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Abstract We classify the subpencils of complete linear systems for the hyperplane sections on K3 surfaces
obtained as the complete intersection of a hyperquadric and a hypercubic. The classification is done from
three points of view, namely, the type of a general fibre, the base locus and the Horikawa index of the
essential member. This classification shows the distinct phenomenons depending on the rank of the
hyperquadrics containing the surface.
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1. Introduction

Throughout the paper, all the varieties are defined over the field C of complex numbers.
Let S be a minimal resolution of a projective surface S ′ obtained as a complete inter-

section of a hyperquadric and a hypercubic of P4. Assume that S ′ has at most rational
double points as the singularities. Then S is a K3 surface, and a general member of the
complete linear system of the hyperplane sections is a nonhyperelliptic curve of genus 4.
Denote by Λ the complete linear system of the hyperplane sections of S, and let P ⊂ Λ

be a subpencil. Assume that a general member of P is smooth. Let ν : S̃ → S be a
blow-up such that the complete linear system of the proper transform of the member of
P is base point free. We assume that ν is the shortest among the blow-up with the above
property. Then there exists a surjective morphism f : S̃ → P1 whose general fibre is a
nonhyperelliptic curve of genus 4. Furthermore, f is relatively minimal. For each fibre
F of f, the invariant Ind(F) named Horikawa index (H-index) is defined as we mention
in the next section. Ind(F) is a non-negative rational number, and we have Ind(F) = 0
except for a finite number of fibres of f.
Nonhyperelliptic curve C of genus 4 is obtained as the complete intersection of a

hyperquadric Q0 and a hypercubic Y in P3. Since the defining equation of Q0 is given
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Classification of subpencils for hyperplane sections on K3 surfaces 1023

as a quadratic form of the homogeneous coordinates of P3, the rank rk(Q0) is defined,
which is equal to 3 or 4. Q0 is expressed as follows:

(I) If rk(Q0) = 4, we have Q0
∼= P1×P1, and the hyperplane section of Q0 is a diagonal

divisor. If we consider C as a divisor of Q0, then C is linearly equivalent to the
triple of the diagonal. According to [1], in this case, C is called as Eisenbud–Harris
general (EH-general).

(II) If rk(Q0) = 3, Q0 is a cone over a smooth conic. If we denote by ∆0 the tautological
divisor of the Hirzebruch surface Σ2 := P(OP1 ⊕ OP1(2)), then Q0 is the image of
Σ2 by the morphism Φ|∆0| defined by the complete linear system |∆0|. If Γ is a

fibre of the ruling µ : Σ2 → P1 and if ∆∞ is a section of µ with ∆∞ ∼ ∆0 − 2Γ,
then ∆∞ is contracted to the vertex of Q0. Since C does not go through the vertex,
we may consider as C ⊂ Σ2. If we consider that C is a divisor of Σ2, then we have
C ∼ 3∆0. In this case, let us call C Eisenbud–Harris special (EH-special).

If a general fibre of f above is EH-general (respectively, EH-special), f is called the
EH-general fibration (respectively, the EH-special fibration), P the EH-general subpencil
(respectively, the EH-special subpencil). The definition of H-index depends on whether f
is EH-general or EH-special. The sum of H-indices for the fibration we investigate in the
present paper is as follows (see § 2 for details):

• When f is EH-general, then the sum is equal to 1/2.
• When f is EH-special, then the sum is equal to 6/7.

Each case is divided into several cases as follows:

(I) The case where f is EH-general.
- (I-i) There are two fibres with H-index 1/4.
- (I-ii-a) There is a fibre with H-index 1/2, and the rank of the hyperquadric
containing the fibre is 3.

- (I-ii-b) There is a fibre with H-index 1/2, and the rank of the hyperquadric
containing the fibre is 2.

(II) The case where f is EH-special.
- (II-i-a) There are three fibres with H-index 2/7.
- (II-i-b) There is a fibre with H-index 2/7 and a fibre with H-index 4/7.
- (II-i-c) There is a fibre with H-index 6/7, and the rank of the hyperquadric
containing the fibre is 3.

- (II-ii-a) There are two fibres with H-index 3/7.
- (II-ii-b) There is a fibre with H-index 6/7, and the rank of the hyperquadric
containing the fibre is 2.

- (II-ii-c) There is a fibre with H-index 6/7, and the rank of the hyperquadric
containing the fibre is 1.

Let Q ⊂ P4 be the hyperquadric containing S ′. As in the case of Q0, the rank rk(Q)
is also defined, and we have that rk(Q) is one of 3, 4 and 5. As we will see in § 4, if
rk(Q) = 3, then Q has a singular curve ` as the compound rational double point of
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type A1, and S ′ has rational double points on `. We restrict our arguments to the generic
case as follows:

Assumption 1. When rk(Q) = 5, we assume S′ = S. When rk(Q) = 4, we assume S′

does not go through the vertex of Q and that S′ = S holds. When rk(Q) = 3, we assume
that S′ does not have singularities except for the intersection points with `.

The main result of the present paper is as follows:

Theorem 1. Let the notation and the conditions be as above. The classification of
subpencils of Λ without fixed component is as follows:

(1) The case where rk(Q) = 3

Type
The type of a
general member

The fixed points (the most
generic case)

The type of fibres with
positive H-index

R3-1 EH-special 6 simple base points (II-i-a), (II-i-b), (II-i-c)

R3-2 EH-special 6 simple base points (II-ii-b)

R3-3 EH-special 3 base points with
intersection multiplicity 2

(II-ii-c)

(2) The case where rk(Q) = 4

Type
The type of a
general member

The fixed points (the most
generic case)

The type of fibres with
positive H-index

R4-1 EH-general 6 simple base points (I-ii-a)

R4-2 EH-general 6 simple base points (I-ii-b)

R4-3 EH-special 6 simple base points (II-ii-a)

R4-4 EH-special 3 base points with
intersection multiplicity 2

(II-ii-b)

(3) The case where rk(Q) = 5

Type
The type of a
general member

The fixed points (the most
generic case)

The type of fibres with
positive H-index

R5-1 EH-general 6 simple base points (I-i)

R5-2 EH-general 6 simple base points (I-ii-a)

R5-3 EH-special 3 base points with
intersection multiplicity 2

(II-i-a), (II-i-b), (II-i-c)
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We set the notation as follows:

Notation 1. ∼means the linear equivalence of two divisors. For a non-negative integer
d, denote by µ : Σd := P(OP1 ⊕ OP1(d)) → P1 the Hirzebruch surface. Let ∆0 be the
tautological divisor of Σd, and ∆∞ the section of µ with ∆2

∞ = −d and ∆0∆∞ = 0. For
a linear system Ω of divisors for some variety, denote by ΦΩ the rational map defined by
Ω. For a global section s of an invertible sheaf, denote by (s) the divisor defined by s =0.
For a linear system Ω, denote by BsΩ the base locus of Ω.

2. Horikawa index

In this section, we review the H-index for nonhyperelliptic fibrations of genus 4 for both
EH-general case and EH-special case. Let f : S → B be a nonhyperelliptic fibration
of genus 4 over a smooth projective curve B. Assume that f is relatively minimal and
that f is not isotrivial. Let KS/B = KS − f∗KB be the relative canonical divisor and
ωS/B := OS(KS/B) the relative dualizing sheaf. Then E := f∗ωS/B is a locally free sheaf
of rank 4 over B. If we put χf := degE, then it is known that the inequalities K2

S/B > 0
and χf > 0 both hold. Furthermore, the following inequalities are known:

Theorem 2. ([4], [11], [12]). Under the above conditions, we have

K2
S/B ≥ 24

7
χf .

