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High-beta magnetised plasmas often exhibit anomalously structured temperature profiles,
as seen from galaxy cluster observations and recent experiments. It is well known that
when such plasmas are collisionless, temperature gradients along the magnetic field can
excite whistler waves that efficiently scatter electrons to limit their heat transport. Only
recently has it been shown that parallel temperature gradients can excite whistler waves
also in collisional plasmas. Here, we develop a Wigner–Moyal theory for the collisional
whistler instability starting from Braginskii-like fluid equations in a slab geometry. This
formalism is necessary because, for a large region in parameter space, the fastest-growing
whistler waves have wavelengths comparable to the background temperature gradients.
We find additional damping terms in the expression for the instability growth rate involv-
ing inhomogeneous Nernst advection and resistivity. They (i) enable whistler waves to
re-arrange the electron temperature profile via growth, propagation and subsequent dis-
sipation, and (ii) allow non-constant temperature profiles to exist stably. For high-beta
plasmas, the marginally stable solutions take the form of a temperature staircase along the
magnetic field lines. The electron heat flux can also be suppressed by the Ettingshausen
effect when the whistler intensity profile is sufficiently peaked and oriented opposite the
background temperature gradient. This mechanism allows cold fronts without magnetic
draping, might reduce parallel heat losses in inertial fusion experiments and generally
demonstrates that whistler waves can regulate transport even in the collisional limit.

Key words: plasma waves, plasma instabilities

1. Introduction

X-ray observations of the diffuse plasma residing within galaxy clusters have
revealed intricately structured temperature fields whose sharp gradients are
inferred to have persisted far longer than classical transport theory predicts
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(Peterson & Fabian 2006; Markevitch & Vikhlinin 2007). Recent experiments at
the National Ignition Facility with laser-produced hot, magnetised, high-beta plas-
mas also feature such anomalously structured temperature fields (Meinecke et al.
2022). Such structures would require a significantly reduced level of electron heat
transport, which might be due to plasma microinstabilities. Indeed, it is now well
established (Kunz et al. 2022) that the macroscopic transport properties of high-
beta magnetised plasmas are significantly modified by small-scale instabilities such
as firehose (Rosin et al. 2011; Kunz et al. 2014), mirror (Kunz et al. 2014; Komarov
et al. 2016) or heat-flux whistler instabilities (Levinson & Eichler 1992; Pistinner &
Eichler 1998; Komarov et al. 2018; Roberg-Clark et al. 2018; Drake et al. 2021;
Yerger et al. 2025).

The heat-flux whistler instability is a particularly promising candidate because
it is the fastest of all possible instabilities in the relevant parameter regime
(Bott, Cowley & Schekochihin 2024) and quickly limits the parallel heat flux to a
marginal value via electron scattering. However, this mechanism requires a reso-
nant interaction with heat-carrying electrons that can be disrupted by collisions.
This is not a problem for astrophysical plasmas whose magnetisation is typically of
order M .=�τei ∼ 1012, where � is the electron cyclotron frequency and τei is the
electron–ion collision time. However, it is not understood whether such an instabil-
ity could persist in the more collisional laboratory analogues, whose magnetisation
range is M∼ 10−2−102 (Meinecke et al. 2022).

Recently a collisional mechanism for exciting whistler waves via anisotropic fric-
tion forces was identified (Bell et al. 2020). However, this initial analysis was
restricted to the short-wavelength geometrical-optics limit, which prevented it from
correctly describing all aspects of the long-wavelength fluid limit. This is prob-
lematic because in a typical laser-plasma experiment (Meinecke et al. 2022), the
long-wavelength modes will be (i) the most easily observable in diagnostics and
(ii) the first modes excited as the plasma heats up, and therefore the modes most
capable of subsequently manipulating the plasma.

Here, we remove this shortcoming by deriving the Wigner–Moyal equations that
govern the collisional whistler instability in a slab geometry, similar to what has
been done in modelling drift-wave turbulence beyond the geometrical-optics approx-
imation (Ruiz et al. 2016; Zhu et al. 2018; Tsiolis, Zhou & Dodin 2020). We find
additional terms in the instability dispersion relation and growth rate due to gradi-
ents in the background plasma. We proceed to show that these additional terms can
actually stabilise a non-constant temperature profile along the magnetic field, which
is not possible if only the geometrical-optics approximation is used. Equivalently,
these additional terms cause the instability to be damped at low temperatures, pro-
viding a mechanism for the instability to re-arrange the temperature profile into a
marginally stable state via excitation at high temperature, propagation down the tem-
perature gradient via Nernst advection and subsequent damping at low temperature.
We proceed to show that the marginally stable temperature profile generically takes
the form of a staircase where isothermal regions are insulated from each other by
abrupt jumps in the temperature, which occur at the zeros of a certain function com-
prising an intricate combination of magnetic transport coefficients. These staircases
can be in pressure balance, resembling the ubiquitous cold fronts in galaxy clusters
(Markevitch & Vikhlinin 2007) but with the magnetic field no longer required to
drape the front.

We then derive the back-reaction of the instability on the background temperature
profile and show that, in the initial stages of the instability, the frictional work
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done by the instability actually cools the background plasma instead of heating it
(as demanded by energy conservation). Moreover, when the gradient of the unstable
whistlers’ amplitude is anti-aligned with the background temperature gradient along
the magnetic field, the parallel heat flux can be reduced via the Ettingshausen effect,
although this is more difficult to achieve in high-beta plasmas. If this mechanism
can be reliably engineered, however, it might allow higher hotspot temperatures to
be achieved in magnetised inertial fusion, since the parallel heat flux is the present
limiting factor (Walsh et al. 2022).

2. Summary

Here, we first provide an executive summary that highlights the main definitions,
discussions and results for each section, serving as an overall roadmap of the paper
that can be consulted later for easy reference.

In § 3, the governing electron magnetohydrodynamics (MHD) equations and slab
geometry are introduced, leading to the set (3.6). Fundamentally, the electron-MHD
limit in slab geometry results in the simplification that only the electron temperature
and the perpendicular components of the magnetic field (with respect to the single
direction of inhomogeneity) have non-trivial time evolution; the electron density
and the parallel magnetic field both remain constant in time. The perpendicular
magnetic field is then expressed in the diagonalising eigenbasis for its evolution
equation, leading to the simplified description in terms of mode amplitudes given
in (3.12) and (3.13). This is all for a general, unspecified friction and heat flux;
the remaining parts of this section (and the remainder of the paper) specialise to
when the friction and heat flux are determined by the standard Chapman–Enskog
expressions (3.14). The nine transport coefficients (α‖, α⊥, α∧, β‖, β⊥, β∧, κ‖, κ⊥,
κ∧) are all generally functions of the dimensionless magnetisation parameter M
defined in (3.17). Ultimately, after inserting the same eigenmode decomposition
into the expressions for the friction and heat flux, one arrives at the final set of
working equations: the magnetic-field mode amplitudes are governed by (3.22) and
the temperature evolution is governed by (3.26). Up to that point, all manipulations
of the initial equations are exact and all non-linearities are retained.

In § 4, the dynamical equations are linearised about the small transverse field
amplitude to obtain their dispersion relation and growth rate; since the tempera-
ture evolution involves terms quadratic or more in the mode amplitude, the two
dynamical equations decouple in this limit. The temperature profiles are treated as
fixed in time from the perspective of the magnetic field fluctuations, even though
heat conduction is still present in the lowest-order temperature evolution equation;
the validity of this approximation is outlined in § 6. To maintain an exact treatment
(within the linear regime), the dispersion relation and growth rate are obtained as
the Hamiltonian and non-Hamiltonian components of the generalised wave-kinetic
equation (4.8) that governs the magnetic fluctuations. Specifically, the Hermitian and
anti-Hermitian parts of the dispersion relation are given in (4.9), with the constituent
terms defined in (4.1). This method of deriving the dispersion relation is chosen
because it does not rely on making a short-wavelength approximation. The remainder
of § 4 is therefore dedicated to defining the parameter space in which such a general
treatment is necessary; it is found that the wavelength for the maximally growing
mode becomes comparable to the background medium inhomogeneity length scale
in the regime M3β0 � 1, where β0 is the plasma beta defined in (4.14).
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In § 5, the expression for the growth rate (4.9b) is examined in more detail to
understand the condition for instability (5.2). Allowing for wavelengths compara-
ble to the inhomogeneity scale of the medium introduces two additional stabilising
mechanisms: one related to the gradient of the Nernst velocity that advects the
perturbations and one to the curvature of the plasma resistivity that diffuses the
perturbations. Simple heuristic descriptions of these two stabilising mechanisms are
then presented briefly. The section concludes with a specific discussion for the simple
case (5.5) when the plasma is in pressure balance with a linear temperature profile;
in this case, it is shown that the additional stabilising terms cause a transition from
unstable to stable behaviour analogous to the transition of the short-wavelength
approximation from being valid to being violated discussed in § 4.

In § 6, the validity for the approximation that the temperature profile remain fixed
in time for the linear stability analysis is assessed by comparing the instability growth
rate (6.1) with the diffusion time (6.4) of the background temperature profile. This
analysis accommodates arbitrarily shaped plasma profiles, with local length scales
and curvatures defined in (6.2). For convenience, the growth rate (6.1) is also split
into terms driven by temperature gradients, temperature curvatures, mixed temper-
ature and density gradients, density gradients and density curvatures; the coefficient
functions, defined in (6.3), are grouped together respectively as FT ,1, FT ,2, FT ,n, Fn,1
and Fn,2. Generally, it is found that the instability’s growth rate (6.5) normalised by
the dynamical evolution time is only greater than unity in a sub-region of parameter
space where both M and β0 are large; this is in contrast to the short-wavelength
approximation that predicts the instability growth to be dynamically relevant every-
where (cf. (6.9)). However, this result is nuanced because only regions where the
instability is present are considered and, in fact, in much of the excluded parameter
space there is no instability and perturbations are instead strongly damped (at a rate
much larger than the diffusion time). The strong damping is due to the additional
stabilising mechanisms that occur when the wavelengths become comparable to the
inhomogeneity scale discussed in § 5.

In § 7, the marginally stable temperature profile (satisfying the condition for zero
growth rate everywhere) is derived. Due to the additional stabilising terms in the
expression for the growth rate, the solution involves non-trivial global structure. As
discussed first in the general case, the governing equation (7.8) for the marginally
stable M profile (a proxy for temperature) has the general structure of a nonlinear
boundary-layer differential equation (7.12), due to the singular nature as β0 becomes
large of the coefficient g(M) defined in (7.9) and (7.5). A variable transformation
is performed to recast the nonlinear differential equation into a linear one that is
then readily solved by successive integrations, yielding the solution (7.11) for the
inverse function of the spatial profile M(z). This solution is then shown to exhibit
a staircase structure as a generic feature due to the boundary layers. The remainder
of the section specialises the general theory to two situations: plasmas with constant
pressure and plasmas with constant density. Both cases are qualitatively similar when
viewed in a parameter space consisting of M and some measure of the plasma beta;
for the constant-pressure case, this is simply β0, but for the constant density case, an
effective plasma beta is defined in (7.29). The staircase is shown to have a single step,
in rough correspondence to the transition between (dynamically relevant) instability
growth and damping outlined in the previous § 6. The predicted staircase feature
of the solution is then verified with direct numerical simulation of the governing
differential equation along with a closed-form analytical approximation described in
(7.23).
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In § 8, the linear analysis is extended to a quasilinear study of the electron tem-
perature response by restoring the lowest-order (quadratic) fluctuation terms in the
temperature-evolution equation (8.1). Two different groupings of the various terms
are presented depending on the physics to be emphasised, with definitions pro-
vided in (8.2). First, it is discussed how (as required by energy conservation) the
growth of unstable perturbations also corresponds to a net cooling effect of the
friction forces when the condition (8.6) is satisfied. Next, the total heat flux (includ-
ing Ettingshausen terms generated by the instability) is analysed and found to be
reduced compared with the standard conductive heat flux when the condition (8.9)
is satisfied, although the reduction is generally modest. Lastly, the heat-flux reduction
is analysed when the temperature has the marginally stable staircase profile derived
in § 7. The extreme situation in which the heat flux is completely suppressed for the
marginal-stability profiles is then considered to derive required conditions on the
instability intensity profiles; the resulting expression (8.15) suggests that such high
degrees of heat-flux suppression are unlikely to occur for high-beta plasmas within
the validity of the quasilinear fluid model adopted here.

