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Abstract
Kontsevich ([Kir95, Problem 3.48]) conjectured that BDiff(𝑀, rel 𝜕) has the homotopy type of a finite CW complex
for all compact 3-manifolds with nonempty boundary. Hatcher-McCullough ([HM97]) proved this conjecture when
M is irreducible. We prove a homological version of Kontsevich’s conjecture. More precisely, we show that
BDiff (𝑀, rel 𝜕) has finitely many nonzero homology groups each finitely generated when M is a connected sum
of irreducible 3-manifolds that each have a nontrivial and non-spherical boundary.
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1. Introduction

For a closed surface Σ𝑔 of genus 𝑔 > 1, it is well known that the classifying space BDiff (Σ𝑔) is rationally
equivalent toM𝑔, the moduli space of Riemann surfaces of genus g. Therefore, in particular, the rational
homology groups of BDiff (Σ𝑔) vanish above a certain degree, and in fact, more precisely, they vanish
above degree 4𝑔−5, which is the virtual cohomological dimension of the mapping class group Mod(Σ𝑔).
For a surface Σ𝑔,𝑘 with 𝑘 > 0 boundary components, the classifying space BDiff (Σ𝑔,𝑘 , rel 𝜕) is in fact
homotopy equivalent to the corresponding moduli space of Riemann surfaces of genus g with k boundary
components. Therefore, BDiff(Σ𝑔,𝑘 , rel 𝜕) has the homotopy type of a finite-dimensional CW-complex.

Similarly, Kontsevich ([Kir95, Problem 3.48]) conjectured for compact 3-manifold M with nonempty
boundary, the classifying space BDiff (𝑀, rel 𝜕) has a finite-dimensional model. This conjecture is
known to hold for irreducible 3-manifolds with nonempty boundary ([HM97]). In this paper, we shall
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2 S. Nariman

prove the homological finiteness of these classifying spaces for reducible 3-manifolds with a condition
on their boundary.

Throughout this paper, for brevity, we write Diff (𝑀, rel 𝜕) and Homeo(𝑀, rel 𝜕) to denote the
smooth orientation preserving diffeomorphisms and orientation preserving homeomorphisms respec-
tively whose supports (i.e., the closure of points that are not fixed) are away from the boundary 𝜕𝑀 so
they are the identity near the boundary. In general, when we use rel 𝑋 in the diffeomorphism group, for
some 𝑋 ⊂ 𝑀 , we mean those diffeomorphisms or homeomorphisms whose supports are away from X.

We say a path-connected space K is strongly homologically finite if for all Z[𝜋1 (𝐾)]-modules A that
are finitely generated as an abelian group, 𝐻∗(𝐾; 𝐴) is finitely generated in each degree and is nonzero
in finitely many degrees.

Theorem 1.1. Let M be an orientable 3-manifold that is a connected sum of compact irreducible
3-manifolds that are not diffeomorphic to the 3-ball and each have a nontrivial boundary. Then the
classifying space BDiff(𝑀, rel 𝜕) is strongly homologically finite.

In the irreducible case, the homotopy type of the group Diff(𝑀) is very well studied. When M
admits one of Thurston’s geometries, there has been an encompassing program known as the generalized
Smale’s conjecture that relates the homotopy type of Diff(𝑀) to the isometry group of the corresponding
geometry (for more details and history, see the discussions in Problem 3.47 in [Kir95] and Sections 1.2
and 1.3 in [HKMR12]). For S3, it was proved by Hatcher ([Hat83]), and for Haken 3-manifolds, it is a
consequence of Hatcher’s work and also understanding the space of incompressible surfaces ([Wal68,
Hat76, Iva76]) inside such manifolds. Recently, Bamler and Kleiner ([BK23, BK24]) used Ricci flow
techniques to settle the generalized Smale’s conjecture for all 3-manifolds admitting the spherical
geometry or in the Nil geometry. Hence, this recent body of work using Ricci flow techniques addresses
all cases of the generalized Smale’s conjecture.

Recall that a compact 3-manifold M (with or without boundary) is called prime if the existence
of a diffeomorphism between M and the connected sum 𝑀1#𝑀2 of two compact 3-manifolds 𝑀1
and 𝑀2, implies that at least one of them is diffeomorphic to the 3-sphere. The prime decomposition
theorem says that every compact 3 manifold is diffeomorphic to the connected sum of prime manifolds.
A prime closed 3-manifold is either diffeomorphic to S1 × S2 or it is irreducible (i.e., every embedded
S

2 bounds a ball). However, geometric manifolds are the building blocks for irreducible manifolds.
Given the generalized Smale’s conjecture, we have a good understanding of the homotopy type of
the diffeomorphism groups for these atomic pieces. The JSJ and geometric decomposition theorems
(see [Neu96, Chapter 2, section 6] for the statement of these theorems) give a way to cut an irreducible
manifold along embedded tori into these building blocks. If the JSJ decomposition is nontrivial for an
irreducible manifold, then it will be Haken whose diffeomorphism groups are well studied. Hence, given
that we also know the homotopy type of the diffeomorphism group of S1 × S2 by Hatcher’s theorem
([Hat81]), we have a good understanding of the homotopy type of diffeomorphism group of prime
manifolds. In the reducible case, the prime decomposition theorem cuts the manifold along separating
spheres into its prime factors. The difficulty, however, in understanding the reducible case is to relate
the diffeomorphism group of a reducible manifold to the diffeomorphisms of its prime factors.

César de Sá and Rourke ([CdSR79]) proposed to describe the homotopy type of Diff (𝑀) in terms of
the homotopy type of diffeomorphisms of the prime factors and an extra factor of the loop space on ‘the
space of prime decompositions’. Hendriks-Laudenbach ([HL84]) and Hendriks-McCullough ([HM87])
found a model for this extra factor. Later Hatcher, in an interesting unpublished note, proposed a finite
dimensional model for this ‘space of prime decompositions’, and more interestingly, he proposed that
there should be a map between BDiff (𝑀) and the product of classifying spaces of diffeomorphisms of
all prime factors of M. He envisaged that this map sits in a fiber sequence whose fiber is ‘the space of
prime decompositions’.

Hatcher’s approach, if completed, would also solve Kontsevich’s conjecture in the special case of
reducible 3-manifolds such that all the irreducible factors have nonempty boundaries. So our result is
the homological version of what Hatcher intended to prove about Kontsevich’s conjecture. However,
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instead of trying to build the map, we take the geometric group theory approach by letting the abstract
group of diffeomorphisms act on a ‘huge simplicial complex inspired by the techniques that Kathryn
Mann and the author ([MN20]) used to study the second homology of BDiff(𝑀).

For technical simplicity, we work with the homeomorphism groups instead of diffeomorphism
groups. This does not make a difference to the main result. The reason is that Cerf ([Cer61]) assumed
Smale’s conjecture which was later proved by Hatcher ([Hat83]) to show that in these low dimensions,
the inclusion Diff(𝑀) ↩→ Homeo(𝑀) is, in fact, a weak homotopy equivalence.

However, in all dimensions, by Mather-Thurston’s theorem ([Thu74, Corollary (b) of theorem 5] and
see [McD80, Section 2, Theorem 2.5] for the proof) for homeomorphisms, we have the natural map

BHomeo𝛿 (𝑀) → BHomeo(𝑀), (1)

which is an acyclic map, and in particular, it induces a homology isomorphism in all degrees. The same
statement also holds for manifolds with boundary and in the relative case in particular relative to the
boundary when it is nonempty (see [McD80, Section 2, Theorem 2.5]).

Hence, to prove the main theorem, we use a homological approach where we consider the action of
Homeo𝛿 (𝑀, rel 𝜕) on a simplicial complex S (𝑀) given by the complex of essential spheres, to give a
model for BHomeo𝛿 (𝑀, rel 𝜕) suitable for an inductive argument to prove the main theorem.

The revision process of this paper, which first appeared on the arXiv in 2021, was prolonged due to
the author’s engagement in other research projects, as well as periods of neglect and lack of motivation.
In the meantime, Boyd, Bregman and Steinebrunner have obtained a complete resolution of the problem
in full generality ([BBS24]). Nevertheless, the author hopes that the homological approach presented in
this shorter paper remains of independent interest.

2. Sphere complexes

In this section, we assume that M is a compact reducible 3-manifold with a nonempty boundary.
Additionally, in this section, we assume that we do not have spherical boundary components in order
to have a prime decomposition with no 3-disk factor ([Hem76, Chapter 3, Lemma 3.7]). To study
the homological finiteness of BHomeo𝛿 (𝑀, rel 𝜕) inductively based on the number of prime factors
in the prime decomposition of M, we shall first construct a simplicial complex S (𝑀) on which
Homeo𝛿 (𝑀, rel 𝜕) acts simplicially.
Definition 2.1. Let S (𝑀) be a simplicial complex whose vertices are given by locally flat embeddings
𝜙 : S2 ↩→ 𝑀 whose images are essential spheres (i.e., 𝜙 is not null-homotopic, and simplices in S (𝑀)

are given by collections of locally flat embeddings whose images are disjoint).
Remark 2.2. For 3-manifolds that do not have S1 × S2 factors and have no spherical boundary
components, essential spheres are the same as separating spheres.
Proposition 2.3. The simplicial complex S (𝑀) is contractible.
Proof. In [Nar20, Lemma 4.3], the author proved that the subcomplex of separating spheres in M is
contractible. If M does not have S1 × S2 summands, which is the case that in fact, we are interested
in, the complex of essential spheres S (𝑀) is the same as the complex in [Nar20, Lemma 4.3]. But the
same proof shows that the complex S (𝑀) is also contractible even when the prime decomposition of M
has S1 × S2 summands. �

Note that the group Homeo𝛿 (𝑀, rel 𝜕) acts on S (𝑀) simplicially. The complex S (𝑀) is contractible
by Proposition 2.3. Therefore, the homotopy quotientS (𝑀)//Homeo𝛿 (𝑀, rel 𝜕) is homotopy equivalent
to BHomeo𝛿 (𝑀, rel 𝜕). The stabilizer of each simplex in S (𝑀) is the subgroup of Homeo𝛿 (𝑀, rel 𝜕)
that fixes a set of essential spheres pointwise so it is isomorphic to the homeomorphism group of a
3-manifold whose connected components have fewer prime factors. But one issue is that S (𝑀) has
simplices of arbitrary large dimensions since we allow parallel spheres. To account for this infinite di-
mensionality, we use the simplicial complex that Hatcher and McCullough defined in [HM90, Section 1].
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Figure 1. 𝜎 here is a 2-simplex consisting of 3 separating spheres that are drawn in one dimension
lower.

