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TIME-CONVERGENT RANDOM MATRICES FROM MEAN-FIELD
PINNED INTERACTING EIGENVALUES
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Abstract

We study a multivariate system over a finite lifespan represented by a Hermitian-valued
random matrix process whose eigenvalues (i) interact in a mean-field way and (ii) con-
verge to their weighted ensemble average at their terminal time. We prove that such
a system is guaranteed to converge in time to the identity matrix that is scaled by a
Gaussian random variable whose variance is inversely proportional to the dimension
of the matrix. As the size of the system grows asymptotically, the eigenvalues tend to
mutually independent diffusions that converge to zero at their terminal time, a Brownian
bridge being the archetypal example. Unlike commonly studied random matrices that
have non-colliding eigenvalues, the proposed eigenvalues of the given system here may
collide. We provide the dynamics of the eigenvalue gap matrix, which is a random skew-
symmetric matrix that converges in time to the 0 matrix. Our framework can be applied
in producing mean-field interacting counterparts of stochastic quantum reduction mod-
els for which the convergence points are determined with respect to the average state of
the entire composite system.
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random matrix
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1. Introduction

Starting with the seminal work of [53] for analysing level spacing distributions of nuclei
in nuclear physics, random matrix theory has proven to be a fruitful research avenue, with
deep mathematical results that have found many applications in numerous fields, includ-
ing superconductors ([8, 11, 27]), quantum chromodynamics ([7, 51, 54]), quantum chaos
([14, 28, 49]), RNA folding ([12, 46, 52]), neural networks ([24, 45, 48]), number theory
([30, 35, 44]), portfolio optimization ([36, 37, 40]), and many others. In random matrix
theory, one often starts with an n × n random matrix for some n ∈N+ and moves on to
studying the statistical behaviour of its eigenvalues. Such a program has given us an impor-
tant family of non-colliding interacting stochastic processes (that model the dynamics of the
eigenvalues) through Dyson’s Brownian motion and its generalizations ([4, 20, 22, 23, 39]),
which are linked to harmonic Doob transforms in Weyl chambers ([26, 33]). As part of the
literature, we can also see non-intersecting paths over finite-time horizons, whereby all the
eigenvalues are conditioned to converge to a fixed value at some fixed future point in time;
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Time-convergent random matrices 395

see for example Airy processes ([1–3, 32, 47]), Pearcey processes ([13, 15, 16, 50]), and the
temporally inhomogeneous non-colliding diffusions with their path-configuration topologies
([34]).

In this paper, we are also interested in finite-time systems with time-convergent behaviour,
but whose eigenvalues interact in a mean-field way rather than in a non-colliding manner as
above. We additionally ask the corresponding matrices to converge to a random variable gov-
erned by the distribution of all the interacting eigenvalues at a fixed future time, instead of a
set of deterministic points as above. Accordingly, we aim to construct random matrices with
interacting eigenvalues to represent multivariate systems for which their terminal probability
distribution is determined by the weighted ensemble average of the eigenvalues of the system
at that future point in time. We do this by starting from the eigenvalue dynamics and con-
structing a family of mean-field eigenvalues in the spirit of the pinned interacting particles of
[42], while accounting for situations where the dominance of an eigenvalue in determining
the average state of the system can be non-homogeneous. The framework also enables us to
study the space asymptotics of the system as n → ∞, when Kolmogorov’s strong law property
holds. In fact, we shall prove that the iterated limits with respect to the size of the system n and
the time evolution t are commutative—i.e. the limiting behaviours of our random matrices are
consistent and exchangeable across space and time.

Our motivation arises from producing an alternative framework within quantum measure-
ment theory in addressing the problem of consistent collapse dynamics of wave functions.
Consequently, our work may lend itself as a mean-field counterpart to finite-time stochastic
quantum reduction models—see [5, 6, 17, 18, 25, 31, 41, 43]—whereby the collapse of the
energy-based eigenstates is now governed by the average state of the full composite system. In
this paper, we shall establish the mathematical groundwork, leaving the detailed study of this
application for separate work.

For the rest of this paper, we fix a finite time horizon T= [0, T] for some T <∞ and
define T− = [0, T). We represent the space of n × n Hermitian matrices by H

n and the group
of n × n unitary matrices by U

n for n ≥ 2. We reserve bold capital letters to stand for matrix-
valued processes, where {Ht(n)}t∈T ∈ (Hn ×T) and {Ut(n)}t∈T ∈ (Un ×T). Using the spectral
decomposition theorem, we can unitarily diagonalize every element of Hn by

Ht(n) = Ut(n)�t(n)U∗
t (n) ∀t ∈T,

where �t(n) = diag{λ(1,n)
t , . . . , λ

(n,n)
t } is a diagonal matrix of eigenvalues for which the initial

state is �0(n). We denote by {A(n)
t }t∈T the process that encodes the weighted ensemble average

of the eigenvalues via the following:

A(n)
t = 1

n

n∑
i=1

β(i,n)λ
(i,n)
t ∀t ∈T,

with |β(i,n)|<∞. We choose the coefficient vector β(n) = [β(1,n), . . . , β(n,n)]� normalized so
that

1

n

n∑
i=1

β(i,n) = 1. (1)
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If each β(i,n) ≥ 0, then A(n)
t is a convex combination of the eigenvalue vector

λ
(n)
t = [λ(1,n)

t , . . . , λ
(n,n)
t ]�,

for every t ∈T. If each β(i,n) = 1, then {A(n)
t }t∈T is the standard ensemble average process of

the vector-valued process {λ(n)
t }t∈T.