Moreover, if we assume that a general fibre of f is EH-general, then

K2
S/B ≥ 7

2
χf

holds.

Remark 1. Similar results to Theorem 2 are obtained as follows:

(i) ([17], [11]) If a general fibre of f is a hyperelliptic curve of genus g (≥ 2), then we
have

K2
S/B ≥ 4(g − 1)

g
χf .

(ii) ([9], [11], [13]) If a general fibre of f is a nonhyperelliptic curve of genus 3, then we
have

K2
S/B ≥ 3χf .
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Let us return to the case of genus 4 fibrations. For each fibre F of f, denote by ωF the
dualizing sheaf. The multiplication map

Sym2H0(ωF ) → H0(ω⊗2
F )

defines the multiplication map

ϕ : Sym2E → f∗ω
⊗2
S/B.

By our assumption and Max–Noether’s theorem, ϕ is generically surjective. We obtain
the following exact sequence:

0 → L→ Sym2E → f∗ω
⊗2
S/B → T → 0,

where L is a line bundle and T is a sheaf supported over finitely many points of B. Denote
by π : W := P(E) → B the P3-bundle defined by E and by T the tautological divisor
of W. The natural morphism f∗E → ωS/B defines the rational map ψ : S · · ·> W over
B. ψ is called the relative canonical map, and the image ψ(S) ⊂ W is called the relative
canonical image of S by ψ.

Lemma 1. ([10]). Let the notation and conditions be as above. Then there exists an
irreducible relative hyperquadric Q ∈ |2T − π∗L| containing ψ(S).

Notation 2. Denote by πQ the restriction of π to Q.

2.1. H-index for EH-general case

Assume that f is the EH-general fibration. Let q ∈ H0(OW (2T − π∗L)) be the global
section defining Q. Since q can be considered as an element of H0(B, (Sym2E) ⊗ L−1),
q defines the morphism q : E∨ → E ⊗ L−1. By considering the determinant map det q :
detE∨ → det(E ⊗ L−1), we can consider that det q is an element of H0(B, (detE)⊗2 ⊗
L−4). Since f is EH-general, we have det q 6= 0, and hence, det q defines an effective
divisor Discr(Q) over B. A general fibre of πQ : Q → B is of rank 4, while for any point
p ∈ suppDiscr(Q), the rank of the fibre π−1

Q (p) is less than 4. Discr(Q) is called the
discriminant locus of Q. The following is known:

Theorem 3. ([10]). For p ∈ B, denote by multpDiscr(Q) the coefficient of p in
Discr(Q) and by Tp the restriction of T to p. If we put

Ind(f−1(p)) :=
1

4
multpDiscr(Q) + lengthTp, (2.1)

then the following equality holds:

K2
S/B =

7

2
χf +

∑
p∈B

Ind(f−1(p)) (2.2)
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Remark 2. The value (2.1) is called the H-index of the fibre f−1(p) in the case of
EH-general fibration. Furthermore, the equality (2.2) is called the slope equality for the
EH-general case.

2.2. H-index for EH-special case

In this subsection, we review the H-index for EH-special case. Although H-index is
defined in [5] without any special condition, we use another definition in [14]. H-index in
the latter case is defined under the assumption that the multiplication map Sym2E →
f∗ω

⊗2
S/B is surjective, and as we will see in § 4, the fibrations we consider in this paper

satisfy this assumption.
Since a general fibre of πQ : Q → B is a quadric cone, we obtain the relative vertex

B0 ⊂ Q. Since B0 is a section of π, we have the short exact sequence

0 → E0 → E →M → 0

defining the embedding B0 ⊂ W. E 0 is a locally free sheaf of rank 3 over B, and M is an
invertible sheaf over B.
If ρ : W̃ → W is a blow-up along B0, we obtain the following commutative diagram:

Put E := ρ−1(B0) and let Q̃ be the proper transform ofQ by ρ and TE0
the tautological

divisor of P(E0). Since ρ
∗T ∼ π̃∗TE0

+ E, we have

Q̃ ∼ ρ∗Q− 2E ∼ π̃∗(2TE0
− ζ∗L),

namely, there exists a conic bundle Q0 ∈ |2TE0
− ζ∗L| such that Q̃ = π̃−1(Q0). If q0 ∈

H0(OP(E0)
(2TE0

−ζ∗L)) defines Q0, we can define the discriminant locus Discr(Q0) as in

the previous subsection. For any p ∈ suppDiscr(Q0), the fibre π−1
Q (p) is a hyperquadric

of P3 with rank less than 3.
Note that the restriction of the relative canonical image S ′ to B0 defines an effective

divisor δ over B.
The following theorem is proved:

Theorem 4. ([14]). Let the notation and the conditions be as above. For any
p ∈ B, put

Ind(f−1(p)) =
2

7
multpδ +

3

7
multpDiscr(Q0). (2.3)
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Then we have the following equality:

K2
S/B =

24

7
χf +

∑
p∈B

Ind(f−1(p)). (2.4)

Remark 3. The value (2.3) is called the H-index of the fibre f−1(p) in the case of
EH-special fibration. Furthermore, the equality (2.4) is called the slope equality for the
EH-special case.

3. Fibres with positive H-index

Let S be our K3 surface and f : S̃ → P1 as in § 1. We have K2
S̃/P1 = 18 and χf = 5. Let

us investigate the fibres of f with positive H-index. We use the same notation as in the
previous section for the fibration f : S̃ → P1.

3.1. EH-general case

If f is EH-general, then the sum of H-indices is 1/2 by Equation (2.2). Hence,
if Ind(f−1(p)) > 0 for p ∈ P1, we have Tp = 0 and multpDiscr(Q) = 1 or 2
by Equation (2.1). In either case, π−1

Q (p) is a hyperquadric with rank less than 4.

If rk(π−1
Q (p)) = 3 and if S is sufficiently general, then f−1(p) is an EH-special non-

hyperelliptic curve of genus 4. If rk(π−1
Q (p)) = 2, then π−1

Q (p) is a sum of two distinct
hyperplanes, and if S is sufficiently general, f−1(p) is the sum of two elliptic curves
intersecting at three points transversally.
We have the following three cases:

(I-i) Discr(Q) = p1 + p2 for some p1, p2 ∈ P1.
(I-ii-a) Discr(Q) = 2p1 for some p1 ∈ P1 and rk(π−1

Q (p1)) = 3.

(I-ii-b) Discr(Q) = 2p1 for some p1 ∈ P1 and rk(π−1
Q (p1)) = 2.

3.2. EH-special case

Assume f is EH-special. We obtainK2
S̃/B

−(24/7)χf = 6/7 from Equation (2.4). Hence,

by [15, Theorem 1.5], the multiplication map is surjective. The sum of the H-indices is
6/7. Hence, by considering Equation (2.3), we obtain the following six possibilities:

(II-i-a) δ = p1 + p2 + p3 (p1, p2, p3 ∈ P1, pi 6= pj ⇔ i 6= j (i, j = 1, 2, 3)), and
Discr(Q0) = 0.

(II-i-b) δ = p1 + 2p2 (p1, p2 ∈ P1, p1 6= p2) and Discr(Q0) = 0.
(II-i-c) δ = 3p1 (p1 ∈ P1) and Discr(Q0) = 0.
(II-ii-a) δ=0 and Discr(Q0) = p1 + p2 (p1, p2 ∈ P1, p1 6= p2).
(II-ii-b) δ=0 and Discr(Q0) = 2p1 (p1 ∈ P1) with rk(π−1

Q (p)) = 2.

