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Abstract We classify the subpencils of complete linear systems for the hyperplane sections on K3 surfaces
obtained as the complete intersection of a hyperquadric and a hypercubic. The classification is done from
three points of view, namely, the type of a general fibre, the base locus and the Horikawa index of the
essential member. This classification shows the distinct phenomenons depending on the rank of the
hyperquadrics containing the surface.
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1. Introduction

Throughout the paper, all the varieties are defined over the field C of complex numbers.

Let S be a minimal resolution of a projective surface S’ obtained as a complete inter-
section of a hyperquadric and a hypercubic of P*. Assume that S’ has at most rational
double points as the singularities. Then S is a K3 surface, and a general member of the
complete linear system of the hyperplane sections is a nonhyperelliptic curve of genus 4.

Denote by A the complete linear system of the hyperplane sections of S, and let P C A
be a subpencil. Assume that a general member of P is smooth. Let v : S — S be a
blow-up such that the complete linear system of the proper transform of the member of
P is base point free. We assume that v is the shortest among the blow-up with the above
property. Then there exists a surjective morphism f : S — P! whose general fibre is a
nonhyperelliptic curve of genus 4. Furthermore, f is relatively minimal. For each fibre
F of f, the invariant Ind(F) named Horikawa index (H-index) is defined as we mention
in the next section. Ind(F) is a non-negative rational number, and we have Ind(F) = 0
except for a finite number of fibres of f.

Nonhyperelliptic curve C' of genus 4 is obtained as the complete intersection of a
hyperquadric 9y and a hypercubic ) in P2. Since the defining equation of Qg is given
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Classification of subpencils for hyperplane sections on K3 surfaces 1023

as a quadratic form of the homogeneous coordinates of P2, the rank rk(Qg) is defined,
which is equal to 3 or 4. Qg is expressed as follows:

(I) Ifrk(Qo) = 4, we have Qy = P! x P!, and the hyperplane section of Qy is a diagonal
divisor. If we consider C as a divisor of Qg, then C is linearly equivalent to the
triple of the diagonal. According to [1], in this case, C' is called as Fisenbud—Harris
general (EH-general).

(IT) If rk(Qp) = 3, Qg is a cone over a smooth conic. If we denote by Ag the tautological
divisor of the Hirzebruch surface ¥y := P(Op1 @ Op1(2)), then Qg is the image of
¥y by the morphism @5 defined by the complete linear system |Ap|. If T is a
fibre of the ruling p : X9 — P! and if A is a section of p with Ay, ~ Ag — 2T,
then A, is contracted to the vertex of Qq. Since C does not go through the vertex,
we may consider as C' C Xo. If we consider that C' is a divisor of ¥o, then we have
C ~ 3Ay. In this case, let us call C' Eisenbud-Harris special (EH-special).

If a general fibre of f above is EH-general (respectively, EH-special), f is called the
EH-general fibration (respectively, the EH-special fibration), P the EH-general subpencil
(respectively, the EH-special subpencil). The definition of H-index depends on whether f
is EH-general or EH-special. The sum of H-indices for the fibration we investigate in the
present paper is as follows (see § 2 for details):

e When f is EH-general, then the sum is equal to 1/2.
e When f is EH-special, then the sum is equal to 6/7.

Each case is divided into several cases as follows:

(I) The case where f is EH-general.
- (I-i) There are two fibres with H-index 1/4.
- (I-ii-a) There is a fibre with H-index 1/2, and the rank of the hyperquadric
containing the fibre is 3.
- (I-ii-b) There is a fibre with H-index 1/2, and the rank of the hyperquadric
containing the fibre is 2.
(IT) The case where f is EH-special.
- (II-i-a) There are three fibres with H-index 2/7.
- (II-i-b) There is a fibre with H-index 2/7 and a fibre with H-index 4/7.
- (II-i-c) There is a fibre with H-index 6/7, and the rank of the hyperquadric
containing the fibre is 3.
- (Il-ii-a) There are two fibres with H-index 3/7.
- (IL-ii-b) There is a fibre with H-index 6/7, and the rank of the hyperquadric
containing the fibre is 2.
- (II-ii-c) There is a fibre with H-index 6/7, and the rank of the hyperquadric
containing the fibre is 1.

Let Q C P* be the hyperquadric containing S’. As in the case of Qq, the rank rk(Q)

is also defined, and we have that rk(Q) is one of 3, 4 and 5. As we will see in § 4, if
rk(@Q) = 3, then @ has a singular curve ¢ as the compound rational double point of
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type A1, and S’ has rational double points on £. We restrict our arguments to the generic
case as follows:

Assumption 1. When tk(Q) = 5, we assume S’ = S. When rk(Q) = 4, we assume S
does not go through the vertex of @ and that S’ = S holds. When tk(Q) = 3, we assume
that S’ does not have singularities except for the intersection points with £.