Finally, in § 9, the main results are summarised and directions for future work are
outlined. Auxiliary calculations and review material are presented in the Appendices.

3. Governing fluid equations
3.1. Extended electron MHD equations in slab geometry

We are interested in the dynamics of electromagnetic oscillations in the whistler-
frequency range in a collisional plasma. To allow an analytical description, let us
consider for simplicity the extended electron MHD equations for a Lorentz plasma
with stationary ions and isotropic pressure tensor:

∂tn = 0, (3.1a)

∂tB = −c∇ ×
[

(∇ × B) × B
4πen

− ∇(nT )

en
+ R

en

]
, (3.1b)

3

2
n ∂tT = c

4πne
(∇ × B) ·

(
3

2
n∇T − T∇n + R

)
− ∇ · q. (3.1c)

Here, all symbols have their usual meaning: n and T are the electron density and
temperature, respectively, B is the magnetic field, c is the speed of light in vacuum,
e> 0 is the absolute value of the electron charge, R is the frictional force experi-
enced by the electron fluid due to pitch-angle-scattering collisions with ions and q is
the electron heat flux. Expressions for R and q will be provided later in this section.
Physically, the term within parenthesis in (3.1c) comprises three distinct contribu-
tions: in order of appearance, they are (i) advection of temperature with the electron
flow; (ii) compressional heating and (iii) frictional heating that can be related to
Joule heating by replacing R with E via Ohm’s law – indeed, the terms inside square
brackets in (3.1b) are precisely E.

The simplest set-up exhibiting the collisional whistler instability has a temperature
gradient, density gradient, and wavevector of unstable perturbations all aligned with
a mean background magnetic field (Bell et al. 2020). Hence, it can be adequately
described by a one-dimensional (1-D) slab model in which the total magnetic field is
given by

B(t, z) = (
B̃x(t, z), B̃y(t, z), Bz(t)

)ᵀ
, (3.2)
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with Bz > 0 being the mean field and B̃x and B̃y being fluctuating quantities associ-
ated with the instability. We also take n and T to be functions of z and t only. As
discussed in Appendix A, this constraint means that the collisional whistler instability
has no associated density or temperature fluctuations at the fundamental frequency.
Since Bz is independent of z, one has automatically

∇ · B(t, z) = 0. (3.3)

One also has

∇ × B(t, z) =
⎛⎜⎝−∂zB̃y(t, z)

∂zB̃x(t, z)

0

⎞⎟⎠=
(−J 0

0 0

)
∂zB, (3.4)

where we have introduced the skew-symmetric matrix

J =
(

0 1
−1 0

)
. (3.5)

Using the assumed form for the dynamical variables, the extended electron MHD
equations (3.1) become

∂tn = 0, (3.6a)
∂tBz = 0, (3.6b)

∂tB̃⊥ = ∂z

(
�c2

ω2
p

J ∂zB̃⊥ + c
en

J R⊥

)
, (3.6c)

3

2
n ∂tT = − �c2

ω2
pBz

R⊥ · J · ∂zB̃⊥ − ∂zqz, (3.6d)

where we have defined the local plasma frequency and the mean electron cyclotron
frequency respectively as

ω2
p(z) = 4πe2

m
n(z), �= eBz

mc
. (3.7)

Since the evolution equations for n and Bz are trivial, we shall omit them in the
following analysis.

3.2. Eigenbasis projection
Further simplifications can be obtained by expanding B̃⊥ and R⊥ onto the

eigenbasis of J, viz. the circular polarisation vectors. These eigenvectors and their
eigenvalues are given by

ě± = 1√
2

(
1
±i

)
, J ě± = ±i ě±, (3.8)

and satisfy the orthogonality condition

ě∗± · ě± = 1, ě∗∓ · ě± = 0. (3.9)
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Since B̃⊥ and R⊥ are both real-valued vectors and since ě∗+ = ě−, the eigenbasis
expansion takes the form

B̃⊥ = εBz
ψ ě+ +ψ∗ ě∗+

2
, R⊥ = ξ ě+ + ξ∗ ě∗+

2
, (3.10)

where ψ and ξ are the complex scalar wavefunctions of B̃⊥ and R⊥, respectively,
and ε > 0 is a constant (assumed small) that parametrises the relative size of the
fluctuations. Later, it will be shown that ξ is of order ε as well. Note that since(

B̃x
B̃y

)
= εBz√

2

(
Reψ

−Imψ

)
,

(
Rx
Ry

)
= 1√

2

(
Re ξ

−Im ξ

)
, (3.11)

by introducing ψ and ξ , we have essentially traded two real-valued degrees of
freedom for a single complex-valued degree of freedom.

Since ě+ is independent of t and z, one can readily show using orthogonality that
the real-vector-valued evolution equation (3.6c) for B̃⊥ is equivalent to the following
complex-scalar-valued evolution equation for ψ :

i∂tψ = −∂z
(
�c2

ω2
p
∂zψ + c

en
ξ

εBz

)
. (3.12)

Similarly, the temperature equation (3.6d) takes the form

3

2
n ∂tT = ε

�c2

ω2
p

Im (ξ∗∂zψ)
2

− ∂zqz. (3.13)

3.3. Chapman–Enskog friction coefficients
Equations (3.12) and (3.13) are valid for any friction force, allowing one to study

driven systems. For undriven systems, the friction force is determined by the plasma
fluid variables themselves according to some closure. A common closure that we
shall adopt here is provided by the Chapman–Enskog method (Helander & Sigmar
2002; Bott et al. 2024), which for the Lorentz collision operator, yields the following
expressions for the friction force and for the heat flux (Epperlein 1984):

R = nec
ω2

pτei
Mα · ∇ × B − nMβ · ∇T , q = −nτeiv2

t Mκ · ∇T − �c2

ω2
p

nT
Bz

Mβ · ∇ × B,

(3.14)

where τei is the electron–ion collision time (Epperlein & Haines 1986; Helander &
Sigmar 2002) and vt is the thermal speed, defined respectively as

τei = 12π2

√
2π

nv3
t

Zω4
p log

, vt =
√

T
m

. (3.15)

The dimensionless resistivity (α), thermoelectric (β) and conductivity (κ) matrices
are anisotropic with respect to the magnetic field, taking the form

Mσ = σ⊥(M)I3 +�σ (M)
BB
|B|2 ± σ∧(M)

B∧
|B| , σ = α, β, κ, (3.16)
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where B∧ denotes the skew-symmetric hat-map matrix that enacts the cross-product
B∧ · v = B × v (Zhang, Fu & Qin 2020) and�σ

.= σ‖ − σ⊥ is the anisotropy measure.
In the last term, the minus sign applies to α∧ only. Also note that σ⊥ and σ∧ are both
positive, but �α ≤ 0, while �β ≥ 0 and �κ ≥ 0. The various transport coefficients
are functions purely of the magnetisation parameter

M .= |B|
Bz
�τei =�τei

√
1 + ε2

2
|ψ |2

≡ 3

4
√

2π

�
√

m
Ze4 log

T 3/2

n

√
1 + ε2

2
|ψ |2. (3.17)

In the remainder of the analysis, we shall use the rational interpolants for the various
transport coefficients as functions of M developed by Lopez (2024). Their limiting
forms as M→ 0 and M→ ∞ are listed in Appendix B.

Lastly, note that the slab geometry allows the relevant matrices to be constructed
explicitly with a relatively simple form. Since

B∧ =
⎛⎜⎝ 0 −Bz B̃y

Bz 0 −B̃x

−B̃y B̃x 0

⎞⎟⎠ , (3.18)

the anisotropic transport matrices are given as

Mσ = 1

|B|2

⎛⎜⎝ �σ B̃2
x + σ⊥|B|2 �σ B̃xB̃y ∓ σ∧|B|Bz �σ B̃xBz ± σ∧|B|̃By

�σ B̃xB̃y ± σ∧|B|Bz �σ B̃2
y + σ⊥|B|2 �σ B̃yBz ∓ σ∧|B|̃Bx

�σ B̃xBz ∓ σ∧|B|̃By �σ B̃yBz ± σ∧|B|̃Bx �σB2
z + σ⊥|B|2

⎞⎟⎠ .

(3.19)

3.4. Resulting equations for Chapman–Enskog friction forces
From (3.14), the perpendicular component of the Chapman–Enskog friction force

in slab geometry is

R⊥ = nec
ω2

pτei

(
α∧Bz

|B| I2 − α⊥J − �α

|B|2 B̃⊥B̃ᵀ
⊥J

)
∂zB̃⊥ − n ∂zT

|B|
(
�βBz

|B| I2 + β∧J
)

B̃⊥.

(3.20)

Hence, the complex amplitude ξ is given in terms of ψ as

ξ = εBz
nec
ω2

pτei

(
α∧Bz

|B| − iα⊥
)
∂zψ

− εBz

[
n ∂zT
|B|

(
�βBz

|B| + iβ∧
)

− ε2B2
z

2

nec
ω2

pτei

�α

|B|2 Im
(
ψ∗∂zψ

)]
ψ . (3.21)

Thus, ξ = O(ε), as promised following (3.10). Hence, (3.12) becomes

i∂tψ = −∂z
[
(Gd − iη) ∂zψ

]
+ ∂z

[(
uγ − ivN

)
ψ
]
, (3.22)
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where we have defined the following quantities:

Gd = �c2

ω2
p

(
1 + α∧

M
)
, (3.23a)

η= �c2

ω2
p

|B|
Bz

α⊥
M , (3.23b)

uγ = �β

m�

(
Bz

|B|
)2

∂zT − ε2

2

�c2

ω2
p

Bz

|B|
�α

M Im
(
ψ∗∂zψ

)
, (3.23c)

vN = − β∧
m�

Bz

|B|∂zT . (3.23d)

Recall that |B| and M depend on |ψ |2, so (3.22) still contains nonlinear effects.
The z-component of Chapman–Enskog heat flux (3.14), qz, that appears in (3.13)

can be shown to take the form

qz = −nTτei
m

[
κeff ∂zT + ε2�

2mc2

2ω2
p

(
β∧

2M ∂z|ψ |2 + Bz

|B|
�β

M Im
(
ψ∗∂zψ

))]
, (3.24)

where the effective conductivity is given as

κeff = 2κ‖ + ε2κ⊥|ψ |2
2 + ε2|ψ |2 . (3.25)

Hence, (3.13) becomes

3

2
n ∂tT = ε2 B2

z

8π

[
η|∂zψ |2 − uγ Im

(
ψ∗∂zψ

)− vN

2
∂z|ψ |2

]
− ∂zqz, (3.26)

with qz given in (3.24).
In summary, the two main equations we shall be working with in the remainder

of this paper are the evolution of the transverse field perturbations (describing the
linear instability dynamics) governed by (3.22), and the evolution of the temperature
profile (describing the back-reaction of the instability on the equilibrium dynamics)
governed by (3.26). More will be said about the physical content of (3.26) in § 8,
but as a brief preview, it is worthwhile to highlight now that only the first term
within square brackets is manifestly positive (corresponding to resistive heating).
The remaining terms, although still related to frictional forces, can take either sign
depending on whether the instability is growing or damping, allowing the insta-
bility to re-distribute the temperature profile. As we shall discuss in later sections
(beginning in the following section), this effect can be particularly prominent in the
high-beta, low-magnetisation regime.