(II-ii-c) δ=0 and Discr(Q0) = 2p1 (p1 ∈ P1) with rk(π−1
Q (p)) = 1.
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We investigate the details for each case. Note that the direct image E := f∗ωS̃/P1
satisfies

E ∼= OP1(2)⊕OP1(1)
⊕3,

from the results of [7]. See also [2].

3.2.1. The case where the discriminant locus is 0

First, consider the cases (II-i-a), (II-i-b) and (II-i-c). If E 0 and M are as in the previous
section, we obtain E0

∼= O⊕3

P1 (1), M
∼= OP1(2) and L ∼= OP1(2) by considering the

argument of [14, § 1]. It is easily proved that Q0
∼= Σ0 and TE0

|Q0
∼ 2∆0 + Γ, where

Γ is the restriction of a fibre of P(E0) → P1 to Q0, and ∆0 is a fibre of the natural
projection, which is different from the one whose fibre is Γ. (See Notation 1 also for ∆0.)

Since W̃ ∼= P(OP(E0)
(TE0

)⊕OP(E0)
(2F ′)), where F ′ is a fibre of ζ, we have

Q̃ ∼= P(OΣ0
(2∆0 + Γ)⊕OΣ0

(2Γ)),

and hence,

Q̃ ∼= P(OΣ0
(2∆0 − Γ)⊕OΣ0

). (3.1)

If TQ̃ is the tautological divisor of Q̃ under the consideration of Equation (3.1), and if F̃

is a fibre of Q̃→ P1, we have

S1 ∼ 3TQ̃ + 3F̃ ,

where S 1 is the preimage of S in Q̃. Put E0 := E|Q̃. Then E0
∼= Q0, and furthermore, the

restriction S1|E0 consists of fibres of (ζ ◦ π̃)|E0 , and the image of the sum of these fibres

by Q̃→ P1 is δ. Namely, for a point p ∈ supp δ, the fibre of f : S̃ → P1 over p is the one
with positive H-index, and its value is one of 2/7, 4/7 and 6/7. If we consider the fibre of

Q̃→ P1 over p as Σ2, then the restriction of E0 to Σ2 is ∆∞, and hence, the restriction
S1|Σ2

is of the form of ∆∞ + C with C ∼ 2∆0 + 2Γ. Hence, if P is generic in Gr(3, 1),
this fibre consists of a rational curve and a hyperelliptic curve of genus three intersecting
at two points.

3.2.2. The case where the discriminant locus is not 0

Next, consider the case (II-ii-a), (II-ii-b) and (II-ii-c). We have E0 = OP1(2)⊕OP1(1)
⊕2,

M = OP1(1) and L = OP1(2). We use the notation of the previous section under these
consideration. Then we have

W̃ ∼= P(OP(E0)
(TE0

)⊕OP(E0)
(F ′)), (3.2)
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where F ′ is a fibre. Let us consider the structure of Q0 (⊂ P(E0)). It is easily proved that

Q0 is disjoint to the section B̃ := P(E0/OP1(2) ⊕OP1(1)), and if P̃(E0) → P(E0) is the

blow-up along B̃, we obtain the following commutative diagram:

We may consider Q0 ⊂ P̃(E0). We have P̃(E0) ∼= P(OΣ1
(∆0 + Γ)⊕OΣ1

(Γ)), and it is
easily proved that Q0 is a double cover of Σ1 branched along a divisor B that is linearly
equivalent to 2∆0. Note that the inverse image of ∆∞ by the double cover is the sum of
two (−1) curves unless ∆∞ is contained in B̃. Furthermore, we have K2

Q0
= 6.

3.2.2.1 If B is smooth, then Q0 is isomorphic to the blown-up surface at two points
q1 and q2 of Σ1 contained in some section ∆′

0 ∈ |∆0|. (Namely, Q0 has the structure of
the branched double cover over Σ1 and the structure of the blown-up surface of Σ1.) By
the adjunction formula, we have KQ0

∼ −TE0
|Q0

. Hence, by considering Equation (3.2),
if we denote by ν : Q0 → Σ1 the above blow-up, and if we put Ei = ν−1(qi) (i = 1, 2),
we have

Q̃ ∼= P(OQ0
(ν∗(2∆0)− E1 − E2)⊕OQ0

). (3.3)

If pi ∈ P1 is the image of qi (i = 1, 2), then we have Discr(Q0) = p1 + p2, and S̃ has
singular fibres of type (II-ii-a). The fibre of Q → P1 over pi is of rank 2, namely the fibre
is a sum of two distinct hyperplanes, and hence, f−1(pi) is a sum of two elliptic curves
intersecting at three points transversally if P is sufficiently general in the Grasmannian
Gr(3, 1).
3.2.2.2 We consider the case where B (⊂ Σ1) is written as B = ∆0+∆′

0 for ∆0,∆
′
0 ∈ |∆0|

with ∆0 6= ∆′
0. Let q be the intersection point of ∆0 and ∆′

0. Then Q0 has a rational

double point of type A1 over q. Hence, Q̃ has a singular locus along the fibre over the
singularity of Q0. Here, we consider the normalization of Q̃.
Let Q̃0 be the minimal resolution of Q0. If p1 ∈ P1 is the image of q, then the fibre

of Q̃0 → P1 over p1 consists of three rational curves `1, `2 and `3. We may assume
`21 = `23 = −1, `22 = −2, `1`3 = 0 and `1`2 = `3`2 = 1. Moreover, if we denote by

∆̃∞ + ∆̃′
∞ the inverse image of ∆∞ by the double cover Q̃0 → Σ1 with ∆̃∞∆̃′

∞ = 0, we

may assume `1∆̃∞ = 1 and `3∆̃
′
∞ = 1. Namely, Q̃0 is obtained as follows:

For some point q1 ∈ Σ1 \∆∞, let Γ1 be a fibre containing q1, ν1 : Q1 → Σ1 a blow-up

at q1 and Γ̃1 the proper transform of Γ1. Put E1 := ν−1
1 (q1) and let q2 be a point of

E1 \ Γ̃1. Then by blowing-up at q2, we obtain Q̃0. Let ν2 : Q̃0 → Q1 be the blow-up

and put E2 := ν−1
2 (q2). Put Q̂ := Q̃×Q0

Q̃0. Then by the same argument as 3.2.2.1, we
obtain

Q̂ ∼= P(OQ̃0
(ν∗2 (ν

∗
1 (2∆0)− E1)− E2)⊕OQ̃0

). (3.4)

https://doi.org/10.1017/S0013091523000561 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000561


Classification of subpencils for hyperplane sections on K3 surfaces 1031

Note that if TQ̂ is the tautological divisor of Q̂, then we have the preimage of S̃ in Q̂ is
linearly equivalent to 3TQ̂ since δ=0.

We have Discr(Q0) = 2p1. Moreover, the rank of the fibre of Q0 → P1 over p1 is 2,
and hence, the fibre of Q → P1 over p1 is a sum of two hyperplanes. Namely, the fibre of
f : S̃ → P1 over p1 is of type (II-ii-b).

