

λ(0,v]ν2(B)

= ρ3
∫

B

2
∫ ∞

0

(∫ √
r2
2 +v/π

r2

(ρπ(r2
3 − r2

2 ))m

m! e−ρπ(r2
3 −r2

2 )2πr3 dr3

)
2πr2 dr2ν2(dx1)

= ρ2
∫

B

2Gm+1,ρ(v)

∫ ∞

0
2πr2 dr2ν2(dx1). (19)

This is infinite, as is the equivalent result when v → ∞. The reader will be aware, from
elementary considerations, that such an annulus (the domain �) has a �(m + 1, ρ)-distributed
area, when m-filled. The complementary theorem would suggest a �(m + 2, ρ) distribution if
it were carelessly invoked. Also note that if � were redefined to be the ‘hole’ in the annulus,
of area π(r1 ∧ r2)

2, then the theorem would still not apply, as the numerator and denominator
of (3) would still be infinite.

Example 10 introduces a constraint on Example 9 which prevents domains being very thin
annuli of very large radii – the abundance of these being the reason for the pathology of
Example 9. Indeed, � = ∅ unless the area, π [(r3 ∨ r2)

2 − (r3 ∧ r2)
2], of the annulus is

greater than the area, π(r3 ∧ r2)
2, of its hole. Thus, and here we note that the integrating

condition {νd(�) > 0} affects the result for the first time,

λ(0,v] = 2ρ3
∫ √

v/π

0

(∫ √
r2
2 +v/π

√
2r2

(ρπ(r2
3 − r2

2 ))m

m! e−ρπ(r2
3 −r2

2 )2πr3 dr3

)
2πr2 dr2

= 2ρ2
∫ √

v/π

0
(Gm+1,ρ(v) − Gm+1,ρ(πr2

2 ))2πr2 dr2

= 2ρ2
(

vGm+1,ρ(v) −
∫ v

0
Gm+1,ρ(u) du

)

= 2ρ2
∫ v

0
udGm+1,ρ(u)

= 2(m + 1)ρGm+2,ρ(v)

→ 2(m + 1)ρ, v → ∞,

where we have removed the easily evaluated outer integral with respect to x1. We see that the
constraint has brought the example back into line with the complementary theorem: F(v) =
Gm+2,ρ(v) and λ = 2(m + 1)ρ.

Finally we consider the important Example 11, which has been discussed extensively by
the other authors. We might anticipate that the taboo on triangles with an obtuse angle
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would eliminate the problems seen in Example 3. This turns out to be the case. We impose
on Example 3 the ‘acute angles conditions’ {θ < π/2} ∪ {θ > 3π/2}, {r3 > r2 cos θ}, and
{r2 > r3 cos θ}. Applying these conditions yields

λ = ρ3
∫ ∞

0

(
2

∫ π/2

0

∫ r2/ cos θ

r2 cos θ

( 1
2ρr2r3 sin θ)m

m! e−(1/2)ρr2r3 sin θ r3 dr3 dθ

)
2πr2 dr2

= 4πρ

∫ ∞

0

(∫ π/2

0

4(m + 1)[Gm+2,ρ( 1
2 r2

2 tan θ) − Gm+2,ρ( 1
2 r2

2 cos θ sin θ)]
r2 sin2 θ

dθ

)
dr2

= 16π(m + 1)ρ

∫ π/2

0

(∫ ∞

0

[Gm+2,ρ( 1
2 r2

2 tan θ) − Gm+2,ρ( 1
2 r2

2 cos θ sin θ)]
r2 sin2 θ

dr2

)
dθ

= 16π(m + 1)ρ

∫ π/2

0

log(sec θ)

sin2 θ
dθ

= 8π2(m + 1)ρ

< ∞.

Thus, this ‘censored’ example now lies within the domain of the existing complementary
theorem. The abundance of very thin, very long triangles which created the pathology of
Example 3 has been removed, so the other authors have been correct in quoting results based
on the complementary theorem. Incidentally, the amazing simplification of the integral with
respect to r2, leading to a result independent of m and ρ even though the integrand depends on
both, was found with the help of MATHEMATICA®; space does not permit a proof.