4. Dispersion relation, growth rate and breakdown of the short-wavelength approx-
imation

Let us now restrict attention to the linear limit when ε→ 0. To lowest order,
(3.26) is decoupled from (3.22), so we shall just consider the dynamics of (3.22)
with prescribed stationary temperature and density profiles (the back-reaction of the
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FIGURE 1. Plots of the normalised group-velocity dispersion G̃d = β0Gd/vtrL (see (4.1a)) for (a)
a linear temperature profile (4.2) and (b) a Gaussian temperature profile (4.3). All normalisation
quantities are defined with respect to T0, and M0 =M(T0).

instability on the temperature profile will be considered in § 8). Moreover, (3.22)
maintains the same form when ε→ 0, but the constituent functions (3.23) become
simply

Gd = �c2

ω2
p

(
1 + α∧

M
)
, (4.1a)

η= �c2

ω2
p

α⊥
M , (4.1b)

uγ = �β

m�
∂zT , (4.1c)

vN = − β∧
m�

∂zT , (4.1d)

where M=�τei. In this limit, the physical interpretation of these quantities becomes
clearer: Gd represents the familiar group-velocity dispersion for whistler waves but
modified by friction-induced Hall effect (Davies et al. 2021), η governs the resistive
diffusion of magnetic-field perturbations, uγ is the cross-gradient Nernst advection
velocity and vN is the standard Nernst advection velocity. In particular, the presence
of Gd explains our choice to call this instability the ‘collisional whistler instability’:
in the absence of friction terms (i.e. with all α and β coefficients set to zero), the
dispersion relation (4.9a), which we shall derive shortly, would be identical to the
standard whistler dispersion relation in the electron-MHD limit (see, for example,
Komarov et al. (2018)).

For illustration purposes, figures 1–4 show how Gd , η, uγ and vN vary in space
for a linear temperature profile,

T (z) = T0(1 + z/L), (4.2)
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FIGURE 2. Same as figure 1 but for the normalised resistivity η̃= β0η/vtrL (see (4.1b)).

FIGURE 3. Same as figure 1 but for the normalised cross-gradient Nernst velocity ũγ =
Luγ /rLvt (see (4.1c)).

and for a Gaussian temperature profile,

T (z) = T0 exp
[
−(z/L)2

]
, (4.3)

both with an isobaric density profile n ∝ 1/T .
We shall now derive the linear dispersion relation and growth rate for the colli-

sional whistler instability using two approaches – a phase-space-based approach and
a more traditional approach presented in the appendix.
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FIGURE 4. Same as figure 1 but for the normalised Nernst velocity ṽN = LvN/rLvt (see (4.1d)).

4.1. Derivation via Wigner–Moyal phase-space formulation
Here, we shall derive the phase-space analogue of (3.22) that governs the Wigner

function of the complex mode amplitude ψ , defined as

W(z, kz, t) =
∫

dsψ∗ (z + s
2
, t
)
ψ

(
z − s

2
, t
)

exp (ikzs). (4.4)

This will bring the Hamiltonian structure of (3.22) to light, allowing us then to extract
the dispersion relation and growth rate immediately. The following derivation closely
follows the presentation of Ruiz et al. (2016), so the reader is invited to consult that
reference along with the brief summary provided in Appendix C for more detailed
explanations of the steps involved. A more conventional derivation of the same
dispersion relation and growth rate, based on a polar decomposition of the wavefield
into an amplitude and phase, is presented in Appendix D.

To begin, let us introduce the state vector |ψ〉 whose spatial projection is given as
〈z|ψ〉 =ψ(z). Let us also introduce the operators ẑ and k̂z whose action on state vec-
tors is given respectively as 〈z|̂z|ψ〉 = zψ(z) and 〈z|̂kz|ψ〉 = −i∂zψ(z). Then, (3.22)
can be viewed as the spatial projection of the Schrödinger equation

i∂t|ψ〉 = D̂|ψ〉, (4.5)

where the non-Hermitian Hamiltonian operator D̂ has the form

D̂ = k̂z [Gd (̂z) − iη(̂z)] k̂z + k̂z
[
vN (̂z) + iuγ (̂z)

]
. (4.6)

By right-multiplying (4.5) by 〈ψ | and subtracting its adjoint equation, one arrives at
the evolution equation for the density operator Ŵ .= |ψ〉〈ψ |:

i∂tŴ = D̂Ŵ − ŴD̂†. (4.7)

Finally, applying the Wigner–Weyl transform (WWT, see Appendix C) yields the
Wigner–Moyal kinetic equation that governs the Wigner function (4.4) of the
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fluctuations:

∂tW= iW �D∗ − iD �W≡ 2 Im (DH �W)+ 2 Re (DA �W) , (4.8)

where the Moyal product � is defined in Appendix C, and D is the dispersion
function whose Hermitian and anti-Hermitian parts are

DH = kzvN (z) + k2
zGd(z) + 1

2
∂zuγ (z) + 1

4
∂2

z Gd(z), (4.9a)

DA = kzuγ (z) − k2
zη(z) − 1

2
∂zvN (z) − 1

4
∂2

z η(z). (4.9b)

Equation (4.8) states that DH governs the Hamiltonian dynamics of the collisional
whistler instability in phase space while DA acts as the growth rate. This latter point
is seen more easily by integrating (4.8) over kz (i.e. taking the lowest-order ‘fluid’
moment). This gives

∂tI= 2 〈DA〉 I− ∂z

[〈
∂kzDH

〉 I− 1

2
∂z(ηI)

]
, (4.10)

where moments of W have been defined as follows:

I(z)
.=
∫

dkz

2π
W(z, kz) ≡ |ψ(z)|2, 〈f (z)〉 .=

∫
dkzf (z, kz)W(z, kz)

2πI(z)
. (4.11)

Hence, if the flux at the boundary is negligible, then the total amount of energy
contained within the fluctuations remains constant if 〈DA〉 = 0.

Both the Hermitian and anti-Hermitian parts (4.9) of the instability dynamics con-
tain additional terms (the final two gradient terms) that are absent from previous
treatments performed by Bell et al. (2020) based on the short-wavelength approxi-
mation. These terms arise because of the spatial variation in the plasma profiles and
the consequent non-commutation with the differential operator ∂z, similar to how
additional non-Hermitian terms arise when studying zonal flows (Ruiz et al. 2016).
More will be said about the gradient terms in § 5.

4.2. Insufficiency of short-wavelength approximation
One might be tempted to drop the gradient drives when the equilibrium length

scales are sufficiently long (i.e. to apply the short-wavelength approximation), but
this is not always valid. From (4.9b), we see that the wavevector for the fastest-
growing mode at a given point z is given by

kz,max = uγ (z)

2η(z)
. (4.12)

Since uγ ∝ ∂zT , (4.12) shows that the fluctuation wavelength may be comparable to,
or even larger than, the temperature length scale LT = (∂z log T )−1, depending on
the prefactor. Indeed, one has

kz,maxLT = M�β

4α⊥
β0 ∼M3β0, (4.13)
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FIGURE 5. Region of parameter space where a geometrical-optics description of the collisional
whistler instability is valid (green, kzLT � 1), questionable (yellow lined region, kzLT � 1) and
not valid (red crossed region, kzLT < 1). The regions are determined by the expression for kzLT
given by (4.13) using the transport coefficients of Lopez (2024).

where the plasma beta is defined as

β0 = 8πnT
B2

z
, (4.14)

and the final expression in (4.13) holds in the weakly magnetised limit M� 1.
If kz,maxLT � 1, the additional gradient terms in DA can be neglected and one
recovers the growth rates of Bell et al. (2020). However, as shown in figure 5, this
condition is not satisfied for a weakly magnetised plasma. In this parameter regime,
the fastest-growing modes will have wavelengths comparable to the equilibrium scale,
so describing them requires the Wigner–Moyal formalism employed here. Also, as
we shall show in § 7, it is only by retaining the additional gradient terms in the
growth rate that one can obtain non-trivial temperature profiles that are stable to
the collisional whistler instability.

Let us conclude this section with a brief discussion regarding the relevance of
our analysis to current laser-plasma experiments. Consider the initial stages of an
experiment such as that performed by Meinecke et al. (2022). In such an exper-
iment, pressure balance is quickly established before self-generated magnetic fields
have time to grow to appreciable strength (there are no imposed zeroth-order fields).
Thus, we can view the initial phase of the experiment as residing within the upper-
left corner of figure 5 (low M and high β0). As time progresses, dynamo action
causes magnetic fields to grow while maintaining constant pressure, so the system
evolves to a higher M state along the trajectory β0 ∼M−2 (if temperature is not
constant during this time, then the evolution of M is even faster, following the shal-
lower trajectory β0 ∼ T 5M−2). Along such a trajectory, kz,maxL will be an increasing
function since the contours go as β0 ∼M−3 (4.13). There is a subtlety, however, in
that the maximum growth rate for the collisional whistler instability is negative when
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FIGURE 6. Evolution of a Gaussian pulse advected by an inhomogeneous velocity field vN (z)>
0 (i.e. directed towards the right). The pulse spreads when ∂zvN (z)> 0 and compresses when
∂zvN (z)< 0.

kz,maxL� 1, as will be discussed later (see § 5 and also figure 9). This means that
whistler waves will not be excited in the experiment until the plasma is magnetised
enough so that kz,maxL ∼ 1, at which point, modes whose wavelengths are compa-
rable with the gradient lengthscale will appear. Due to their early excitation, these
modes will have the most time subsequently to manipulate the plasma evolution

1

(see § 8), but due to their long wavelengths, they can only be accurately described by
the Wigner–Moyal analysis performed here.

5. Linear stability condition

Let us consider the case when the whistler-intensity profile has some infinitesimally
small (noise-level) initial value that is constant over space. Then, by integrating (D4)
over all space, one can readily see that the growth rate for whistlers with a given
kz = ∂zθ is governed by DA(kz, z). Hence, the whistlers will be linearly unstable if
the maximum growth rate is positive. Since (4.12) implies that

DA
[
kz,max, z

]= u2
γ

4η
− 1

2
∂zvN − 1

4
∂2

z η, (5.1)

linear instability requires that

u2
γ

η
≥ 2∂zvN + ∂2

z η. (5.2)

Note that the left-hand side of (5.2) is always positive; therefore, if gradients were
neglected in (4.9b) under the assumption that kzLT � 1, corresponding to setting
the right-hand side of (5.2) to zero, one would erroneously conclude that any non-
constant temperature profile would be unstable, i.e. that ∂zT = 0 is the only stable
profile.

Instead, we see that two gradient-driven stabilisation mechanisms are present. The
first term is the well-known compressional amplification that can result from a per-
turbation being advected by an inhomogeneous flow. As illustrated in figure 6, if
the Nernst advection velocity is a decreasing function of the propagation direc-
tion (∂zvN < 0), then the flow can pile up and amplify the initial perturbation,
otherwise, when ∂zvN > 0, an initial perturbation will be spread out and stabilised.
In the specific context of Nernst advection, this is a well-known mechanism for
amplifying magnetic fields near the ablation fronts of laser-compressed fuel pellets

1This assumes the experiment progresses slowly enough for the time difference to be dynamically meaningful.
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FIGURE 7. Diffusion of a sinusoidal perturbation f (x) = sin (2x) by either a sinusoidal diffu-
sion coefficient η(x) = [2 + sin (2x)]/10 (solid) or a constant diffusion coefficient given by the
maximum (dotted) or minimum (dashed) value of η(x).

(Nishiguchi et al. 1984, 1985). As seen in figure 4, ∂zvN < 0 tends to occur when the
plasma is weakly magnetised, i.e. at small values of M.

Less well understood is the second stabilisation term due to ‘resistivity curvature’.
As shown in figure 7, the diffusion of a perturbation is faster when ∂2

z η > 0 than
homogeneous theory would predict (thus increasing the stability of the system against
the perturbation), and the diffusion is slower when ∂2

z η < 0 (decreasing the stability
of the system). Per figure 2, one generally has ∂2

z η > 0 in the vicinity of a hotspot,
with ∂2

z η becoming increasingly larger as the magnetisation level decreases.
In the limit when the geometrical-optics approximation is only weakly violated, this

effect can be understood as the result of using the wavelength-averaged resistivity
in place of the resistivity when determining the damping of a wave. Indeed, if we
define the effective resistivity as

ηeff (z) = 1

2

[
η

(
z − 1

2k

)
+ η

(
z + 1

2k

)]
, (5.3)

then in the limit that k is still sufficiently large, a simple Taylor expansion yields

ηeff (z) ≈ η(z) + 1

4k2
∂2

z η(z). (5.4)

Thus, including the resistivity-curvature correction in (4.9b) is equivalent to using
k2ηeff as the dissipation term in growth rate of Bell et al. (2020).

