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Abstract

The set C{G) of conjugacy classes of subgroups of a group G has a natural partial order. We
study p-groups G for which C(G) has antichains of prescribed lengths.
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1. The results

In recent years, there has been a considerable interest in the set C(G) of
all conjugacy classes [S] of subgroups S of a group G (see [2], [3] and
the references mentioned there). This set C(G) has a natural partial order
denned as follows. A class [S^] is smaller than the class [S2] if and only if at
least one element in [SJ is contained in an element of [S2] or, equivalently,
if some conjugate of S{ is contained in S2 . Even for relatively large groups,
the poset C(G) is quite small, a feature that is not shared by the lattice of
all subgroups of a group G.

In this paper we study some order-theoretic properties of the poset C(G)
and investigate its influence on the group G . More precisely, we are in-
terested in the Dilworth number of C(G), that is, the maximum possible
cardinality of an antichain in C(G).

DEFINITION. Let G be a group. The Mobius-width wc{G) is the maximum
number t of subgroups Sx, ... , St of G with the property that no St is
conjugate to any subgroup of Sj for every j ^ i (if there is no such t,
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then we set wc(G) = oo . Moreover, if G is the trivial group, then we define
wc(G) = 0).

An important result of Landau [5] states that for every given positive inte-
ger n , there exist only finitely many finite groups with precisely n conjugacy
classes of elements. A similar result for the width was shown in [1]: for ev-
ery n > 1 there exist only finitely many finite p -groups whose lattice of all
subgroups has Dilworth number n .

For the Mobius width, an analogous result is not true in general, as for
example, all dihedral groups G of 2-power order satisfy wc{G) = 3 . For
n > 3 , however, we have the following finiteness theorem:

THEOREM A. For every n > 3 there exist only finitely many primes p and
finitely many p-groups G satisfying wc(G) — n.

Clearly, every antichain of normal subgroups (with containment as the
inclusion relation) forms an antichain in C{G) , and hence a noncyclic p-
group G must satisfy wc(G) > p + 1. An an illustration of Theorem A, we
determine p-groups of small Mobius width.

THEOREM B. Let G be a finite p-group with wc(G) = p + 1. Then one of
the following occurs:

(a) p = 2 and G is a dihedral, (generalized) quaternion or a quasidihedral
group,

(b) p > 2 and G = C x C or G is nonabelian of order p and exponent

P2.

The next possible value for the Dilworth number of the subgroup lattice
of a finite p-group is 2p (see [1]). For the Mobius width, the next following
value is smaller.

THEOREM C. Let G be a finite p-group of Mobius width p + 2. Then one
of the following occurs:

(a) p = 2 and G^C2xC4 or G^(a,b\a* = b2 = \, ab = a5);

(b) p > 3 and G is nonabelian of order p3 and exponent p;

(c) p>3 and G^(a,b,c\a" = b" = c"2 = [b,c] = l, ba = bcsp, ca =
cb) where 5 = 1 or s is a quadratic nonresidue mod/?. If p = 3 , then we
have to add the group G = (a, b, x \ a9 = b3 = [a, b] = 1, [a, x] =
b, [b,x] = a3, x3 = a3).

We say that a conjugacy class in C(G) is of type H for some group H,
if all of its members are isomorphic to H. The length of a conjugacy class
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is the number of its members, the cyclic group of order n will be denoted
by Cn. All further unexplained notation can be found in [4]; moreover, all
groups considered in this paper are finite.

2. Finitely many p-groups

This section is devoted to a proof of Theorem A. But first, we introduce
some notation to facilitate the exposition.

DEFINITION. Let G be a group. A collection S{, ..., St of subgroups
of G is called an antichain of G with respect to conjugacy (for short, a
c-antichain ) if for all indices /, j with i ^ j , 5( is not conjugate to any
subgroup of Sj.

Thus, the Mobius width wc(G) of a group G / 1 is nothing else but the
maximum taken over all cardinalities t of c-antichains in G.

The following elementary result will be used without further mention.

LEMMA 1. Let N be a normal subgroup of the group G. Then wc(G/N) <

In the course of our investigations, we shall frequently consider c-anti-
chains in G that are contained in some normal subgroup N of G.

DEFINITION. Let JV be a normal subgroup of the group G. Then we
define wf(N) to be the maximum over the lengths of all c-antichains in G,
consisting of subgroups contained in N.

Clearly, we have w°(N) < wc(G) and w^(G) = wc(G).
For the proof of Theorem A, we first investigate certain abelian normal

subgroups of G and their connections to wc(G).

LEMMA 2. Let G be a p-group and assume that G possesses a normal
subgroup N of exponent p and order pa , say. Then a <wc(G).