Definition 2.4. Let [S] (𝑀) be the simplicial complex whose vertices are the isotopy classes of essential
embedded spheres in M. A set of vertices {[𝑆0], [𝑆1], . . . , [𝑆𝑛]} constitutes an n-simplex if there are
pairwise disjoint embedded spheres 𝑆′

𝑖 in M such that for each i, the isotopy class of the sphere 𝑆′
𝑖 is the

class [𝑆𝑖].
The mapping class group Mod(𝑀, rel 𝜕) = 𝜋0 (Homeo(𝑀, rel 𝜕)) acts on [S] (𝑀) simplicially.

Because all prime factors have nontrivial boundary components that are fixed by Mod(𝑀, rel 𝜕), as
we shall see in Lemma 6.4 if the action of Mod(𝑀, rel 𝜕) fixes a simplex set-wise, it also fixes
it pointwise. The complex [S] (𝑀) is finite-dimensional, and also by Hatcher-McCullough’s theorem
([HM90, Proposition 2.2]), the set of the orbits of the action of Mod(𝑀, rel 𝜕) on simplices is also finite.

To briefly recall why this is the case, they use a theorem of Scharlemann (see [Bon83, Appendix A,
Lemma A.1]) to find a ‘normal representative of each orbit. Let the prime decomposition of M be given
by 𝑃1#𝑃2# · · · #𝑃𝑟#(#𝑔S1 ×S2) where g summands are homeomorphic to S1 ×S2. Let B be a punctured
3-cell having ordered 𝑟 + 2𝑔 boundary components so that M is obtained by gluing 𝑃𝑖\int(D3) to i-th
sphere boundaries for 1 ≤ 𝑖 ≤ 𝑟 and g copies of S2 × [0, 1] are glued along the remaining 2𝑔 boundary
components (see [Bon83, Appendix A, Lemma A.1] for more details).
Lemma 2.5 (Scharlemann). For any simplex 𝜎 ⊂ S (𝑀), there is a homeomorphism f such that
𝑓 (𝜎) ⊂ 𝐵.

Now as Hatcher and McCullough observed in [HM90, Proposition 2.2], there are finitely many
isotopy classes of essential spheres in B since they are determined by the way they partition the boundary
components of B. This observation implies the finiteness of the orbits of the action of Mod(𝑀, rel 𝜕)
on simplices of [S] (𝑀).

The skeletal filtration on [S] (𝑀) induces a filtration on the quotient space

F0 ⊂ F1 ⊂ · · · ⊂ F𝑛 = [S] (𝑀)/Mod(𝑀, rel 𝜕), (2)

and by Hatcher and McCullough’s observation, the filtration quotients are given by the wedge of a finite
number of spheres. The reason that the filtration quotients are spheres is the fact that if the action fixes
a simplex set-wise, then it fixes it pointwise. Let O𝑝 be the set of orbits of the action of Mod(𝑀, rel 𝜕)
on p-simplices of [S] (𝑀). So F𝑝 − F𝑝−1 is homeomorphic to

∐
𝜎∈O𝑝

�Δ 𝑝𝜎 , the disjoint union of open
p-simplices indexed by O𝑝 .

The natural simplicial map S (𝑀) → [S] (𝑀) that sends spheres to their isotopy classes is
equivariant with respect to the map Homeo𝛿 (𝑀, rel 𝜕) → Mod(𝑀, rel 𝜕). So we have a map
S (𝑀)/Homeo𝛿 (𝑀, rel 𝜕) → [S] (𝑀)/Mod(𝑀, rel 𝜕) which in turn induces a map

𝜂 : S (𝑀)//Homeo𝛿 (𝑀, rel 𝜕) → [S] (𝑀)/Mod(𝑀, rel 𝜕).

Definition 2.6. Let L be a local coefficient system, on a space X. We say X is L-homologically finite if
𝐻∗(𝑋;L) is finitely generated in each degree and is nonzero in finitely many degrees.
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We are interested in local coefficient systems that are pullbacks of local coefficients systems on
BHomeo(𝑀, rel 𝜕). Since we have the maps

S (𝑀)//Homeo𝛿 (𝑀, rel 𝜕) → BHomeo𝛿 (𝑀, rel 𝜕) → BHomeo(𝑀, rel 𝜕),

for each point x in the image of 𝜂, we have a map 𝜂−1(𝑥) → BHomeo(𝑀, rel 𝜕) that is uniquely
determined up to homotopy. It turns out, as we shall see, that the restriction of 𝜂 to each open simplex
�Δ 𝑝𝜎 is a fiber bundle (see Section 5) whose fiber, by an inductive argument, is L-homologically finite
for all L that are pullbacks from local coefficient systems on BHomeo(𝑀, rel 𝜕).

Definition 2.7. Given a map 𝑓 : 𝑋 → BHomeo(𝑀, rel 𝜕), we say that (𝑋, 𝑓 ) is weakly homologically
finite if X is L-homologically finite for all L that are pullbacks from local coefficient systems on
BHomeo(𝑀, rel 𝜕) and are finitely generated abeliean groups at each point. In cases where we consider
a space X, the homotopy class of the map f is understood from the context, in which case we drop the
map and say X is weak homologically finite.

Theorem 2.8. The preimage 𝜂−1(𝑥) is weak homologically finite for all 𝑥 ∈ [S] (𝑀)/Mod(𝑀, rel 𝜕).

Then the weak homological finiteness of BHomeo𝛿 (𝑀, rel 𝜕) will follow from a general statement
about simplicial complexes where in this generality, to clarify the original argument, was suggested to
the author by the referee.

Lemma 2.9. Let G be a discrete group, and let X and Y be two G-simplicial complexes. Let 𝑋 → 𝑌 be
a G-equivariant map of simplicial complexes. This map induces the map 𝜂 : 𝑋//𝐺 → 𝑌/𝐺. Let L be a
local coefficient system on 𝑋//𝐺. Suppose the following conditions hold

1. if G fixes a simplex as a subset in X or Y, then it fixes it pointwise,
2. 𝜂−1(𝑦) is L𝑦-homologically finite for all 𝑦 ∈ 𝑌/𝐺, where L𝑦 is the pullback of L,
3. There are finitely many orbits of the action of G on simplices of Y, and as a result, 𝑌/𝐺 is a finite

CW complex,

then 𝑋//𝐺 is also L-homologically finite.

The simplicial map S (𝑀) → [S] (𝑀) is Homeo𝛿 (𝑀, rel 𝜕)-equivariant, and we already know that
the conditions (1) and (3) are satisfied. So Theorem 1.1 follows from Lemma 2.9 and Theorem 2.8. The
bulk of the work is to prove Theorem 2.8, and we shall prove Lemma 2.9 in Section 5.

In Section 6 and Section 7, we find a model for 𝜂−1(𝑥) to which we can apply the induction hypothesis,
the strong homological finiteness of BHomeo(𝑀, rel 𝜕) for M with fewer prime factors) when M is
connected sum of irreducible factors that each have a nontrivial boundary.

3. Reformulation of the main theorem and an inductive strategy

In this section, we shall use the hypothesis that the prime decomposition of M consists of irreducible
factors that each have nonempty non-spherical boundary components. We choose a base point on
the boundary of M. We denote this boundary component by 𝜕∗𝑀 . The goal is for each p and each
𝑥 ∈ F𝑝 −F𝑝−1 to find a semi-simplicial space 𝑋• whose realization admits an acyclic map from 𝜂−1(𝑥)
and sits in a fibration sequence so that by induction on the number of prime factors, we could argue that
the fiber and the base are weakly homologically finite with compatible maps.

The advantage of working with 3-manifolds that are connected sums of irreducible pieces such that
each have a nonempty boundary is the following:

◦ When we cut along essential separating spheres, the remaining pieces each have a non-spherical
boundary component that is fixed, and we shall use this for the inductive argument.

◦ Since each irreducible factor has a nontrivial boundary that is fixed, homeomorphic irreducible factors
cannot be permuted under the action of Homeo(𝑀, rel 𝜕).

https://doi.org/10.1017/fms.2025.38 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.38


6 S. Nariman

To be able to induct on the number of prime factors of M, we shall prove a slightly more general
statement of Theorem 1.1 taking into account spherical boundary components.

Recall that the corresponding automorphism groups in 𝐶0-category and 𝐶∞-category are weakly
homotopy equivalent.

Theorem 3.1 (Cerf and Hatcher). For a compact 3 manifold M, the inclusion Diff (𝑀) → Homeo(𝑀)

is a weak homotopy equivalence.

Cerf ([Cer61]) assumed Smale’s conjecture which was later proved by Hatcher ([Hat83]) to show that
in these low dimensions, the inclusion Diff (𝑀) ↩→ Homeo(𝑀) is a weak homotopy equivalence. So
to prove our homological finiteness result, we freely use diffeomorphism groups and homeomorphism
groups depending on the convenience of the situation.

Let 𝑒𝑖 : D3 ↩→ 𝑀 for 1 ≤ 𝑖 ≤ 𝑘 + 𝑙 be disjoint embeddings, and let N be the 3-manifold obtained
from M by removing 𝑒𝑖 (int(D3)) for all 1 ≤ 𝑖 ≤ 𝑘 + 𝑙. So the boundary of N is the union of 𝜕𝑀 with
sphere boundary components, which we denote by 𝑆𝑖 . We denote the union of the sphere boundary
components {𝑆𝑖}

𝑘
𝑖=1 by 𝑆free and union of the rest of the sphere boundary components by 𝑆fixed. Let

Homeo(𝑁, 𝑆free, rel (𝜕𝑀 ∪ 𝑆fixed)) be the subgroup of Homeo(𝑁, rel (𝜕𝑀 ∪ 𝑆fixed)) whose elements fix
each sphere in 𝑆free set-wise.

Theorem 3.2. Then BHomeo(𝑁, 𝑆free, rel (𝜕𝑀 ∪ 𝑆fixed)) is strongly homologically finite.

Theorem 1.1 is a special case of Theorem 3.2. But as we shall see in Section 4, in fact, they are
equivalent statements. However, the statement of Theorem 3.2 is more convenient for the inductive
argument.

Our first goal is to use Theorem 3.2 inductively for fewer prime factors than the number of prime
factors of M to show that for each p and each 𝑥 ∈ F𝑝 − F𝑝−1, the pre-image 𝜂−1(𝑥) is weakly
homologically finite. To fix ideas, let x be in F0 in the filtration 2 which is the image of a separating
sphere 𝑆 ⊂ 𝑀 . This is because all vertices in S (𝑀) are separating since the prime decomposition of M
does not have S1 × S2 summands.