An alternative explanation for the stabilisation by resistivity curvature can be for-
mulated based on spectral leakage (i.e. the uncertainty principle), as depicted in
figure 8. This figure shows the evolution of an initially sinusoidal perturbation as a
heuristic diffusion operator is repeatedly applied. This heuristic diffusion operator
acts as a low-pass filter for wavevectors larger than the diffusion scale kη ∼ 1/

√
η;

accordingly, if a bilevel diffusion coefficient is used where one value of η is much
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FIGURE 8. Evolution of a sinusoidal pulse subject to a discrete-time diffusion model (with step
size �) in which the diffusion acts as a low-pass filter with respect to wavevectors larger than
kη ∼ 1/

√
η; accordingly, the spectral filter becomes a spatial filter where η= η∞ → ∞.

larger than the other, then the heuristic diffusion operator acts as a combined spec-
tral and spatial filter with respect to the diffusive scale of the smaller value kη0 and
the spatial domain of the larger value. Spectral leakage then enables the entire per-
turbation to decay away eventually, but at different rates when η is a local minimum
compared with a local maximum. Indeed, as seen by comparing the central peak
at t =� and t = 2� in the figure, diffusion is increased when η is concave up and
diffusion is decreased when η is concave down compared with the nominal diffusion
one would expect if only the local value of η was considered.

To illustrate the impact of these additional stabilisation mechanisms, let us con-
sider a plasma with a linear temperature profile T ∼ z/LT and in pressure balance,
so that n ∼ 1/T . Then, it can be shown (see (6.1)) that (5.2) becomes

β0�
2
β(M)

α⊥(M)
≥ 15α⊥(M)

β0M2
− 15α′⊥(M)

β0M + 25α′′⊥(M)

β0
− 10β ′∧(M), (5.5)

where as a reminder, M is defined in (3.17) with ε = 0. Note that (5.5) is actually
independent of the temperature gradient. Hence, when the right-hand side is suffi-
ciently positive, there will be no unstable temperature gradients. It is clear that this
will happen for weakly magnetised plasmas (small M) or for low-β0 plasmas due to
the divergent denominator;

2
this weakly magnetised regime will be discussed further

in §§ 7 and 8.
At fixed β0, the same divergent denominator that ensures stability at low M causes

the system to become unstable at high M. This implies the existence of a critical
value Mcrit across which the transition from stable to unstable behaviour occurs.
Hence, if one were to set up a simulation similar to Komarov et al. (2018), in which
a linear temperature gradient is initialised across a plasma of length L with T (0)
held fixed and T (L) allowed to vary between simulations, one would see whistler
waves beginning to grow once T (L) exceeds a critical value corresponding to Mcrit.

2The plot of (5.5) as a function of M and β0 is nearly identical to the plot of FT ,1 in Figure 9 for reasons
that will be discussed in § 6, with the unstable region coloured in red and the stable region coloured in blue.
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It might be tempting to conclude that the destabilisation is due to the temperature
gradient exceeding a critical value, but subsequent simulations with increased box
size L and the same temperature difference should feature whistler waves continuing
to be excited despite the temperature gradient being reduced.

6. Dynamical relevance of collisional whistler instability

The collisional whistler instability will grow on time scales determined by the
maximum growth rate, denoted γwhist. This is given by (5.1), which can be re-written
as

γwhist = 3

4

[
FT ,1 + FT ,2

L2
T

CT
+ FT ,n

LT

Ln
+ Fn,1

(
LT

Ln

)2

+ Fn,2
L2

T

Cn

]
�r2

L

L2
T

, (6.1)

where we have introduced the temperature length scale LT , the ‘temperature cur-
vature’ CT , the density length scale Ln and the ‘density curvature’ Cn, as follows:

LT = T
∂zT

, CT = T
∂2

z T
, Ln = n

∂zn
, Cn = n

∂2
z n
, (6.2)

and we have also introduced the auxiliary functions

FT ,1 = β0M�2
β

6α⊥
+ β0 ∂β0FT ,2 + 3

2
M ∂MFT ,2, (6.3a)

FT ,2 = 2β∧
3

+ α⊥ −Mα′⊥
β0M , (6.3b)

FT ,n = β0 ∂β0FT ,2 −M ∂MFT ,2 + 3

2
M ∂MFn,2, (6.3c)

Fn,1 = −M ∂MFn,2 − 2Fn,2, (6.3d)

Fn,2 = 2α′⊥
3β0

. (6.3e)

Note that here and in what follows, we use ′ to denote ∂M for univariate functions
of M. Also note that all the length scales in (6.2) are signed quantities.

Figure 9 shows the various drive terms as functions of M and β0. First, one
notes that terms corresponding to the density-gradient drives (FT ,n, Fn,1 and Fn,2)
are generally smaller (by approximately two orders of magnitude) than the terms
corresponding to temperature-gradient drives (FT ,1 and FT ,2). The temperature-
gradient-drive terms are larger because they either contain a factor β0M that grows
unbounded towards the upper right corner of parameter space, or a divergent factor
1/β0M that grows unbounded towards the lower left corner. The former corre-
sponds to the ‘WKB’ term β0M�2

β/6α⊥ in (6.1), which is proportional to the
maximum growth rate when no additional gradient terms are included in (4.9b) (see
(6.8)), while the latter is associated with the resistivity curvature. Thus, we expect
that the instability dynamics will be largely independent of the density profile when
a non-uniform temperature profile is present.

For the collisional whistler instability to be dynamically relevant, the whistler
waves must grow faster than the time that it takes for the driving temperature
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FIGURE 9. Plots of the various drive terms for the collisional whistler instability, as defined
in (6.1). Here, ‘WKB’ refers to the only drive term that survives the short-wavelength approx-
imation: see (6.8). Importantly, note that the colour-bar axis can differ by orders of magnitude
between plots.

inhomogeneity to diffuse away. The diffusion time τκ = (∂t log T )−1 can be calcu-
lated from (3.24)–(3.26) with ε = 0:

τκ = L2
T

�r2
L

3

Mκ‖ |5 + 2S| , (6.4)
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where S = L2
T/CT describes the shape of the temperature profile. Hence, one has

γwhistτκ = 9

4

FT ,1 + FT ,2S + FT ,nLT L−1
n + Fn,1

(
LT L−1

n
)2 + Fn,2L2

T C−1
n

Mκ‖ |5 + 2S| , (6.5)

with dynamical relevance requiring γwhistτκ > 1. Note that when S = −5/2, the dif-
fusion time becomes infinite (T ∝ z2/7 yields a spatially constant heat flux), so the
whistlers will be dynamically relevant anywhere there is a positive growth rate.

For simplicity, let us restrict attention to when the density profile is either isobaric
or constant:

L−1
n =

{−L−1
T isobaric

0 constant
, C−1

n =
{

2L−2
T − C−1

T isobaric
0 constant

. (6.6)

Hence, one has

γwhistτκ = 9

4Mκ‖ |5 + 2S| ×
{

FT ,1 − FT ,n + Fn,1 + 2Fn,2 + (FT ,2 − Fn,2)S isobaric
FT ,1 + FT ,2S constant

.

(6.7)

The regions of parameter space where whistlers are dynamically relevant for isobaric
or constant density profiles are shown in figure 10(a,b).

First of all, there is no visible difference between the results for an isobaric versus
a constant density profile. This is because the density-drive terms in (6.1), Fn,1 and
Fn,2, are generally smaller than the principal temperature-drive term FT ,1 (figure 9).
Second, not all of the parameter space is susceptible to whistlers even when the initial
profile is diffusion-free (S = −2.5). This is because the instability actually disappears
for sufficiently low M and all whistler waves are instead strongly damped. This is in
stark contrast to the prediction made with the short-wavelength asymptotic growth
rate obtained by Bell et al. (2020):

γwkb = β0M�2
β

8α⊥
�r2

L

L2
T

. (6.8)

The region of the instability’s dynamical relevance in this limit, which is shown in
figure 10(d), is determined by the quantity

γwkbτκ = 3β0�
2
β

8κ‖α⊥
1

|5 + 2S| . (6.9)

Since γwkb ≥ 0, this approximation does not capture the strong damping that occurs
at low magnetisation, instead predicting that all of the parameter space is susceptible
to the collisional whistler instability.

Finally, one should note that there actually exists an instability even when the
temperature is constant, driven instead by a density gradient. Indeed, setting ∂zT
and ∂2

z T both equal to zero in (6.1) yields

γwhist = 3

4

(
Fn,1 + Fn,2

L2
n

Cn

)
�r2

L

L2
n

. (6.10)
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(a) (b)

(c) (d)

FIGURE 10. (a,b) Parameter space where the collisional whistler instability is dynamically rel-
evant (green) for the specified density profile, as determined by comparing the peak growth rate
γwhist with the diffusion time τκ associated with standard parallel conduction (see (6.5)). The
boundary of this region depends on the shape factor S .= TT ′′/(T ′)2, and is roughly symmet-
ric about S = −2.5 (e.g. the boundaries for S = −3 and S = −2 are approximately the same).
(c) The same, but when the temperature profile is constant and the instability is instead driven
by a density inhomogeneity with shape factor Sn defined analogously to S. (d) The same, but for
the growth rate provided in (6.8), which is valid in the short-wavelength limit and is independent
of the density profile.

Furthermore, since T is constant, there is no diffusion so τκ is infinite; the density-
gradient-driven collisional whistler instability will be dynamically relevant whenever
γwhist ≥ 0, with γwhist given now by (6.10). This region is shown in figure 10(c).
Since Fn,2 > 0 while Fn,1 has no definite sign, the region of dynamical relevance
increases as L2

n/Cn becomes increasingly positive. Eventually, as L2
n/Cn → ∞, the

entire parameter space is susceptible to the density-gradient-driven instability.
That said, we should again emphasise that the density-gradient-driven instabil-

ity has much smaller growth rates than the temperature-gradient-driven instability.
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Also, by using figure 9 to estimate FT ,1 ∼ 105 and Fn,1 ∼ 102, (6.1) shows that only
when L−1

n � 30L−1
T will the density-gradient drives be important for the collisional

whistler instability. We shall defer the study of such isothermal plasmas to future
work, and instead consider either isobaric or constant-density plasmas to facilitate
comparisons with Meinecke et al. (2022) or Bell et al. (2020), respectively. In these
plasmas, the density-gradient drives play a negligibly small role.

7. Global marginally stable temperature profiles

It is interesting to consider what plasma profiles are marginally stable over an
arbitrarily large spatial domain, since these can potentially correspond to the final
states obtained after the collisional whistler instability has saturated quasilinearly.
We shall obtain these global marginally stable states by considering the condition

γwhist = 0, (7.1)

with γwhist given by (6.1), as a differential equation governing T (z) for a prescribed
n(z), since n does not evolve in time. Note that non-trivial (i.e. inhomogeneous)
marginally stable profiles are only possible when the gradient terms are included
in DA; if instead one were to consider marginally stable states with respect to γwkb
given by (6.8), the answer would be simply a uniform temperature profile, regardless
of the density profile.

We shall first discuss the general case before considering two special cases in
detail. The first special case has the plasma density constrained by pressure balance,
as occurs in astrophysical and recent experimental contexts (Markevitch & Vikhlinin
2007; Meinecke et al. 2022). The second special case will be the simpler situation in
which the density is constant, corresponding to the analysis performed by Bell et al.
(2020).