Let Π : Q̂ → Q̃0 be the natural morphism (P1-bundle) and put Fi = Π−1(`i) (i =
1, 2, 3). Then we have F1

∼= F3
∼= Σ1 and F2

∼= Σ0. Furthermore, if S 1 is the preimage

of S̃ in Q̂, and if P is sufficiently general, then the restrictions S1|F1 and S1|F3 are both
elliptic curves and S1|F2 is a sum of disjoint three rational curves that are (−2)-curves as

the curves of S 1. Namely, the singular fibre of f over p1 is of the form C1+C2+
∑3

i=1Ei,
where Cj (j = 1, 2) is an elliptic curve with C1∩C2 = ∅, and Ei (i = 1, 2, 3) is a (−2)-curve

with Ei ∩ Ei′ = ∅ ⇔ i 6= i′ and CjEi = 1 as curves of S̃.

3.2.2.3 Assume B̃ is of the form B̃ = ∆0 +∆∞ +Γ for some ∆0 ∈ |∆0| and some fibre
Γ. Let q′1 and q′2 be the points such that ∆0∩Γ = {q′1} and ∆∞∩Γ = {q′2}. Furthermore,

let γ : Σ̃1 → Σ1 be the blow-up at q′1 and q′2, and ∆̃0, ∆̃∞ and Γ̃ the proper transforms

of ∆0,∆∞ and Γ, respectively. Put Ei = γ−1(q′i) (i = 1, 2). If Q̂0 is a normalization of

Σ̃1 ×Σ1
Q0 and if p1 ∈ P1 is the image of q′i by Q0 → P1, then the fibre of Q̃0 → P1

over p1 consists of three rational components `1, `2 and `3, where we may assume that
`1 dominates E1, `2 dominates E2 and `3 dominates Γ̃. `1 and `2 are (−2)-curves and `3
is a (−1)-curve. The curve that dominates ∆̃∞ is a (−1)-curve, and the self-intersection

number of the curve dominating ∆̃0 is 0. Hence, Q̂0 is obtained as follows: For a point
q1 ∈ Σ1 \ ∆∞, let ν1 : Q1 → Σ1 be the blow-up at q1 and Γ̂ the proper transform of

the fibre containing q1. Put E1 := ν−1
1 (q1), and let q2 be the intersection point of Γ̂

and E1. By blowing-up at q2, we obtain Q̂0. Let ν2 : Q̂0 → Q1 be the blow-up, and put
E2 := ν−1

2 (q2). Then by the same argument as in 3.2.2.1, if we put Q̂ := Q̃ ×Q0
Q̂0, we

obtain

Q̂ ∼= P(OQ̃0
(ν∗2 (ν

∗
1 (2∆0)− E1)− E2)⊕OQ̃0

). (3.5)

Note that Q̂0 is the minimal resolution of Q0 (⊂ P(E0)) that has two rational double

points of type A1. If S 1 is the preimage of S̃ in Q̂, and if P is sufficiently general, then
the fibre of S1 → P1 over p1 can be written as 2C+

∑6
i=1Ei, where C is an elliptic curve

and Ei is (−2)-curve such that CEi = 1 and EiEj = 0 (i 6= j).
We have Discr(Q0) = 2p1. Moreover, the rank of the fibre of Q0 → P1 is 1, and hence,

the fibre of Q → P1 over p1 is a double of a hyperplane. Namely, the fibre of f : S̃ → P1

over p1 is of type (II-ii-c).

Remark 4. In either case of 3.2.2.1, 3.2.2.2 and 3.2.2.3, the singular fibre with positive
H-index has the components of elliptic curves. Let C be one of the elliptic curves. By
Zariski’s lemma (cf. e.g., [3, (8.2) Lemma]), CF = 0 for a fibre of f, which leads us to
C2 = −3. By the adjunction formula, we have KS̃C = 3. On the other hand, since S is

a K3 surface, KS̃ consists of six exceptional curves of the blow-up S̃ → S. Namely, C
intersects with 3 of them.
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4. Classification of subpencils

Let S ′ be the surface obtained as the complete intersection of a hyperquadric Q and a
hypercubic Y. Assume S ′ satisfies the Assumption 1. Let S be a desingularization of S ′.
For Q, the following is known (see [6], [8]):

(4-1) The case where rk(Q) = 3.
Put E3 := OP1(2)⊕O⊕2

P1 , and let π3 :W3 := P(E3) → P1 be the P2-bundle, T 3

the tautological divisor of W 3 and F a fibre of π. For the rational map Φ|T3| :

W3 → P4, we have Q ∼= Φ|T3|(W3). Let T3,0 ⊂W3 be the relative hyperplane with

T3,0 ∼ T3 − 2F . Then we have T3,0 ∼= P1 × P1. Let βi : T3,0 → P1 (i = 1, 2) be the
natural projection. We may assume β1 = π3|T3,0 . If we put Z := Φ|T3|(T3,0), then

Z is a line in P4, and we have Φ|T3||T3,0 = β2. Z is a compound rational double
point of type A1 of Q.

(4-2) The case where rk(Q) = 4.
Put E4 := OP1(1)

⊕2 ⊕ OP1 , and let π4 : W4 := P(E4) → P1 be the P2-bundle,
T 4 the tautological divisor of W 4 and F a fibre of π4. We have Q ∼= Φ|T4|(W4).

For a section B0 = P(E4/OP1(1)
⊕2) of π4, we have that Φ|T4|(B0) is a point. If

we put q0 := Φ|T4|(B0), then Q has a three-dimensional rational double point of
type A1 at q0.

(4-3) The case where rk(Q) = 5.

For a point q ∈ P4 \ Q, let ν : P̃ → P4 be the blow-up at q. Then we have

P̃ ∼= P(OP3(1) ⊕ OP3). Let Π : P̃ → P3 be the P1-bundle, H̃ the tautological

divisor of P̃ ,H0 ⊂ P3 a hyperplane and put E := ν−1(q). We have H̃ ∼ E+Π∗H0.

If we consider Q ⊂ P̃ , we have Q ∼ 2H̃. If we put ΠQ := Π|Q, then the morphism
ΠQ : Q→ P3 is a double cover branched along some smooth hyperquadric.

ΠQ is also considered as follows: For a hyperplane section H̃Q of Q, we have

dim |H̃Q| = 4. There exists a base point free three-dimensional subspace V ⊂ |H̃Q|
such that ΠQ = ΦV . For a hyperplane H0 ⊂ P4, Π∗

QH0 is a hyperplane section of
Q. However, all the hyperplane sections cannot be written as above. On the other
hand, we have the following:

Lemma 2. For any hyperplane section H̃Q ∈ |H̃Q|, there exist a base point

free three-dimensional subspace V ⊂ |H̃Q| and a hyperplane H0 ⊂ P3 such that

H̃Q = Φ∗
VH0.

Proof. If we take V as H̃Q ∈ V and if we put H 0 the image of H̃Q, then we
obtain the desired equality. �

4.1. The case rk(Q) = 3 (The proof for (1) of Theorem 1)

Let Q ⊂ P4 be a hyperquadric of rank 3. Let the notation be as in (4-1). If Y ⊂ P4 is
a general hypercubic, then we may assume that Y is smooth and that the intersection
S′ := Q ∩ Y has rational double points over Z and no other singularity. Let S1 ⊂W3 be
the preimage of S 0 by Φ|T3|. We have S1 ∼ 3T3, and there exists a divisor δ0 of degree
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3 over P1 such that S1|T3,0 ∼ β∗
2δ0. If Y is sufficiently general, then δ0 is reduced and

S 1 is nonsingular, namely, if S is the minimal resolution of S ′, then we have S1 = S.
In order to classify subpencils of the complete linear system of the hyperplane section,
it is sufficient to classify those of S 1. The hyperplane section of S 1 is written as T3|S1 .
Therefore, in order to achieve our goal, it is sufficient to classify the subpencil of |T3|.
Let X0, X1 ∈ H0(OW3

(T3)) and X2 ∈ H0(OW3
(T3 − 2F )) be global sections defining

the homogeneous coordinates of each fibre of π3. Any member Ψ ∈ H0(OW3
(T3)) can be

written as

Ψ = c0X0 + c1X1 + ψ2X2, (c0, c1 ∈ C, ψ2 ∈ H0(OP1(2))). (4.1)

The divisor (Ψ) is irreducible if and only if (c0, c1) 6= (0, 0), and we obtain the following:

Lemma 3. There exist three types of subpencil P̂ of |T3| as follows:

(3-i) Any member of P̂ is irreducible.