Suppose that the sphere S cuts the manifold M into two pieces 𝑀1 and 𝑀2 where 𝑀1 contains 𝜕∗𝑀 ,
the boundary component of M with the base point. Let Homeo(𝑀1, 𝑆, rel 𝜕𝑀) be the subgroup of
Homeo(𝑀1) that fixes the boundary component S set-wise and the rest of the boundary components
pointwise. In Section 6, we shall prove that there is an acyclic map from 𝜂−1(𝑥) to the realization of a
semi-simplicial space (in fact a two-sided bar construction) 𝑋• that fits in a homotopy fiber sequence

BHomeo(𝑀2, rel 𝜕) → ||𝑋• | | → BHomeo(𝑀1, 𝑆, rel 𝜕𝑀). (3)

Note that 𝑀1 and 𝑀2 have sphere boundary components. When we fill in those sphere boundary
components with balls, they have fewer prime factors compared to M. By the induction hypothesis,
Theorem 3.2 implies that the fiber BHomeo(𝑀2, rel 𝜕) and the base BHomeo(𝑀1, 𝑆, rel 𝜕𝑀) are
strongly homologically finite. Then the following lemma implies that | |𝑋• | | is also strongly homo-
logically finite.

Lemma 3.3. Let 𝐹
𝑖
−→ 𝐸 → 𝐵 be a fiber sequence where B is path-connect. If B is strongly homologically

finite, E is path-connected and 𝐻∗(𝐹; 𝑖∗(𝑀)) is finitely generated in each degree and nonzero in finitely
many degrees for all Z[𝜋1 (𝐸)]-modules M that are finitely generated as abelian groups, then E is
strongly homologically finite.

Proof. The proof is the same as the proof of [Kup19b, Lemma 2.5 (ii)]. Kupers’ definition of being
homologically finite only requires homology with finitely generated abelian local coefficients to be
finitely generated in each degree. We further require that there are only finitely many nonzero homology
groups with such local coefficients. But the same proof in [Kup19b, Lemma 2.5 (ii)] works verbatim for
our definition too. �
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It will be by construction that the map 𝜂−1 (𝑥) → BHomeo(𝑀, rel 𝜕) factors through the map
𝜂−1 (𝑥) → ||𝑋• | |. Therefore, in this way, we shall deduce that 𝜂−1 (𝑥) is a weakly homologically finite
space by induction on the number of prime factors, and then Theorem 3.2 will follow from Lemma 2.9.
First, let us settle the induction’s base case for Theorem 3.2.

4. The base case of induction and spherical boundary components

In this section, we shall see that Theorem 1.1 and Theorem 3.2 are equivalent, and we prove Theorem 4.1
that is stronger than the base case of Theorem 3.2.

Let P be an irreducible 3-manifold with a nonempty and non-spherical boundary. Let 𝑒𝑖 : D3 ↩→ 𝑃
for 1 ≤ 𝑖 ≤ 𝑘 + 𝑙 be disjoint embeddings, and let N be the 3-manifold obtained from P by removing
𝑒𝑖 (int(D3)) for all 1 ≤ 𝑖 ≤ 𝑘 + 𝑙. So the boundary of N is the union of 𝜕𝑃 with sphere boundary
components, which we denote by 𝑆𝑖 . We denote the union of the sphere boundary components
{𝑆𝑖}

𝑘
𝑖=1 by 𝑆free and union of the rest of the sphere boundary components by 𝑆fixed. The group

Homeo(𝑁, rel (𝜕𝑃∪ 𝑆fixed)) fixes the boundary components 𝑆free set-wise. To keep track of free spheri-
cal boundary components, in what follows, we also add 𝑆free to the notation Homeo(𝑁, rel (𝜕𝑃∪𝑆fixed))
(e.g., Homeo(𝑁, 𝑆free, rel (𝜕𝑃 ∪ 𝑆fixed)) without having “rel” before the free boundary components).

Theorem 4.1. Then BHomeo(𝑁, 𝑆free, rel (𝜕𝑃 ∪ 𝑆fixed)) has a finite CW complex model.

This, of course, implies the base case of Theorem 3.2. Since the corresponding diffeomorphism
groups and homeomorphism groups are weakly equivalent (by Theorem 3.1), we shall instead prove
that BDiff(𝑁, 𝑆free, rel 𝜕𝑃 ∪ 𝑆fixed) has a finite CW complex model.

We already know the homotopical finiteness for an irreducible 3-manifold with a nonempty boundary
([HM97]).

Theorem 4.2 (Hatcher-McCullough). If M is an irreducible 3-manifold with a nonempty boundary, then
BDiff(𝑀, rel 𝜕) has the homotopy type of a finite CW-complex.

So we know that BDiff(𝑃, rel 𝜕) has a finite CW complex model. We want to inductively fix 𝑒𝑖 (D
3)

either set-wise or pointwise and still get a finite CW complex model.

Lemma 4.3. Suppose P is a 3-manifold with possibly nonempty boundary. Let 𝜕1 be a subset of bound-
ary components containing the non-spherical components (it could also contain spherical boundary
components), and let 𝑆free be the union of remaining spherical components. Let 𝑒 : 𝐷3 ↩→ 𝑃 be an
embedding of a ball inside P. If BDiff(𝑃, 𝑆free, rel 𝜕1) has the homotopy type of a finite CW-complex,
so does BDiff (𝑃, 𝑆free, rel 𝜕1 ∪ 𝑒(𝐷3)). Similarly, if BDiff(𝑃, 𝑆free, rel 𝜕1) is strongly homologically
finite, so is BDiff (𝑃, 𝑆free, rel 𝜕1 ∪ 𝑒(𝐷3)).

Proof. Including the diffeomorphism group that fixes a neighborhood of the boundary into the dif-
feomorphism group that fixes the boundary pointwise is a weak homotopy equivalence (see [Kup19a,
Chapter 4 and 5]). So let Diff(𝑃, 𝑆free, fix 𝑒(𝐷3), rel 𝜕1) be the subgroup of Diff (𝑃, 𝑆free, rel 𝜕1) that
fixes 𝑒(𝐷3) pointwise. The inclusion

Diff (𝑃, 𝑆free, rel 𝜕1 ∪ 𝑒(𝐷3)) → Diff(𝑃, 𝑆free, fix 𝑒(𝐷3), rel 𝜕1),

is a weak homotopy equivalence. Hence, using [Pal60, Theorem C] and the above weak equivalence,
we have a homotopy fiber sequence

Diff (𝑃, 𝑆free, rel 𝜕1 ∪ 𝑒(𝐷3)) → Diff(𝑃, 𝑆free, rel 𝜕1) → Emb+(𝐷3, 𝑃) � Fr+(𝑃),
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where Emb+(𝐷3, 𝑃) is the space of orientation preserving embeddings and Fr+(𝑃) is the oriented frame
bundle of M. It can be delooped (similar to the standard fact [FOT08, Proposition 1.80]) to induce the
fiber sequence

Fr+(𝑃) → BDiff(𝑃, 𝑆free, rel 𝜕1 ∪ 𝑒(𝐷3)) → BDiff(𝑃, 𝑆free, rel 𝜕1).

The base and the fiber of this fiber sequence have the homotopy type of a finite CW-complex (strongly
homologically finite). Therefore, the total space also has a finite CW-complex model (strongly homo-
logically finite). �

Lemma 4.4. Let P be as in the previous lemma and 𝑒 : 𝐷3 ↩→ 𝑃 be an embedding of a ball inside P.
Let 𝑥 ∈ 𝑃 be the image of the center of the ball. Let M be the manifold obtained from P by remov-
ing int(𝑒(𝐷3)) so it has a sphere boundary S. Let the group Diff (𝑃, 𝑥, 𝑆free, rel 𝜕1) be the subgroup
of Diff(𝑃, 𝑆free, rel 𝜕1) that fixes x and Diff (𝑀, 𝑆free, rel 𝜕1) be the subgroup of Diff(𝑀) that is the
identity near the boundary components 𝜕1 and fixes each of the other boundary components set-wise.
Then there is a zig-zag of group homomorphisms that are homotopy equivalences between the group
Diff (𝑃, 𝑥, 𝑆free, rel 𝜕1) and the group Diff (𝑀, 𝑆free, rel 𝜕1).

Proof. For simplicity, we consider the case where P is closed; the general case follows similarly. Let
Diff (𝑀, rel 𝜕SO(3) ) be the subgroup of Diff (𝑀) that on a neighborhood of the boundary S restricts to
the subgroup of rigid rotations in the following sense. We fix a collar neighborhood 𝑒 : 𝑆2 × [0, 1) ↩→ 𝑀
extending the parametrization of the boundary S. The group of rotations SO(3) acts on this collar neigh-
borhood by acting on each slice 𝑒(𝑆2×{𝑡}) by a fixed rotation. For each element f of Diff (𝑀, rel 𝜕SO(3) ),
there exists a positive 𝜖 such that the restriction of f to 𝑒(𝑆2 × [0, 𝜖)) is the same as the action of SO(3).
Recall that Smale’s theorem ([Sma59]) implies that Diff0(𝑆

2) � SO(3). Hence, by the comparison of
fiber sequences, it is easy to see that Diff(𝑀, rel 𝜕SO(3) ) is homotopy equivalent to Diff(𝑀).

So it is enough to show that the natural inclusion

Diff(𝑀, rel 𝜕SO(3) ) → Diff (𝑃, 𝑥),

that is induced by extending a rotation on the boundary of 𝑒(𝐷3) to its interior, is a homotopy equivalence.
Recall that Hatcher’s theorem implies that Diff (𝐷3, rel 𝑆2) is contractible which in turn implies that

the restriction map Diff (𝐷3) → Diff(𝑆2) is a homotopy equivalence. Let Diff (𝑃, 𝑒(𝐷3)) be the subgroup
of Diff(𝑃) that fixes 𝑒(𝐷3) set-wise. Since Diff+(𝐷3) � SO(3), by the comparison of fibrations, one
can see that the inclusion Diff(𝑀, rel 𝜕SO(3) ) → Diff(𝑃, 𝑒(𝐷3)) is a homotopy equivalence.