The main result of the present paper is as follows:

Theorem 1. Let the notation and the conditions be as above. The classification of

subpencils of A without fixed component is as follows:

(1) The case where tk(Q) =3

The type of a

The fized points (the most

The type of fibres with

Type general member — generic case) positive H-index

R3-1 EH-special 6 simple base points (1I-i-a), (II-i-b), (II-i-c)
R3-2 EH-special 6 simple base points (11-i1-b)

R3-3 EH-special 3 base points with (11-ii-c)

intersection multiplicity 2

(2) The case where tk(Q) =4

The type of a

The fized points (the most

The type of fibres with

Type general member  generic case) positive H-index
R4-1 EH-general 6 simple base points (I-ii-a)
R4-2 EH-general 6 simple base points (I-ii-b)
R4-3 EH-special 6 simple base points (I11-ii-a)
R4-4 EH-special 3 base points with (11-ii-b)

intersection multiplicity 2

(3) The case where tk(Q) =5

The type of a

The fized points (the most

The type of fibres with

Type general member  generic case) positive H-index

R5-1 EH-general 6 simple base points (I-i)

R5-2 EH-general 6 simple base points (I-ii-a)

R5-3 EH-special 3 base points with (II-i-a), (II-i-b), (II-i-c)

intersection multiplicity 2
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We set the notation as follows:

Notation 1. ~ means the linear equivalence of two divisors. For a non-negative integer
d, denote by p : Xy := P(Op1 @® Op1(d)) — P' the Hirzebruch surface. Let Aq be the
tautological divisor of ¥4, and A, the section of y with A% = —d and AgA,, = 0. For
a linear system (2 of divisors for some variety, denote by ®¢ the rational map defined by
Q. For a global section s of an invertible sheaf, denote by (s) the divisor defined by s =0.
For a linear system 2, denote by Bs{2 the base locus of (2.

2. Horikawa index

In this section, we review the H-index for nonhyperelliptic fibrations of genus 4 for both
EH-general case and EH-special case. Let f : S — B be a nonhyperelliptic fibration
of genus 4 over a smooth projective curve B. Assume that f is relatively minimal and
that f is not isotrivial. Let Kg,p = Kgs — f*Kp be the relative canonical divisor and
wg/p = Os(Kg,p) the relative dualizing sheaf. Then E := f.wg,p is a locally free sheaf
of rank 4 over B. If we put xs := deg E, then it is known that the inequalities KE/B >0
and xy > 0 both hold. Furthermore, the following inequalities are known:

Theorem 2. ([4], [11], [12]). Under the above conditions, we have

24
K3 p> X7

Moreover, if we assume that a general fibre of f is EH-general, then

7
K3p > SXI

holds.
Remark 1. Similar results to Theorem 2 are obtained as follows:

(i) ([17], [11]) If a general fibre of f is a hyperelliptic curve of genus g (> 2), then we
have

4(g—1
Kg/BZ(g)Xf'

(i) ([9], [11], [13]) If a general fibre of f is a nonhyperelliptic curve of genus 3, then we
have

Kg/B > 3x¢-
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Let us return to the case of genus 4 fibrations. For each fibre F of f, denote by wz the
dualizing sheaf. The multiplication map

Sym®’H®(wr) — HO(w%?)
defines the multiplication map

®2

©: Sym’E — f*wS/B.

By our assumption and Max—Noether’s theorem, ¢ is generically surjective. We obtain
the following exact sequence:

0 — L — Sym’E — f*w?/QB —T =0,

where L is a line bundle and 7 is a sheaf supported over finitely many points of B. Denote
by 7 : 20 := P(E) — B the P3-bundle defined by E and by T the tautological divisor
of 2J. The natural morphism f*E — wg,p defines the rational map ¢ : S---> 2 over
B. v is called the relative canonical map, and the image 1 (S) C 27 is called the relative
canonical image of S by 1.

Lemma 1. ([10]). Let the notation and conditions be as above. Then there exists an
irreducible relative hyperquadric Q € |2T — w*L| containing ¥(S).

Notation 2. Denote by mq the restriction of 7 to Q.