7.1. General theory
Let us consider monotonic profiles such that ∂zM �= 0 everywhere, M having been

defined in (3.17) but with ε = 0. Then, one can formally parametrise the inverse
function z(M) so that all functions can be considered functions of M. Suppose
further that

∂Mn[z(M)] �= − n
M . (7.2)

Then, one has ∂MT �= 0 everywhere, so the composite map z[M(T )] can be formally
constructed and all functions can be parametrised by T instead of z. One then has

∂zn = n′(∂TM)∂zT , ∂2
z n = n′′(∂TM)2(∂zT )2 + n′(∂2

TM)(∂zT )2 + n′(∂TM)∂2
z T ,
(7.3)

where ′ again denotes ∂M. Then, (7.1) can be recast in the form

G1(M)(∂zT )2 + G2(M)∂2
z T = 0, (7.4)
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where the two new auxiliary functions are defined as follows:

G1(M) = 2πn(M)

B2
z

M [�β(M)]2

α⊥(M)
+ G′

2(M)∂TM, (7.5a)

G2(M) = β∧(M) + B2
z

8π

{
α⊥(M)

[
1 +Mn′(M)

n(M)

]
−Mα′⊥(M)

}
∂TM

n(M)M2
.

(7.5b)

Using the chain rule,

∂zT = (∂MT )∂zM, ∂2
z T = (∂2

MT )(∂zM)2 + (∂MT )∂2
z M, (7.6)

along with the standard relations between the derivatives of inverse functions, viz.

∂xy = 1

∂yx
, ∂2

xy = − ∂2
y x

(∂yx)3
, (7.7)

we deduce that (7.4) can be written as a differential equation for M:

∂2
z M= g(M)(∂zM)2, (7.8)

where we have defined

g(M) = G2(M)∂2
TM− G1(M)∂TM

G2(M)(∂TM)2
. (7.9)

Clearly, (7.8) can be trivially satisfied by M = constant. To obtain a non-trivial
solution, note that (7.8) possesses affine symmetry with respect to z, i.e. z �→ c1 + c2z;
hence, any solution will have the general form M(c1 + c2z) with c1 and c2 being the
two integration constants. The fact that the two integration constants enter in this
manner suggests that it will be simpler to solve for the inverse function z(M), since
one expects log ∂Mz to satisfy an equation of the form ∂M log ∂Mz = f (M). Indeed,
by making use again of (7.7), the nonlinear differential equation (7.8) is recast as a
linear differential equation

z′′ = −g(M)z′. (7.10)

As this is now a first-order differential equation with respect to z′, the solution to
(7.10) can be obtained directly via two successive integrations as

z(M) = z(M1) + z′(M2)
∫ M

M1

dμ exp

[
−

∫ μ

M2

dm g(m)

]
, (7.11)

where M1 and M2 are arbitrary values at which boundary conditions can be
applied. One notes that (7.11) manifestly respects the affine symmetry of the origi-
nal equation. For (7.11) to be physically relevant, though, it must be the case that
M(z) ≥ 0; a sufficient condition to ensure positivity is that g ∼ A/M with A> 1 as
M→ 0, as shown in Appendix F. Realistic friction coefficients do indeed have this
property, as we shall see in §§ 7.3 and 7.4.
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7.2. Magnetisation staircases as a general class of solutions
Let us now consider a high-β0 plasma. Although not obvious from (7.11), in this

limit, M(z), and thus T (z), naturally forms a staircase structure. To see this more
easily, note that G1 ∼ O(δ−1) and G2 ∼ O(1) with respect to the small parameter
δ ∼ 1/β0 (see (7.5), or more simply, see that FT ,1 is significantly larger than any
other coefficient in figure 9 when β0 is large). Hence, (7.8) has the general abstract
form

δ y′′(z) = G(y)
[
y′(z)

]2
, (7.12)

where G is a nominally O(1) function. It is well established (Bender & Orszag 1978)
that the solutions to such equations can exhibit boundary layers when δ→ 0; for
(7.12), such boundary layers will occur where G(y) = 0.

Away from the boundary layers, the ‘outer’ solution of (7.12) is approximately con-
stant, i.e. y ≈ yj for some yj. However, the small gradient of y will eventually bring
G(y) sufficiently close to zero to trigger a rapid change in y across the boundary layer
to reach the next plateau region where y ≈ yj+1. A staircase pattern thereby emerges
whose steps are dictated by the root structure of G (equivalently, the inflection points
of y), with the widths W of the steps set by δ as

W ∝ aG′(y∗)/δ, (7.13)

where y∗ is a root of G(y) = 0 and a> 1 is a constant that depends on boundary
conditions. This behaviour is summarised as follows.

Conjecture. A staircase step forms in the solution of (7.12) for |δ| � 1 when G(y)
traverses a root y∗ where G(y∗) = 0 and G′(y∗)/δ < 1. Therefore, a multi-step staircase
forms when G(y) has multiple roots.

The basis for this conjecture is demonstrated in figure 11, which shows solutions of
(7.12) for a polynomial G(y). The derivation of (7.13) and the analytical solution
for certain special cases of G(y) are presented in Appendix G. Let us now demon-
strate the role that these staircase solutions play in determining the globally stable
temperature profiles for isobaric and constant-density plasmas.

7.3. Isobaric density profile with Chapman–Enskog friction
Let us consider a situation when the density profile is set by pressure balance. This

means that n(T ) is given as

n(T ) = β0B2
z

8πT
. (7.14)

One therefore has

M(T ) =
(

T
τ

)5/2

, T (M) = τM2/5, n(M) = β0B2
z

8πτM2/5
, (7.15)

where we have introduced the magnetisation temperature

τ
.=
( √

2

6
√
π

Ze2m3/2c2β0� log

)2/5

. (7.16)
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(a)

(b)

(c)

(d)

FIGURE 11. Solutions of (7.12) when G(y) takes the form shown in each respective inset. All
solutions have |δ| = 0.01. The ‘arbitrary units’ (a.u.) designation on the x-axis emphasises that,
due to affine symmetry, there is formally no scale to the x-dependence of the solutions. All
solutions satisfy y(0) = 0, with the other boundary condition y′(0), which simply controls the
horizontal scale of the solution, adjusted for each case to fit the pertinent behaviour on the same
axis. The functional forms for the plots shown in panels (a) and (b) can be derived analytically,
as shown in Appendix G.
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Consequently,

∂TM= 5

2

M3/5

τ
, ∂2

TM= 15

4

M1/5

τ 2
, n′(M) = −2

5

n
M . (7.17)

The auxiliary functions (7.5) and (7.9) therefore take the following forms:

G1 = 5

2τM2/5

{
β0M [�β(M)]2

10α⊥(M)
+ G′

2(M)M
}
, (7.18a)

G2 = β∧(M) + 3α⊥(M) − 5Mα′⊥(M)

2β0M , (7.18b)

g(M) = 3G2(M) − 2M2/5τG1(M)

5G2(M)M . (7.18c)

A contour plot of g versus M and β0 is shown in figure 12, along with lineouts
along M for some values of β0. It is clear that g(M) becomes large for large β0, as
anticipated. Moreover, g(M) has a single root corresponding to the single root of
FT ,1 (figure 9), satisfying the criterion for a staircase to form.

Using known asymptotics (B1) of the Lorentz friction coefficients, it is straight-
forward to show that Mg → 8/5 as M→ 0. Hence, the temperature profile is
guaranteed to be positive everywhere (Appendix F). To obtain a simple analytical
approximation for the solution to (7.11), it is reasonable to take

g(M) ≈ 8

5M
(

1 − M
M∗

)
, (7.19)

with M∗ being the single root. Specifically, when β0 � 1, M∗ can be approximately
calculated using the M� 1 limit of the Lorentz friction coefficients to be

lim
β0→∞ M∗ = 8

√
α‖

105β0
≈ 0.4√

β0
. (7.20)

Note, importantly, that a geometrical-optics description of this parameter regime
is not valid because (4.13) predicts that kz,maxL ∼M∗ � 1 when M2∗β0 ∼ 1 and
M∗ � 1. The continuation of the root line to small β0 can be computed using the
M→ ∞ limit of the friction coefficients (B2) to give

lim
β0→0

M∗ = 2
√

6

β‖β0
≈ 3.3

β0
. (7.21)

Since β0 � 1, no staircase is expected to form in this parameter regime. For arbitrary
β0, a simple interpolation of the two limits can be used to obtain

M∗ ≈ 3.3

β0
+ 0.4√

β0
. (7.22)

As shown in Appendix G, the solution to (7.11) can be computed analytically for
g(M) given by (7.19):

z(M) − z(M1)

z(M2) − z(M1)
=
γ
(
−3

5 ,− 8M
5M∗

)
− γ

(
−3

5 ,− 8M1
5M∗

)
γ
(
−3

5 ,− 8M2
5M∗

)
− γ

(
−3

5 ,− 8M1
5M∗

) , (7.23)
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FIGURE 12. (a) Contour plot and (b) lineouts at select β0 values for g(M) when the friction
coefficients are obtained using the Lorentz collision operator. The dashed black contour in panel
(a) indicates the root set g = 0 across which a staircase step is expected to form when β0 is large.

where γ (s, z) is the lower incomplete Gamma function (Olver et al. 2010).
Importantly, γ (s, 0) is divergent when s< 0 so M(z) is positive-definite. Figure 13
shows the solution (7.23) at different values of β0 for two different boundary con-
ditions using the approximation for M∗ provided in (7.22). A step-function profile
clearly develops as β0 increases for both boundary conditions, demonstrating the
robustness of the temperature staircase. For comparison, figure 13 also presents
numerically computed solutions of (7.11). Overall, the analytical approximation is
seen to capture all the salient features of the temperature profile, but underesti-
mates the sharpness of the staircase step because the approximation (7.19) does not
reproduce the correct gradient across the root, i.e. g′(M∗).
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FIGURE 13. Solution (7.11) for the marginally stable magnetisation M∝ T 5/2 at various values
of β0 for Lorentz friction coefficients (Lopez 2024) and isobaric plasma (7.14). The boundary
conditions are z(M1) = 0, z(M2) = 1, M1 = 0.1 and M2 = 1 (solid) or M2 = 0.4 (dashed).
The top plot uses the analytical approximation presented in (7.23) with M∗ defined in (7.22),
while the bottom plot is the numerically computed solution.

7.4. Constant density profile with Chapman–Enskog friction
Let us now consider the simpler case of constant density:

n(M) = n0. (7.24)

One therefore has

M(T ) =
(

T
τ0

)3/2

, T (M) = τ0M2/3, (7.25)

where the magnetisation temperature now takes the form

τ0
.=
(√

2m
π

Ze2ω2
p log

3�

)2/3

. (7.26)

Consequently,

∂TM= 3

2

M1/3

τ0
, ∂2

TM= 3

4

M−1/3

τ 2
0

, (7.27)
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and the auxiliary functions (7.5) and (7.9) take the following forms:

G1 = 1

2M2/3τ0

{
βeffM5/3 [�β(M)]2

2α⊥(M)
+ 3G′

2(M)M
}
, (7.28a)

G2 = β∧(M) + 3

2

α⊥(M) −Mα′⊥(M)

βeffM5/3
, (7.28b)

g(M) = G2(M) − 2M2/3τ0G1(M)

3G2(M)M , (7.28c)

where we have defined the effective plasma beta

βeff = 8πn0τ0

B2
z

≈ 2.61 × 106 (Z log)2/3
( n0

1020 cm−3

)5/3
(

Bz

103 G

)−8/3

. (7.29)

Clearly, βeff can be made large for realistic plasma parameters, so, provided that a
root to (7.28c) exists, a sharp magnetisation staircase is expected to form for constant
density profiles as well.

Figure 14 shows a contour plot of g as a function of M and βeff , along with
lineouts along M for some values of βeff . Analogously to figure 12, g(M) becomes
large for large βeff and has a single root line. Therefore, the behaviour of the solution
(7.11) will have the same qualitative features as those seen in figure 13, namely, a
positive-definite magnetisation profile possessing a single staircase step across the
root whose approximate interpolated form is

M∗ ≈ 0.5

β
3/8
eff

+ 1.9

β
3/5
eff

(7.30)

(the two terms individually constitute the βeff → ∞ and the βeff → 0 limits of M∗,
respectively). By comparing figures 14 and 12, however, we see that g′(M∗) is larger
when the plasma density is constant instead of isobaric; hence, the staircase associ-
ated with figure 14 will be sharper than either the analytical approximation given by
(7.23) or the numerical solution presented in figure 13.