However, since 𝐷3 is contractible, the fiber sequence obtained by the action of Diff+(𝐷3) on 𝐷3

implies that the inclusion Diff+(𝐷3, 0) ↩→ Diff+(𝐷3) is a weak equivalence where Diff+(𝐷3, 0) is the
subgroup fixing the origin of 𝐷3. Let Diff(𝑃, 𝑒(𝐷3), 𝑥) be the subgroup of Diff (𝑃, 𝑒(𝐷3)) that fixes
the point x. By comparison of fiber sequences, one can see that Diff (𝑃, 𝑒(𝐷3), 𝑥) → Diff(𝑃, 𝑒(𝐷3))
is also a weak equivalence. Therefore, it is enough to show that Diff (𝑃, 𝑒(𝐷3), 𝑥) → Diff (𝑃, 𝑥) is a
weak equivalence. Consider the following fiber sequence that is a variant of the fiber sequence [Pal60,
Theorem C]

Diff(𝑃, 𝑒(𝐷3), 𝑥) → Diff(𝑃, 𝑥) → Emb+((𝐷3, 0), (𝑃, 𝑥))/Diff(𝐷3, 0),

where Emb+((𝐷3, 0), (𝑃, 𝑥))/Diff(𝐷3, 0) is the space of unparametrized smooth embeddings of 𝐷3

that send its center to x. It is easy to see that Emb+((𝐷3, 0), (𝑃, 𝑥))/Diff(𝐷3, 0) is contractible. Hence,
Diff (𝑃, 𝑒(𝐷3), 𝑥) → Diff(𝑃, 𝑥) is a weak equivalence. �

Proof of Theorem 4.1. We shall prove that BDiff(𝑁, 𝑆free, rel (𝜕𝑃 ∪ 𝑆fixed)) has a finite CW complex
model. Let M be the manifold obtained from P by removing 𝑒𝑖 (int(D3)) for all 1 ≤ 𝑖 ≤ 𝑘 . Given
Lemma 4.3, it is enough to prove that BDiff (𝑀, 𝑆free, rel 𝜕𝑃) has a finite CW complex model.
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Let 𝑥𝑖 be a point in P given by the image of the center of the ball 𝑒𝑖 (int(D3)). Let Diff(𝑃,
{𝑥1, . . . , 𝑥𝑘 }, rel 𝜕𝑃) be the subgroup of Diff (𝑃, rel 𝜕𝑃) consisting of those elements that fix each 𝑥𝑖 .
Claim. The classifying space BDiff (𝑀, 𝑆free, rel 𝜕𝑃) is homotopy equivalent to BDiff(𝑃,
{𝑥1, . . . , 𝑥𝑘 }, rel 𝜕𝑃).

This is easily deduced by applying Lemma 4.4 inductively k times.
Let PConf𝑘 (𝑃) be the space of ordered configuration space of k points in the interior of P. Forgetting

the first point induces the map

PConf𝑘 (𝑃) → PConf𝑘−1(𝑃),

which is a fibration whose fiber is homotopy equivalent to the complement of (𝑘 −1) points in P. Hence,
inductively we conclude that PConf𝑘 (𝑃) is weakly equivalent to a finite CW complex. Considering the
action of Diff(𝑃, rel 𝜕𝑃) on the k points {𝑥1, . . . , 𝑥𝑘 } gives a Palais fiber sequence ([Pal60, Theorem C]).
By delooping this fiber sequence, we have a fiber sequence

PConf𝑘 (𝑃) → BDiff(𝑃, {𝑥1, . . . , 𝑥𝑘 }, rel 𝜕𝑃) → BDiff(𝑃, rel 𝜕𝑃).

Since both BDiff (𝑃, rel 𝜕𝑃) and PConf𝑘 (𝑃) have a finite CW complex model, so does
BDiff(𝑃, {𝑥1, . . . , 𝑥𝑘 }, rel 𝜕𝑃). �

Note that the proof of Lemma 4.4 and the proof of the claim above imply that if BDiff (𝑀, rel 𝜕) is
homologically finite, so is BDiff (𝑁, 𝑆free, rel (𝜕𝑃 ∪ 𝑆fixed)). Therefore, Theorem 3.2 is also implied by
Theorem 1.1.

5. Proof of the technical Lemma 2.9

We denote the image of a simplex Δ ⊂ 𝑌 in 𝑌/𝐺 by [Δ]. Because of conditions (2) and (3), the cells
[Δ] give a finite CW structure on 𝑌/𝐺 and let S be the finite set of all cells.

Step 0: For a simplex Δ ⊂ 𝑌 , let 𝑋 (Δ) be the subcomplex of X that is the preimage of Δ under the
map 𝑋 → 𝑌 . Then it is well known ([KS77, Lemma 1.7 in Essay III at page 94]) that the restriction
of 𝑋 (Δ) → Δ to the interior �Δ is a trivial fiber bundle. A more streamlined proof is given in [Wil66,
Theorem 1.3.1]. Note that the finiteness condition in [Wil66, KS77] is used in the second half of their
proof where they want to prove it is a PL fiber bundle. To prove that topologically this restriction is a
trivial fiber bundle as they showed, the finiteness condition on 𝑋 (Δ) is not needed.

Step 1: Let [ �Δ𝛼] be the interior of the cell [Δ𝛼] for 𝛼 ∈ 𝑆. We shall prove that for each cell [Δ𝛼],
the restriction of 𝜂 to the interior [ �Δ𝛼] is a trivial fiber bundle.

Let 𝑋 ([Δ𝛼]) ⊂ 𝑋 be the subcomplex that is the pre-image of [Δ𝛼] under the map g that is the
composition 𝑔 : 𝑋 → 𝑌 → 𝑌/𝐺, and let 𝑋 ([ �Δ𝛼]) be the preimage of [ �Δ𝛼]. So we want to show that
the map

𝑋 ([ �Δ𝛼])//𝐺 → [ �Δ𝛼]

is a trivial fiber bundle. Since the map 𝑋 → 𝑌 is G-equivariant, the map

𝑋 ([ �Δ𝛼]) → orbit( �Δ𝛼)

is also a trivial fiber bundle by step 0 where orbit( �Δ𝛼) is the orbit of �Δ𝛼 under the G action. Let 𝑏𝛼 be
the barycenter of [ �Δ𝛼]. So there is a natural homeomorphism 𝑋 ([ �Δ𝛼]) � [ �Δ𝛼] × 𝑔−1(𝑏𝛼) which is
G-equivariant where G-action on [ �Δ𝛼] is trivial and on 𝑋 ([ �Δ𝛼]) and 𝑔−1(𝑏𝛼) are the natural actions
restricted from the action on X. Hence, we obtain a natural homeomorphism

𝑋 ([ �Δ𝛼])//𝐺 � [ �Δ𝛼] × (𝑔−1 (𝑏𝛼)//𝐺)

that commutes with the projection to [ �Δ𝛼].
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Step 2: Since the inclusion of sub-CW-complexes are cofibrations, there is an open neighborhood
U of each sub-CW-complex K in 𝑌/𝐺 that deformation retracts to K. But we also want U to satisfy
the following property. Let 𝑌 (𝐾) be the G-invariant sub-simplicial-complex of Y that is the preimage
of K via the quotient map 𝑌 → 𝑌/𝐺, and let 𝑌 (𝑈) be a G-invariant open neighborhood of 𝑌 (𝐾) in the
preimage of U in Y. Similarly, we have G-invariant subspaces 𝑋 (𝐾) and 𝑋 (𝑈). Since the map 𝑋 → 𝑌
is simplicial, we want to choose U small enough so that 𝑋 (𝑈) deformation retracts to 𝑋 (𝐾).

To fix such a neighborhood U, we can choose it combinatorially (one can also do it by putting
metrics on Y and X). Barycentrically subdivide Y twice and choose the regular neighborhood U of K.
The simplicial map 𝑓 : 𝑋 → 𝑌 can be realized as the realization of the poset map between barycentric
subdivisions. So then, one can see that similar to the canonical deformation retraction of U to K that is
done simplex by simplex, 𝑋 (𝑈) also deformation retracts to 𝑋 (𝐾).

Since the preimage 𝜂−1(𝑈) is 𝑋 (𝑈)//𝐺, and the map 𝑋 (𝐾) → 𝑋 (𝑈) is G-equivariant, we deduce
that the inclusion 𝜂−1 (𝐾) ↩→ 𝜂−1(𝑈) is a weak homotopy equivalence. We can inductively apply Mayer-
Vietoris as follows.

Step 3: By induction on the dimension of the sub-CW-complex K, suppose we know that 𝜂−1(𝐾) is
L|𝜂−1 (𝐾 ) -homologically finite for dim(𝐾) < 𝑘 . The base of the induction is guaranteed by condition (2).
Now we consider the sub-CW complex 𝐾 ∪[𝜕Δ𝛼 ] [Δ𝛼]. Let the open neighborhood U of K be as
in step 2. So it is enough to show that 𝜂−1(𝑈 ∪ [ �Δ𝛼]) is L|𝜂−1 (𝑈∪[ �Δ𝛼 ])

-homologically finite. Note
that this space is covered by open sets 𝜂−1 (𝑈) and 𝜂−1([ �Δ𝛼]) whose intersection is the preimage of
[ �Δ𝛼] ∩ 𝑈. We can choose U so that as in step 2, the preimage 𝜂−1 ([ �Δ𝛼] ∩ 𝑈) is homeomorphic to
([ �Δ𝛼] ∩𝑈) × (𝑔−1(𝑏𝛼)//𝐺). So 𝜂−1 ([ �Δ𝛼] ∩𝑈) is also L|𝜂−1 ( [ �Δ𝛼 ]∩𝑈 ) -homologically finite.

By induction, we know that 𝜂−1(𝑈) is L|𝜂−1 (𝑈 ) -homologically finite. Step 1 and condition (2) imply
that 𝜂−1([ �Δ𝛼]) is of L|𝜂−1 ( [ �Δ𝛼 ])

-homologically finite. Therefore, Mayer-Vietoris with local coefficient
systems ([Whi12, Chapter VI]) implies the same for the preimage of 𝐾 ∪𝜕[Δ𝛼 ] [Δ𝛼]. Given that
𝑌/𝐺 is a finite complex, this process of adding cells ends in a finite step which implies that 𝑋//𝐺 is
L-homologically finite.

6. The homological finiteness of 𝜂−1(𝑥) for a vertex x

Let x be in F0 in the filtration 2 which is the image of a separating sphere 𝑆 ⊂ 𝑀 . Our first step to
identify the homotopy type of 𝜂−1(𝑥) is the following proposition. Let S (𝑀, [𝑆]) be the full subcomplex
of S (𝑀) whose vertices are the orbits of S under the action of Homeo𝛿 (𝑀, rel 𝜕).

Proposition 6.1. Let x be in F0. The preimage 𝜂−1 (𝑥) is homotopy equivalent to

S (𝑀, [𝑆])//Homeo𝛿 (𝑀, rel 𝜕).

