Symbols

Symbols for physical quantities

A quantized vector potential

A vector potential

 \mathcal{A} action

 $A_t(x)$ fluctuating vector potential $A_{\parallel}, A_{\perp}, E_{\parallel}, E_{\perp}$ longitudinal, tranverse fields

 $egin{array}{ll} \pmb{B} & ext{magnetic field} \\ \pmb{E} & ext{electric field} \\ \mathcal{E} & ext{total energy} \\ \end{array}$

 $E(\mathbf{p})$ energy–momentum relation

 E^0, B^0, q^0, v^0 initial conditions $E_{\rm s}$ soliton energy $E_{\rm bin}$ binding energy $\boldsymbol{E}_{\mathrm{ex}},\,\boldsymbol{B}_{\mathrm{ex}}$ external fields $E_{\rm ini}, B_{\rm ini}$ initial fields $E_{\rm out}$, $B_{\rm out}$ outgoing fields $\boldsymbol{E}_{\mathrm{ret}}, \boldsymbol{B}_{\mathrm{ret}}$ retarded fields $\boldsymbol{E}_{\mathrm{SC}}, \boldsymbol{B}_{\mathrm{SC}}$ scattered fields $E_{\rm self}$ self-energy soliton fields $\boldsymbol{E_{v}}, \boldsymbol{B_{v}}$

F electromagnetic field tensor

F force

H Hamiltonian $H_{\rm f}$ field Hamiltonian

 H_p , H(p) Hamiltonian at fixed total momentum p

 $H_{\rm sp}$ spin Hamiltonian $I_{\rm b}$, $I_{\rm f}$ moment of inertia

Jtotal angular momentum $J_{
m f}$ field angular momentum

Liouvillean L, Lat, Lf, Lint L, \mathcal{L} Lagrangian Davies generator $L_{\rm D}$ $M_{\rm e}$ electric moment magnetic moment $M_{\rm m}$ N number of particles

N torque

 \mathcal{P} total momentum $\boldsymbol{P}_{\mathrm{S}}$ soliton momentum $\boldsymbol{P}_{\mathrm{f}}$ field momentum $\mathcal{P}_{\mathrm{f}}, P_{\mathrm{f}}$ field momentum \mathcal{S} soliton manifold Ttemperature

 $V_{\rm coul}$ Coulomb potential Darwin potential $V_{\rm dar}$

partition function, nucleon charge \mathbf{Z} a^*, a creation, annihilation operators

velocity of light ccharge distribution $e\varphi$ electric charge epolarization vectors e_{λ} Minkowski force f distribution function

g-factor g metric tensor $g_{\mu\nu}$ \hbar Planck's constant current density j four-current k momentum

Boltzmann's constant $k_{\rm B}$

mass m bare mass $m_{\rm b}$ field mass $m_{\rm f}$ gyrational mass m_g effective mass $m_{\rm eff}$ n unit vector p four-momentum

 f_{α}

p, p, P momentum q, q position $\mathbf{q}(\tau)$ world line r position Bohr radius

s spin angular momentum

t Minkowski torque

t time

ufour-velocityu, uvelocityv, vvelocity

x four-space vector

x, x space Δ Laplacian

 $\begin{array}{ll} \Lambda & & \text{ultraviolet cutoff} \\ \Omega & & \text{four-gyration} \\ \Omega^{\pm} & & \text{wave operator} \end{array}$

 $egin{array}{lll} lpha & & & & & & \\ eta & & & & & & \\ eta & & & & & \\ \mu & & & & & \\ \gamma & & & & & \\ \epsilon & & & & \\ \delta^{\perp} & & & & \\ \lambda_c & & & & \\ Compton \ wavelength & \\ \end{array}$

 $\begin{array}{ccc} \lambda_{\rm c} & {
m Compton~waveleng} \\ \mu & {
m magnetic~moment} \\ \rho & {
m charge~distribution} \\ \rho & {
m density~matrix} \\ \sigma & {
m Pauli~spin~matrices} \end{array}$

au eigentime

 ϕ electrostatic potential

 ϕ , π scalar field, scalar momentum field

 $\phi_{\rm ex}$, $A_{\rm ex}$ external potentials

 $\widehat{\varphi}$ form factor ψ wave function

 $\psi_{\rm g}$ ground state wave function

 ω angular velocity $\omega_{\rm c}$ cyclotron frequency $\omega_{\rm s}$ spin precession frequency ω free-field dispersion relation

 ω_{β} KMS state $\widehat{\omega}$ unit vector

Mathematical symbols

A(q, p) operator-valued function $B(\mathcal{H})$ bounded operators on \mathcal{H}

 $C, C(\mathbb{R}, \mathbb{R}^d)$ continuous functions on \mathbb{R} with values in \mathbb{R}^d infinitely often differentiable functions

 C^k k times differentiable functions

 \mathbb{C} complex numbers $D(\cdot, \cdot)$ Dirichlet form

D(A) domain of operator A

 \mathbb{E} expectation \mathcal{F} Fock space

 \mathcal{H}_f field Hilbert space \mathcal{H}_p particle Hilbert space

 $L^{\frac{1}{2}}, L^{2}(\mathbb{R}^{3}, d^{3}x)$ Hilbert space of square-integrable functions on \mathbb{R}^{3}

 \mathcal{M}_N algebra of $N \times N$ matrices \mathbb{N} positive integer numbers \mathbb{P} probability measure

 \mathbb{R} real numbers

Ran A range of operator A $\mathcal{T}_1(\mathcal{H})$ trace class operators on \mathcal{H}

 $\mathcal{T}_2(\mathcal{H})$ Hilbert–Schmidt operators on \mathcal{H}

 $\mathcal{W}_{\varepsilon}$ Weyl quantization \mathbb{Z} integer numbers

 $d(\cdot, \cdot)$ metric

 \widehat{f} Fourier transform of f left, right representation

tr trace

 Ω Fock vacuum

 $\sigma(H)$ spectrum of operator H $\|\cdot\|$ Hilbert space norm

 $\|\cdot\|_1$ L^1 -norm $\|\cdot\|_{\infty}$ L^{∞} -norm

 $\|\cdot\|_R$ local energy norm

 $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Hilbert space scalar product

 $\langle \cdot | \cdot \rangle$ scalar product for Hilbert–Schmidt operators

:: normal order, Wick order

 $\{\cdot,\cdot\}$ Poisson bracket $[\cdot,\cdot]$ commutator

 $\int dq_s$ stochastic integration