PROOF. Let 1 = No < Nl < • • • < Na = N be part of a chief series of G .
For 1 < / < a, choose JC( e Nj\Ni_l. Then all (/-conjugates of xi belong
to JV(. \ Ni_1 . Moreover, all x, are of order p and hence (x{), . . . , {xa)
forms a c-antichain in G . •

The next preparatory result provides some information on the exponent
of abelian normal subgroups of G .
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LEMMA 3. Let N be an noncydic abelian normal p-subgroup of a group
G. If exp(A0 = pa, then a/2 < w?(N).

PROOF. AS TV is noncydic, there exists a direct summand A = (x) © (y)
of TV such that o(x) - pa and o(y) = pb with 1 < b < a .

Case 1. b > a/2. F o r 0 < i < a/2 , set Si = (x"', y" ' ) . T h e n
5( = C a-t x C t , and hence the St are pairwise nonisomorphic. As all S(

are of the same order, they clearly form a c-antichain and the result follows
here.

Case 2. b < a/2. For 0 < i < a - b , consider the cyclic subgroups Tt

of TV, denned by Ti = {x"'y). Then \Tt\ = pa~l for all i . If Tf < Tj for
some g € G and some i ^ j , then we must have Tf < Tj , because Tj is

cyclic. As N" is normal in G , this implies Tt < (Tj)g < N" < O(A^).
But this contradicts the fact that {y) is a direct summand of N. Hence,
TQ, ... , Ta_b forms a c-antichain in G and we have wf(N) > a - b > a/2
as claimed. •

Proof of Theorem A. First, note that n = wc{G) > w(G/G') > p + 1 , so
p < n - 1 and there are only finitely many primes p. If all abelian normal
subgroups of G are cyclic, then by [4, p. 304], either G is a 2-group of
maximal class and hence wc(G) — 3 < n , or G = (a, b\a = b = 1, a =

a ) . But in the latter case, we have G/G 2* C2 x C2«-i and so [1]
implies n = wc(G) > w{G/G') > m + 1.

Now assume that G contains a noncydic abelian normal subgroup N, say.
We may take N maximal with these properties, and so we have N — CG(N).
First, Lemma 2, applied to ^li{N) yields that the rank r (N) of N satisfies
r
p{N) < wf(N) < n • Moreover, Lemma 3 yields that exp(N) divides

p2n . Thus, the order of TV is bounded by some function of n . Moreover,
G/N = G/CG{N) embeds into Aut(TV) and hence there are only finitely
many possibilities for the order of G. (Indeed, from [4, page 302], we can
deduce an explicit upper bound for the order of G.) The result follows. •

3. p-groups of small order

In this section, we determine the posets C(G) and their Dilworth number
for ^-groups G of order < p4. For the proof of Theorems B and C, it
is sufficient to derive lower bounds for w (G) in a number of cases. To
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facilitate the exposition, we do not attempt to derive the exact value here,
but rather present a somewhat better bound without proof.

First, we recall some easy facts on the width of abelian groups.

LEMMA 4 ([1]). Let p be a prime.
(a) We have wc(Cp x Cp) = p + 1 and wc{Cp x Cp2) = 2p.
(b) If G is a noncydic abelian p-group not mentioned in (a), then we have

wc(G) > 3/J - 1.

The proof of the following simple result on groups of order p illustrates
the basic method that we shall use several times in this section. During the
description of C(G), if we state, without further comment, that a conjugacy
class of subgroups contains several others, it is tacitly understood that those
listed are the only ones with this property. This then determines the poset
C(G) and wc(G) can be read off. The reader is encouraged to draw his own
pictures of C(G) as an amusing exercise. Throughout the remainder of this
section, p will denote an odd prime.

LEMMA 5. Let G be a nonabelian group of order p3.
(a) //exp(G) = p2, then wc{G) =p + \.
(b) //exp(G) = p, then we{G) =p + 2.

PROOF, (a) Here, we start with the maximal subgroups of G. Indeed, G
contains precisely p maximal subgroups of type C 2 , each of which con-
tains exactly one subgroup of order p, namely Gp = Z(G) which forms a
conjugacy class of length 1. The remaining maximal subgroup Q{(G) con-
tains Z(G) and p further groups of order p that form a single conjugacy
class. Thus, wc(G) = p + 1.

(b) Here, G has p2 + p + 1 subgroups of order p , one of them being
Z(G). All others are nonnormal and so they fall into p + 1 conjugacy classes
of length p . The centre Z(G) belongs to every maximal subgroup of G
and each of the remaining classes of type C is contained in precisely one
maximal subgroup of G , their centraliser. Thus, wc(G) = p + 2 . a

Now consider groups of order p4 where p is odd. From the notation
of [4, page 346 f.], we indicate the groups of order p4 by their numbers,
so G{, ... , G5 are abelian and for obvious reasons, we do not insist on

an ordering of the isomorphism types here. Moreover, G6 — {a, b\ap =

f = 1, ab — al+p ) and Gg corresponds to the case 5 = 1 while Gw is
the group where s is a nonsquare mod/?. For p = 3 , there is an extra
group of order 34 (see [4, p. 349]) which we will denote by Gex. Thus,

Gex = (a, b, x\a9 = b3 - [a, b] = 1, [a, x] = b, [b, x] = a3, x3 = a3).
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Five of the nonabelian groups are very easy to deal with.