2.1. H-index for EH-general case

Assume that f is the EH-general fibration. Let ¢ € H°(Ow (2T — 7* L)) be the global
section defining 9. Since ¢ can be considered as an element of H(B, (Sym?E) ® L~1),
q defines the morphism ¢ : EY — E ® L~!. By considering the determinant map detq :
det BV — det(E ® L™1), we can consider that det ¢ is an element of H%(B, (det E)®? ®
L=*). Since f is EH-general, we have detq # 0, and hence, detq defines an effective
divisor Discr(9) over B. A general fibre of mq : 2 — B is of rank 4, while for any point
p € suppDiscr(Q), the rank of the fibre 75" (p) is less than 4. Discr(Q) is called the
discriminant locus of Q. The following is known:

Theorem 3. ([10]). For p € B, denote by mult,Discr(Q) the coefficient of p in
Discr(Q) and by T, the restriction of T to p. If we put

1
Ind(f~*(p)) :== imultpDiscr(Q) + length7,, (2.1)
then the following equality holds:

Kip=ox+ 3 (i (p) (22)
peEB
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Remark 2. The value (2.1) is called the H-index of the fibre f~!(p) in the case of
EH-general fibration. Furthermore, the equality (2.2) is called the slope equality for the
EH-general case.

2.2. H-index for EH-special case

In this subsection, we review the H-index for EH-special case. Although H-index is
defined in [5] without any special condition, we use another definition in [14]. H-index in
the latter case is defined under the assumption that the multiplication map SmeE —
f*wg/?B is surjective, and as we will see in § 4, the fibrations we consider in this paper
satisfy this assumption.

Since a general fibre of mq : Q — B is a quadric cone, we obtain the relative vertex
By C Q. Since By is a section of m, we have the short exact sequence

0—-Fy—FE—-M-—0

defining the embedding By C 3. Fj is a locally free sheaf of rank 3 over B, and M is an
invertible sheaf over B.
If p: W — W is a blow-up along By, we obtain the following commutative diagram:

w2

7| |=

P(Eo) —— B

Put E := p~!(By) and let @ be the proper transform of Q by p and T, the tautological
divisor of P(Ey). Since p*T ~ 7*Tg, + E, we have

Q ~ p*Q — 2E ~ T (2T, — (*L),

namely, there exists a conic bundle Qo € [2T5, — (*L| such that Q =7 1Qo). If o €
H°(Op(5y)(2Tg, —¢*L)) defines Qo, we can define the discriminant locus Discr(Qo) as in
the previous subsection. For any p € suppDiscr(Qy), the fibre 7r51(p) is a hyperquadric
of P? with rank less than 3.

Note that the restriction of the relative canonical image S’ to By defines an effective
divisor § over B.

The following theorem is proved:

Theorem 4. ([14]). Let the notation and the conditions be as above. For any
p € B, put

Ind(f~*(p)) = gmultpé + %multpDiscr(Qo). (2.3)
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Then we have the following equality:

K5 = 2xp + Y (7 (). (24)
peB

Remark 3. The value (2.3) is called the H-indez of the fibre f~!(p) in the case of
EH-special fibration. Furthermore, the equality (2.4) is called the slope equality for the
EH-special case.

3. Fibres with positive H-index

Let S be our K3 surface and f : S — P! as in § 1. We have K%/Pl =18 and xy = 5. Let
us investigate the fibres of f with positive H-index. We use the same notation as in the

previous section for the fibration f : S - PL.

3.1. EH-general case

If f is EH-general, then the sum of H-indices is 1/2 by Equation (2.2). Hence,
if Ind(f~'(p)) > 0 for p € P!, we have 7, = 0 and mult,Discr(Q) = 1 or 2
by Equation (2.1). In either case, ﬁgl(p) is a hyperquadric with rank less than 4.

If tk(75' (p)) = 3 and if S is sufficiently general, then f~!(p) is an EH-special non-
hyperelliptic curve of genus 4. If rk(wgl(p)) = 2, then 7T51(p) is a sum of two distinct
hyperplanes, and if S is sufficiently general, f~!(p) is the sum of two elliptic curves
intersecting at three points transversally.

We have the following three cases:

(Ii) Discr(Q) = p1 + ps for some py,ps € PL.
(I-ii-a) Discr(Q) = 2p; for some p; € P! and rk(ﬂél(pl)) =3.
(I-ii-b) Discr(Q) = 2p; for some p; € P! and I‘k(ﬂ'él(pl)> =2

3.2. EH-special case

Assume f is EH-special. We obtain K%/B_(Mﬁ)xf = 6/7 from Equation (2.4). Hence,

by [15, Theorem 1.5], the multiplication map is surjective. The sum of the H-indices is
6/7. Hence, by considering Equation (2.3), we obtain the following six possibilities:

(I-i-a) 6 = p1 + p2 + p3 (p1,p2,ps € Pup, # pj & i # j(i,j = 1,2,3)), and
Discr(Qg) = 0.

(I-i-b) & = p1 + 2p2 (p1,p2 € P, p1 # p2) and Discr(Qo) = 0.

(Il-i-c) 6 = 3py (pr € P!) and Discr(Qo) = 0.

(Il-i-a) 6 =0 and Discr(Qo) = p1 + p2 (p1,p2 € P, p1 # pa).