For our stochastic framework, (�,F , {Ft}t≤∞, P) is our probability space, where we work
with mutually independent standard (P, {Ft})-Brownian motions {W(i)

t }t∈T for all i ∈ I, where
I = {1, . . . , n}. In addition, we let {Z(i) : i ∈ I} be independent identically distributed Gaussian
variables to represent the initial values λ(i,n)

0 , where Z(i) ∼N (z, κ) for some z ∈ (−∞,∞) and
κ ∈ [0,∞)—we take the degenerate Gaussian case κ = 0 as Z(i) = z. The dynamics of each
eigenvalue {λ(i,n)

t }t∈T is governed by the interacting system of stochastic differential equations
(SDEs) given by

dλ(i,n)
t = f (t)

(
A(n)

t − λ
(i,n)
t

)
dt + σ

(
ρ dBt +

√
1 − ρ2 dW(i)

t

)
,

λ
(i,n)
0 = Z(i) (2)

for all t ∈T− and i ∈ I, where f : T− →R is a continuous measurable function that satisfies∫ t

0
exp

(
−
∫ t

s
f (u) du

)
ds<∞,

and σ �= 0, ρ ∈ [−1, 1], and {Bt}t∈T is an independent (P, {Ft})-Brownian motion that models
common noise in the system. The conditional expectation problem given by

v(t, λ(n)) =E

[
exp

(
−
∫ T

t
h(s) ds

)
ψ(A(n)

T )

∣∣∣∣ λ
(n)
t = λ(n)

]
,

for some ψ : R→R and integrable function h : T→R, can be computed by solving the partial
differential equation

∂v(t, λ(n))

∂t
− h(t)v(t, λ(n)) +

∑
i∈I

∂v(t, λ(n))

∂λ(i,n)
f (t)

(
1

n

∑
i∈I

β(i,n)λ(i,n) − λ(i,n)

)

+ 1

2
σ 2
∑
i∈I

∂2v(t, λ(n))

∂λ(i,n)∂λ(i,n)
+ 1

2
σ 2ρ2

∑
i∈I

∑
j∈I,j �=i

∂2v(t, λ(n))

∂λ(i,n)∂λ(j,n)
= 0,

with the boundary condition given by

v(T, λ(n)) =ψ

(
1

n

∑
i∈I

β(i,n)λ(i,n)

)
.

The SDE in (2) is a mean-field model. In the classical setting where f is constant and ρ = 0, the
mean-field limits as n → ∞ are mutually independent Ornstein–Uhlenbeck processes. We also
refer to [21], where f is constant but ρ �= 0. In order to achieve our objective of producing ran-
dom matrices that converge to the random weighted ensemble average A(n)

T I(n) as t → T (where
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I(n) is the n × n identity matrix), we will require f to be a strictly non-constant function—i.e.
one of the conditions we shall ask from f will nullify the situation where f can be a constant.
Accordingly, if we choose ρ = 0, the decoupling property of mean-field models is still main-
tained, but where the individual eigenvalues tend to mutually independent pinned diffusions
(see [29, 38]) as n → ∞: essentially re-coupling at time T , unlike Ornstein–Uhlenbeck pro-
cesses. Therefore, we will encounter examples where we get mutually independent α-Wiener
bridges (see [9, 10]) in the mean-field limit, where the Brownian bridge is the archetypal sub-
class. In fact, we shall see that the mean-field limits (n → ∞) and the eigenvalue gaps (for any
n) are both driven by pinned diffusions.

This paper is organized as follows. In Section 2, we study several mathematical properties
of the system in (2) and their implications on {Ht(n)}t∈T as t → T and n → ∞. We also provide
some numerical simulations for demonstration purposes. Section 3 is the conclusion.

2. Main results

For the remainder of this paper, we let the components of the diagonal matrix process
{�t(n)}t∈T be governed by the system of SDEs given in (2), and choose any continuously
unitary process {Ut(n)}t∈T when working with Ht(n) = Ut(n)�t(n)U∗

t (n) for t ∈T.

Lemma 2.1. Let Z(i) = Ẑ ∼N (z, κ) for each i ∈ I. Also let G(n) ∼N (
z, �(n)

)
be a Gaussian

random variable with

�(n) = κ + σ 2T

(
ρ2 + 1 − ρ2

n2
||β(n)||2L2

)
,

where ||β(n)||2
L2 =∑n

j=1 (β(j,n))2. If the map f : T− →R in (2) satisfies

(i) limt→T
∫ t

0 f (s) ds = ∞, and

(ii)
∫ τ

0 f (s) ds<∞ for any τ ∈T−,

then the following holds:

lim
t→T

λ
(i,n)
t

law= G(n). (3)

Proof. Using (2), the weighted ensemble average process has the representation

A(n)
t = 1

n

n∑
j=1

β(j,n)λ
(j,n)
t = Ẑ + σρBt + σ

√
1 − ρ2

n

n∑
j=1

β(j,n)W(j)
t , (4)

since we have the normalization condition
∑n

i=1 β
(i,n) = n. The solution of (2) is thus

given by

λ
(i,n)
t = Ẑ + σρBt

+ σ

√
1 − ρ2

⎛
⎝1

n

n∑
j=1

β(j,n)W(j)
t +

∫ t

0

γ (t)

γ (s)
dW(i)

s − 1

n

n∑
j=1

∫ t

0

γ (t)

γ (s)
β(j,n) dW(j)

s

⎞
⎠
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= Ẑ + σρBt + σ

√
1 − ρ2

⎛
⎝1

n

n∑
j=1

β(j,n)W(j)
t

⎞
⎠

+ σ

√
1 − ρ2

⎛
⎝γ (t)Y (i)

t − 1

n

n∑
j=1

β(j,n)γ (t)Y (j)
t

⎞
⎠ , (5)

where we define the function γ : R+ →R+ and the process {Y (i)
t }t∈T as follows:

γ (t) = exp

(
−
∫ t

0
f (u) du

)
and Y (i)

t =
∫ t

0
γ (s)−1 dW(i)

s , for t ∈T−.

Since affine transformations of Gaussian processes are Gaussian, λ(i,n)
t is Gaussian for any

t ∈T− and i ∈ I. Following the arguments of [29, 38], we apply Itô’s integration-by-parts
formula to get

d
(
γ (t)−1W(i)

t

)
= dY (i)

t − W(i)
t
γ ′(t)
γ 2(t)

dt,

where γ ′(t) = dγ (t)/ dt. Hence, computing the derivative and integrating over time, we have

γ (t)−1W(i)
t = Y (i)

t −
∫ t

0
W(i)

s
γ ′(s)

γ 2(s)
ds = Y (i)

t +
∫ t

0
W(i)

s
f (s)

γ (s)
ds.

Rearranging the terms and multiplying both sides by γ (t), we reach

Y (i)
t = γ (t)−1W(i)

t −
∫ t

0
W(i)

s
f (s)

γ (s)
ds

⇒ γ (t)Y (i)
t = W(i)

t −
∫ t

0
W(i)

s U(s, t) ds,

where we have

U(s, t) = f (s)γ (s)−1γ (t).