(3-ii) P̂ has only one reducible member.

(3-iii) Any member of P̂ is reducible.

There exists no other type of subpencils.

Proof. Let T3, T
′
3 ∈ |T3| be two distinct members. Assume that the global sections

defining T 3 and T ′
3 are written as c0X0+ c1X1+ψ2X2 and c′0X0+ c

′
2X1+ψ

′
2X2, respec-

tively. Let P̂ ⊂ |T3| be the subpencil generated by T 3 and T ′
3. If c0c

′
2 6= c1c

′
0, then

any member of P̂ is irreducible. If c0c
′
1 = c1c

′
0 and that at least one of (c0, c1) and

(c′0, c
′
1) is not equal to (0, 0), then reducible members of P̂ is only the one defined by the

global section of the form ψ′′
2X2. If (c0, c1) = (c′0, c

′
1) = (0, 0), then any member of P̂ is

reducible. �

If T 3 is irreducible, then we have T3 ∼= Σ2 as a variety. If we put ∆0 := T3|T3 , then
we have ∆2

0 = 2. If Γ is a fibre of the ruling T3 → P1, and if ∆∞ is the section with
∆∞ ∼ ∆0 − 2Γ, then we have T3,0|T3 ∼ ∆∞.
Assume that T3, T

′
3 ∈ |T3| are irreducible and that the restriction T ′

3|T3 is written
as ∆∞ + Γ1 + Γ2. In this case, we have T3|T3,0 = T ′

3|T3,0 , and this is the case (3-ii) of

Lemma 3. Hence, in the case of (3-i), the restriction T ′
3|T3 is irreducible.

Since S1|T3 = Y |T3 ∼ 3∆0, a general member of P is EH-special nonhyperelliptic curve

of genus 4 in the cases where P̂ is of type(3-i) or (3-ii).

4.1.1. Type (3-i)

Let P̂ be a subpencil of type (3-i). Then the base locus BsP̂ is an irreducible ratio-

nal curve. For the pencil P over S corresponding to P̂, the base locus BsP consists
of six points scheme theoretically. If P is generic in Gr(3, 1), then BsP consists of six
points set-theoretically also, and distinct two members of P intersect at these points
transversally.

If η3 : W̃3 →W3 is a blow-up along BsP̂, we obtain the following commutative diagram:
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If we denote by ∆ a fibre of β1 and by Γ a fibre of β2, then we have

W̃3
∼= P(OP1×P1(Γ)⊕OP1×P1(2∆)).

If S 2 is the proper transform of S 1 by η3, then β1 ◦ ξ3 : S2 → P1 is an elliptic fibration,
and β2 ◦ ξ3 : S2 → P1 is an EH-special nonhyperelliptic fibration of genus 4. If E is
an exceptional divisor of η3, then we have E ∼= P1 × P1. We may consider that T3,0 is

contained in W̃3. The morphism Φ|2η∗3T3−E| maps T3,0 onto a rational curve by contracting

each fibre of β2 onto a point. We obtain the following commutative diagram:

where Q′ → Q is the blow-up along the image of BsP̂ by Φ|T3|. Q
′ has a structure of a

quadric cone bundle ξ̃3 : Q′ → P1. Furthermore, if we consider E ∼= T3,0 (∼= P1 × P1), the

restriction of a fibre of ξ̃3 to E is a fibre of β2. We have W̃3
∼= P(OP1×P1⊕OP1×P1(2∆−Γ)),

which coincides with Equation (3.1). Namely, the morphism W̃3 → Q′ coincides with the

morphism Q̃→ Q in § 2.2. If T̃3 is the tautological divisor of W̃3 under this consideration,
we obtain S2 ∼ 3T̃3+3ξ∗3Γ. Therefore, the image S 3 of S 2 in Q ′ intersects with the relative

vertex of Q ′ at three points scheme theoretically. If S̃ → S3 is the minimal resolution,
and if f : S̃ → P1 is the naturally obtained EH-special nonhyperelliptic fibration of
genus 4, then f has singular fibres of type (II-i-a), (II-i-b) or (II-i-c), and no other fibre
with positive H-index. S′ ⊂ Q is the image of S 3 by Q′ → Q, and it is proved that the
complete linear system of the hyperplane section of the minimal resolution S of S ′ has
the subpencil of type R3-1 of Theorem 1.

4.1.2. Type (3-ii)

Let us consider the case (3-ii). We use the same notation as in the proof of Lemma 3.
Since c0c

′
1 = c1c

′
0, we can change one of the basis of the two-dimensional subspace

of H0(OW3
(T3)) defining P to one of the form ψ̃2X2 (ψ̃2 ∈ H0(OP1(2))). Assume that

another basis s is written as s = c2X0 + c1X1 + ψ2X2 (c0, c1 ∈ C, ψ2 ∈ H0(OP1(2))).

Let q1, q2 ∈ P1 be points with (ψ̃2) = q1 + q2. Put T̂3 := (s) and B3,0 = T̂3 ∩ T3,0.
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If we further put Fi := π−1
3 (qi) and `i := Fi ∩ T̂3 (i = 1, 2), we have

BsP̂ = B3,0 ∪ `1 ∪ `2.

We have T̂3 ∼= Σ2, and if we consider that B3,0 is a divisor of T̂3, then B3,0 = ∆∞ holds.

On the other hand, if we denote by Ŷ the pull back of the hypercubic Y (⊂ P3) defining

our surface S ′, then we have Ŷ |T̂3 ∼ 3∆0. Hence, if we denote by S 1 the pull back of

S′ (= Q ∩ Y ) to W 3, one of B3,0 ⊂ S1 and B3,0 ∩ S1 = ∅ holds. The former case is
excluded because P does not have a fixed component.
From now on, we consider the case (3-ii) by dividing it into two cases q1 6= q2 and

q1 = q2.
(3-ii-a) The case q1 6= q2
Assume q1 6= q2. We transform W 3 birationally as follows:
Step 1 Note that B3,0 can be written as B3,0 = P(OP1(2)⊕O⊕2

P1 /OP1(2)⊕OP1). Let

ρ1 : W̃3 → W3 be the blow-up along B3,0. We have W̃3
∼= P(OΣ2

(∆0) ⊕ OΣ2
) and the

following commutative diagram:

Put ζ : W̃3 → Σ2. Then ζ is a P1-bundle. If we let T̃3 be the proper transform of T̂3
by ρ1, then T̃3 can be written as T̃3 = ζ∗∆′

0 for some ∆′
0 ∈ |∆0|. Namely, there exists a

subpencile P0 ⊂ |∆0| such that the proper transform of any member of P is the pull back
of some member of P0. Note that there exist two base points of P0, say q̃1 and q̃2. For

the ruling µ : Σ2 → P1, we may assume µ(q̃i) = qi (i = 1, 2). If we consider `i ⊂ W̃3, then
`i = ζ−1(q̃i) holds. Furthermore, if we put Γi = µ−1(qi), then we have ∆∞+Γ1+Γ2 ∈ P0

and its pull back by ζ is the divisor defined by ψ̃2X2.