(Il-ii-b) 6 =0 and Discr(Qo) = 2p1 (p1 € P) with k(g (p)) = 2.

(Il-ii-c) §=0 and Discr(Qo) = 2p1 (p1 € P') with rk(r5' (p)) = 1
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We investigate the details for each case. Note that the direct image F := fiwg /pl
satisfies

B2 0,1(2) © O ()%,
from the results of [7]. See also [2].

3.2.1. The case where the discriminant locus is 0

First, consider the cases (II-i-a), (II-i-b) and (II-i-c). If Eq and M are as in the previous
section, we obtain Fy = Olff’(l), M = Op1(2) and L = Op1(2) by considering the
argument of [14, § 1]. It is easily proved that Qo = %y and Tg,|g, ~ 24¢ + I, where
I is the restriction of a fibre of P(Ey) — P! to Qq, and Ay is a fibre of the natural
projection, which is different from the one whose fibre is I". (See Notation 1 also for Ay.)

Since W = P(Op(£y)(TEy) © Op(iy)(2F)), where F' is a fibre of ¢, we have

Q = P(Ox,(2A0 +T) @ O, (21)),

and hence,

Q= IP’(OEO (2A0—T)® 020). (3.1)

If TQ is the tautological divisor of @ under the consideration of Equation (3.1), and if F
is a fibre of @ — P!, we have

Si ~ 35+ 3F,

where S is the preimage of S in @ Put Eq := E\@. Then Eg = Qg, and furthermore, the
restriction S |g, consists of fibres of (¢ o 7)|g,, and the image of the sum of these fibres

by é — P! is §. Namely, for a point p € suppd, the fibre of f : S — P! over p is the one
with positive H-index, and its value is one of 2/7, 4/7 and 6/7. If we consider the fibre of
@ — P! over p as ¥, then the restriction of Ey to s is Ase, and hence, the restriction
Sils, is of the form of Ay + C with C' ~ 2A¢ + 2I'. Hence, if P is generic in Gr(3, 1),
this fibre consists of a rational curve and a hyperelliptic curve of genus three intersecting
at two points.

3.2.2. The case where the discriminant locus is not 0

Next, consider the case (Il-ii-a), (II-ii-b) and (II-ii-c). We have Ey = Op1(2)&Op1 (1)%2,
M = Op1(1) and L = Op1(2). We use the notation of the previous section under these
consideration. Then we have

W 2 P(Os(150) (Tiy) © Os() (F')), (3.2)
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where F” is a fibre. Let us consider the structure of Qo (C P(Ejp)). It is easily proved that
Qo is disjoint to the section B := P(Eo/Op1(2) ® Op1(1)), and if P(Ey) — P(Ey) is the
blow-up along B, we obtain the following commutative diagram:

—_—

]P(Eo) —_— ]P(E())

l |

Yy —— PL

We may consider Qo C P(Ep). We have P(Ey) = P(Ox, (A¢ +T') © Ox, (I)), and it is
easily proved that Qg is a double cover of ¥; branched along a divisor B that is linearly
equivalent to 2Ag. Note that the inverse image of A, by the double cover is the sum of
two (—1) curves unless A, is contained in B. Furthermore, we have K, (290 =6.

3.2.2.1 If B is smooth, then g is isomorphic to the blown-up surface at two points
g1 and g2 of 31 contained in some section A} € |Ag|. (Namely, Qo has the structure of
the branched double cover over ¥; and the structure of the blown-up surface of ¥;.) By
the adjunction formula, we have Kq, ~ —Tg,|q,- Hence, by considering Equation (3.2),
if we denote by v : Qo — X; the above blow-up, and if we put E; = v=(¢;) (i = 1,2),
we have

Q = P(OQO(V*(2A0) - El - ]EQ) D OQO) (33)

If p; € P! is the image of ¢; (i = 1,2), then we have Discr(Qg) = p1 + p2, and S has
singular fibres of type (II-ii-a). The fibre of Q — P! over p; is of rank 2, namely the fibre
is a sum of two distinct hyperplanes, and hence, f~1(p;) is a sum of two elliptic curves
intersecting at three points transversally if P is sufficiently general in the Grasmannian
Gr(3,1).

3.2.2.2 We consider the case where B (C ) is written as B = Ag+A{ for Ag, A € |Ag]
with Ag # Af. Let ¢ be the intersection point of Ag and Aj,. Then @y has a rational
double point of type A; over ¢q. Hence, @ has a singular locus along the fibre over the
singularity of Qo. Here, we consider the normalization of Q.