8. Back-reaction on the background temperature profile

Having discussed at length the linear growth rate of the collisional whistler insta-
bility, let us now briefly investigate how the instability modifies the background
temperature profile. To second order in ε, (3.26) can be written in two equivalent
forms:

3

2
n ∂tT = ε2B2

zSα − ε2nV∂zT − ∂zqz, (8.1a)

3

2
n ∂tT = −∂zQz − ε2B2

z

8π
〈DA〉 I. (8.1b)

The first form (8.1a) emphasises the advection–diffusion dynamics involved in the
temperature evolution, while the second form (8.1b) emphasises the flow of energy
throughout space and the transfer of energy from plasma to waves. Here, Sα repre-
sents the heating source due to the work done by the resistive (α) friction force on
the perturbed flow, V the wave-driven advection velocity due to the work done by
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FIGURE 14. Same as figure 12, but for constant density. The definition of βeff is (7.29).

the thermoelectric (β) friction force on the perturbed flow, Qz the modified heat flux
due to the additional wave-driven Poynting flux contribution and 〈DA〉 I the energy
sink to excite fluctuations; their respective definitions are

Sα .= η

8π

(
I
〈
k2

z

〉
+ 1

4
∂2

z I
)

+ ε2 �αc2

16πω2
pτei

I2 〈kz〉2
(

1 + ε2I
2

)−1

= η

8π

(
I
〈
k2

z

〉
+ 1

4
∂2

z I
)

+ O(ε2), (8.2a)

V .= �c2

2ω2
p

(
�β 〈kz〉 I
1 + ε2I/2 − β∧ ∂zI

2
√

1 + ε2I/2

)

= �c2

4ω2
p

(
2�β 〈kz〉 I− β∧ ∂zI

)
+ O(ε2), (8.2b)
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Qz
.= qz + ε2B2

z

16π

(
vNI+ I∂zη− η ∂zI

2

)
, (8.2c)

qz = −nT

[
τei

m

(
κ‖ − ε2

2
�κI

)
∂zT + ε2�c2

2ω2
p

(
�β 〈kz〉 I+ β∧

2
∂zI

)]
+ O(ε3).

(8.2d)

The appropriate lowest-order expressions for η, vN and DA are given in (4.1) and
(4.9b). It is important to note that, when combined with (4.10), (8.1b) manifestly
conserves the total energy of the electron MHD system of equations (the appropriate
expressions for energy conservation are presented in Appendix H).

8.1. Frictional cooling
As required by energy conservation, the growth of whistler waves due to friction

implies that the friction must be cooling the temperature profile at the same time
(at least volumetrically, i.e. neglecting fluxes). This is counterintuitive since friction
is often considered a source of heating instead of cooling. Indeed, the frictional
work due to resistivity (Sα) is positive definite and therefore always a heat source.
However, the advection velocity V of the temperature profile due to friction is not
sign-definite and, depending on the signs of ∂zI and 〈kz〉, it can be aligned with ∂zT
and therefore be a cooling flow.

3

More quantitatively, let us suppose that the wave profile is given by a quasi-
monochromatic (and also quasi-eikonal) field of the form

4

ψ(z) =√
I(0) exp

[
z

2LI
+ i

∫ z

0
kmax(ζ )dζ

]
, (8.3)

where LI is the intensity gradient length scale. One can then calculate the instan-
taneous resistive heating rate (8.2a) and thermoelectric advection velocity (8.2b) as

Sα =
[(

uγ
2η

)2

+
(

1

2LI

)2
]
ηI
8π
, V=

(
u2
γ

η
− β∧

m�
∂zT
LI

)
mc2�2

4ω2
p

I
∂zT

. (8.4)

Hence, we see that (i) the resistive heating is manifestly positive-definite, as required
and (ii) the thermoelectric advection velocity becomes a cooling flow, i.e. sign(V) =
sign(∂zT ), when wave intensity and temperature gradients oppose each other, viz.
when L−1

I < u2
γm�LT/(ηβ∧T ). Furthermore, since the total frictional heating can

be expressed as

ε2B2
zSα − ε2nV∂zT = ε2B2

z

32π

(
ηL−2

I − 2vNL−1
I − u2

γ

η

)
I, (8.5)

3Importantly, frictional cooling still produces entropy (Kolmes et al., 2021b) and therefore does not violate
any fundamental laws of thermodynamics.

4This simple field profile is chosen to illustrate the key physics that might be at play as the instability tries
to saturate. Since the geometrical-optics approximation is not generally satisfied, one does not expect a quasi-
monochromatic field to remain such as time progresses.
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the total frictional heating will be negative when

vN −
√

v2
N + u2

γ

η
< L−1

I <
vN +

√
v2
N + u2

γ

η
. (8.6)

If we take ∂zT > 0, then (8.6) can be equivalently written as

−Mβ0

2α⊥

(√
β2∧ +�2

β + β∧
)
< LT L−1

I <
Mβ0

2α⊥

(√
β2∧ +�2

β − β∧
)

. (8.7)

Interestingly, the condition (8.6) is satisfied for a constant intensity profile L−1
I = 0

because the two endpoints of (8.6) necessarily have opposite signs (but note that
the interval is not symmetric about zero since its centre is vN �= 0). This means that
friction will cool the temperature profile in the early stages of the instability when
whistlers grow from an initially homogeneous noise-level of fluctuations.

8.2. Reduced heat flux
Next, let us consider how the heat flux gets modified by the collisional whistler

instability. For the quasi-eikonal field given by (8.3), the heat flux takes the form

−qz

q0
= κ‖ + ε2

2

(
�2
β

2α⊥
+ β∧

Mβ0

LT

LI
−�κ

)
I, q0 = nTv2

t τei

LT
. (8.8)

Hence, we see that the net effect of the instability on the heat flux results from
the competition of three terms. The first two O(ε2) terms are associated with the
Ettingshausen effect,

5
which is the additional heat flux (beyond the standard enthalpy

flux (Epperlein & Haines 1986)) carried by faster moving, less collisional electrons
whose directional symmetry is broken with a mean flow. The first of these terms is
always positive and therefore always enhances the heat flux; in contrast, the second
term can reduce the heat flux when LI and LT are oppositely oriented and can
even overcome the first term if LT L−1

I is sufficiently negative (meaning that I is
sufficiently sharply peaked):

LT

LI
<−Mβ0�

2
β

2α⊥β∧
≈ −981β0M4, (8.9)

where the final approximation is for M� 1. This heat-flux-reduction mechanism
can be readily achieved in the high-β0, low-M regime in which the temperature
staircases discussed in § 7 also form, since in this limit, the right-hand side of (8.9)
goes to zero as −25/β0 (see (7.20)). The third O(ε2) term in (8.8), which is always
negative, is the reduction of the effective conductivity due to the transverse magnetic
field perturbations generated by the instability causing the temperature gradient and
the total magnetic field to become misaligned.

5For detailed discussions of the Ettingshausen effect, see, e.g. Chittenden & Haines (1993) and Kolmes et al.
(2021a).
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FIGURE 15. Regions (green) where the total heat flux Qz (8.10) is reduced due to the presence of
whistler waves generated by the collisional whistler instability at global marginal stability. This
reduction is controlled by the length scale ratio LT L−1

I and occurs when � > 0 (8.11); these
regions are shown in green above the correspondingly labelled line. For LT L−1

I <−2, the entire
plot range has a reduced total heat flux.

8.3. Marginally stable heat flux
Finally, let us suppose that the temperature profile is in a globally marginally

stable state such that 〈DA〉 = 0 (§ 7). Dynamically, one expects an arbitrary tempera-
ture profile to be driven towards such a state on the instability time scale, which can
be faster than the conduction time scale (see figure 10). This is because, as shown
in figure 9, the instability growth rate DA is an increasing function of temperature
(and conversely, the damping rate is a decreasing function of temperature). Energy
conservation (8.1b) then implies that higher temperatures are increasingly cooled by
the instability (thereby decreasing DA), while lower temperatures are increasingly
heated (thereby decreasing −DA) to create temperature plateaus separated by transi-
tion regions where the temperature profile has remained unchanged because DA ≈ 0
initially. The result is a profile that has DA = 0 everywhere.

When 〈DA〉 = 0 globally, the total frictional heating can be written as an energy
flux (see (8.1b)), which combines with the heat flux to yield

− Qz

κ‖q0
= 1 − ε2�I, (8.10)

where the flux-reduction factor is

� = 1

2κ‖

[
�κ + 5

2

α′⊥
Mβ2

0

− β∧
Mβ0

(
LT

LI
+ 1

)
− α⊥

M2β2
0

(
LT

LI
+ 3

2

)
− �2

β

2α⊥

]
. (8.11)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000078
Downloaded from https://www.cambridge.org/core. IP address: 18.224.108.12, on 18 Apr 2025 at 17:34:03, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000078
https://www.cambridge.org/core


34 N.A. Lopez, A.F.A. Bott and A.A. Schekochihin

Here, we have imposed pressure balance for simplicity; the general expression is
obtained by replacing 5/2 with LT ∂zM/M in the second term. As in (8.8), we see
that the intensity gradient is capable of reducing the total heat flux. In this case, the
two mechanisms available are the Ettingshausen mechanism discussed in § 8.2 and
the frictional cooling discussed in § 8.1 (now coupled to the heat flux by imposing
global marginal stability). Both are controlled by the length scale ratio LT L−1

I . As
shown in figure 15, making LT L−1

I negative causes the heat flux to be reduced
(|Qz|< κ‖q0) over a large region of parameter space.

6

Indeed, the flux-reduction factor � can be made arbitrarily large by making
LT L−1

I increasingly negative. To make this more quantitative, let us consider the
weakly magnetised (small-M) limit and approximate all transport coefficients by
their lowest-order asymptotic limits (B1). Then one has

� ≈ 124M2 + 1.34

β2
0

− 0.362

β0

(
LT

LI
+ 1

)
− 0.011

M2β2
0

(
LT

LI
+ 3

2

)
− 1200M4

≈ 1

β0

(
21.7 − 0.423

LT

LI

)
≈ �κ

2κ‖
− 0.423

β0

LT

LI
, (8.12)

where in the second line, (7.20) has been used to evaluate � near the steepest point
in the temperature staircase, taking β0 to be large as well. Using this, we can place
a bound on the required value of LT L−1

I to achieve strong heat-flux reduction as
follows. By simple rearrangement, (8.10) can be written as

ε2I= 1

�

(
1 + Qz

κ‖q0

)
≤ 1, (8.13)

where the inequality ensures that the small-amplitude expansion is not grossly
violated. If the heat flux is strongly reduced, then Qz ≈ 0 and one would have

� ≥ 1, (8.14)

or, equivalently, using (8.12),

−LT

LI
≥ β0

0.423

(
κ‖ + κ⊥

2κ‖

)
� 2β0, (8.15)

since κ‖ ≤ κ‖ + κ⊥ ≤ 2κ‖.
Thus, the collisional whistler instability is capable of reducing the electron heat flux

in principle, somewhat similar to the collisionless whistler instability (Levinson &
Eichler 1992; Pistinner & Eichler 1998; Komarov et al. 2018; Roberg-Clark et al.
2018). The persistence time τ of the temperature profile is then nominally lengthened
by the same factor τ ∼ τκ/|1 − ε2�I| until it is ultimately set by the persistence time
of the intensity profile itself, which in turn is set by advection and refraction (i.e.
evolving the z and the kz dependence of W, respectively). The advection-limited
persistence time is expected to be comparable to τ (and thus not a limiting factor)
since the total Poynting flux that accounts for the intensity advection (the term in

6One can have reduced heat flux even with LT L−1
I > 0 provided that β0 and M are both sufficiently large

(β0M� LT L−1
I ) such that �κ dominates (8.11).
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square brackets in (H5)) and the modified heat flux Qz used to estimate τ only differ
by subdominant terms. The refraction time scale, however, is difficult to estimate
given that it inherently involves breaking the quasi-eikonal ansatz (8.3), requiring
one to reconsider the full phase-space dynamics of W. This is beyond the scope of
the present work.