Since limt→T
∫ t

0 f (s) ds = ∞ and
∫ τ

0 f (s) ds<∞ for any τ ∈T−, we have∫ τ

0
U(s, t) ds = γ (t)

γ (τ )
− γ (t) ⇒ lim

t→T

∫ τ

0
U(s, t) ds = 0,

∫ t

0
U(s, t) ds = 1 − γ (t) ⇒ lim

t→T

∫ t

0
U(s, t) ds = 1,

for any τ ∈T−, which implies that U : T2 →R+ is an approximation to the identity as in [38].
This means we have the following convergence:

P

(
lim
t→T

(
W(i)

t −
∫ t

0
W(i)

s U(s, t) ds

)
= 0

)
= 1, (6)
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given that the Brownian motion {W(i)
t }t∈T has continuous sample paths P-almost surely (a.s.).

Therefore, we have

P

(
lim
t→T

γ (t)Y (i)
t = 0

)
= 1,

P

⎛
⎝ lim

t→T

1

n

n∑
j=1

γ (t)Y (j)
t = 0

⎞
⎠= 1,

which in turn gives us the following:

P

⎛
⎝ lim

t→T

⎛
⎝γ (t)Y (i)

t − 1

n

n∑
j=1

γ (t)Y (j)
t

⎞
⎠= 0

⎞
⎠= 1.

Therefore, taking the limit as t → T of λ(i,n)
t as solved in (5), we get

lim
t→T

λ
(i,n)
t = Ẑ + σρBT + σ

√
1 − ρ2

⎛
⎝1

n

n∑
j=1

β(j,n)W(j)
T

⎞
⎠ P-a.s., (7)

which provides L1-convergence as λ(i,n)
t is Gaussian for t ∈T−. Since Ẑ is mutually indepen-

dent from {Bt}t∈T and {W(i)
t }t∈T, it follows that

Ẑ + σρBT + σ

√
1 − ρ2

⎛
⎝1

n

n∑
j=1

β(j,n)W(j)
T

⎞
⎠ law= Ẑ + σ

√
ρ2 + 1 − ρ2

n2
||β(n)||2

L2XT

∼N
(

z, κ + σ 2T

(
ρ2 + 1 − ρ2

n2
||β(n)||2L2

))
, (8)

given that {Xt}t∈T is a standard (P, {Ft})-Brownian motion, where XT ∼N (0, T). �

When each eigenvalue process in the system starts from the same random number Ẑ, the
terminal random variable to which each eigenvalue {λ(i,n)

t }t∈T converges no longer depends on
the index i. In addition, if we set β(i,n) = 1 for all i ∈ I, then we get

�(n) �→ κ + σ 2T

(
ρ2 + 1 − ρ2

n

)
.

The result below demonstrates the convergence behaviour of the matrix system when the initial
condition is a constant.

Proposition 2.1. Keep the conditions of Lemma 2.1, where the initial state Ẑ = z is fixed for
all i ∈ I. Then, with G(n) ∼N (

z, �(n)
)

where

�(n) = σ 2T

(
ρ2 + 1 − ρ2

n2
||β(n)||2L2

)
, (9)

https://doi.org/10.1017/jpr.2022.53 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.53


400 L. A. MENGÜTÜRK

the following holds:

lim
t→T

Ht(n)
law= G(n)I(n), (10)

where I(n) is the n × n identity matrix.

Proof. If Ẑ = λ
(i)
0 = z is a fixed number for all i ∈ I, this equivalently sets κ = 0 in (8), where

we get the terminal random variable that satisfies

z + σρBT + σ

√
1 − ρ2

⎛
⎝1

n

n∑
j=1

β(j,n)W(j)
T

⎞
⎠∼N

(
z, σ 2T

(
ρ2 + 1 − ρ2

n2
||β(n)||2L2

))
. (11)

As seen from (3), the terminal law is independent of the index i ∈ I, which provides us with
the observation

lim
t→T

λ
(i,n)
t

law= G(n) ⇒ lim
t→T

�t(n)
law= G(n)I(n). (12)

Hence, using (12), we get

lim
t→T

Ht(n)
law= UT (n)G(n)I(n)U∗

T (n)

= G(n)UT (n)U∗
T (n)

= G(n)I(n),

since {Ut(n)}t∈T is a continuous unitary matrix process, which completes the proof. �

If Ẑ = z and ρ = 0, then G(n) ∼N (z, n−2σ 2T||β(n)||2
L2 )—if the system starts from a fixed

value and there is no common noise factor in the system, Proposition 2.1 shows us that the
system converges to the identity matrix scaled by a Gaussian random variable whose variance
is inversely proportional to the dimension of the matrix, as t → T . For us, the case where Ẑ = 0
is of fundamental importance; for this case, if we also have β(j,n) = 1, then the law further
simplifies to G(n) ∼N (

0, n−1σ 2T
)
.

Corollary 2.1. Keep the conditions of Lemma 2.1. Then {Ht(n)}t∈T converges to the weighted
ensemble average of its eigenvalues A(n)

T I(n) as t → T, P-a.s.

Proof. From Equations (4) and (7), we see that each eigenvalue process {λ(i,n)
t }t∈T converges

to the weighted ensemble average A(n)
T as t → T , P-a.s. Thus, we have the following:

lim
t→T

�t(n) = A(n)
T I(n).

The result follows since {Ut(n)}t∈T is a continuous unitary process. �

Every unitary matrix has an exponential representation in terms of some Hermitian matrix.
If {Ut(n)}t∈T is deterministic with

Ut(n) = eiV(n)μ(t),
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where V is a Hermitian matrix and μ : T→R is a differentiable function, then {Ht(n)}t∈T is
governed by

Ht(n) =
∫ t

0
L
[

i
∂μ

∂s
V(n),Hs(n)

]
ds + Ut(n)

(∫ t

0
d�s(n)

)
U∗

t (n), for all t ∈T−, (13)

where L is the commutator with

L
[

i
∂μ

∂t
V(n),Ht(n)

]
= i
∂μ

∂t
(V(n)Ht(n) − Ht(n)V(n)).