6. The change-of-measure technique yields a general proof

Up to this point, the Poisson process � has had intensity ρ, except in certain comparative
statements ((14)–(16)). This can be cemented notationally by indexing the probability mea-
sure P by ρ. Thus, each P and E in the earlier sections (except those used in (14)–(16), where
intensity changes can be viewed in a different way (see below)) can be read as Pρ and Eρ .
From (8), we obtain

Eρ g(cn)

= 1

λ(ρ)νd(B)
Eρ

∫
· · ·

∫
z(x1,...,xn)∈B

νd(�)>0

g(cn) 1
((

� −
n∑

i=1

δxi

)
� = m

)
�[n](dx1 × · · · × dxn)

= ρn

λ(ρ)νd(B)

∫
· · ·

∫
z(x1,...,xn)∈B

νd(�)>0

g(cn)
[ρνd(�)]m

m! e−ρνd (�)νd(dx1) · · · νd(dxn)

= ρn+mλ(τ)

τ n+mλ(ρ)
× τn

λ(τ)νd(B)

×
∫

· · ·
∫

z(x1,...,xn)∈B
νd(�)>0

g(cn)e
(τ−ρ)νd (�) [τνd(�)]m

m! e−τνd (�)νd(dx1) · · · νd(dxn)

=
(

ρ

τ

)n+m−1

Eτ g(cn)e
(τ−ρ)V . (20)
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In particular, following Møller and Zuyev [8], who derived (20) within their slightly more
restrictive setting, we consider the Laplace transform of V using E1, that is,

E1 e−sV = E1 e(1−(1+s))V = 1

(1 + s)n+m−1 E1+s 1 = 1

(1 + s)n+m−1 . (21)

Therefore, F (1)(v) = Gn+m−1,1(v). Invoking the functional relationship (16) yields F (ρ)(v) =
Gn+m−1,ρ(v) and, hence, the traditional complementary theorem stated in Theorem 1.

In closing this section, we note that the interplay between intensities ρ and τ can be discussed
in different ways. In this section, we have two probability measures, Pρ and Pτ , and one point-
process mapping, �. In Section 4, the reader may have envisaged one probability measure P
and two point process mappings with different intensities, ρ and 1. Either approach is valid
and the results of each section can be written in the language of the other.

7. Independence of volume V and configuration cn

Both Miles [5] and Møller and Zuyev [8] noted a type of independence between the volume,
V , and the configuration, cn, of a typical m-filled n-tuple. Recall that cn := (x1 − z, x2 − z,

. . . , xn − z). In this section, we clarify the nature of this independence and when it occurs,
within our context. There are also new independence results, one based on the notion of an
‘equivariant subset’ of the configuration space C.

Lemma 1. For a typical n-tuple configuration cn whose associated equivariant domain � has
positive volume V and is m-filled, the random variate V and any other real-valued random
variable X are independent if and only if the distribution of X does not depend on ρ.

Proof. Using (20), we obtain

E1 e−sV −tX = E1 e(1−(1+s))V e−tX = 1

(1 + s)n+m−1 E1+s e−tX = E1(e
−sV ) E1+s(e

−tX).

The result follows from this identity.

Theorem 2. In the context of Lemma 1, V is independent of

• 1(cn/V 1/d ∈ L), for any L ∈ C (as stated in [8, Theorem 4]);

• 1(cn/W 1/d ∈ L), for any L ∈ C, where W is the volume of the smallest d-dimensional
ball which has each of x1, x2, . . . , xmin(d+1,n) on its boundary (as implicitly stated in [5,
Theorem 5.1]);

• 1(ρ1/dcn ∈ L), for any L ∈ C;

• 1(cn ∈ L), for any equivariant L ∈ C, where L is called equivariant if and only if cn ∈ L

implies that acn ∈ L for any transformation a ∈ T and any configuration cn.