Before proving Proposition 6.1, let us first observe some properties of the subcomplex S (𝑀, [𝑆]).
Note that in a simplex, there could be vertices that are given by isotopic spheres, and since they are
disjoint, at least for M satisfying the hypothesis of Theorem 3.2, they bound an embedded S2× [0, 1]. By
Scharlemann’s theorem, we can send two disjoint spheres 𝑆1 and 𝑆2 by a homeomorphism into B. Since
the isotopy classes of embedded spheres in B are determined by how an embedded sphere separates
the boundary components (see [HM90, Proposition 2.2]), two disjoint isotopic spheres in B bound
a S2 × [0, 1]. Now if the image of 𝑆1 and 𝑆2 in B are not isotopic in B, then they separate disjoint
diffeomorphic submanifolds of M in which case, given that each irreducible factor has a nontrivial
boundary, the spheres 𝑆𝑖 could not be isotopic in M relative to the boundary. So we record this fact as a
lemma.

Lemma 6.2. Two isotopic essential disjoint separating spheres in M co-bound an embedded 𝑆2 × [0, 1].

Remark 6.3. Even if M does not have a boundary, the same statement holds. We sketch the argument
here in case it might be useful in a more general situation. Let S and 𝑆′ be two isotopic disjoint spheres
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in M that are separating. Let P be a submanifold that bounds S. Suppose that the isotopy of M (which
exists by the isotopy extension theorem) that sends S to 𝑆′ sends P to the submanifold 𝑃′. Since M
might be a closed 3-manifold, either P is disjoint from 𝑃′ or one contains the other. For example, if
P contains 𝑃′, then region 𝑃” that bounds both S and 𝑆′ in P should be simply connected. Using the
Poincaré conjecture and the Schoenflies theorem, we conclude that 𝑃” is diffeomorphic to 𝑆2 × [0, 1].
Now assume that P and 𝑃′ are disjoint. So suppose M is the connected sum of P and 𝑃′ and the region
𝑃” that bounds both S and 𝑆′. If 𝑃” is simply connected, then it is diffeomorphic to 𝑆2 × [0, 1]. So we
assume that 𝑃′′ is not simply connected. Since S and 𝑆′ are essential, P and 𝑃′ are not simply connected
either. Therefore, 𝜋1 (𝑀) is the free product 𝜋1 (𝑃) ∗ 𝜋1 (𝑃”) ∗ 𝜋1 (𝑃

′).
But isotopy acts by the conjugation on the fundamental group, and a conjugation cannot send 𝜋1 (𝑃)

factor in the free product to any other factor by using normal forms for elements in a free product. In
fact, in our case, there is a simpler argument since all irreducible factors have nontrivial boundaries, we
know that P and 𝑃′ have first homology groups. So the action of the isotopy on the first homology of M
would be nontrivial if P and 𝑃′ were disjoint.
Lemma 6.4. Let M be a compact 3-manifold as in Theorem 3.2. Then vertices in each simplex in
S (𝑀, [𝑆]) consist of disjoint isotopic spheres, and there is a partial order on the vertices of S (𝑀, [𝑆])
such that the complex S (𝑀, [𝑆]) is the nerve of this poset structure.
Definition 6.5. Let S•(𝑀, [𝑆]) denote the semisimplicial set given by this ordering of vertices.
Proof of Lemma 6.4. Since the prime decomposition of M has irreducible factors with nonempty bound-
aries, an edge in S (𝑀, [𝑆]) consists of two disjoint isotopic spheres in the orbit of S. This is because if
we had two disjoint non-isotopic spheres in the orbit of S, given that S is separating, these two spheres
cut out homeomorphic pieces 𝑃1 and 𝑃2 such that neither of them contains the other and they are
permuted by an element in Homeo(𝑀, rel 𝜕). But this is not possible, since each prime factor has a
nontrivial boundary; the submanifolds 𝑃1 and 𝑃2 should have nontrivial boundary components. Given
that elements in Homeo(𝑀, rel 𝜕) fix the boundary pointwise, they cannot permute disjoint submani-
folds 𝑃1 and 𝑃2. Hence, each simplex in S (𝑀, [𝑆]) consists of disjoint isotopic spheres. We call them
parallel spheres.

Now to describe the partial order on vertices of S (𝑀, [𝑆]), we need to put an order on parallel
spheres. Recall that 𝜕∗𝑀 denotes the boundary component that contains the base point. Each separating
sphere S separates M into connected components, and one of them, which we denote by 𝑃𝑆 , contains
the base point. If we have isotopic disjoint separating spheres 𝑆𝑖’s, we order them by the inclusion of
the components 𝑃𝑆𝑖 ’s. In other words, we can put a metric on M and order 𝑆𝑖’s by their distance to the
base point. We call this order on spheres of a simplex ‘the inside to outside’ order. �

Proof of Proposition 6.1. Let 𝑥 ∈ F0 be an orbit of an isotopy class [𝑆] of a separating sphere S. Let
[S] (𝑀, [𝑆]) be the full subcomplex of [S] (𝑀) whose vertices are the orbits of [𝑆]. Consider the
commutative diagram

S (𝑀) [S] (𝑀)

S (𝑀)/Homeo𝛿 (𝑀, rel 𝜕) [S] (𝑀)/Mod(𝑀, rel 𝜕).
𝜂1

(4)

The preimage of x in S (𝑀) is the subcomplex S (𝑀, [𝑆]) which is Homeo𝛿 (𝑀, rel 𝜕)-invariant. So
𝜂−1

1 (𝑥) is the quotient space S (𝑀, [𝑆])/Homeo𝛿 (𝑀, rel 𝜕). Now by the naturality of the Borel con-
struction, we have a pullback diagram

S (𝑀, [𝑆])//Homeo𝛿 (𝑀, rel 𝜕) S (𝑀)//Homeo𝛿 (𝑀, rel 𝜕)

S (𝑀, [𝑆])/Homeo𝛿 (𝑀, rel 𝜕) S (𝑀)/Homeo𝛿 (𝑀, rel 𝜕).

𝜂2

(5)
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Hence, the preimage 𝜂−1(𝑥) = 𝜂−1
2 (S (𝑀, [𝑆])/Homeo𝛿 (𝑀, rel 𝜕)) is in fact homeomorphic to the

Borel construction S (𝑀, [𝑆])//Homeo𝛿 (𝑀, rel 𝜕). �

Now we define a semi-simplicial space whose underlying semi-simplicial set is S•(𝑀, [𝑆]).

Definition 6.6. S 𝜏• (𝑀, [𝑆]) is a semi-simplicial space whose 0-simplices as a set is the same as
S0 (𝑀, [𝑆]), but it is topologized as the subspace of locally flat embeddings Emblf (S2, 𝑀). By
Lemma 6.4, the space S 𝜏0 (𝑀, [𝑆]) is a topological poset. The semi-simplicial set S 𝜏• (𝑀, [𝑆]) is the
nerve of this topological poset.

For a p-simplex 𝑒𝑝 ∈ S 𝜏𝑝 (𝑀, [𝑆]), let Stab(𝑒𝑝) be the subgroup of Homeo(𝑀, rel 𝜕) that fixes
𝑒𝑝 pointwise. By Lemma 6.2 and Lemma 6.4, each p-simplex is given by 𝑝 + 1 parallel spheres. Let
𝜎1 = (𝑆0, 𝑆1, . . . , 𝑆𝑝) and 𝜎2 = (𝑆′

0, 𝑆′
1, . . . , 𝑆′

𝑝) be two p-simplices where the order of the spheres are
induced by the inside to outside order. Since the action of Homeo𝛿 (𝑀, rel 𝜕) on the set S0 (𝑀, [𝑆]) is
transitive, we can find 𝑓0 ∈ Homeo𝛿 (𝑀, rel 𝜕) such that 𝑓0(𝑆

′
0) = 𝑆0. Note that 𝑓0(𝑆

′
1) is isotopic to 𝑆1

and they are disjoint from 𝑆0. So by the isotopy extension theorem ([EK71, Corollary 1.2]), there exists
𝑓1 ∈ Homeo𝛿0 (𝑀, rel 𝜕) whose support does not intersect 𝑆0 and 𝑓1(𝑆

′
1) = 𝑆1. Continuing this process,

we can find 𝑓𝑖 ∈ Homeo𝛿0 (𝑀, rel 𝜕) for 1 ≤ 𝑖 ≤ 𝑝 such that 𝑓𝑝 ◦ · · · ◦ 𝑓0 sends 𝑆′
𝑖 to 𝑆𝑖 for all 0 ≤ 𝑖 ≤ 𝑝.

Therefore, the action of Homeo𝛿 (𝑀, rel 𝜕) on the set of p-simplices is transitive. Hence, the topological
version of Shapiro’s lemma implies that there is a map BStab𝛿 (𝑒𝑝) → S𝑝 (𝑀, [𝑆])//Homeo𝛿 (𝑀, rel 𝜕)
that is a weak equivalence. To show that the homotopy quotient S 𝜏𝑝 (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕) is
homotopy equivalent to BStab(𝑒𝑝), we need the following lemma. Let Sing•(𝑋) denote the singular
set of a topological space X. Recall that by [Mil57] and [ERW19, Lemma 1.7], the augmentation map
Sing•(𝑋) → 𝑋 induces a weak equivalence after fat realization.

Lemma 6.7. There is a map B|Sing•(Stab(𝑒𝑝)) | → S 𝜏𝑝 (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕) that is a weak
equivalence.

Proof. Let S 𝜏𝑝 (𝑀, [𝑆])• be defined similarly to S 𝜏𝑝 (𝑀, [𝑆]) in Definition 6.6, but instead of the space
of locally flat embeddings, we consider the simplicial set of locally flat embeddings Emblf (S2, 𝑀)• (see
[Nar20, Definition 2.5]). Then the action of Homeo(𝑀, rel 𝜕) on S 𝜏𝑝 (𝑀, [𝑆]) induces the following
map of simplicial sets

Sing•(Homeo(𝑀, rel 𝜕)) → S 𝜏𝑝 (𝑀, [𝑆])•,

which by the parametrized isotopy extension theorem, it is a Kan fibration (see [BL74, Page 19] where it
is called A.I.T which is short for the ambient isotopy extension theorem) whose fiber is Sing•(Stab(𝑒𝑝)).