This follows since dUt(n) d�t(n) = d�t(n) dU∗
t (n) = dUt(n) dU∗

t (n) = 0, and using Itô’s
integration-by-parts formula,

dHt(n) = dUt(n)�t(n)U∗
t (n) + Ut(n) d�t(n)U∗

t (n) + Ut(n)�t(n) dU∗
t (n),

where we have d�t(n) from (2). Also, since Ut(n) = eiV(n)μ(t), we further get

dUt(n)�t(n)U∗
t (n) = i

∂μ

∂t
V(n)Ut(n)�t(n)U∗

t (n) dt = i
∂μ

∂t
V(n)Ht(n) dt,

Ut(n)�t(n) dU∗
t (n) = −i

∂μ

∂t
Ut�t(n)V(n)U∗

t (n) dt = −i
∂μ

∂t
Ht(n)V(n) dt,

which provides us with

dUt(n)�t(n)U∗
t (n) + Ut(n)�t(n) dU∗

t (n) =L
[

i
∂μ

∂t
V(n),Ht(n)

]
dt.

Thus, if a random matrix process satisfies the SDE (13), where its eigenvalues {�t(n)}t∈T are
driven by (2) with the conditions in Lemma 2 met, then we are working with a system where
limt→T Ht(n) = A(n)

T I(n).
The eigenvalues of {Ht(n)}t∈T are Gaussian, and the following result provides their covari-

ance structure, which in turn generalizes the covariance trajectories of [42]. Without loss of
much generality, we shall set Ẑ = 0 as a fundamental scenario for the analyses below.

Proposition 2.2. Keep the conditions of Proposition 2.1 with Ẑ = 0. Then

E[λ(i,n)
t λ

(j,n)
t ] = σ 2t

(
ρ2 + (1 − ρ2)||β(n)||2

L2

n2

)
+ σ 2(1 − ρ2)1(i = j)

∫ t

0

γ (t)2

γ (s)2
ds

+ σ 2(1 − ρ2)

n

(
(β(i,n) + β(j,n))

∫ t

0

γ (t)

γ (s)
ds − 2

||β(n)||2
L2

n

∫ t

0

γ (t)

γ (s)
ds

)

− σ 2(1 − ρ2)

n

(
(β(i,n) + β(j,n))

∫ t

0

γ (t)2

γ (s)2
ds − ||β(n)||2

L2

n

∫ t

0

γ (t)2

γ (s)2
ds

)
(14)

is the covariance process of the system for i, j ∈ I, where 1(.) is the indicator function.
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Proof. Note that E[λ(i,n)
t ] = 0 when Ẑ = 0. Hence, E[λ(i,n)

t λ
(j,n)
t ] is the covariance at every

t ∈T. Using (5) with Ẑ = 0 for any i, j ∈ I, we have

ψ
(i,j)
t = σ 2ρ2B2

t

+ σρBtσ

√
1 − ρ2

(
1

n

n∑
k=1

β(k,n)W(k)
t +

∫ t

0

γ (t)

γ (s)
dW(i)

s − 1

n

n∑
k=1

∫ t

0
β(k,n) γ (t)

γ (s)
dW(k)

s

)

+ σρBtσ

√
1 − ρ2

(
1

n

n∑
l=1

β(l,n)W(l)
t +

∫ t

0

γ (t)

γ (s)
dW(j)

s − 1

n

n∑
l=1

∫ t

0
β(l,n) γ (t)

γ (s)
dW(l)

s

)
.

For the full product, we thus have

λ
(i,n)
t λ

(j,n)
t =ψ

(i,j)
t + σ 2(1 − ρ2)

n2

n∑
k=1

n∑
l=1

β(k,n)β(l,n)W(k)
t W(l)

t

+ σ 2(1 − ρ2)

n

n∑
k=1

β(k,n)
∫ t

0

γ (t)

γ (s)
W(k)

t dW(j)
s

+ σ 2(1 − ρ2)

n

n∑
l=1

β(l,n)
∫ t

0

γ (t)

γ (s)
W(l)

t dW(i)
s

+ σ 2(1 − ρ2)
∫ t

0

∫ t

0

γ (t)2

γ (s)2
dW(i)

s dW(j)
s

− σ 2(1 − ρ2)

n

n∑
l=1

β(l,n)
∫ t

0

∫ t

0

γ (t)2

γ (s)2
dW(i)

s dW(l)
s

− σ 2(1 − ρ2)

n2

n∑
k=1

n∑
l=1

β(k,n)β(l,n)
∫ t

0

γ (t)

γ (s)
W(l)

t dW(k)
s

− σ 2(1 − ρ2)

n

n∑
k=1

β(k,n)
∫ t

0

∫ t

0

γ (t)2

γ (s)2
dW(j)

s dW(k)
s

+ σ 2(1 − ρ2)

n2

n∑
k=1

n∑
l=1

β(k,n)β(l,n)
∫ t

0

∫ t

0

γ (t)2

γ (s)2
dW(l)

s dW(k)
s . (15)

Next, we take the expectation of the product above. First, since {Bt}t∈T is a mutually
independent Brownian motion, we get the following:

E

[
ψ

(i,j)
t

]
=E

[
σ 2ρ2B2

t

]
= σ 2ρ2t.
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All Brownian motions {W(i)
t }t∈T are mutually independent. Using Itô isometry, we have

n∑
k=1

β(k,n)
E

[∫ t

0

∫ t

0

γ (t)

γ (s)
dW(k)

s dW(j)
s

]
= β(j,n)

∫ t

0

γ (t)

γ (s)
ds

n∑
l=1

β(l,n)
E

[∫ t

0

∫ t

0

γ (t)

γ (s)
dW(l)

s dW(i)
s

]
= β(i,n)

∫ t

0

γ (t)

γ (s)
ds

n∑
k=1

n∑
l=1

β(k,n)β(l,n)
E

[∫ t

0

∫ t

0

γ (t)

γ (s)
dW(k)

s dW(l)
s

]
= ||β(n)||2L2

∫ t

0

γ (t)

γ (s)
ds.

In addition, we have the following:

E

[
n∑

l=1

β(l,n)
∫ t

0

∫ t

0

γ (t)2

γ (s)2
dW(i)

s dW(l)
s

]
= β(i,n)

∫ t

0

γ (t)2

γ (s)2
ds,

E

[
n∑

k=1

β(k,n)
∫ t

0

∫ t

0

γ (t)2

γ (s)2
dW(j)

s dW(k)
s

]
= β(j,n)

∫ t

0

γ (t)2

γ (s)2
ds.