Let us conclude this section with a brief word of caution regarding the bound
obtained in (8.15). The inequality (8.15) represents a stricter requirement on LI
compared with (8.9) because (8.15) requires second-order effects to become com-
parable to the lowest-order heat flux, whereas (8.9) results from comparing two
second-order terms. Clearly, such an occurrence would also indicate that the per-
turbative approach underlying (8.2) has potentially become invalid; if LT L−1

I is too
large, even an infinitesimal intensity will grow quickly in space and become rela-
tively large elsewhere. Therefore, our analysis here is merely a simple first attempt
to understand what is required of I(z) to greatly reduce the heat flux assuming quasi-
linear theory holds for all LT L−1

I . Future investigations can be conducted to see how
nonlinear physics modifies this constraint. Conversely, it is likely that the heat-flux
suppression by the collisional whistler instability will be a small effect for high-beta
plasmas within the strict validity of our fluid slab model.

9. Conclusion

In this work, we have shown that the electron MHD equations with Braginskii
friction in a 1-D slab geometry are unstable with respect to transverse magnetic
perturbations. We call this instability the collisional whistler instability, since the dis-
persion relation contains the usual group-velocity dispersion of whistler waves. We
show that for a large region of parameter space, the fastest-growing/least-damped
whistler waves do not satisfy the geometrical-optics approximation. This necessitates
using the Wigner–Moyal formalism to describe their dynamics, which we derive
(§ 4). Extra terms are found in the instability growth rate involving gradients of the
background plasma that would not be present had the geometrical-optics approx-
imation been applied. The physical origin of these terms and their impact on the
instability threshold are discussed in § 5.

In particular, we show that the extra stabilisation provided by the new terms
allows for non-constant temperature profiles to emerge and persist (§ 7). These sta-
ble temperature profiles are expected to be established quickly, on the instability
time scale, since the quasilinear damping of the instability on the background tem-
perature drives the system to marginal stability (DA = 0 globally). In the high-beta
limit, these stable temperature profiles generically take the form of a staircase with
affine symmetry (shifts and rescalings of the spatial coordinate). For simple density
profiles, viz. constant or isobaric profiles, the staircase has a single step that occurs
at low temperature where the plasma is effectively unmagnetised. More exotic den-
sity profiles can yield multi-step staircases: e.g. choosing a power-law density profile
(n ∝Mσ ) gives a temperature profile with multiple steps but only when the plasma
beta is small, and as a consequence, the multi-step staircase is not ‘sharp’.

Finally, we discuss the back-reaction of the collisional whistler instability on the
plasma temperature profile (§ 8). The instability is able to modify the temperature
profile via frictional heating and Ettingshausen heat flux so that total energy is con-
served. Interestingly, there exists a regime in which the instability cools the plasma
via friction rather than heats it; this regime necessarily occurs in the initial stages
of the instability. The Ettingshausen heat flux is also capable of cancelling a portion
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of the conductive heat flux when the intensity gradient of the collisional whistler
instability is anti-aligned with the temperature gradient. In principle, the collisional
whistler instability might be capable of strongly reducing the heat flux through these
mechanisms, but for high-beta plasmas, a strong reduction is unlikely to occur in
the manner envisioned here as this would require the wave-intensity profile to be
essentially delta-shaped. Non-geometrical-optics behaviour, nonlinear effects or even
synergistic interplay with kinetic microinstabilities (as these quickly modify fluid
transport coefficients away from the standard Braginskii expressions used here)
might relax this conclusion, but dedicated simulations are required to investigate
this further. In this sense, our work here should be considered an initial investi-
gation in which a number of simplifications have been made to elucidate the basic
physics at play and to obtain initial estimates of the various parameter dependencies.
More detailed follow-up investigations can now be performed in which these
simplifications are sequentially relaxed.
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Appendix A. Conditions for no density or temperature fluctuations
In what follows, fluctuating and mean components are denoted respectively as f̃

and f .

A.1 No density fluctuations
The density equation (3.1a) demands that n remain constant in time. Hence, there

can be no fluctuating component to the density since that would require a non-zero
time derivative.

A.2 No temperature fluctuations
Suppose that T̃ = 0. For this to be a possible solution of the linearised fluid

equations, the magnetic-field perturbations must satisfy

0 = c
4πne

(∇ × B̃) ·
(

3

2
n∇T − T∇n + R

)
+ c

4πne
(∇ × B) · R̃ − ∇ · q̃. (A1)

Clearly, this can be satisfied if the following three conditions are met: the no-mean-
flow condition

∇ × B = 0; (A2)
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the solenoidal condition for the heat-flux perturbations,

∇ · q̃ = 0; (A3)

and the transversality condition for the perturbed flows

(∇ × B̃) ·
(

3

2
n∇T − T∇n + R

)
= 0. (A4)

When these are satisfied, an eigenmode involving only magnetic-field fluctuations
may exist.

A.3 Verification of conditions for slab model
Let us now verify that the above three conditions for the absence of temperature

fluctuations are satisfied for the slab model used in the main text. First note that

B =
⎛⎝ 0

0
Bz

⎞⎠ , B̃ =
⎛⎜⎝B̃x

B̃y

0

⎞⎟⎠ , (A5)

whence

∇ × B = 0, ∇ × B̃ =
⎛⎜⎝−B̃′

y

B̃′
x

0

⎞⎟⎠ . (A6)

The condition (A2) is manifestly satisfied.
Next, the fluctuating component of the Chapman–Enskog heat flux (3.14) takes

the form

q̃ = −nτeiv2
t

(
�κ

B̃B + BB̃
|B|2 + κ∧

B̃∧
|B|

)
· ∇T

− �c2

ω2
p

nT
Bz

[
�β

BB
|B|2 + β⊥I3 + β∧

B∧
|B|

]
· ∇ × B̃, (A7)

where we have truncated at quadratic order in the fluctuation amplitude. Using the
fact that ∇T is parallel to ž (and thereby parallel to B and orthogonal to B̃), that
∇ × B̃ is perpendicular to B and that

ž · B̃ = 0, ž · B̃∧ · ž = 0, ž · ∇ × B̃ = 0, ž · B∧ = 0, (A8)

(where the second relation follows from the antisymmetry of hat-map matrices), one
sees that

∇ · q̃ = ∂z
(
ž · q̃

)= 0. (A9)

The condition (A3) is therefore satisfied as well.
Lastly, note that for the Chapman–Enskog friction (3.14), to lowest order in the

fluctuation amplitude, one has R = −nβ‖∇T . It therefore follows that

(∇ × B̃) ·
(

3

2
n∇T − T∇n + R

)
∝ (∇ × B̃) · ž = 0. (A10)

Thus, the condition (A4) is also satisfied.
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Appendix B. Limiting forms of the Chapman–Enksog friction coefficients for the
Lorentz collision operator

Here, we list the limiting forms of the Lorentz transport coefficients in the large-
and small-magnetisation limits, as these expressions are used to develop various
analytical approximations presented in the main text. These expressions are repeated
from Lopez (2024).

As M→ 0, one has

lim
M→0

α⊥ = 0.295 + 7.30M2, lim
M→0

α∧ = 0.933M, (B1a)

lim
M→0

β⊥ = 1.50 − 139M2, lim
M→0

β∧ = 9.85M, (B1b)

lim
M→0

κ⊥ = 13.6 − 3360M2, lim
M→0

κ∧ = 173M. (B1c)

Importantly, all perpendicular coefficients are equal to their respective parallel
component at M= 0, i.e. α⊥(M= 0) = α‖, etc. Finally, as M→ ∞, one has

lim
M→∞ α⊥ = 1 − 1.43M−2/3, lim

M→∞ α∧ = 2.53M−2/3, (B2a)

lim
M→∞ β⊥ = 6.33M−5/3, lim

M→∞ β∧ = 1.50M−1, (B2b)

lim
M→∞ κ⊥ = 3.25M−2, lim

M→∞ κ∧ = 2.50M−1 (B2c)

Appendix C. Overview of Wigner–Weyl transform
Here, we summarise the main definitions and identities for the Wigner–Weyl trans-

form (WWT) and associated operator calculus that are necessary to derive the results
presented in this work (see Case 2008 for a gentle introduction, or Tracy et al.
2014; Dodin et al. 2019; and Dodin 2022 for more detailed discussions and gen-
eralisations). The WWT, denoted W, maps a given operator Â to a corresponding
phase-space function A (called the Weyl symbol of Â):

A(z, kz) =W
[
Â(̂z, k̂z)

] .=
∫

ds exp (ikzs) 〈z − s/2|̂A|z + s/2〉. (C1)

As a corollary, one has ∫
dkz

2π
A(z, kz) = 〈z|̂A|z〉. (C2)

The relevant applications of this result are as follows:

ψ∗ψ = 〈z|ψ〉〈ψ |z〉 = 〈z|Ŵ |z〉 =
∫

dkz

2π
W, (C3a)

ψ∗∂zψ = i〈z|̂kz|ψ〉〈ψ |z〉 = i〈z|̂kzŴ |z〉 = i
∫

dkz

2π
W

[̂
kzŴ

]
, (C3b)

(∂zψ)∗∂zψ = 〈z|̂kz|ψ〉〈ψ |̂kz|z〉 = 〈z|̂kzŴ k̂z|z〉 =
∫

dkz

2π
W

[̂
kzŴ k̂z

]
, (C3c)

where all symbols are defined in the main text.
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The WWT is invertible, although we shall not quote the inverse transform here as
it is not needed for our purposes. The WWT also preserves hermiticity,

W

[
Â†

]
=A∗, (C4)

so that a Hermitian operator maps to a real-valued function. This, combined with the
linearity of the WWT, means that the Hermitian and anti-Hermitian parts of a gen-
eral operator and its associated symbol are in exact correspondence. We make use
of this property in § 4 when identifying the instability growth rate without appealing
to geometrical optics.

The WWT of the product of two operators can be concisely represented as the
Moyal product � of their symbols:

W[ÂB̂] =A(z, kz) �B(z, kz). (C5)

This non-commutative product is given explicitly in the integral form

A �B=
∫

du dv dκ dK
(2π )2

exp
[
i(kz − κ)u + i(kz − K)v

]A (
z − v

2
, κ

)
B
(
z + u

2
,K

)
,

(C6a)

which follows from the definition (C1), or equivalently via the pseudo-differential
representation

A �B=
∞∑

s=0

(
i
∂z∂κ − ∂kz∂ζ

2

)s A(z, kz)B(ζ, κ)

s!

∣∣∣∣∣
ζ=z,κ=kz

. (C6b)

Using this, one can show that

(A �B)∗ =B∗ �A∗, (C7)

which also follows from the result (ÂB̂)† = B̂†Â†. As further corollaries, one has the
integral identities∫

dkz A �B=
∫

dζ dκ dK
π

A(ζ, κ)B(ζ,K) exp [2i(κ − K)(z − ζ )] , (C8a)∫
dz dkz A �B=

∫
dz dkz A(z, kz)B(z, kz). (C8b)

One can thus compute the following relevant WWT pairs:

W
[
f (̂z)

]= f (z), (C9a)

W
[̂
kzĜ(̂z, k̂z)

]≡ kz � G(z, kz) = kzG(z, kz) − i
2
∂zG(z, kz), (C9b)

W
[
Ĝ(̂z, k̂z )̂kz

]≡ G(z, kz) � kz = kzG(z, kz) + i
2
∂zG(z, kz), (C9c)

W
[̂
kzĜ(̂z, k̂z )̂kz

]≡ kz � G(z, kz) � kz = k2
zG(z, kz) + 1

4
∂2

z G(z, kz), (C9d)

where G is the corresponding symbol of Ĝ.
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Appendix D. Derivation of collisional whistler dispersion relation and growth rate
via polar decomposition

As an alternative means of deriving the Hamiltonian (4.9), let us represent ψ by
its polar decomposition

7

ψ = √
I exp (iθ ). (D1)

In terms of I and θ , the field-evolution equation (3.22) becomes

ψ∂tθ − iψ
∂tI
2I = (Gd − iη)

[
−(∂zθ )2 − (∂zI)2

4I2
+ i∂2

z θ + ∂2
z I
2I + i

(∂zθ )(∂zI)

I
]
ψ

+ (
∂zGd − uγ + ivN − i∂zη

) (
i∂zθ + ∂zI

2I
)
ψ − ∂z

(
uγ − ivN

)
ψ .