Let Qo be the minimal resolution of Q. If p; € P! is the image of ¢, then the fibre
of Qo — P! over p; consists of three rational curves ¢1,f; and ¢3. We may assume

72 = £§ = 1,2 = =2, {143 = 0 and {1¢5 = l3l5 = 1. Moreover, if we denote by
Ao + Al the inverse image of Ay, by the double cover QO — % with A A’ =0, we
may assume ElADO =1 and €3A’ = 1. Namely, Qo is obtained as follows:

For some > point ¢ € Y1\ A, let T'y be a fibre contamlng q1, : Q1 — X1 a blow-up
at gy and T the proper transform of I'y. Put IE1 = v; *(q1) and let ¢z be a point of
Eq \I‘l Then by blowmg up at gg, we obtain QO Let v5 : Qo — @1 be the blow-up

and put Ey := vy *(ga). Put Q:=0Q X Qo Qo. Then by the same argument as 3.2.2.1, we
obtain

~

Q

Il

P(Og, (3 (v (280) — E1) — E2) © Og, ). (3.4)
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Note that if T@ is the tautological divisor of @, then we have the preimage of S in @ is
linearly equivalent to 3T since 6 =0.

We have Discr(Qg) = 2p;. Moreover, the rank of the fibre of Qy — P! over p; is 2,
and hence, the fibre of Q — P! over p; is a sum of two hyperplanes. Namely, the fibre of
f:S — P! over p; is of type (I-i-b).

Let I : Q@ — Qo be the natural morphism (P'-bundle) and put F; = II71(¢;) (i =
1,2,3). Then we have F; = F3 =2 ¥, and Fy & 3. Furthermore, if S; is the preimage
of S in @, and if P is sufficiently general, then the restrictions S;|r, and Si|r, are both
elliptic curves and Si|r, is a sum of disjoint three rational curves that are (—2)-curves as
the curves of §1. Namely, the singular fibre of f over p; is of the form Cy +Cs+ Zg’zl E;,
where C; (j = 1,2) is an elliptic curve with C1NCy = 0, and E; (i = 1,2,3) is a (—2)-curve
with E; NEy =0 < i # i and C;E; =1 as curves of S.

3.2.2.3 Assume B is of the form B = Ag+ Ay + T for some Ag € |Ag| and some fibre
I'. Let ¢} and ¢4 be the points such that AgNT = {¢;} and Ao NT = {¢}}. Furthermore,
let ~ : il — X1 be the blow-up at ¢} and ¢}, and &0, ﬁoo and T the proper transforms
of Ay, Ay and T, respectively. Put & = v~ 1(¢}) (i = 1,2). If @0 is a normalization of
3 Xx; Qo and if p; € P! is the image of ¢} by Qo — P!, then the fibre of @0 — P!
over p1 consists of three rational components ¢1, £3 and /3, where we may assume that
¢1 dominates &1, ¢35 dominates & and ¢3 dominates I'. ¢; and ¢y are (—2)-curves and {3
is a (—1)-curve. The curve that dominates A, is a (—1)-curve, and the self-intersection
number of the curve dominating 80 is 0. Hence, @0 is obtained as follows: For a point
¢1 € X1\ A, let vy 1 Q1 — X1 be the blow-up at ¢; and T’ the proper transform of
the fibre containing ¢;. Put E; := Vfl(ql)7 and let g2 be the intersection point of r
and E;. By blowing-up at g2, we obtain @0. Let vy : @0 — ()1 be the blow-up, and put
Ey := 5 '(g2). Then by the same argument as in 3.2.2.1, if we put Q := Q X Qo Qo, we
obtain

Q= P(Og, (3 (v (280) — E1) — E2) © Og ). (3-5)

Note that Qo is the minimal resolution of Qg (C P(Ey)) that has two rational double
points of type A;. If S is the preimage of S in @, and if P is sufficiently general, then
the fibre of S; — P! over p; can be written as 2C + 2?21 E;, where C is an elliptic curve
and F; is (—2)-curve such that CE; =1 and E;E; =0 (i # j).

We have Discr(Qg) = 2p;. Moreover, the rank of the fibre of Qo — P! is 1, and hence,
the fibre of Q — P! over p; is a double of a hyperplane. Namely, the fibre of f : S — P!
over p; is of type (II-ii-c).

Remark 4. In either case of 3.2.2.1, 3.2.2.2 and 3.2.2.3, the singular fibre with positive
H-index has the components of elliptic curves. Let C' be one of the elliptic curves. By
Zariski’s lemma (cf. e.g., [3, (8.2) Lemma]), CF = 0 for a fibre of f, which leads us to
C? = —3. By the adjunction formula, we have KgC = 3. On the other hand, since S is
a K3 surface, Kz consists of six exceptional curves of the blow-up S = 8. Namely, C
intersects with 3 of them.
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4. Classification of subpencils

Let S’ be the surface obtained as the complete intersection of a hyperquadric @ and a
hypercubic Y. Assume S’ satisfies the Assumption 1. Let S be a desingularization of S’.
For @, the following is known (see [6], [8]):