Summing all the components, we have the following:

E[λ(i,n)
t λ

(j,n)
t ] =

σ 2ρ2t + σ 2(1 − ρ2)

n2

n∑
k=1

(β(k,n))2
E

[
W(k)

t W(k)
t

]
+ σ 2(1 − ρ2)1(i = j)

∫ t

0

γ (t)2

γ (s)2
ds

+ σ 2(1 − ρ2)

n
(β(i,n) + β(j,n))

∫ t

0

γ (t)

γ (s)
ds − 2

σ 2(1 − ρ2)||β(n)||2
L2

n2

∫ t

0

γ (t)

γ (s)
ds

− σ 2(1 − ρ2)

n
(β(i,n) + β(j,n))

∫ t

0

γ (t)2

γ (s)2
ds + σ 2(1 − ρ2)||β(n)||2

L2

n2

∫ t

0

γ (t)2

γ (s)2
ds, (16)

which completes the proof. �

The covariance structure in [42] becomes the following corollary of Proposition 2.2.

Corollary 2.2. Keep the conditions of Proposition 2.1 with Ẑ = 0, and set β(i,n) = 1 for all
i ∈ I. Then the following holds:

E[λ(i,n)
t λ

(j,n)
t ] = σ 2t

(
ρ2 + (1 − ρ2)

n

)

+ σ 2(1 − ρ2)

(
1(i = j)

∫ t

0

γ (t)2

γ (s)2
ds − 1

n

∫ t

0

γ (t)2

γ (s)2
ds

)
, (17)

as the covariance process of the system for i, j ∈ I, where 1(.) is the indicator function.
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The next result consolidates Proposition 2.1 with the limiting behaviour of the covariance
structure given in Proposition 2.2.

Corollary 2.3. Keep the conditions of Proposition 2.1 with Ẑ = 0. Then

lim
t→T

E[λ(i,n)
t λ

(j,n)
t ] = σ 2T

(
ρ2 + (1 − ρ2)

n2
||β(n)||2L2

)
.

Proof. Since we have the conditions (i) limt→T
∫ t

0 f (s) ds = ∞ and (ii)
∫ τ

0 f (s) ds<∞ for
any τ ∈T−, we must have, for k ∈ [1,∞), the following:

lim
t→T

∫ t

0
kf (s) ds = ∞,

∫ τ

0
kf (s) ds<∞

for any τ ∈T−. Hence, we define the scaled function

gk(t) = kf (t)

for all t ∈T and let

�k(t) = γ (t)k = exp

(
−
∫ t

0
gk(u) du

)
and Zt =

∫ t

0
�k(s)−1 ds, for t ∈T−.

Using integration by parts, we get

d
(
�k(t)−1t

)
= dZt − t

� ′
k(t)

�k(t)2
dt ⇒ �k(t)−1t = Zt −

∫ t

0
s
� ′

k(s)

�k(s)2
ds,

and therefore,

�k(t)−1t = Zt +
∫ t

0
s

gk(s)

�k(s)
ds ⇒ �k(t)Zt = t −

∫ t

0
sVk(s, t) ds,

where Vk(s, t) = gk(s)�k(s)−1�k(t). Using the continuity of the function t, and taking steps
similar to those of Lemma 2.1, we thus have

lim
t→T

(
t −

∫ t

0
sVk(s, t) ds

)
= 0, (18)

which implies that

lim
t→T

(
σ 2(1 − ρ2)1(i = j)

∫ t

0

γ (t)2

γ (s)2
ds

)
= 0,

lim
t→T

(
σ 2(1 − ρ2)

n

(
(β(i,n) + β(j,n))

∫ t

0

γ (t)

γ (s)
ds − 2

||β(n)||2
L2

n

∫ t

0

γ (t)

γ (s)
ds

))
= 0,

lim
t→T

(
σ 2(1 − ρ2)

n

(
(β(i,n) + β(j,n))

∫ t

0

γ (t)2

γ (s)2
ds − ||β(n)||2

L2

n

∫ t

0

γ (t)2

γ (s)2
ds

))
= 0,

if we choose k = 1 and k = 2. The result then follows from Proposition 2.2. �
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In random matrix theory, it is typical to see non-colliding eigenvalues; this behaviour arises
endogenously from many random Hermitian matrices studied in the literature where the matrix
entries are continuous semimartingales (see Bru’s theorem [19, 34]). On the other hand, we
start with the eigenvalue matrix {�t(n)}t∈T, which may collide. For eigenvalue gap dynamics,
we have the following result.

Proposition 2.3. Keep the conditions of Lemma 2.1. Let {St(n)}t∈T be a matrix-valued process
where each element is given by

S(i,j)
t = λ

(i,n)
t − λ

(j,n)
t ,

so that St(n) is a skew-symmetric matrix with zero diagonals for all t ∈T. Then the following
holds:

S(i,j)
t

law= σ

√
2(1 − ρ2)

∫ t

0

γ (t)

γ (s)
dŴ(i,j)

s for i �= j and ∀t ∈T−,

where {Ŵ(i,j)
t }t∈T is a standard (P, {Ft})-Brownian motion. Hence,

lim
t→T

St(n) = 0(n).

Proof. It is clear that St(n) is a skew-symmetric matrix with zero diagonals. Using (5), we
have

S(i,j)
t = σ

√
1 − ρ2

(∫ t

0

γ (t)

γ (s)
dW(i)

s −
∫ t

0

γ (t)

γ (s)
dW(j)

s

)

law= σ

√
1 − ρ2

√
2
∫ t

0

γ (t)

γ (s)
dŴ(i,j)

s .

Finally, limt→T St(n) = 0(n) follows from (6) since {Ŵ(i,j)
t }t∈T has continuous paths P-a.s. �

The result essentially shows that the expected distance between any pair of eigenvalues is
itself a Gaussian process with zero mean, which shows that the eigenvalues collide on average.
Note also that each eigenvalue gap process {S(i,j)

t }t∈T above is a diffusion that is pinned to zero
at time T .

We shall now take limits with respect to the size of the system, that is, as n → ∞, to get the
mean-field limits of the interacting eigenvalues. First, we label the following assumption that
we shall use when we study convergence properties with respect to the size.