Step 2 Let ρ2 : Ŵ3 → W̃3 be the blow-up along `1 ∪ `2. If we let ρ̃2 : Σ̃ → Σ2 be the
blow-up at q̃1 and q̃2, then we obtain the following commutative diagram:

Furthermore, we obtain the morphism µ̃ : Σ̃ → P1 whose fibre is a proper transform of
a member of P0 by ρ̃2. Put Ei := ρ̃−1

2 (q̃i) (i = 1, 2), and denote by Γ̃i the proper transform

of Γi by ρ̃2 (i = 1, 2). Let γ1 : Σ̃ → Σ′ be the blow-down of Γ1, and γ2 : Σ′ → Σ1 the
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blow-down of the image ∆′
∞ of ∆∞ by γ1. If ∆

′
0 is the section of Σ1 → P1 with ∆′2

0 = 1,
we obtain

ρ̃∗2∆0 ∼ γ∗1(γ
∗
2(2∆

′
0)−∆′

∞)− Γ1,

and hence, Ŵ3 coincides with Equation (3.4). The only singular fibre of the morphism

µ̃ ◦ ζ̃ is the inverse image of ∆∞ +Γ1 +Γ2 by ζ, where ζ̃ is as in the above commutative

diagram. The preimage S3 ⊂ W̃3 of S′ ⊂ Q has a singular fibre with H-index 6/7, which
is the case (II-ii-b). Then it has been proved that Λ has a subpencil of type R3-2 of
Theorem 1.
(3-ii-b) The case q1 = q2
Assume q1 = q2. Let ρ1 : W̃3 → W3 be as in (3-ii-a). Furthermore, let ρ2 : Ŵ3 → W̃3

be the blow-up along `1 (= `2). If T̃3 is as in Step 1 of (3-ii-a), then the base locus of |T̃3|
is a rational curve ˜̀, and any two general member of |T̃3| intersect along ˜̀ transversally.
Let ρ3 :W 3 → Ŵ3 be a blow-up along ˜̀.
If q̃1 ∈ Σ2 is the point with ζ−1(q̃1) = `1, then the subpencil P0 of |∆0| corresponding

to P̂ satisfies BsP0 = {q̃1}. Any two general member of P0 contact at q̃1 with intersection

multiplicity 2. Let ρ̃2 : Σ̂ → Σ2 be a blow-up at q̃1 and P̃0 the pencil consisting with the
proper transforms of the members of P0. Then we have BsP̃0 = {q′1} for some point q′1 on

the exceptional curve of ρ̃2. Any two general members of P̃0 intersect at q′1 transversally.

If ρ̃3 : Σ → Σ̂ is a blow-up at q′1, then we obtain the following commutative diagram:

Note that W 3
∼= P(OΣ(ρ̃

∗
3 ρ̃

∗
2∆0) ⊕ OΣ) holds. Put E1 := ρ̃−1

2 (q̃1) and Ẽ2 := ρ̃−1
3 (q′1),

and let Γ1 be the fibre of µ containing q̃1. Furthermore, let ∆0 ∈ |∆0| be a member

containing q̃1, and ∆̃0, Γ̃1 the proper transform of ∆0 and Γ1, respectively. Moreover, put
E2 := ρ̃−1

3 (q′1), and let ∆′
0 and Ẽ1 be the proper transform of ∆̃0 and E 1, respectively.

If we consider Γ̃0 ⊂ Σ, then Γ̃0 is a (−1)-curve, and we obtain the blow-down ρ′3 : Σ →
Σ′. If we consider that ∆∞ and Ẽ1 are the curves of Σ′, then they are (−1)-curves. By

blowing down Ẽ1, we obtain the birational morphism ρ′2 : Σ′ → P1 × P1.
Under the above consideration, we obtain

ρ̃∗3 ρ̃
∗
2∆0 ∼ ρ′

∗
3(ρ

′∗
2(2E2 +∆′

0)− Ẽ1)− Γ̃0,

which leads us to the fact that W 3 coincides with Equation (3.5). Hence, if we put

p1 = µ(q̃1), then S̃ has a singular fibre of type (II-ii-c) over p1 and no other degenerate
fibre with positive H-index. It has been proved that Λ has a subpencil of type R3-3 of
Theorem 1.
Denote by F = 2C +

∑6
i=1Ei the degenerate fibre with H-index 6/7 as in 3.2.2.3.

By checking the birational transformation of W 3 in detail, we obtain the following.
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Namely, three members of {Ei}6i=1 (say E1, E2 and E 3) are contracted to the rational

double points on the singular locus of Q. In S̃, Ei (i = 4, 5, 6) intersects with a (−1)-curve
Ei which intersects every fibre of f. By contracting Ei (i = 4, 5, 6), Ei changes to a
(−1)-curve, and other fibres intersect at three points transversally. By contracting Ei,
we obtain the pencil whose base locus consists of three points set theoretically, and any
two members contact at these points with intersection multiplicity 2. The image of C
intersects with other member transversally at these three points.

4.2. The case rk(Q) = 4 (The proof for (2) of Theorem 1)

Let Q ⊂ P4 be a hyperquadric of rank 4. Let the notation be as in (4-2).
Consider the following two short exact sequence:

0 → OP1 → E4 → OP1(1)
⊕2 → 0,

0 → OP1 → E4 → OP1(2)⊕OP1 → 0.

We have two types of the tautological divisor. The first one is isomorphic to Σ0 = P1×P1

and the second one is isomorphic to Σ2. These are obtained as follows:
Let X0, X1 ∈ H0(OW4

(T4 − F )) and X2 ∈ H0(OW4
(T4)) be global sections defin-

ing the homogeneous coordinates of each fibre of π4. Any Ψ ∈ H0(OW4
(T4)) can be

written as

Ψ = ψ0X0 + ψ1X1 + c2X2 (ψ0, ψ1 ∈ H0(OP1(1)), c2 ∈ C.)

The following lemma is trivial:

Lemma 4. Let the notation be as above. Then (Ψ) is isomorphic to P1 × P1 if and
only if c2 6= 0. (Ψ) is isomorphic to Σ2 if and only if c2 = 0 and ψ0 and ψ1 have no
common zero. (Ψ) is reducible if and only if c2 = 0 and ψ0 and ψ1 have a common zero.

Definition 1. In the above notation, let us call T4 ∈ |T4| the tautological divisor of
type (t0) if T4 ∼= P1×P1 and the tautological divisor of type (t2) if T4 ∼= Σ2. Note that any
member of |T4 − F | is irreducible and isomorphic to Σ1. For any member T ′ ∈ |T4 − F |,
let us call the divisor T ′ + F the tautological divisor of type (t1).

Lemma 5. Let the notation be as above. The classification of subpencils P̂ of |T4| is
as follows:

(4-i) P̂ is generated by the tautological divisors of type (t0) and (t2).

(4-ii) P̂ is generated by the tautological divisors of type (t0) and (t1).

(4-iii) P̂ is generated by two tautological divisors of type (t1).

(4-iv) P̂ is generated by the tautological divisors of type (t2) and (t1).