(4-1) The case where tk(Q) = 3.
Put E3 := Op1(2) ® O];?f, and let 73 : W3 := P(E3) — P! be the P2-bundle, T'3
the tautological divisor of W3 and F a fibre of 7. For the rational map @z, :
W3 — P*, we have Q = <I)|T3|(W3). Let T5 o C W3 be the relative hyperplane with
Ts0 ~ T3 — 2F. Then we have T3 o = P! x P1. Let 3; : T30 — P! (i = 1,2) be the
natural projection. We may assume [3; = 7r3|T3)0. If we put Z := <I>|T3|(T3’0), then
Z is a line in P4, and we have D7y ‘T?,,o = (. Z is a compound rational double
point of type Ay of Q.
(4-2) The case where tk(Q) = 4.
Put By := Op1(1)%% @ Op1, and let 14 : Wy := P(E4) — P! be the P2-bundle,
T4 the tautological divisor of W4 and F' a fibre of m4. We have QQ = CID‘T4|(W4).
For a section By = P(E4/Op1(1)%?) of my, we have that @7, (Bo) is a point. If
we put qo = <I>‘T4‘(BO), then @ has a three-dimensional rational double point of
type A at qo.
(4-3) The case where tk(Q) = 5.
For a point ¢ € P*\ Q, let v : P — P* be the blow-up at ¢. Then we have
P = P(Op3(1) @ Opsz). Let II : P — P3 be the Pl-bundle, H the tautological
divisor of P, Hy C P? a hyperplane and put E := v~1(g). We have H ~ E+I1* Hy.
If we consider @ C ]3, we have Q) ~ 2H. If we put IIg := II|g, then the morphism
g : @ — P3 is a double cover branched along some smooth hyperquadric.
Ilg is also considered as follows: For a hyperplane section fIQ of @), we have
dim |fIQ| = 4. There exists a base point free three-dimensional subspace V' C \fNI o
such that Ilg = ®y. For a hyperplane Hy C P?, g Hy is a hyperplane section of
Q. However, all the hyperplane sections cannot be written as above. On the other
hand, we have the following:

Lemma 2. For any hyperplane section I;TQ € \ﬁ@|, there exist a base point
free three-dimensional subspace V. C |Hg| and a hyperplane Hy C P3 such that
Hg = @3 Hy.

Proof. If we take V as fIQ € V and if we put Hq the image of ETQ, then we
obtain the desired equality. O

4.1. The case rk(Q) = 3 (The proof for (1) of Theorem 1)

Let Q C P* be a hyperquadric of rank 3. Let the notation be as in (4-1). If Y C P* is
a general hypercubic, then we may assume that Y is smooth and that the intersection
S’ := Q NY has rational double points over Z and no other singularity. Let S; C W3 be
the preimage of S by Q|75 We have S1 ~ 373, and there exists a divisor Jg of degree
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3 over P! such that Sl|T3’0 ~ B500. If Y is sufficiently general, then d¢ is reduced and
S1 is nonsingular, namely, if S is the minimal resolution of S’, then we have S; = S.
In order to classify subpencils of the complete linear system of the hyperplane section,
it is sufficient to classify those of S;. The hyperplane section of S is written as T3|s; .
Therefore, in order to achieve our goal, it is sufficient to classify the subpencil of |T3].

Let Xo, X1 € HO((’)W3 (T3)) and X5 € HO(OW3 (T5 — 2F)) be global sections defining
the homogeneous coordinates of each fibre of w3. Any member ¥ € H%(Oyy, (T3)) can be
written as

U =coXo+ a1 X1 +v2Xs, (co, 1 €C, P € H(Opn(2))). (4.1)
The divisor (¥) is irreducible if and only if (cg,c1) # (0,0), and we obtain the following:

Lemma 3. There exist three types of subpencil P of |T3] as follows:

(3-1) Any member of P is irreducible.
(8-ii) P has only one reducible member.
(8-iii) Any member of P is reducible.

There exists no other type of subpencils.

Proof. Let T3, T € |T3| be two distinct members. Assume that the global sections
defining T'3 and T4 are written as coXo + ¢1 X1 + 92 Xo and ¢ X + ¢4 X1 + 5 X2, respec-
tively. Let P C |T5| be the subpencil generated by T's and Tj5. If coch, # ci¢), then
any member of P is irreducible. If cocy = cicy and that at least one of (cg,c1) and
(ch,c}) is not equal to (0,0), then reducible members of P is only the one defined by the
global section of the form ¥4 Xs. If (co,c1) = (¢, ¢}) = (0,0), then any member of P is
reducible. ]

~

If T3 is irreducible, then we have T3 = ¥, as a variety. If we put Ag := 73|z, then
we have A3 = 2. If T is a fibre of the ruling 73 — P!, and if A, is the section with
Ao ~ A — 2T, then we have T3 9|1, ~ Ax.