Assumption 2.1. Kolmogorov’s strong law property holds:

K =
∞∑

k=1

(β(k))2

k2
<∞, (19)

where β(k) = β(k,n) for all k ≤ n.

As an example, if we set β(k) = 1, then K = π2/6. We are now in a position to state the
following result.

Proposition 2.4. Keep the conditions of Lemma 2.1 and define

lim
n→∞ λ

(i,n)
t � ξ (i)

t ,
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given that (19) holds. Then

ξ
(i)
t = Ẑ + σρBt + σ

√
1 − ρ2

(∫ t

0

γ (t)

γ (s)
dW(i)

s

)
, (20)

for i ∈ I. If ρ = 0 and Ẑ = 0, then the {ξ (i)
t }t∈T are mutually independent.

Proof. Since Kolmogorov’s strong law property (19) holds, the strong law of large numbers
gives the following limits:

lim
n→∞

1

n

n∑
j=1

β(j,n)W(j)
t = 0, (21)

lim
n→∞

1

n

n∑
j=1

∫ t

0

γ (t)

γ (s)
β(j,n) dW(j)

s = 0,

which hold P-a.s., since we have
∫ t

0 γ (t)2γ (s)−2 ds<∞. The SDE given in (20) then follows
from (5). The mutual independence when ρ = 0 and Ẑ = 0 is due to mutually independent
Brownian motions {W(i)

t }t∈T across i ∈ I. �

Example 2.1. If f (t) = θ t log (θ )/(θT − θ t) for some θ ∈ (1,∞) for t ∈T−, then

ξ
(i)
t = Ẑ + σρBt + σ

√
1 − ρ2

(∫ t

0

(θT − θ t)

(θT − θ s)
dW(i)

s

)
. (22)

Note that if θ = exp (1), then f (t) = exp (t)/( exp (T) − exp (t)) for t ∈T−.

Example 2.2. If ρ = 0 and f (t) = cot (T − t) for t ∈T−, then

ξ
(i)
t = Ẑ + σ

∫ t

0

sin(T − t)

sin(T − s)
dW(i)

s , (23)

given that T <π holds.

Example 2.3. If Ẑ = 0, ρ = 0, and f (t) = α/(T − t) for t ∈T− for some α ∈ (0,∞), then the
mean-field limit consists of mutually independent α-Wiener bridges for i ∈ I, where

ξ
(i)
t = σ

∫ t

0

(T − t)α

(T − s)α
dW(i)

s . (24)

More specifically, if we have α = 1 and σ = 1, then each {ξ (i)
t }t∈T is a mutually independent

standard Brownian bridge.
The mean-fields given in (22), (23), and (24) are examples amongst many others that can

be found by choosing different f that satisfy the conditions in Lemma 2.1.

Remark 2.1. If there is no common noise in the system with ρ = 0 and we have Ẑ = 0, then
the following holds:

S(i,j)
t

law= √
2ξ (i)

t for t ∈T and i �= j.
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Hence, each gap process {S(i,j)
t }t∈T for any matrix dimension n behaves as the (scaled) mean-

field limit of the system as n → ∞. However, {S(i,j)
t }t∈T are not mutually independent across

i, j ∈ I even when ρ = 0.

Proposition 2.5 below provides us with a consistency result for the system, where the double
limits of every {λ(i,n)

t }t∈T as n → ∞ and t → T are exchangeable; that is, the order of taking
these limits does not matter.

Proposition 2.5. Keep the conditions of Lemma 2.1 and let (19) hold. Then

lim
t→T

lim
n→∞ λ

(i,n)
t = lim

n→∞ lim
t→T

λ
(i,n)
t

= Ẑ + σρBT ∀i ∈ I, P-a.s.

Proof. Using (20) and the convergence in (6), we get the following double limit:

lim
t→T

lim
n→∞ λ

(i,n)
t = lim

t→T
ξ

(i)
t

= Ẑ + σρBT P-a.s.

When we start with limt→T λ
(i,n)
t , using (7) and (21), we have

lim
n→∞ lim

t→T
λ

(i,n)
t = Ẑ + σρBT + lim

n→∞ σ

√
1 − ρ2

⎛
⎝1

n

n∑
j=1

β(j,n)W(j)
T

⎞
⎠

= Ẑ + σρBT ,

P-a.s. Hence, the iterated limits commute for any i ∈ I. �

If Ẑ = 0 and if there is no common noise with ρ = 0, it can be seen from Proposition 2.5
that the entire system converges to zero in the above double limits, irrespective of their order.
If Ẑ = 0 but ρ �= 0, then the system converges to the same random variable dictated by the
common noise. Note also that if ρ ∈ {−1, 1}, then the whole system is essentially driven by the
common noise process {Bt}t∈T, which can be seen from (5).

2.1. A numerical study of eigenvalue convergence

To demonstrate how the system of eigenvalues behaves as t → T and n → ∞, we shall
provide numerical simulations. We discretize the SDE in (2) using the Euler–Maruyama
scheme over the lattice 0 = t0 ≤ t1 ≤ . . .≤ tm ≤ T for some m ∈N+. We denote our numerical
approximation of {λ(i,n)

t }t∈T by {λ̂(i,n)
tk }tk∈T for i ∈ I, and work with the following:

λ̂
(i,n)
tk+1

= λ̂
(i,n)
tk + f (tk)

⎛
⎝1

n

n∑
j=1

β i,nλ̂
(j,n)
tk − λ̂

(i,n)
tk

⎞
⎠ δ

+ σ

(
ρ
(
Btk+1 − Btk

)+
√

1 − ρ2
(

W(i,n)
tk+1

− W(i,n)
tk

))
, for every i ∈I, (25)
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where we set λ̂
(i,n)
t0 = 0, δ = T/m, and tk = kδ. As an example, we choose f (t) =

θ t log (θ )/(θT − θ t) for some θ ∈ (1,∞), as in Example 2.1, so that

λ
(i,n)
t = σρBt + σ

√
1 − ρ2

⎛
⎝1

n

n∑
j=1

β(j,n)W(j)
t +

∫ t

0

(θ − θ t)

(θ − θ s)
dW(i)

s

−1

n

n∑
j=1

∫ t

0

(θ − θ t)

(θ − θ s)
β(j,n) dW(j)

s

⎞
⎠

for every i ∈ I, where we set T = 1 for parsimony. We also choose m = 1000 for the time
lattice, so that every time-step we move on is δ= 0.001. For the averaging coefficients β(j,n)

for j = 1, . . . , n, we choose the following scheme as an example:

β(j,n) = 2jn

n(n + 1)

⇒
n∑

j=1

β(j,n) = n.