Proof. Let Ψ and Ψ′ be the global sections ofOW4
(T4) generating the two-dimensional

subspace V ⊂ H0(OW4
(T4)) corresponding to P̂. Assume Ψ and Ψ′ are written as Ψ =

ψ0X0 + ψ1X1 + c2X2 and Ψ′ = ψ′
0X0 + ψ′

1X1 + c′2X2.
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First, assume c2 6= 0. Put Ψ′′ := Ψ′ − (c′2/c2)Ψ. Assume it is written as Ψ′′ = ψ′′
0X0 +

ψ′′
1X1. If ψ

′′
0 and ψ′′

1 are linearly independent, then P̂ is of type (4-i). If ψ′′
0 and ψ′′

1 are

linearly dependent, then P̂ is of type (4-ii).
Next, assume c2 = c′2 = 0. If at least one of Ψ and Ψ′ is of type (t1), then there is

nothing to prove. So we may assume ψ0 and ψ1 do not have a common zero and neither
do ψ′

0 and ψ′
1. If ψ0 and ψ′

0 are linearly dependent, then P̂ is of type (4-iv). Assume that
the pairs (ψ0, ψ

′
0) and (ψ1, ψ

′
1) are both linearly independent. Furthermore, assume that

it is written as ψ0 = Aψ1 +Bψ′
1 and ψ′

0 = Cψ1 +Dψ′
1 for A,B,C,D ∈ C. Let m be the

solution of the quadric equation∣∣∣∣∣ m−A −C
B −m+D

∣∣∣∣∣ = 0, (4.2)

and (x, y) = (k, l) the nonzero solution of(
m−A −C
B −m+D

)(
x

y

)
=

(
0

0

)
.

Then we have kψ0+ lψ
′
0 = m(kψ1+ lψ

′
1) and the tautological divisor defined by kΨ+ lΨ′

is of type (t1). If Equation (4.2) has two distinct solutions, then P̂ is of type (4-iii).

If Equation (4.2) has a multiple solution, then P̂ is of type (4-iv). �

4.2.1. Type (4-i)

We may assume S is contained in W 4 since we assume that S does not go through the
vertex of Q. Let P̂ be the pencil of type (4-i) defining P. Then there exists a tautological

divisor T4,0 ∈ P̂ of type (t2), and all the other members are the tautological divisor of
type (t0). Since we assume that a general member of P is smooth, it is an EH-general
curve of genus 4. Moreover, there exists a member that is an EH-special curve of genus
4. If P is generic in Gr(3, 1), then the base locus of P consists of six points and any
two distinct member intersects at these points transversally. Hence, P is of type R4-1 of
Theorem 1.

Remark 5. Let T4, T
′
4 ∈ P̂ be of type (t0). For the image Q ⊂ P4 of W 4, we may

consider as T4, T
′
4 ⊂ Q. There exist hyperplanes H,H ′ ⊂ P4 with H|Q = T4 and H ′|Q =

T ′
4. Put P := H ∩H ′. Then we have P ∼= P2. Let α : X → P4 be the blow-up along P.

We have X ∼= P(OP1(2)⊕OP1(1)
⊕3). Let T be the tautological divisor of X, F a fibre of

the P3-bundle β : X → P1 and Q the proper transform of Q by α. Then Q ∼ 2T − 2F
holds. Namely, X and Q are the latter of the case of [16, Remark 3].

4.2.2. Type (4-ii)

Similarly to 4.2.1, if P̂ is of type (4-ii) and generic in Gr(3, 1), then the corresponding
pencil P on S is of type R4-2 of Theorem 1.
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4.2.3. Type (4-iii)

Let Ψ0 and Ψ1 be the basis of two-dimensional subspace ofH0(OW4
(T4)) corresponding

to P̂. Assume that Ψi is written as Ψi = ψiXi (ψi ∈ H0(OP1(1)) for i = 0, 1. Let pi ∈ P1

be the point such that ψi(pi) = 0, and put Fi = π−1
4 (pi). Assume p0 6= p1. Denote by B0

the section of π4 defined by X0 = X1 = 0. For i = 0, 1, denote by `i the intersection of
Fi and Xσ(i), where σ is the permutation of 0 and 1. Then we have BsP̂ = B0 ∪ `0 ∪ `1.
Let ρ1 : W̃4 →W4 be the blow-up along B0. Consider that `i (i = 0, 1) is the curve of

W̃4, and let ρ2 : Ŵ4 → W̃4 be the blow-up along `0 ∪ `1. Then by the same argument as

in case (3-ii-a) of § 4.1.2, we obtain that Ŵ4 coincides with Equation (3.3) and that the
subpencil of type R4-3 of Theorem 1 exists.

4.2.4. Type (4-iv)

We may assume that the basis Ψ and Ψ′ of the subspace corresponding P̂ are written as
Ψ = ψ0X0+ψ1X1 and Ψ′ = ψ′

1X1. Hence, in the proof of Lemma 5, we have C = D = 0.
If the quadric equation (4.2) has the multiple solution, we have A=0. Hence, we may
assume ψ′

1 = ψ0.
Let B0 be as in the previous subsection, and `0 be the curve defined by ψ0 = X1 = 0.

Then we have BsP̂ = B0 ∪ `0. Let ρ1 : W̃4 → W4 be as in the previous subsection and

ρ2 : Ŵ4 → W̃4 the blow-up along `0. Then W̃4 has the structure of the P1-bundle ζ4 :

W̃4 → P1×P1. Furthermore, if we put q0 := ζ4(`0), and if we denote by ν1 : Σ̃ → P1×P1

the blow-up at q0, then we have Ŵ4
∼= W̃4 ×P1×P1 Σ̃. Let ζ̃4 : Ŵ4 → Σ̃ be the obtained

P1-bundle. For the proper transform T̂4 of T 4 by ρ1 ◦ ρ2, there exists an infinitely near

point q̃0 ∈ Σ̃ with Bs
∣∣∣T̂4∣∣∣ = ζ̃−1

4 (q̃0). Put `1 := ζ̃−1
4 (q̃0).

Let ρ4 : W 4 → Ŵ4 be the blow-up along `1. By the same argument as before, we
obtain that W 4 coincides with Equation (3.4).
In this case, the only degenerate fibre of f with positive H-index is of the form C1 +

C2 +
∑3

i=1Ei, where C 1 and C 2 are elliptic curves, and Ei is a (−2)-curve. f has three
sections Ei (i = 1, 2, 3) as (−1)-curves. We may assume EiEi = 1 and EiEj = 0 if and

only if i 6= j. Furthermore, we have EiCj = 0. Let ν1 : S̃ → S1 be the blow-down of
E1,E2 and E3. Then the images of general fibres of f by ν1 intersect at three points. Let
ν2 : S1 → S be the blow-down of the image of E1 + E2 + E3 by ν1. Then the images of
general fibres of f by ν2 ◦ν1 contact at three points with intersection multiplicity 2, while
the image of Cj intersects the images at these points transversally. Hence, the obtained
subpencil is of type R4-4 of Theorem 1.

4.3. The case rk(Q) = 5 (The proof for (3) of Theorem 1)

Let Q be a hyperquadric of rank 5. By the similar argument to Lemma 2, we obtain
the following:

Lemma 6. Let the notation be as in Lemma 2. For any subpencil PQ ⊂ |H̃Q|, there
exists a double cover γ : Q→ P3 such that any member of PQ is mapped onto a hyperplane
by γ as a branched double cover.
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Let S ⊂ Q be our surface and P the subpencil of the complete linear system of
the hyperplane sections. Let P̂ be the subpencil of the complete linear system of the
hyperplane sections of Q whose restriction to S is P. Let γ : Q→ P3 be the double cover
of Lemma 6. If P̃ is the subpencil of the hyperplanes of P3 corresponding to P, then
` := BsP̃ is a line of P3. Let Q0 ⊂ P3 be the branch locus of γ. We have Q0

∼= P1 × P1.
There are following three cases:

(5-i) ` and Q0 intersect at two distinct points.
(5-ii) ` and Q0 contact at a point.
(5-iii) ` ⊂ Q0 holds. In this case, ` is a fibre of one of the natural projection for the

direct product.