Remark 1. The first two statements establish results of the cited works within our context.
The last two statements are new.
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Proof of Theorem 2. From (8) and (10), we obtain

λ(ρ)νd(B) Eρ

(
1
(

cn

V 1/d
∈ L

))

= ρn

∫
· · ·

∫
z(x1,...,xn)∈B

νd(�(x1,...,xn)>0

1
(

cn

V 1/d
∈ L

)
Eρ(1(�� = m))νd(dx1) · · · νd(dxn)

= ρn

∫
· · ·

∫
z(x1,...,xn)∈B

νd(�(x1,...,xn)>0

1
(

(x1 − z(x1, . . . , xn), . . . , xn − z(x1, . . . , xn))

V (x1, . . . , xn)1/d
∈ L

)

× [ρνd(�(x1, . . . , xn))]m
m! exp[−ρνd(�(x1, . . . , xn))]νd(dx1) · · · νd(dxn)

= ρn

∫
· · ·

∫
z(u1/ρ

1/d ,...,un/ρ1/d )∈B

νd(�(u1/ρ
1/d ,...,un/ρ1/d )>0

× 1
([(

u1

ρ1/d
− z

(
u1

ρ1/d
, . . . ,

un

ρ1/d

)
, . . . ,

un

ρ1/d
− z

(
u1

ρ1/d
, . . . ,

un

ρ1/d

))]

×
[
V

(
u1

ρ1/d
, . . . ,

un

ρ1/d

)1/d]−1

∈ L

)

× [ρνd(�(u1/ρ
1/d , . . . , un/ρ

1/d))]m
m!

× exp

[
−ρνd

(
�

(
u1

ρ1/d
, . . . ,

un

ρ1/d

))]
νd(du1) · · · νd(dun)

=
∫

· · ·
∫

z(u1,...,un)∈ρ1/dB
νd (�(u1,...,un)>0

1
(

(u1 − z(u1, . . . , un), . . . , un − z(u1, . . . , un))

V (u1, . . . , un)1/d
∈ L

)

× [νd(�(u1, . . . , un))]m
m! exp[−νd(�(u1, . . . , un))]νd(du1) · · · νd(dun)

= λ(1)νd(ρ1/dB) E1

(
1
(

cn

V 1/d
∈ L

))
.

In view of (14), 1(cn/V 1/d ∈ L) satisfies the requirements of the variate X in Lemma 1. The
first assertion of the theorem is thus proved. The remaining assertions are proved in a similar
way.

Intuitively, a constraint L on the configuration is equivariant if it constrains only the shape
of the configuration. For example, L := {c3 : the three points form an acute-angled triangle}
is an equivariant constraint.

8. Miles’ method has similar problems

If a marked point process 
 is ergodic – and all of our processes are (due to the mixing
character of Poisson processes) – then there is a definition of the typical mark alternative to that
given via (2).
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Without loss of generality, we can take the reference domain B to be the ball BR ≡ BR(O)

of radius R and centre O. When R is large, the number, 
(B × M), of points in B is large,
with a fairly representative collection of marks. The proportion, 
(B × L)/
(B × M), of
these whose marks lie within L ∈ M approximates the mark distribution M(L). As R → ∞,
the approximation converges almost surely to M(L) (see [11, p. 108]), i.e.

M(L) := lim
R→∞

(

(BR × L)


(BR × M)

)
. (22)

It is assumed that, when R is finite, the numerator and denominator in (22) are finite with
probability 1.

The theory of Miles [5] is based on this ergodic definition of the typical configuration of
n particles (which have an m-filled associated domain �). Miles’ anchor is always the base
particle.

His theory has difficulties, however, in situations like those of Examples 2 and 8. In
Example 2, for example, the number of m-filled triangles with base particle in BR is infinite
with probability 1, for any R.

9. A definition of typicality when λ is infinite

In the pathological cases where existing definitions do not apply, we typically find both
infinite numerator and denominator in (3). This suggests the following approach.