Hence, our choice satisfies the normalization condition in (1). In addition, we have the limit

lim
n→∞ σ 2T

√
1 − ρ2

||β(n)||2
L2

n2
= lim

n→∞
σ 2T

√
1 − ρ2

n2

n∑
j=1

4j2n2

(n2 + n)2

= lim
n→∞

4σ 2T
√

1 − ρ2

(n2 + n)2

n∑
j=1

j2

= 0, (26)

which implies that �(n) in (9) as provided in Proposition 2.1 converges to the following:

lim
n→∞ �(n) = σ 2Tρ2.

The convergence in (26) further gives us

lim
n→∞ E[λ(i,n)

t λ
(j,n)
t ] = σ 2tρ2 + σ 2(1 − ρ2)1(i = j)

∫ t

0

(θ − θ t)2

(θ − θ s)2
ds,

by Proposition 2.2. Finally, we thus have the double limit of the covariance process given by

lim
n→∞ lim

t→T
E[λ(i,n)

t λ
(j,n)
t ] = lim

t→T
lim

n→∞ E[λ(i,n)
t λ

(j,n)
t ]

= σ 2Tρ2.

If there is no common noise in the system with ρ = 0, the variance of the system converges to
zero as n → ∞ and t → T . If there is common noise with ρ �= 0, there is irreducible variance in
the system at these limits. For the simulations below, we shall set σ = 1 without loss of much
generality.
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2.1.1. No common noise ρ = 0. First, we consider the case where there is no common noise
in the system, and gradually increase the dimension of the matrix process {Ht(n)}t∈T. From
Proposition 2.1, for any fixed n, we have the terminal law

lim
t→T

Ht(n) ∼N
(

0, �(n)
)

I(n),

where the variance in our example is given by

�(n) = σ 2T
||β(n)||2

L2

n2
= 4

(n2 + n)2

n∑
j=1

j2, (27)

with σ = 1 and T = 1. From Corollary 2.1, we also know that this is the law of the weighted
ensemble average of the eigenvalues A(n)

T .
For our simulations below, we begin with the case where we set θ = 2. Note that θ has

no impact on the terminal law of the system at time T , which can also be seen from (27);
however, this parameter affects the covariance structure of the system until time T . Since every
eigenvalue has to converge in time to the same random variable A(n)

T , different choices of θ

can be interpreted as controls on the speed of convergence to A(n)
T . In other words, even if the

covariance of the system may increase with different choices of θ , all the eigenvalues of the
system must converge to the same random value nonetheless, which creates different pressure
points on the system. Therefore, we shall later change this parameter to demonstrate its impact
on the trajectories of the eigenvalues.

In Figure 1, we have n = 10, n = 100, n = 500, and n = 5000. Note that the system ends up
closer to zero at time T as we increase the dimension of {Ht(n)}t∈T. This is no surprise, since
the variance of the terminal distribution is inversely proportional to n. For the given choices
of n, we thus have �(10) ≈ 0.1273, �(100) ≈ 0.0133, �(500) ≈ 0.0027, and �(5000) ≈ 0.0003,
respectively. In Figure 2, we plot the terminal law of each case in accordance with the eigen-
value trajectory plots above. By (26), the terminal law converges (in terms of distributions)
to Dirac at zero as n → ∞. In Figure 3, we provide an example where we keep n = 5000 but
choose θ = 2 × 106. As discussed above, this doesn’t change the terminal law, and hence we
still have �(5000) ≈ 0.0003. However, the shape of the evolution changes: note how the maxi-
mum covariance of the system is shifted closer to T , relative to the case of θ = 2 at the bottom
right of Figure 1. As a result, the pressure to converge to A(n)

T increases with increasing θ as
t → T .

2.1.2. Common noise ρ �= 0. We shall now admit common noise in the system with ρ = 0.5 as
an example. Now the variance in our example is given by

�(n) = σ 2T

(
0.25 + 0.75||β(n)||2

L2

n2

)
= 0.25 + 3

(n2 + n)2

n∑
j=1

j2,

with σ = 1 and T = 1. Instead of gradually increasing the dimension of {Ht(n)}t∈T as before,
we shall start with n = 5000 to avoid repetition. Moreover, we shall provide simulations for
both θ = 2 and θ = 2 × 106 to compare these two cases. First, we provide a sample for θ = 2
in Figure 4.

Finally, we set θ = 2 × 106 in Figure 5. Note that the maximum variance is again shifted
towards T as we increase θ , which in turn increases the pressure to converge to A(n)

T .
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FIGURE 1. Top left and right: n = 10 and n = 100. Bottom left and right: n = 500 and n = 5000.

FIGURE 2. Top left and right: n = 10 and n = 100. Bottom left and right: n = 500 and n = 5000.

https://doi.org/10.1017/jpr.2022.53 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.53


Time-convergent random matrices 411

FIGURE 3. Left: n = 5000, θ = 2 × 106, ρ = 0. Right: distribution of A(n)
T .

FIGURE 4. Left: n = 5000, θ = 2, ρ = 0.5. Right: Distribution of A(n)
T .

Because of the common noise factor, we have �(5000) ≈ 0.2502 instead of �(5000) ≈ 0.0003
as when we had ρ = 0. This is a considerable increase in the variance of the random termi-
nal value, the ensemble average A(n)

T , which is why we have a higher probability of getting
eigenvalue trajectories that end up away from zero as t → T .
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FIGURE 5. Left: n = 5000, θ = 2 × 106, ρ = 0.5. Right: Distribution of A(n)
T .