Again, the augmentation map S 𝜏𝑝 (𝑀, [𝑆])• → S 𝜏𝑝 (𝑀, [𝑆]) induces a weak equivalence after fat
realization, and it is equivariant with respect to the map Sing•(Homeo(𝑀, rel 𝜕)) → Homeo(𝑀, rel 𝜕).
So we obtain a natural weak equivalence

| |S 𝜏𝑝 (𝑀, [𝑆])•//Sing•(Homeo(𝑀, rel 𝜕)) | |
�
−→ S 𝜏𝑝 (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕).

Therefore, it is enough to show that for each k in the simplicial direction, we have a map

BSing𝑘 (Stab(𝑒𝑝)) → S 𝜏𝑝 (𝑀, [𝑆])𝑘//Sing𝑘 (Homeo(𝑀, rel 𝜕)),

that induces a weak equivalence.
Let G be the discrete group Sing𝑘 (Homeo(𝑀, rel 𝜕)), and let H be its subgroup Sing𝑘 (Stab(𝑒𝑝)).

Note that there is natural isomorphism from the coset 𝐺/𝐻 to S 𝜏𝑝 (𝑀, [𝑆])𝑘 . As is also mentioned in
[Nar20, Section 3.1.1], the Shapiro’s lemma for discrete groups implies that there is a natural map
B𝐻 → (𝐺/𝐻)//𝐺 which is a weak homotopy equivalence. �
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Now note that Thurston’s homology isomorphism 1, in the generality that McDuff proved in [McD80,
Section 2], implies that the map

BStab𝛿 (𝑒𝑝) → BStab(𝑒𝑝)

is an acyclic map. This map factors through BStab𝛿 (𝑒𝑝) → B|Sing•(Stab(𝑒𝑝)) | which is induced by
mapping Stab𝛿 (𝑒𝑝) to the 0-simplices Sing0(Stab(𝑒𝑝)). So using Lemma 6.7, we obtain that for each p,
the natural map

𝑓𝑝 : S𝑝 (𝑀, [𝑆])//Homeo𝛿 (𝑀, rel 𝜕) → S 𝜏𝑝 (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕) (6)

induces an acyclic map. We claim that the induced map between the realizations

𝑓 : | |S•(𝑀, [𝑆])//Homeo𝛿 (𝑀, rel 𝜕) | | → ||S 𝜏• (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕) | |

is also acyclic. Because for a local coefficient L on the realization | |𝑋• | | of a semisimplicial space 𝑋•,
there is a spectral sequence that calculates the homology of the realization with local coefficients (see
[ERW19, Section 1.4])

𝐸1
𝑝,𝑞 � 𝐻𝑝 (𝑋𝑞;L𝑞) ⇒ 𝐻𝑝+𝑞 (| |𝑋• | |;L),

where L𝑞 is the local coefficient on the space of q-simplices by pulling back L via the map

𝑋𝑞 × 𝑏𝑞 → 𝑋𝑞 × Δ𝑞 → ||𝑋• | |,

where 𝑏𝑞 is the barycenter of Δ𝑞 . The maps 𝑓• induce isomorphisms on 𝐸1-pages of the corresponding
spectral sequences. Therefore, given a local coefficient L on | |S 𝜏• (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕) | |, the
map f induces a homology isomorphism with local coefficients on | |S•(𝑀, [𝑆])//Homeo𝛿 (𝑀, rel 𝜕) | |
that is the pullback 𝑓 ∗(L). Hence, to prove weak homological finiteness for 𝜂−1(𝑥), we prove strong
homological finiteness of

| |S 𝜏• (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕) | |

by finding a model for it that sits in a homotopy fiber sequence 3 to be able to argue inductively on the
number of prime factors.

We can define the smooth version of S 𝜏• (𝑀, [𝑆]) and work with diffeomorphism groups. But in this
dimension and for codimension 1 embeddings, the corresponding objects in the 𝐶0 and 𝐶∞-category
are weakly homotopy equivalent. So we stick to the 𝐶0-category.

7. Parallel spheres and bar constructions

Let 𝑒 : 𝜕∗𝑀 ↩→ {0} ×R∞ be a fixed locally flat embedding of the boundary component that contains the
base point, and let Emblf

𝜕 (𝑀, [0,∞)×R∞) be the space of locally flat embeddings of M whose intersection
with {0} × R∞ is 𝑒(𝜕∗𝑀). Lashof in [Las76, Appendix, theorem 1] considered three variants of spaces
of topological embeddings that are Kan complexes, and he showed that they are homotopy equivalent as
long as the dimension of the target is larger than 4 and the codimension of the embedding is at least 3. One
of these variants is the singular set of the on the space of locally flat embeddings. The proof in [Kup15,
Lemma 2.2] implies that one of Lashof’s model for Emblf

𝜕 (𝑀, [0,∞) × R∞) is weakly contractible.
Therefore, the space Emblf

𝜕 (𝑀, [0,∞)×R∞) that is homotopy equivalent to the realization of its singular
set ([Mil57]) is also weakly contractible. Working simplicially first as in [Kup15, Lemma 2.6 and
Lemma 2.7], and then geometrically realizing, we deduce that Emblf

𝜕 (𝑀, [0,∞)×R∞)/Homeo(𝑀, rel 𝜕)
is a model for the classifying space BHomeo(𝑀, rel 𝜕), and the semi-simplicial space
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M•(𝑀, [𝑆]) �
S 𝜏• (𝑀, [𝑆]) × Emblf

𝜕 (𝑀, [0,∞) × R∞)

Homeo(𝑀, rel 𝜕)
,

is level-wise weakly equivalent to S 𝜏• (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕). We think of M•(𝑀, [𝑆]) as a con-
figuration space of the manifolds in [0,∞) × R∞ that are homeomorphic to M satisfying the boundary
condition and with a choice of parallel spheres in the orbit of S.

Now we shall define a two-sided bar construction model for M•(𝑀, [𝑆]). Let 𝜄0 : S2 ↩→ {0} × R∞
be a fixed embedding, and we denote the embedding 𝜄0 + 𝑡 · 𝑒1 in {𝑡} × R∞ by 𝜄𝑡 .

Definition 7.1. We define the space M(𝑀) to be the quotient space Emblf
𝜕 (𝑀, [0,∞) × R∞)/

Homeo(𝑀, rel 𝜕). This is a model for the classifying space BHomeo(𝑀, rel 𝜕). For an element
𝑓 ∈ M(𝑀), we let image( 𝑓 ) be the unparametrized submanifold of [0,∞) × R∞ given by f that
is homeomorphic to M.

Definition 7.2. Let𝔇 be the topological monoid given by space of pairs (𝑡, 𝑓 ) ∈ [0,∞)×M(S2×[0, 1])
where

◦ we have image( 𝑓 ) ⊂ [0, 𝑡] × R∞ and
◦ the intersection of image( 𝑓 ) with {0}×R∞ and {𝑡}×R∞ are given by embeddings 𝜄0 and 𝜄𝑡 , respectively.

The monoid structure is given by adding the t-coordinates and stacking the embeddings next to each
other.

It is standard to see that the topological monoid 𝔇 is homotopy equivalent to BHomeo(S2 ×

[0, 1], rel 𝜕). The homotopy type of Homeo(S2 × [0, 1], rel 𝜕) is known ([Hat83, Appendix]) to be
the loop space Ω(SO(3)). Also recall that the inclusion SO(3) ↩→ Homeo0(S

2) is a weak equivalence
([Ham74, Theorem 1.2.2]).

Recall that when we cut M along S, we obtain two pieces 𝑀1 and 𝑀2, where 𝑀1 contains
𝜕∗𝑀 , the boundary component of M with the base point. Now we define moduli space models for
BHomeo(𝑀1, rel 𝜕) and BHomeo(𝑀2, rel 𝜕) that are modules over the topological monoid 𝔇.

Definition 7.3. Let L be the space of pairs (𝑡, 𝑓 ) ∈ [0,∞) ×M(𝑀1) such that

◦ The image(f ) lies in the strip [0, 𝑡] × R∞.
◦ The intersection image( 𝑓 ) ∩ {0} × R∞ is given by the embedding e (the embedding of the base

boundary component) and image( 𝑓 ) ∩ {𝑡} × R∞ is given by 𝜄𝑡 .

Similarly, let R to be the space of pairs (𝑡, 𝑓 ) ∈ [0,∞) ×M(𝑀2) such that

◦ The image image( 𝑓 ) lies in [𝑡,∞) × R∞.
◦ The intersection image( 𝑓 ) ∩ {𝑡} × R∞ is given by 𝜄𝑡 .

It is easy to see that L and R are weakly equivalent to BHomeo(𝑀1, rel 𝜕) and BHomeo(𝑀2, rel 𝜕),
respectively.

Note that there is a right 𝔇-module structure on L such that the action of (𝑡, 𝑓 ) ∈ 𝔇 on (𝑡 ′, 𝑓 ′) ∈ L
is the pair (𝑡 + 𝑡 ′, 𝑓 ′ � ( 𝑓 + 𝑡 ′ · 𝑒1)), where 𝑓 + 𝑡 ′ · 𝑒1 is the embedding f shifted in the first coordinate
to the right by 𝑡 ′. Similarly, there is a left 𝔇-module structure on R.

We consider the two-sided bar resolution given by the semi-simplicial space

𝐵𝑝 (L,𝔇,R) = L ×𝔇𝑝 ×R,

where the face map 𝑑0 and 𝑑𝑝 are given by the actions of 𝔇 on L and R, respectively, and other face
maps are induced by the monoid structure of 𝔇.

Note that there is a natural semi-simplicial map

ℎ𝑝 : 𝐵𝑝 (L,𝔇,R) → M𝑝 (𝑀, [𝑆])
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Figure 2. Schematic picture in one dimension lower on how BD acts on BR and BL.

by gluing the embeddings in order and choosing the spheres along which the embeddings are glued
as a choice of parallel spheres in the orbit of S. However, recall that the action of Homeo(𝑀, rel 𝜕)
on S 𝜏𝑝 (𝑀, [𝑆]) is transitive for each p. For a p-simplex 𝜎 ∈ S 𝜏𝑝 (𝑀, [𝑆]), the homotopy quo-
tient S 𝜏𝑝 (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕) is weakly equivalent to BStab(𝜎) by Lemma 6.7, and the space
M𝑝 (𝑀, [𝑆]) is also weakly equivalent to BStab(𝜎). As we shall see below, the semi-simplicial map ℎ•
is level-wise a weak equivalence, and we have weak equivalences between the (fat) realizations

| |𝐵•(L,𝔇,R) | |
�
−→ ||M•(𝑀, [𝑆]) | | � | |S 𝜏• (𝑀, [𝑆])//Homeo(𝑀, rel 𝜕) | |. (7)

Lemma 7.4. The map ℎ𝑝 is a weak equivalence for each integer 𝑝 > 0.