Instead of the marked point process 
, we use an alternative marked point process 
R (or



(ρ)
R if ρ requires emphasis). We construct this as follows: for each n-tuple whose domain �

has positive volume V and is m-filled, we place a point (with mark V) at the n-tuple’s anchor
z if and only if all particles of the n-tuple are in the ball BR(z).

The typical mark has a distribution given, from the arguments leading to (3), by

F
(ρ)
R (v) := E 


(ρ)
R (B × (0, v])
λ(ρ,R)νd(B)

= λ
(ρ,R)

(0,v]
λ(ρ,R)

, v > 0. (23)

The expressions on the right-hand side of (23) are the obvious extensions of earlier notation
and it is easy to adapt arguments (12)–(16) to show the following comparative relationships:

λ(ρ,R) = ρλ(1,ρ1/dR),

λ
(ρ,R)

(0,v] = ρλ
(1,ρ1/dR)

(0,ρv] ,

F
(ρ)
R (v) = F

(1)

ρ1/dR
(ρv).

The change-of-measure result, (20), also takes a revised form in this new context:

E(R)
ρ g(cn) =

(
ρ

τ

)n+m
λ(τ,R)

λ(ρ,R)
E(R)

τ g(cn)e
(τ−ρ)V

=
(

ρ

τ

)n+m−1
λ(1,τ 1/dR)

λ(1,ρ1/dR)
E(R)

τ g(cn)e
(τ−ρ)V .
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Furthermore, (21) becomes

E(R)
1 e−sV = E(R)

1 (e(1−(1+s))V )

= 1

(1 + s)n+m−1

λ(1,(1+s)1/dR)

λ(1,R)
E(R)

1+s 1

= 1

(1 + s)n+m−1

λ(1,(1+s)1/dR)

λ(1,R)
. (24)

The introduction of the ‘bounding’ ball BR(z) suggests the following new definition of
typicality for the marks of the ‘unbounded’ process 
. The distribution function F for the
typical mark in 
 is now defined by

F(v) := lim
R→∞ FR(v), v > 0, (25)

whenever this limit exists. This agrees with (3) when λ is finite and extends the definition
otherwise. In view of (24), the distribution function F will clearly depend on how the
moderating factor,

lim
R→∞

λ(1,(1+s)1/dR)

λ(1,R)
, (26)

behaves.
In making this definition, the author is aware of some limitations. To date, we have not

established in any complete fashion that this definition is consistent with other similar definitions
where, for example, the ‘bounding domains’ are not balls but instead form some other nest
of increasing domains which eventually fill the space. Nor have we established that (26) is
independent of the choice of z in all cases. Further work is needed, but since the recognition
that the classical complementary theorem is not universally valid is an important finding, we
shall proceed to use the new definition given in (25). In Section 12, we discuss this issue further.

10. Application to the examples

Examples using this new definition will help cement ideas. In the mundane Example 4, we
can readily calculate that λ(1,R) equals 2Gm+1,1(R). Therefore, the moderating factor for this
example is 1. In the ‘misbehaving’Example 9 with d = 2, following the logic of (19) we obtain

λ(1,R) = 2
∫ R

0

(∫ R

r2

(π(r2
3 − r2

2 ))m

m! e−π(r2
3 −r2

2 )2πr3 dr3

)
2πr2 dr2

= 2
∫ R

0
Gm+1,1(π(R2 − r2

2 ))2πr2 dr2

= 2
∫ πR2

0
Gm+1,1(u) du

= 2[πR2Gm+1,1(πR2) − (m + 1)Gm+2,1(πR2)].
Recalling that d = 2, the moderating factor can be calculated as follows:

λ(1,(1+s)1/dR)

λ(1,R)
= 2[π(1 + s)R2Gm+1,1(π(1 + s)R2) − (m + 1)Gm+2,1(π(1 + s)R2)]

2[πR2Gm+1,1(πR2) − (m + 1)Gm+2,1(πR2)]
→ (1 + s), R → ∞.
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Thus, from (24), we have E1 esV = 1/(1 + s)n+m−2 and, therefore, substituting n = 3,
F (1)(v) = Gm+1,1(v) as claimed in Section 5. Thus, the volume of an m-filled annulus is
�(m + 1, ρ)-distributed.