LEMMA 6. Let p > 3 and let G be one of the following groups:
G6,G1,Gi,Gu, G14. Then wc(G) > 2p.

More explicitly, we have: wc(G6) — 2p, w^G^ > 2p + 1, wc(Gs) >

p2 +p + l, wc(Gn) >p2+p + l and wc(Gl4) >p2+p + l.

PROOF. The groups G6 and G7 map onto Cp x C 2 and the remaining
ones map onto Cp x Cp x Cp . The result follows from Lemma 4. The proof
of the remaining statements is omitted. D

Now we consider the groups of smallest Mobius width.

LEMMA 7. Let p>3. Then wc(G9) = wc{Gl0) =p + 2.

PROOF. First, note that G is a split extension of the normal subgroup
N = (y, z) = C x C 2 by the cyclic group {x) of order p . Moreover, G is
of maximal class and hence Q{ (N) = (y, zp) is the unique normal subgroup
of order p2 in G .

We first deal with the case p > 5. Then G is regular. As exp(G) = p2,
we see that £lx(G) = (x, y, zp) is nonabelian of order p3 and exponent
p . Now there are precisely p2 cyclic subgroups of order p2 in G . By
the above, none of them is normal in G , and hence each has precisely p
conjugates. Thus, there are p classes of type Cp2. Also, the normaliser of a

cyclic subgroup of order p in G is a group of order p and exponent p
(indeed, one of them is abelian, namely Af , and all others are nonabelian).

Now there are three "types" of elements of order p , namely the central
ones zp , the abelian ones contained in Ql\(z

p) and the ones "outside".
An inspection of these shows that there are three classes of type Cp with
representatives (zp), (y) and {x) . In fact, among the p maximal sub-
groups of exponent p , the p — 1 nonabelian ones contain the class with
representative (y) and N contains (zp).

Next, consider subgroups of type Cp x Cp. Each of the above normal

subgroups of exponent p contains precisely one characteristic subgroup of
order p , their Ql. As this is normal in G, it must coincide with £1{(N).

Now the remaining maximal subgroup is Q.l(G), which is of exponent
p. This clearly contains Q, (N) which is the only one which is normal in G.
As it contains precisely p further such subgroups, they are all conjugate in
G. Thus, we have determined C(G) and finally, we see that wc(G) = p + 2.

The case p = 3 is similar. •
The extra group Gex has a "similar" Moebius-poset and we omit the proof

of the following result.
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L E M M A 8. L e t p = 3 . Then w c ( G e x ) = 5 = p + 2 .

The remaining groups can be dealt with by using similar methods and we
only present the result.

LEMMA 9. (a) We have wc(Gn) > 2p+ 1 ifp = 3, and wc(Gn) >2p + 2
ifp>5.

(b) We have wc(Gl3) >2p + 2 ifp = 3, and wc(G{i) >2p + 3 if p > 5.
(c) We have wc(Gl5) >2p + 2 ifp = 3, and wc(Gl5) >2p + 3 if p > 5.

Part b) of Theorem B follows from the results of this section, because all
noncyclic groups of order at least p4 have Mobius width > p + 2.

4. Larger groups ?

The proof of Theorem C is by showing that all noncyclic p-groups of
Mobius width < p + 2 are of order < p4. Now in Section 3, we have
determined all such groups of this order, and so, by way of contradiction, we
may assume that there exists a noncyclic p-group H of order >p5 satisfying
wc(H) < p + 2. Clearly then, there exists a noncyclic factor group G of H
with the following properties: \G\ = p5 and wc(G) < p + 2 . Obviously, G
is nonabelian, so let M be a minimal normal subgroup of G contained in
G'. Thus, M < G' DZ(G), and hence G = G/M has a nontrivial Schur
multiplicator. By Section 3, we have G = G9, Gl0 or Gex. We shall keep
this notation for the rest of this section.

LEMMA 10. Let G = G9 or Gl0 if p > 5, or G = G9 if p = 3 or G = Gex.

Then wc(G)>2p.