Proof. Suppose M is embedded in R×R∞ such that the spheres in the simplex 𝜎 are embedded in slices
{𝑎𝑖} × R

∞ for some real numbers 𝑎𝑖 . Then Stab(𝜎) is isomorphic to the product of homeomorphism
groups of submanifolds between slices. So we can use these slices to obtain a natural map BStab(𝜎) to
𝐵𝑝 (L,𝔇,R) which is a weak equivalence. Therefore, it is enough to show that the composition

ℎ̃𝑝 : BStab(𝜎) → M𝑝 (𝑀, [𝑆])

is a weak equivalence. It is easier to show this in the 𝐶∞-category. Remember in this dimension,
the corresponding objects of our interests are weakly equivalent. We denote the smooth versions by
superscript ∞. We have a weak equivalence 𝜄 : BStab∞(𝜎) → BStab(𝜎). Note that ℎ̃∞𝑝 � ℎ̃𝑝 ◦ 𝜄 lands in

M∞
𝑝 (𝑀, [𝑆]) �

S∞
• (𝑀, [𝑆]) × Emb∞𝜕 (𝑀, [0,∞) × R∞)

Diff(𝑀, rel 𝜕)
.

Given that corresponding objects in 𝐶∞ and 𝐶0 are weakly equivalent here, it is enough to show that
ℎ̃∞𝑝 is a weak equivalence.

Let 𝐺 = Diff(𝑀, rel 𝜕) and H be the subgroup Stab∞(𝜎). By the parametrized isotopy extension
theorem, H has a local section and 𝐻 → 𝐺 → 𝐺/𝐻 is a principal H-bundle. Therefore, similar
to the proof of Lemma 6.7, we have a topological Shapiro’s lemma where in this case, the map
ℎ̃∞𝑝 : B𝐻

�
−→ (𝐺/𝐻)//𝐺 is a weak equivalence. �

Since the topological monoid 𝔇 is path-connected, similar to [Kup19b, Theorem 4.5], we have a
homotopy fiber sequence

R → ||𝐵•(L,𝔇,R) | | → ||𝐵•(L,𝔇, ∗) | |. (8)
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We shall use the technique of the Weiss fibration as was explained in [Kup19b] to show that this is
the desired homotopy fiber sequence 3.

7.1. Kupers’ bar resolution for self-embeddings

We shall use Kupers’ theorem ([Kup19b, Section 4]) to determine the homotopy type of | |𝐵•(L,𝔇, ∗) | |
to be able to say that is weakly homologically finite.

The manifold 𝑀1 has a sphere boundary component 𝜕0𝑀1 = 𝑆 which we call the free boundary
component, and we denote the union of the rest of the boundary components by 𝜕1𝑀1 which we call the
fixed boundary components. Let Homeo(𝑀1, 𝑆, rel 𝜕1) be the group of homeomorphisms of 𝑀1 that fix
S set-wise and fix a neighborhood of 𝜕1𝑀1 pointwise.

Theorem 7.5. There is a zig-zag of weak equivalences between the bar resolution | |𝐵•(L,𝔇, ∗) | | and
the classifying space BHomeo(𝑀1, 𝑆, rel 𝜕1).

Kupers in [Kup19b] gives a model for Weiss fiber sequence where the set-up is that we have an
n-dimensional manifold M with a nonempty boundary and we fix an embedded D𝑛−1 ↩→ 𝜕𝑀 . Let
Emb�1/2𝜕 (𝑀) be the space of self-embeddings of M that are identity on 𝜕𝑀\int(D𝑛−1) and are isotopic
to a diffeomorphism that fixes the boundary through isotopies fixing 𝜕𝑀\int(D𝑛−1). There exists a fiber
sequence named after Michael Weiss

BDiff(𝑀, rel 𝜕) → BEmb�1/2𝜕 (𝑀) → BBDiff (D𝑛, rel 𝜕),

where the delooping BBDiff(D𝑛, rel 𝜕) is defined by considering BDiff (D𝑛, rel 𝜕) as a topological
monoid similar to Definition 7.2, and the 𝐸1-structure on this topological monoid is given by stacking
along the first coordinate when we consider the interior of the cube as a model for the interior of the
disk. We want to use a similar fiber sequence for a compact 3-manifold M with a nonempty boundary
where at least one of its boundary components is homeomorphic to S2.

Proof of Theorem 7.5. Let Emb�𝜕1
(𝑀) be the space of self locally flat embeddings of 𝑀1 that are the

identity on the fixed boundary components 𝜕1𝑀1 and are isotopic to a homeomorphism that fixes the
boundary through isotopies fixing 𝜕1𝑀1.

Given that in dimension 3, the corresponding objects in 𝐶0 and 𝐶∞ category are weakly equivalent
(Theorem 3.1), we may apply the proof of [Kup19b, Theorem 4.17] mutatis mutandis to conclude that
there is a fiber sequence

BHomeo(S2 × [0, 1], rel 𝜕) → BHomeo(𝑀1, rel 𝜕) → BEmb�𝜕1
(𝑀1) (9)

that is induced by the natural inclusions

Homeo(S2 × [0, 1], rel 𝜕) → Homeo(𝑀1, rel 𝜕) → Emb�𝜕1
(𝑀1).

Moreover, his method shows that there is a weak equivalence | |𝐵•(L,𝔇, ∗) | | � BEmb�𝜕1
(𝑀1). However,

we have a fiber sequence

Homeo(𝑀1, rel 𝜕) → Homeo(𝑀1, 𝑆, rel 𝜕1) → Homeo0 (S
2),

where the last map is the restriction to S. Since homeomorphisms in Homeo(𝑀1, 𝑆, rel 𝜕1) fix at least
one boundary component, they are orientation preserving so they restrict to Homeo0(S

2). This is a
Homeo(𝑀1, rel 𝜕)-bundle over Homeo0(S

2). So we obtain a fiber sequence

Homeo0(S
2) → BHomeo(𝑀1, rel 𝜕) → BHomeo(𝑀1, 𝑆, rel 𝜕1), (10)

where the first map is the classifying map for the Homeo(𝑀1, rel 𝜕)-bundle over Homeo0 (S
2).

https://doi.org/10.1017/fms.2025.38 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.38


Forum of Mathematics, Sigma 17

Note that the group Homeo(𝑀1, 𝑆, rel 𝜕1) is a submonoid of Emb�𝜕1
(𝑀1), so we have a natural map

between their classifying spaces induced by this inclusion. The advantage of using BEmb�𝜕1
(𝑀1) over

the bar construction | |𝐵•(L,𝔇, ∗) | | is that we have an explicit map

BHomeo(𝑀1, 𝑆, rel 𝜕1) → BEmb�𝜕1
(𝑀1)

that we shall argue is a weak equivalence.
To show that the base spaces of the two fiber sequences (9 and 10) are weakly equivalent, we need

maps of fiber sequences that induce weak equivalences between fibers and total spaces. They have the
same total spaces, so let us describe the map between fibers.

Let Homeo(S2 × [0, 1], 𝑆, rel 𝜕) be the subgroup of Homeo(S2 × [0, 1]) that fixes S2 × {1} pointwise
and fixes S2 × {0} set-wise. We have a Homeo(S2 × [0, 1], rel 𝜕)-fiber sequence

Homeo(S2 × [0, 1], rel 𝜕) → Homeo(S2 × [0, 1], 𝑆, rel 𝜕) → Homeo0 (S
2), (11)

where the last map is the restriction to S2 × {0}. This fiber sequence is classified by a map

𝑓 : Homeo0 (S
2) → BHomeo(S2 × [0, 1], rel 𝜕).

The total space of the fiber sequence (11) is contractible by Hatcher ([Hat83, Appendix]). So the
classifying map f is a weak equivalence. Therefore, we obtain a map of fiber sequences

BHomeo(𝑀1, rel 𝜕) BHomeo(𝑀1, rel 𝜕)

BEmb�𝜕1
(𝑀1) BHomeo(𝑀1, 𝑆, rel 𝜕1)

BHomeo(S2 × [0, 1], rel 𝜕) Homeo0(S
2)

=

�

(12)

It is easy to see that the diagram 12 commutes. Given the indicated weak equivalences in the
above diagrams, the comparison of the long exact sequence of the homotopy groups for the fiber
sequences implies that the bottom map is a weak equivalence between BHomeo(𝑀1, 𝑆, rel 𝜕1) and
BEmb�𝜕1

(𝑀1). �

By induction, Theorem 3.2 implies that BHomeo(𝑀1, 𝑆, rel 𝜕1) and R are strongly homologically
finite. Therefore, Lemma 3.3 implies that in the homotopy fiber sequence (8), the total space is strongly
homologically finite which in turn implies the same for 𝜂−1(𝑥) when 𝑥 ∈ F0.

For the inductive argument to analyze 𝜂−1(𝑥) when x is in higher filtration, we need a slight gen-
eralization of Theorem 7.5, whose proof is the same. Let 𝑀1 be a compact 3 manifold such that we
decompose the boundary components into three subsets: 𝜕−1 = 𝑆free which is a subset of spherical
boundary components, 𝜕0 = 𝑆 which is a spherical boundary component that is not in 𝜕−1, and 𝜕1
which is the union of the rest of the boundary components. Let Homeo(𝑀1, 𝑆free, rel 𝜕1 ∪ 𝜕0) be the
subgroup of Homeo(𝑀1, rel 𝜕1 ∪ 𝜕0) which fixes each boundary component in 𝜕−1 set-wise, and let
Homeo(𝑀1, 𝑆free ∪ 𝑆, rel 𝜕1) be the subgroup of Homeo(𝑀1, rel 𝜕1) which fixes each boundary com-
ponent in 𝑆free ∪ 𝑆 set-wise. Similarly, one can define a 𝔇-module that has the homotopy type of the
classifying space BHomeo(𝑀1, 𝑆free, rel 𝜕1 ∪ 𝜕0) where module structure is induced by gluing to the
boundary component 𝜕0 = 𝑆.

Theorem 7.6. There is a zig-zag of weak equivalences between the bar resolution | |𝐵•(L,𝔇, ∗) | | and
the classifying space BHomeo(𝑀1, 𝑆free ∪ 𝑆, rel 𝜕1).
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So roughly speaking, the construction | |𝐵•(L,𝔇, ∗) | | makes one more spherical boundary component
(the component 𝜕0) free.