In the interesting Example 3, (18) is modified as follows:

λ(1,R) =
∫ R

0

(
2

∫ π

0

∫ R

0

( 1
2 r2r3 sin θ)m

m! e−(1/2)r2r3 sin θ r3 dr3 dθ

)
2πr2 dr2

= 16π(m + 1)

∫ π

0

(∫ R

0

Gm+2,1(
1
2 r2R sin θ)

r2
dr2

)
dθ

sin2 θ

= 32π(m + 1)

∫ π/2

0

(∫ (1/2)R2 sin θ

0

Gm+2,1(u)

u
du

)
dθ

sin2 θ

= 32π(m + 1)

∫ (1/2)R2

0

Gm+2,1(u)

u

(∫ π/2

sin−1(2u/R2)

dθ

sin2 θ

)
du

= 16π(m + 1)R2
∫ (1/2)R2

0

Gm+2,1(u)

u2

√
1 − 4u2

R4 du. (27)

We shall show, using the dominated convergence theorem, that

lim
R→∞

∫ ∞

0
1([0, αR2])Gm+2,1(u)

u2

√
1 − u2

α2R4 du =
∫ ∞

0

Gm+2,1(u)

u2 du = 1

m + 1

for any α > 0. An integrable function, f say, which dominates the integrand for all R is

f (u) :=

⎧⎪⎪⎨
⎪⎪⎩

um

(m + 2)! , 0 ≤ u ≤ 1,

1

u2 , u > 1.

This is so because

1([0, αR2])Gm+2,1(u)

u2

√
1 − u2

α2R4 <
Gm+2,1(u)

u2 <
1

u2

(the final inequality holding for u > 1), since Gm+2,1 is a distribution function, and

Gm+2,1(u)

u2 = 1

u2

∫ u

0

tm+1

(m + 1)!e−t dt <
1

u2

∫ u

0

tm+1

(m + 1)! dt = um

(m + 2)! .

By substituting d = 2 and α = 1
2 into (27), we obtain the denominator of the moderating factor.

The numerator is obtained with α = (1+s)2/d . Therefore, the moderating factor in (26) is 1+s.
Thus, E1 esV = 1/(1 + s)n+m−2 and, therefore, F (1)(v) = Gm+1,1(v) as claimed in Section 1.

The moderating factor can be (1 + s)κ , for κ > 1, as in the following three examples.

Example 13. For general n ≥ 2 and d , let � be the closed ball Bmini>1(ri )(x1), where ri :=
‖xi − x1‖. Here κ = n − 2 and, so, can be large.

Example 14. For n = 4 and d = 2, let � be the triangle with vertices x1, x2, and x3 if x4 is
not contained therein. Otherwise, � is the triangle with vertices x1, x2, and x4. Then we can
show that κ = 2.
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Example 15. For n = 4 and d = 2, let � be the triangle of smallest area using three of the
four available particles. We conjecture that κ = 2 in this case.

Details of the proofs of these statements are omitted. Their provision is left as an exercise
for the reader.

11. A revised complementary theorem

We can summarise our theory and arguments, based on the definition of typicality given in
Section 9, as follows.

Theorem 3. (Revised complementary theorem.) When the intensity λ is infinite in the context
of Theorem 1, the Laplace transform of V is given by

1

(1 + s)n+m−1 lim
R→∞

λ(1,(1+s)1/dR)

λ(1,R)
,

involving the so-called moderating factor defined in (26).

One might hope that the moderating factor always takes the form (1 + s)κ , for κ ≥ 0, but
the author has been unable, to date, to prove this for general choices of �, d, n, and m. If
the moderating factor does always take this form, then the volume of V retains its gamma
distribution.