Assume that T3, T3 € [T3| are irreducible and that the restriction Tj|z, is written
as Ay +I'1 +T's. In this case, we have T3|T&0 = T§|T3,o’ and this is the case (3-ii) of
Lemma 3. Hence, in the case of (3-i), the restriction T3|z, is irreducible.

Since S1|ry = Y1y ~ 3A¢, a general member of P is EH-special nonhyperelliptic curve

of genus 4 in the cases where P is of type(3-i) or (3-ii).

4.1.1. Type (3-i)

Let P be a subpencil of type (3-i). Then the base locus BsP is an irreducible ratio-
nal curve. For the pencil P over § corresponding to 73, the base locus BsP consists
of six points scheme theoretically. If P is generic in Gr(3,1), then BsP consists of six
points set-theoretically also, and distinct two members of P intersect at these points
transversally.

If ns : W3 — Wjs is a blow-up along Bsﬁ, we obtain the following commutative diagram:
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ng L Wg

| [

T370 >2plxpl — 5 P!

1
|

PL.
If we denote by A a fibre of 51 and by I' a fibre of 85, then we have
Wy = P(Op1 p1 (T') @ Op1,p1(24)).

If S5 is the proper transform of S; by 13, then 1 0 &5 : S — P! is an elliptic fibration,
and By 0 &+ Sy — P! is an EH-special nonhyperelliptic fibration of genus 4. If E is
an exceptional divisor of 13, then we have E 2 P! x P!. We may consider that T3 is
contained in Wg. The morphism @‘Qnng_M maps T3 ¢ onto a rational curve by contracting
each fibre of 55 onto a point. We obtain the following commutative diagram:

Wg L) W3

-

ng)Qa

where Q' — @ is the blow-up along the image of BsP by @1 Q' has a structure of a
quadric cone bundle 53 Q" — P! Furthermore, if we consider E = T; o (2 P! x P!), the
restriction of a fibre of &5 to E is a fibre of 8. We have W3 2 (OPl o p1 @O0p1, p1 (2A-T)),

which coincides with Equation (3.1). Namely, the morphism W3 — @' coincides with the
morphism Qv —Qin§2.2.If Tg, is the tautological divisor of Wg under this consideration,
we obtain Sy ~ 3T3+3¢;5T. Therefore, the image S3 of S in Q' intersects with the relative
vertex of Q’ at three points scheme theoretically. If S — S5 is the minimal resolution,

and if f : S — P! is the naturally obtained EH-special nonhyperelliptic fibration of
genus 4, then f has singular fibres of type (II-i-a), (II-i-b) or (II-i-c), and no other fibre
with positive H-index. S’ C @ is the image of S3 by Q' — @, and it is proved that the
complete linear system of the hyperplane section of the minimal resolution S of S’ has
the subpencil of type R3-1 of Theorem 1.

4.1.2. Type (3-i1)

Let us consider the case (3-ii). We use the same notation as in the proof of Lemma 3.
Since ¢ocy = ci¢), we can change one of the basis of the two-dimensional subspace
of H(Ow,(T3)) defining P to one of the form Vo Xy (g € H%(Op1(2))). Assume that
another basis s is written as s = 2 Xg + 1 X1 + ¢2X2 (co,c1 € C, g € HO(O (2))).
Let ¢q1,q2 € P! be points with (wg) = q1 + ¢2. Put Td = (s) and B3y = T3 ANEYE
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If we further put F; := 7T3_1(qi) and ¢; .= F; N T} (1 =1,2), we have
BSﬁ = Bg,o Uy Uls.

We have T\g 2 ¥, and if we consider that B3¢ is a divisor of T\g, then B3 = Ay holds.
On the other hand, if we denote by ¥ the pull back of the hypercubic Y (C P3) defining
our surface S’, then we have 17|f3 ~ 3Ap. Hence, if we denote by S; the pull back of
S'(=QNY) to Ws, one of Bgg C S; and B3NSy = 0 holds. The former case is
excluded because P does not have a fixed component.

From now on, we consider the case (3-ii) by dividing it into two cases ¢; # ¢ and
q1 = q2.