Remark 7.7. For M being connected sum of two irreducible 3-manifolds with nonempty boundaries,
Hatcher’s theorem ([Hat81]) about 3-manifolds also implies Kontsevich’s finiteness. Let S be a separating
sphere in M. Then his theorem implies that 𝜄 : BDiff (𝑀, 𝑆, rel 𝜕) → BDiff(𝑀, rel 𝜕) is a homotopy
equivalence where Diff (𝑀, 𝑆, rel 𝜕) is the subgroup of Diff(𝑀, rel 𝜕) that fixes S set-wise. We have a
homotopy fiber sequence

BDiff(𝑀2, rel 𝜕) → BDiff(𝑀, 𝑆, rel 𝜕) → BDiff(𝑀1, 𝑆, rel 𝜕𝑀),

where 𝑀1 and 𝑀2 are obtained by cutting M along S. This homotopy fiber sequence is similar to the
one in (3).

8. Higher filtrations and the last step of the proof of Theorem 2.8

For 𝑘 > 0, suppose 𝑥 ∈ F𝑘 −F𝑘−1. We want to generalize the above bar resolution model by iterating the
same construction (𝑘 +1) times for each separating sphere in different orbits. Then we write this iterated
bar construction in a fiber sequence whose base and fiber, by induction on the number of prime factors
and by applying Theorem 4.1 on free sphere boundary components, are weakly homologically finite.

Let S = {𝑆0, 𝑆1, . . . , 𝑆𝑘 } be a set of 𝑘 +1 separating spheres where 𝑆𝑖’s are pairwise in different orbit
classes under the action of Homeo𝛿 (𝑀, rel 𝜕). We pick an order on these spheres and note that they
cannot be permuted via the action of Homeo𝛿 (𝑀, rel 𝜕). Let Δ ([S]) be a k-simplex in [𝑆] (𝑀) whose
vertices are the isotopy classes [S] = {[𝑆0], [𝑆1], . . . , [𝑆𝑘 ]}. As in Section 5, let [Δ ([S])] be the cell
in [𝑆] (𝑀)/Mod(𝑀, rel 𝜕) that is the image of the simplex Δ ([S]), and let [ �Δ ([S])] be the interior of
this cell. Suppose the point x lies in [ �Δ ([S])].

S (𝑀) [S] (𝑀)

S (𝑀)//Homeo𝛿 (𝑀, rel 𝜕) [S] (𝑀)/Mod(𝑀, rel 𝜕)
𝜂

𝑞

𝜋

As we mentioned in step 0 of Lemma 2.9, the restriction of p to the preimage of �Δ ([S]) is a trivial fiber
bundle. Let us recall part of the statement and the proof of [Wil66, Theorem 1.3.1] that is helpful to
determine the preimage 𝑞−1(𝑦) for a point 𝑦 ∈ �Δ ([S]).

If 𝑓 : 𝑋 → Δ is a simplicial map from a simplicial complex X to a simplex Δ , then for each 𝑦 ∈ �Δ ,
there is a homeomorphism ℎ : 𝑓 −1(𝑦) × �Δ → 𝑓 −1( �Δ). We can choose h so that for a subcomplex L of X,
we have

ℎ−1(𝐿) = ( 𝑓 −1(𝑦) ∩ 𝐿) × �Δ . (13)

As it is explained in [KS77, Lemma 1.7 at page 94] and [Wil66, Theorem 1.3.1], the simplicial complex
X is canonically a subcomplex of the join

𝑓 −1(𝑣0) ∗ 𝑓 −1(𝑣1) ∗ · · · ∗ 𝑓 −1(𝑣𝑘 ),

where 𝑣0, 𝑣1, . . . , 𝑣𝑘 are the vertices of Δ . If X were a full simplex, then 𝑓 −1(𝑦) would be canonically
homeomorphic to

𝑓 −1(𝑣0) × · · · × 𝑓 −1(𝑣𝑘 ). (14)
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So we have such a product structure for each simplex L contained in 𝑓 −1(𝑦). We want to apply this
to the simplicial map 𝑞 : S (𝑀) → [S] (𝑀). To determine the 𝑞−1(𝑦), we first consider the preimage
𝑞−1 (𝑦) ∩ Δ in each simplex Δ ⊂ S (𝑀) that maps onto Δ ([S]), and then they are glued together along
the faces along the faces to give 𝑞−1(𝑦). Let 𝑞 |Δ be the restriction of q to the simplex Δ , and let Δ [𝑆𝑖 ]

be the face of Δ that is the preimage 𝑞 |−1
Δ ([𝑆𝑖]). As in the general case (14), the preimage 𝑞−1 (𝑦) ∩ Δ

is canonically homeomorphic to the product of simplices

Δ [𝑆0 ] × Δ [𝑆1 ] × · · · × Δ [𝑆𝑘 ] .

The vertices of the simplex Δ [𝑆𝑖 ] ⊂ S (𝑀) are in the isotopy class of 𝑆𝑖 so its simplices are parallel
spheres isotopic to the sphere 𝑆𝑖 and there is a natural inside to outside order (see Lemma 6.4) on the
vertices of each simplex in Δ [𝑆𝑖 ] .

Therefore, we will model (𝜋◦𝑞)−1 (𝑥) for 𝑥 ∈ [ �Δ ([S])] by a multi-semi-simplicial setS•,...,•(𝑀, [S])
whose realization is homeomorphic to (𝜋◦𝑞)−1 (𝑥). The setS𝑛0 ,...,𝑛𝑘 (𝑀, [S]) is the subset of (𝑘+

∑
𝑖 𝑛𝑖)-

simplices of S (𝑀) where exactly (𝑛𝑖 + 1) of its lie over the i-th vertex of x so there is natural order on
vertices above the i-th vertex of x for each i. However, the preimage of 𝜂−1 (𝑥), similar to Proposition 6.1,
is homeomorphic to

(𝜋 ◦ 𝑞)−1(𝑥)//Homeo𝛿 (𝑀, rel 𝜕),

which is in turn weakly equivalent to | |S•,...,•(𝑀, [S])//Homeo𝛿 (𝑀, rel 𝜕) | |.
Similar to Definition 6.6, we have a multi-semi-simplicial space S 𝜏•,...,•(𝑀, [S]) and an acyclic map

𝑘 : | |S•,...,•(𝑀, [S])//Homeo𝛿 (𝑀, rel 𝜕) | | → ||S 𝜏•,...,•(𝑀, [S])//Homeo(𝑀, rel 𝜕) | |.

Since the map | |S•,...,•(𝑀, [S])//Homeo𝛿 (𝑀, rel 𝜕) | | → BHomeo(𝑀, rel 𝜕) factors through the map
k, to prove that 𝜂−1 (𝑥) is weakly homologically finite, it is enough to show that | |S 𝜏•,...,•(𝑀, [S])//
Homeo(𝑀, rel 𝜕) | | is strongly homologically finite by putting it in a homotopy fiber sequence whose
base and fiber are strongly homologically finite by induction on the number of prime factors.

By doing the bar construction model in each simplicial direction, we have homotopy fiber sequences
similar to the homotopy fiber sequence 8. By applying Theorem 7.6, we obtain a homotopy fiber
sequence similar to (3) whose fiber and the base are realizations of multi-semi-simplicial spaces with
fewer simplicial directions to which we can apply induction on the number of simplicial directions.

Let 𝑀1 (𝑆0) and 𝑀2 (𝑆0) be the submanifolds obtained by cutting M along 𝑆0 and 𝑀1 (𝑆0) containing
the boundary component 𝜕∗𝑀 . Suppose that 𝑘 ′ of spheres in {𝑆1, . . . , 𝑆𝑘 } lie in 𝑀1 (𝑆0) and the rest
are in 𝑀2 (𝑆0). By doing the bar construction model and applying Theorem 7.6, we obtain a homotopy
fiber sequence

| |R•,...,•(𝑀2 (𝑆0)) | | → ||S 𝜏•,...,•(𝑀, [S])//Homeo(𝑀, rel 𝜕) | | → ||L•,...,•(𝑀1 (𝑆0)) | |,

where the number of simplicial directions in R•,...,•(𝑀2 (𝑆0)) and L•,...,•(𝑀1 (𝑆0)) are, respectively,
𝑘 − 𝑘 ′ and 𝑘 ′. Hence, it is easy to see that we can exhaust simplicial directions by considering homotopy
fiber sequences and using Theorem 7.6.

To illustrate the idea, suppose 𝑘 = 1 and suppose the sphere 𝑆1 lies in 𝑀2 (𝑆0). Since the base point of
M lies in the component 𝑀1 (𝑆0), we choose a base point for 𝑀2 (𝑆0) that lies also on the boundary of M.
Suppose 𝑆1 separates 𝑀2 (𝑆0) into two components 𝑀2,1 (𝑆0, 𝑆1) and 𝑀2,2 (𝑆0, 𝑆1) where the former
contains the base point. Similar to Definition 7.3, we have models for BHomeo(𝑀2,1 (𝑆0, 𝑆1), rel 𝜕)
and BHomeo(𝑀2,2 (𝑆0, 𝑆1), rel 𝜕) as left and right 𝔇-module, and we have a model for
BHomeo(𝑀1 (𝑆0), rel 𝜕) as left 𝔇-module. Let us denote them, respectively, by L(𝑀2,1 (𝑆0, 𝑆1)),
R(𝑀2,2 (𝑆0, 𝑆1)) andL(𝑀1 (𝑆0)). Then, similar to the weak equivalence (7), the iterated bar construction

| |𝐵•(L(𝑀1 (𝑆0)),𝔇, 𝐵•(L(𝑀2,1 (𝑆0, 𝑆1)),𝔇,R(𝑀2,2 (𝑆0, 𝑆1)))) | |
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is weakly equivalent to | |S 𝜏•,•(𝑀, [S])//Homeo(𝑀, rel 𝜕) | |. Hence, we have a fiber sequence

| |𝐵•(L(𝑀2,1 (𝑆0, 𝑆1)),𝔇,R(𝑀2,2 (𝑆0, 𝑆1))) | | | |S 𝜏•,•(𝑀, [S])//Homeo(𝑀, rel 𝜕) | |

| |𝐵•(L(𝑀1 (𝑆0)),𝔇, ∗) | |. (15)

But the base is a one-sided bar construction that is weakly equivalent to BHomeo(𝑀1 (𝑆0), 𝑆0, rel 𝜕𝑀)

by Theorem 7.6.
Hence, in general, we can use Theorem 7.6 to reduce the number of simplicial directions by replacing

one-sided bar constructions with the appropriate classifying space that ‘makes the corresponding sphere
boundary free’. By iterating this process for the base and the fiber and using Theorem 3.2 inductively,
we conclude that the total space also is strongly homologically finite.
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