We have only considered a specific model of a system that can be studied as part of our
proposed framework. Many other examples can be constructed by choosing different f , as long
as it satisfies the conditions in Lemma 2.1. We shall briefly discuss another example, which
yields mutually independent α-Wiener bridges as n → ∞, where we have

λ
(i,n)
t = 1

n

n∑
j=1

W(j)
t +

∫ t

0

(T − t)α

(T − s)α
dW(i)

s − 1

n

n∑
j=1

∫ t

0

(T − t)α

(T − s)α
dW(j)

s , (28)

for i ∈ I. Using Corollary 2.2, we get the covariance process

E[λ(i,n)
t λ

(j,n)
t ] =

⎧⎪⎨
⎪⎩

t
n + 1(i = j)

T
(

1−( T−t
T

)2α)−t

2α−1 − T
(

1−( T−t
T

)2α)−t

n(2α−1) , α �= 1
2 ,

t
n + 1(i = j)(t − T) log

(T−t
T

)− (t−T)
n log

(T−t
T

)
, α= 1

2 .
(29)

Note that for α �= 1
2 ,

lim
t→T

T
(

1 − (T−t
T

)2α)− t

2α − 1
= lim

t→T

T − t

2α − 1
− lim

t→T

T
(T−t

T

)2α
2α − 1

= 0.
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Also, for α = 1
2 , using l’Hôpital’s rule, we have

lim
t→T

(t − T) log (
T − t

T
) = log

(T−t
T

)
(t − T)−1

= lim
t→T

∂
∂t log ( T−t

T )
∂
∂t (t − T)−1

= lim
t→T

(t − T)−1

−(t − T)−2

= lim
t→T

(T − t)

= 0.

This means that for any fixed n, we get the following covariance time-limit:

lim
t→T

E[λ(i,n)
t λ

(j,n)
t ] = T

n
. (30)

On the other hand, we get the covariance space-limit

lim
n→∞ E[λ(i,n)

t λ
(j,n)
t ] =

⎧⎪⎨
⎪⎩

1(i = j)
T
(

1−( T−t
T

)2α)−t

2α−1 , α �= 1
2 ,

1(i = j)(t − T) log ( T−t
T ), α = 1

2 .
(31)

We thus have the commutative double limit of the covariance:

lim
t→T

lim
n→∞ E[λ(i,n)

t λ
(j,n)
t ] = lim

n→∞ lim
t→T

E[λ(i,n)
t λ

(j,n)
t ]

= 0.

We shall omit further numerical simulations for this family of eigenvalues in order to avoid
repetition.

2.2. Different systems with the same terminal laws

One of the key observations from Proposition 2.1 is that the terminal law of {Ht(n)}t∈T
does not depend on the choice of f (as long as it satisfies the aforementioned conditions).
This means that we can work with multiple matrix systems with different eigenvalue dynamics
driven by different f functions, and still converge to random variables equal in law to each
other. More precisely, let {H(k)

t (n)}t∈T be a Hermitian-valued process, where {�(k)
t (n)}t∈T is its

corresponding eigenvalue matrix process, with H(k)
t (n) = U(k)

t (n)�(k)
t (n)U∗(k)

t (n) for all t ∈T

and k = 1, . . . ,m for some m ∈N+. We denote the individual eigenvalues by

�
(k)
t (n) = diag{λ(1,n,k)

t , . . . , λ
(n,n,k)
t },

where the initial states are �
(k)
0 (n) = 0. We again let {A(n,k)

t }t∈T be the weighted ensemble
average process given by

A(n,k)
t = 1

n

n∑
i=1

β(i,n,k)λ
(i,n,k)
t ∀t ∈T,

https://doi.org/10.1017/jpr.2022.53 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.53


414 L. A. MENGÜTÜRK

with |β(i,n,k)|<∞ and
∑n

i=1 β
(i,n,k) = n. For the following arguments, we also set

β(n,k) = β(n,l) = β(n)

for k, l = 1, . . . ,m. As before, eigenvalue dynamics form an interacting system of SDEs

dλ(i,n,k)
t = f (k)(t)

(
A(n,k)

t − λ
(i,n,k)
t

)
dt + σ

(
ρ dB(k)

t +
√

1 − ρ2 dW(i,k)
t

)
, (32)

for all t ∈T− and i ∈ I, and k = 1, . . . ,m, where each f (k) : T− →R is a continuous
measurable function satisfying

∫ t

0
exp

(
−
∫ t

s
f (k)(u) du

)
ds<∞,

and σ �= 0 and ρ ∈ [−1, 1]. Here, {W(i,k)
t }t∈T and {B(k)

t }t∈T are mutually independent standard
(P, {Ft})-Brownian motions.

Proposition 2.6. Let each map f (p) satisfy

(i) limt→T
∫ t

0 f (p)(s) ds = ∞, and

(ii)
∫ τ

0 f (p)(s) ds<∞ for any τ ∈T−,

for p = 1, . . . ,m. Then the following holds:

lim
t→T

H(k)
t (n)

law= lim
t→T

H(l)
t (n),

for every k, l = 1, . . . ,m.

Proof. The statement follows from �
(k)
0 (n) = 0 and β(n,k) = β(n,l) = β(n) for every k, l =

1, . . . ,m and using Proposition 2.1. �

Finally, using the mutual independence of all the (P, {Ft})-Brownian motions above, the
time limit of the ensemble average of the matrices can easily be computed:

lim
t→T

1

m

m∑
k=1

H(k)
t (n)

law= R(n)I(n),

where R(n) ∼N (
0, �(n)

)
with

�(n) = σ 2T

m

(
ρ2 + 1 − ρ2

n2
||β(n)||2L2

)
.

Therefore, without knowing the details about each f (k) that dictates the stochastic dynamics
of the underlying eigenvalues for each {H(k)

t (n)}t∈T, we can still derive conclusions about the
limiting behaviour of these matrices as discussed above.
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3. Conclusion

We studied a multivariate system modelled by a random matrix whose eigenvalues interact
in a mean-field way and converge in time to their weighted ensemble average. We produced a
class of Hermitian-valued processes that converge to the identity matrix scaled by a Gaussian
random variable with variance inversely proportional to the size of the system. As future
research, the framework can be extended so that there are multiple distinct time points over
the evolution of the system at which the eigenvalues converge to their respective weighted
ensemble averages in a successive manner. For this direction, a different but related frame-
work was studied in [43] to analyse energy-based quantum state reduction phenomena when
quantum observables are measured sequentially at different times. We believe that the mathe-
matical machinery we have provided in this paper can be used to produce mean-field interacting
counterparts of such quantum reduction models.
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