4.3.1. The case (5-i)

Let us consider the case (5-i).

Let P0 be the restriction of P̃ to Q0. If q1, q2 ∈ Q0 are the points with `∩Q0 = {q1, q2},
then we have BsP0 = {q1, q2}. Let ηi : Q0 → P1 be the natural projection for the ith
element (i = 1, 2), ∆1j the fibre of η1 with qj ∈ ∆1j and Γ2j the fibre of η2 with qj ∈ Γ2j .
We have ∆11+Γ21,∆12+Γ22 ∈ P0. Furthermore, any member of P0\{∆11+Γ21,∆12+Γ22}
is irreducible and non-singular. Hence, P̂ has two quadric cones and any other member
is a smooth hyperquadric. If we consider BsP̂ as a divisor of a general member, then
it is a smooth diagonal divisor, while if we consider it as a divisor of the quadric cone,
then it is smooth section not going through the vertex. If we put ˜̀ := BsP̂, then ˜̀ is an
irreducible and non-singular rational curve. Let P be the pencil of the complete linear
system of hyperplanes of P4 corresponding to P̂. We have H := BsP is a two-dimensional
subspace with H|Q = ˜̀.
Let α : X → P4 be the blow-up along H. Then X ∼= P(OP1(2) ⊕ OP1(1)

⊕3). Let
β : X → P1 be the natural projection, T the tautological divisor of X and F a fibre of β.
If we put E := α−1(H), then we have E ∼= P1 × P2 and E ∼ T − 2F. If Q is the proper
transform of Q by α, then we have Q ∼ 2T−2F. This situation is similar to that of 4.2.1.
The differences from 4.2.1 are that Q is smooth and that the fibration Q → P1 has two
degenerate fibres of rank 3. Namely, the discriminant locus of Q is a reduced divisor of
degree 2, and hence, f is of type (I-i). In a general case, BsP consists of six points over˜̀, and general members intersect at these points transversally. We obtain the pencil of
type R5-1 of Theorem 1.

4.3.2. The case (5-ii)

The similar argument to the case (5-i) is applied. We use the same notation. The
base locus BsP0 consists of one point, say q ∈ Q0. Let ∆3 and Γ3 be fibres of the
natural projection η1 and η2, respectively, such that ∆3 ∩Γ3 = {q}. P0 contains ∆3+Γ3

and all the other members of P0 are smooth diagonal divisors contacting at q with
intersection multiplicity 2. P̂ contains a quadric cone, and any other member is a smooth
hyperquadric. Since BsP̃ is a line in P3 contacting with Q0 at q, the base locus BsP̂ is a
union of two rational curves intersecting at a point. Put ˜̀1 + ˜̀2 = BsP̂.
Let α : X → P4 be as in the case (iii-a). Moreover, we use the same other notation

related to X. Then Q is a relative hyperquadric and a general member of Q → P1 is
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isomorphic to P1 × P1. There exists only one degenerate fibre that is isomorphic to the
quadric cone. Namely, the discriminant locus ofQ is a non-reduced divisor of degree 2 and
we obtain the subpencil of type R5-2 of Theorem 1. If P is generic, then BsP consists of
six points. Three of them are on `1, and the rest three points are on `2. General members
of P intersect at these points transversally one another.

4.3.3. The case (5-iii)

Let us consider the case (5-iii). All the members of P̂ are quadric cones, and they
contact along a generating line to one another. On the other hand, the vertices of any
two distinct cones are the distinct points on the generating line. Let ` be the generating
line, and α : M → P4 the blow-up along `. We have M ∼= P(OP2(1) ⊕ O⊕2

P2 ), which is a

P2-bundle over P2. Let η : M → P2 be the projection. Denote by TM the tautological
divisor of M. Let L ∈ P2 be a line, and put E := α−1(`). We have TM ∼ E + η∗L and

E ∼= P1 × P2. If Q̃ is the proper transform of Q by α, then we have Q̃ ∼ TM + η∗L.
Denote by ηE the natural projection E → P2 and by β the natural projection E → P1. If
we consider the restriction Q̃|E as a divisor of E, then we have

Q̃|E ∼ TE + η∗EL,

where TE is a fibre of β. The restricted morphism ηQ̃ : Q̃|E → P2 coincides with the

blow-up of P2 at a point, namely, we obtain Q̃|E ∼= Σ1. Put Ẽ := E|Q̃. Then Ẽ is the

exceptional divisor of the blow-up αQ̃ : Q̃ → Q. If ĤQ is the proper transform of H̃Q ∈
P̂(⊂ |H̃Q|), then we have ĤQ

∼= Σ2 and all the members of |ĤQ| intersect along some

fibre (say Γ0) transversally. Moreover, ĤQ and Ẽ intersect along Γ0 transversally. The

restriction of ĤQ to Ẽ is the (−1)-curve, and hence, it is the section of the ruling Ẽ(∼=
Σ1) → P1. If α̃ : Q̂ → Q̃ is the blow-up along Γ0, we obtain the following commutative
diagram:

If we consider ĤQ as a divisor of Q̂, then ĤQ is the pull back of a fibre of µ1, and the

restricted morphism η̂|Ẽ : Ẽ → Σ1 is an isomorphism. Q̂ has the structure of Σ2-bundle

over P1, and the discriminant locus of Q̂ is zero.
For our K3 surface S, if we assume ` ⊂ S, then P has a fixed component, and this

case is excluded by the assumption that a general member of P is smooth. Hence, we
may assume ` 6⊂ S. Then S and ` intersect at three points scheme theoretically. Put
{p1, p2, p3} = S ∩ `. For i = 1, 2, 3, there exists a member H̃Q,i ∈ |H̃Q| such that pi is the

vertex of H̃Q,i. The curve α̃−1(pi) is mapped onto a fibre of µ1 isomorphically. Namely,
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the set of degenerate members of P is one of (II-i-a), (II-i-b) and (II-i-c), and P is the
subpencil of type R5-3 of Theorem 1.
From now on, we assume that pi 6= pj if and only if i 6= j. Let Fi be the member of P

contained in H̃Q,i (i = 1, 2, 3). General members of P are irreducible and non-singular
and contact at p1, p2 and p3 with intersection multiplicity 2. On the other hand, Fi

intersects with a general member at pσ(i) and pσ2(i) transversally and contacts at p1

with intersection multiplicity 2, where σ is one of the nontrivial cyclic permutation of
1, 2 and 3 of order 3.
Let f : S̃ → S be as before. Then f has three sections C1, C2 and C 3 that are

(−1)-curves. Any degenerate fibre of f with positive H-index is of the form Ei + Di,
where Ei is a (−2)-curve that is the preimage of α̃−1(pi), and Di is a hyperelliptic curve
of genus 3. We may assume CiEi = 1 and that CiEj = 0 if and only if i 6= j. If C 1, C 2 and
C 3 are contracted to smooth points, then the images of E1, E2 and E3 are (−1)-curves. If
these three (−1)-curves are contracted to smooth points, we obtain S and P. The images
of any two distinct general members contact at three points with intersection multiplicity
2, while the image of Di has an ordinary node at pi and contact at pσ(i) and pσ2(i) with
intersection multiplicity 2.
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