PROOF. We first show that Z(G) is elementary abelian of rank two. For
this, we use some information on the quotient G of G that we know about.
In all cases, G = G/M contains precisely p — 1 maximal subgroups
EJM, ..., E X/M which are nonabelian of exponent p and of order p .
For 1 < / < p — 1, we have M < Z(Et). As EJM has trivial Schur multi-
plicator, we must have M C\E't — \. As EJM is of class two, this implies
[Et, E't] < M n E\ = 1, and hence £, is of class two. As M < Z{Et), this
shows that M x E\ < Z(E(). Let Z/M = Z{G/M), so Z/M is of order
p. Then ME'JM < Z(G/M) = Z/M, and hence we have M x E\ = Z. As
M x E\ < Z(Et) for i = l , 2 , and EXE2 = G , we get Z < Z(G) and our
claim is proved.
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We now show that wc(G) > 2p. Indeed, Z contains p normal sub-
groups C,, . . . , C of order p , distinct from M. Thus, we have C Af/M =

Z(G/M) for all j . Now let DJM, ...Dp/M be representatives of the p

classes of cyclic subgroups of order p in G/M. As these are pairwise incom-
parable with Z(G/M), the subgroups Cx, ... , C , Z>,, ...D of G form a

c-antichain in G, and we therefore have wc(G) >2p. a
We now deal with the exceptional case when p = 3.

LEMMA 11. Let G = Gi0 and assume that p = 3 and s = - 1 . Then
wc{G) > 6.

PROOF. First, G/M is of maximal class, and hence it has precisely one
normal subgroup of order 3. Moreover, by Lemma 7, G = G/M has a c-
antichain S{/M, ..., Ss/M of cyclic subgroups of order 3, precisely one of
them is normal in G, say S{ /M. Let W/M be the maximal subgroup of G
isomorphic to C^x Cr We show that one of the following conditions hold:

(a) W contains two distinct characteristic subgroups or order 9;
or
(/?) W contains a subgroup U of order 9 with MnU = 1.
In both cases, it follows that wc(G) > 6. Indeed, if (a) holds, then we can

choose a characteristic subgroup C of order 9 of W with C ^ Sv Then C
is normal in G and 5 , , . . . , S5, C is a c-antichain in G. In the situation
(/?), no conjugate of U contains M. As all conjugates of S{, ... , S5 contain
M, we have that S{, ... , S5, U is a c-antichain and in both cases, it follows
that wc(G) > 6.

We now prove the above claim. Indeed, if W contains an abelian subgroup
A of rank > 3, then we clearly can choose U as a suitable subgroup of A
and we have (/?). If W is abelian, there are two more cases: if W =
C3 x C27, we have (a) and if W ^ C9 x C9, we have (jS). So let W be
nonabelian. As W/M = C3 x C9, the list of all groups of order 34 gives
two more possibilities for W. If W ^ {a, b \ a21 = b3 = 1, ab = a10),
we have Clx(W) ^ W3 and (a) holds. Finally, in W s (a, b \ a9 = b9 =
1, ab = a4) , we must have M = W' —< a3 > and U :-< b > has trivial
intersection with M. The result follows. •

By the remarks on the beginning of this section, there are no noncyclic
p-groups of order > p5 and Mobius width < p + 2, and so parts (b) and
(c) of Theorem C are proved.
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5. The case p = 2

In this final section, we consider groups of even order. Here, the situation
is quite different as the 2-groups G of maximal class satisfy wc(G) = 3.
However, it turns out that there are only finitely many additional examples.

PROPOSITION 12. Let G be a 2-group satisfying wc(G) < 4. Then one of
the following holds:

(i) G is cyclic;
(ii) G^C2xC4;
(iii) G/G' = C2 x C2 and G is of maximal class;

(iv) G^(a,b\ai = b2 =\, ab = a5).

PROOF. Let G be a counterexample of least possible order. Lemma 4
implies that G is nonabelian. If G/G' ^C2xC2, then [4, p. 339 f.] shows
that we have (iii). By Lemma 4 again, we have G/G' = C2 x C4. Let M be a
minimal normal subgroup of G contained in G'. Then M < G' n Z(G) and
hence G is a covering group of Q := G/M. As wc(Q) <wc(G), induction
applies. Clearly, Q cannot be of type (i). If Q is of type (iii), then G is of
type (iii). As the group mentioned in (iv) has a trivial Schur multiplicator,
this case cannot occur here, so let Q be of type (ii). An inspection of all
groups of order 16 shows that we are left with three possibilities. First, G
may well be of type (iv). The next possibility would be

G = ( a , , a2, x | a\ = a\ = x 2 = [ a , , a2] = [a2,x]=l, a[ = axa2).

Here, £1{(G) = C2 x C2 x C2 contains seven Klein groups each of which has
at most two conjugates. As G contains cyclic subgroups of order 4, we have
wc(G) > 5 here. The last possibility is G =* {a, b \ a4 = b4 = 1, ab = a3).
Here, Q,(G) = {a2, b2) is of order 4, and hence G contains six cyclic
subgroups of order 4. At least one of them is normal and the remaining ones
have at most two conjugates. These classes, together with Cl^G), form a
c-antichain of length 5 and our result follows. •
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