12. Discussion: open questions

Clearly Theorem 3 is uncontroversial in circumstances where λ is finite, for then it reduces
to the classical theorem (Theorem 1). In that case, there is no issue concerning the choice of
anchor z, used as the centre of our nest of bounding balls.

In the other cases, we should perhaps consider different choices of z. In Example 3, the
distributional results concerning the area of � remain unchanged when the analysis is repeated
with z defined as the circumcentre of the three particles, using a parametrisation based on
Santaló [9, Equation 2.18].

It is noteworthy, however, that questions pertaining to the configuration shape may depend
on z, and this can be of great importance in examples where � is defined as ∅ for some
configurations. This must be done, as in Example 11, in such a way as to conserve the equivariant
property of the mapping. This means that the constraint L := {cn : � = ∅} must be equivariant.

A question then arises: What is the probability that the typical n-tuple has an associated
domain � which is not ∅? In Example 11, this question changes: What is the probability that a
typical 3-tuple of particles from a Poisson process on the plane forms a triangle which is acute
angled? Miles [5] and Santaló [9, pp. 16–17] stated that this probability is 1

2 . Note that the
question answered by these authors is not cast in terms of m-filled triangles; all triangles are
under consideration, regardless of their filling.

We approach this problem within the confines of a marked point process constructed as
follows. A point is placed in R2 at the anchor z := x1 of the 3-tuple if and only if all three
particles lie in the closed ball BR(z). The mark placed at this location is the configuration cn.
Note that this marked point process is the superposition of a countable collection of marked point
processes, the mth based on the m-filled condition. Thus, λ(1,R) is the sum of the respective
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left-hand sides of (27) for m ≥ 0, whence

λ(1,R) = 8πR2
∫ (1/2)R2

0

√
1 − 4u2

R4 du = π2R4,

an obvious result. The probability that the typical mark lies in L := {c3 : � is acute angled} is
λ

(1,R)
L /λ(1,R), where

λ
(1,R)
L =

∫ R

0
2

∫ π/2

0

∫ min(R,r2/ cos θ)

r2 cos θ

r3 dr3 dθ2πr2 dr2

= 2π

∫ π/2

0

(∫ R cos θ

0

(
r2

2

cos2 θ
− r2

2 cos2 θ

)
r2 dr2 +

∫ R

R cos θ

(R2 − r2
2 cos2 θ)r2 dr2

)
dθ

= 1

4
π2R4.

Thus, for all R > 0, the probability that the 3-tuple forms an acute-angled triangle is 1
4 . If we

define the probability that the typical 3-tuple satisfies L as being the limit of λ
(1,R)
L /λ(1,R) as

R → ∞, then we obtain the result 1
4 .

We get an entirely different answer, however, if z is defined to be the circumcentre of the
three particles: the answer is now 1

3 . It is of considerable interest that this shape entity depends
on the choice of z while the distribution of the area of � does not. In Section 7, where we set
out the independence of shape and size, we explained this intuitively.

Close inspection of the statements of Miles and Santaló reveal a reason for their answer
being 1

2 : they have actually answered a different question. Santaló’s calculation [9, pp. 16–
17], which, incidentally, has a number of errors that cancel each other and, so, do not distort
his final answer, is restricted to 3-tuples whose circumdisk lies wholly within BR , with the
circumcentre anywhere within BR . This removes from consideration many obtuse triangles,
creating a huge bias in favour of acute-angled triangles. Miles focused his attention on 3-tuples
whose circumradius is less than a constant, R0; this creates a similar bias.

Our results of 1
4 and 1

3 also differ from the probability that three points uniformly and
independently distributed within a ball form an acute-angled triangle. Hall [2] showed this to
be ξ = 4/π2 − 1

8 = 0.2803. So shape issues are delicate, size issues less so.
In conclusion, further work is needed on Theorem 3, but the results of this paper correct

certain misapprehensions which have appeared in the literature. With these corrected, progress
in the right direction is possible.
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