(D2)

Dividing by ψ , and then collecting real and imaginary parts gives separate evolution
equations for θ and I:

∂tθ = −DH (∂zθ, z)−
∂z

[
∂kDA (∂zθ, z) I− 1

2∂z(GdI)
]

2I + 1

4
Gd

[
∂2

z I− (∂zI)2

I
]
,

(D3)

∂tI= 2DA (∂zθ, z) I− ∂z

[
∂kDH (∂zθ, z) I− 1

2
∂z(ηI)

]
+ 1

2
η

[
∂2

z I− (∂zI)2

I
]

. (D4)

Thus, we see that the Hermitian and anti-Hermitian parts of the Hamiltonian iden-
tified in (4.9) via WWT-based methods emerges from the traditional approach as
well. In fact, the evolution equation for the polar amplitude (D4) is identical to
that for the wave intensity given by (4.10). This is because, as discussed further
in Appendix E, the final set of gradient terms in (D4) encode the ‘non-eikonal’
bandwidth

〈
k2

z
〉− 〈kz〉2 that can be combined with the term DA (∂zθ, z) to yield

the Wigner-averaged growth rate 〈DA〉. The non-eikonal bandwidth being automat-
ically contained in the Wigner-based formalism, rather than being a separate term
that must be included in the evolution equations, is a theoretical advantage of that
approach.

Appendix E. Wigner function bandwidth and quasi-eikonal fields
In the standard geometrical-optics (eikonal) limit, the Wigner function for a quasi-

monochromatic wave is often approximated as a delta function along a given level
curve of DH (kz, z).

8
Hence, one would have 〈f (kz)〉 = f ( 〈kz〉 ) for any function sub-

jected to the averaging operator 〈〉 defined in (4.11). Generally speaking, however,
non-eikonal deviations of W provide a bandwidth that makes this equality no longer
hold. Let us consider this explicitly for

〈
k2

z
〉
.

7Note that this is traditionally the first step in the short-wavelength WKB approximation, whereafter one would
introduce the additional assumption that θ varies more rapidly than I. We shall not impose this latter constraint
here, and thereby maintain an exact treatment.

8See, e.g. the discussion and cited literature of Donnelly, Lopez & Dodin (2021) and Dodin (2022).
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By definition, the Wigner function for the polar-decomposed wavefield given by
(D1) is

W=
∫

ds
√
I(z + s/2)I(z − s/2) exp

[
ikzs + iθ (z − s/2) − iθ (z + s/2)

]
. (E1)

It is straightforward to show that∫
dkz

2π
W(kz, z) =

∫
ds

√
I(z + s/2)I(z − s/2) exp

[
iθ (z − s/2) − iθ (z + s/2)

]
δ(s)

= I(z) (E2)

and also that

〈kz〉 = 1

I(z)

∫
dkz

2π
kW(kz, z)

= i
I(z)

∫
ds δ(s)∂s

{√
I(z + s/2)I(z − s/2) exp

[
iθ (z − s/2) − iθ (z + s/2)

]}
= θ ′(z). (E3)

Hence, the lowest two moments of W for a polar-decomposed field behave iden-
tically to what would be expected for eikonal fields. However, let us compute the
second moment:〈

k2
z

〉
= 1

I(z)

∫
dkz

2π
k2

z W(kz, z)

= − 1

I(z)

∫
ds δ(s)∂2

s

{√
I(z + s/2)I(z − s/2) exp

[
iθ (z − s/2) − iθ (z + s/2)

]}
= 〈kz〉2 + [I′(z)]2 − I(z)I′′(z)

4[I(z)]2
. (E4)

The bandwidth of a non-eikonal field is therefore given by〈
k2

z

〉
− 〈kz〉2 = [I′(z)]2 − I(z)I′′(z)

4[I(z)]2
. (E5)

We can then define a ‘quasi-eikonal’ wavefield as a non-eikonal wavefield that
nevertheless exhibits no bandwidth for a desired set of moments. Since we are
only concerned with moments up to

〈
k2

z
〉
, for our purposes, a quasi-eikonal field

corresponds to the constraint

[I′(z)]2 = I(z)I′′(z), (E6)

which is satisfied for any exponential intensity profile, viz.

I(z) = c1 exp (c2z), (E7)

with c1 and c2 arbitrary constants. With no bandwidth, intensity profiles given by
(E7) can now be described rigorously with concepts normally restricted to geometri-
cal optics, such as intensity profiles being advected by a well-defined group velocity
and being amplified or damped by a well-defined growth rate. This latter property is
crucial for the conclusions drawn in the main text.
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Appendix F. Sufficient condition for positive temperature profile
For (7.11) to correspond to a physical profile, one must have M(z) ≥ 0 every-

where. For this to occur, M= 0 must be an impassable boundary for the flow of
the governing differential equation. One possible mechanism for this to occur is if
M= 0 is an asymptote. This would imply that

lim
M→0+ z(M) → ±∞, lim

M→0+ z′(M) → ∓∞. (F1)

Consider that

z′(M) = z′(M2) exp

[∫ M2

M
dm g(m)

]
. (F2)

Importantly, since the exponential function is always positive, z′ can never change
sign. Hence, for (F1) to hold, one must have

lim
M→0+

∫ M2

M
dm g(m) → +∞. (F3)

One class of divergent integrals is obtained when

g(M) = A
M (F4)

for some A. Then, one has∫ M2

M
dm g(m) =

∫ M2

M
dm

A
m

= A log

(M2

M
)

. (F5)

Clearly, if A> 0, the integral diverges logarithmically. However, this is not enough
to ensure positivity of M(z): we also require that z(M) diverges. Straightforward
calculation gives

z(M) = z(M1) + z′(M2)MA
2
M1−A −M1−A

1

1 − A
. (F6)

If this is to diverge as well, then one must have

A> 1. (F7)

This condition is sufficient to ensure that M remains positive.

Appendix G. Calculations pertaining to magnetisation staircases
Here, we derive solutions to the differential equation (7.12) governing glob-

ally marginally stable temperature profiles in certain simple cases where analytical
treatment is possible.

G.1 Constant G(y)
Consider

G(y) = A (G1)
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for a constant A. Using (7.11) with appropriate boundary conditions, we compute

z(y) = z′(y0)
∫ y

y0

dμ exp

(
−

∫ μ

y0

dm
A
δ

)
= z′(y0)

∫ y

y0

dμ exp

[
A(y0 −μ)

δ

]
= δz′(y0)

1 − exp
[
A(y0 − y)/δ

]
A

. (G2)

This can be inverted to obtain the solution

y(z) = y0 − δ

A
log

(
1 − A

δ
y′

0z
)

. (G3)

This solution is shown in figure 11(a).

G.2 Linear G(y)
Next, consider a linear function

G = A(y − y∗), (G4)

with a root occurring at y∗. Then,

z(y) = z′(y0)
∫ y

y0

dμ exp

[
A
δ

∫ μ

y0

dm (y∗ − m)
]

= z′(y0)
∫ y

y0

dμ exp

[
− A

2δ
(μ− y∗)2 + A

2δ
(y0 − y∗)2

]

=
exp

[
A
2δ (y0 − y∗)2

]
y′

0

√
πδ

2A

{
erf

[√
A
2δ
(y − y∗)

]
− erf

[√
A
2δ
(y0 − y∗)

]}
.

(G5)

This solution is shown in figure 11(b). Note that the continuation from positive to
negative A/δ requires the identity

erfi(z) = −ierf(iz). (G6)

G.3 Rational G(y)
Finally, let us consider the class of rational functions given by

G(y) = A
y

(
1 − y

y∗

)
, (G7)

where y∗ can be either positive or negative. Then,

z(y) = z′(y0)
∫ y

y0

dμ exp

[
A
δ

∫ μ

y0

dm
(

1

y∗
− 1

m

)]
= z′(y0)

∫ y

y0

dμ
(
μ

y0

)−A/δ

exp

(
A
δ

μ− y0

y∗

)
. (G8)
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To compute the remaining integral, we first make the variable substitution

μ=
∣∣∣∣δy∗

A

∣∣∣∣ ueiπ−iϕ, μ−A/δdμ=
(∣∣∣∣δy∗

A

∣∣∣∣ eiπ−iϕ
)(δ−A)/δ

u−A/δdu, (G9)

where A/δy∗ = |A/δy∗| eiϕ . We then obtain

z(y) = z′(y0)y0

(∣∣∣∣ δy∗
Ay0

∣∣∣∣ eiπ−iϕ
)(δ−A)/δ

exp

(
−Ay0

δy∗

) ∫ |Ay/δy∗|eiϕ−iπ

|Ay0/δy∗|eiϕ−iπ
du u−A/δe−u

= z′(y0)y0

γ
(
δ−A
δ
,

∣∣∣ Ay
δy∗

∣∣∣ eiϕ−iπ
)

− γ
(
δ−A
δ
,

∣∣∣Ay0
δy∗

∣∣∣ eiϕ−iπ
)

(∣∣∣ δy∗
Ay0

∣∣∣ eiπ−iϕ
)(A−δ)/δ

exp
(

Ay0
δy∗

) , (G10)

where γ (a, z) = ∫ z
0 dt ta−1e−t is the lower incomplete Gamma function (Olver et al.

2010).

G.4 Derivation of (7.13)
The width of the boundary layer can be estimated by the gradient at the steepest

location, which occurs at the root of G. Specifically, the width of the staircase at a
root y∗ of G is given by (7.11) as

W = y∗z′(y∗) = y∗z′(y2)

{
exp

[
−

∫ y∗

y2

dY G(Y )

]}1/δ

. (G11)

Suppose that the root is simple, so that we can approximate the local behaviour of
G(y) with a linear profile

G = G′(y∗)(y − y∗). (G12)

Then, one readily computes

W ≈ y∗z′(y2)

{
exp

[
(y2 − y∗)2

2

]}G′(y∗)/δ

, (G13)

whence (7.13) follows.

Appendix H. Energy-conservation relations
Nominally, the total energy in a wave-plasma system is given by the sum of the

particle kinetic and thermal energies along with the energy of the electromagnetic
field. However, as we have neglected the electron inertia and the displacement cur-
rent (and, of course, the ion motion entirely), the energy invariant for the electron
MHD equations consists solely of thermal and magnetic contributions and satisfies
the local conservation law

∂t

(
3

2
nT + |B|2

8π

)
+ ∇ ·

(
q + 5

2
nTu + c

4π
E × B

)
= 0, (H1)

where u and E are given by the expressions

u = − �c2

ω2
pBz

∇ × B, E = −u × B
c

− ∇(nT )

ne
+ R

ne
. (H2)
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For the slab geometry considered here, it can be shown that (H1) takes the 1-D form

∂t

(
3

2
nT + |B̃⊥|2

8π

)
+ ∂z

(
qz + �c2

ω2
pBz

R⊥ · J · B̃⊥ − �c2

4πω2
p
B̃⊥ · J · ∂zB̃⊥

)
= 0, (H3)

or equivalently in terms of the complex wavefunctions ψ and ξ :

∂t

(
3

2
nT + ε2B2

z
ψ∗ψ
16π

)
+ ∂z

[
qz + ε

�c2

ω2
p

Im (ψ∗ξ)
2

+ ε2B2
z
�c2

ω2
p

Im (ψ∗∂zψ)
8π

]
= 0.

(H4)

Finally, for the specific case when the friction is given by the Chapman–Enskog
expression (3.14), one can show that (H4) takes the form

∂t

(
3

2
nT + ε2B2

z

16π
I
)

+ ∂z

[
qz + ε2B2

z

8π

(
Gd 〈kz〉 I+ vNI− 1

2
η ∂zI

)]
= 0. (H5)
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