(3-ii-a) The case ¢1 # 2

Assume g1 # go. We transform W3 birationally as follows:

Step 1 Note that B3 can be written as B3 o = P(Op1(2) @ O;}f/(’)w (2) ® Op1). Let
p1: Wg‘ — W3 be the blow-up along Bso. We have Wg = P(Os,(Ao) @ Os,) and the
following commutative diagram:

Wg LWS

l |

Yy —— PL

Put ¢ : Wg,v—> Y. Then ( is a El—bundle. If we let T3 be the proper transform of f;
by p1, then T3 can be written as T5 = (*A{, for some A}, € |Ag|. Namely, there exists a
subpencile Py C |Ag| such that the proper transform of any member of P is the pull back
of some member of Py. Note that there exist two base points of Py, say qi and q2- For
the ruling p : ¥o — P!, we may assume u(q;) = ¢; (i = 1,2). If we consider ¢; C W3, then
¢; = ¢~1(g;) holds. Furthermore, if we put I'; = u~'(¢;), then we have Ao, +T'1 +T5 € Py
and its pull back by ¢ is the divisor defined by 'KZQXQ.

Step 2 Let ps : Wg — W3 be the blow-up along ¢1 U £s. If we let ps : Y - Y5 be the
blow-up at ¢; and g2, then we obtain the following commutative diagram:

E ﬁ 22.
P2

Furthermore, we obtain the morphism i : ¥ — P! whose fibre is a proper transform of
a member of Py by pa. Put & := p, *(¢i) (i = 1,2), and denote by I'; the proper transform
of T; by p2 (i = 1,2). Let 91 : ¥ — %’ be the blow-down of I'1, and 5 : ¥ — 3y the
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blow-down of the image A’_ of A, by v1. If Aj) is the section of ¥; — P! with A'O =1,
we obtain

P80 ~ 1 (75 (240) — AL) — T,

and hence, W; coincides with Equation (3.4). The only singular fibre of the morphism
1L o( is the inverse image of AOO +T'1 + T2 by ¢, where C is as in the above commutative
diagram. The preimage S3 C W3 of S’ C 9 has a singular fibre with H-index 6/7, which
is the case (II-ii-b). Then it has been proved that A has a subpencil of type R3-2 of
Theorem 1.

(3-ii-b) The case g1 = g2

Assume g1 = ¢o. Let p1 : Wg — W3 be as in (3-ii-a). Furthermore, let ps : Wg — Wg
be the blow-up along ¢; (= (). If T is as in Step 1 of (3-ii-a), then the base locus of |Ts|
is a rational curve E and any two general member of \T3| intersect along ( transversally.
Let p3 : W3 — W3 be a blow-up along ‘.

If ¢ fq e ¥, is the point with (~1(q1) = 1, then the subpencil Py of |Ag| corresponding
to P satisfies BsPy = {ql} Any two general member of Py contact at ¢; with intersection
multiplicity 2. Let ps : S Yo be a blow-up at ¢; and 730 the pencil consisting with the
proper transforms of the members of Py. Then we have BsP, = {q}} for some point ¢} on
the exceptional curve of ps. Any two general members of Py intersect at ¢} transversally.
If p3 : ¥ — Sisa blow-up at ¢}, then we obtain the following commutative diagram:

W P3 ﬁ/\?) p2 ’V‘Vi?’
Y — ¥ — 5
pP3 P2

Note that W3 = P(Ox(p; p3A0) & Ox ) holds. Put B := p; (1) and Ey := 53 (),
and let I’y be the fibre of u containing ¢;. Furthermore, let Ag € |Ag| be a member
contammg q1, and Ao, F1 the proper transform of A and I'y, respectively. Moreover, put
Ey :=p3 Y(q}), and let Af and E1 be the proper transform of Ay and F1, respectively.

If we consider I’y C 3, then Toisa (—1)-curve, and we obtain the blow-down pf : ¥ —
. If we consider that Ay and Ej are the curves of ¥/, then they are (=1)-curves. By
blowing down Ej, we obtain the birational morphism p} : &/ — P! x P!.

Under the above consideration, we obtain

s Ps Do ~ p'5(p'5(2E2 + A)) — Ey) — T,

which leads us to the fact that W3 coincides with Equation (3.5). Hence, if we put
p1 = u(q1), then S has a singular fibre of type (II-ii-c) over p; and no other degenerate
fibre with positive H-index. It has been proved that A has a subpencil of type R3-3 of
Theorem 1.

Denote by F = 2C + Z?:l E; the degenerate fibre with H-index 6/7 as in 3.2.2.3.
By checking the birational transformation of W3 in detail, we obtain the following.
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Namely, three members of {E;}5_; (say E1, Eo and E3) are contracted to the rational
double points on the singular locus of Q. In S, E; (i = 4, 5, 6) intersects with a (—1)-curve
&; which intersects every fibre of f. By contracting & (i = 4,5,6), E; changes to a
(=1)-curve, and other fibres intersect at three points transversally. By contracting E;,
we obtain the pencil whose base locus consists of three points set theoretically, and any
two members contact at these points with intersection multiplicity 2. The image of C
intersects with other member transversally at these three points.

4.2. The case rk(Q) = 4 (The proof for (2) of Theorem 1)

Let Q C P* be a hyperquadric of rank 4. Let the notation be as in (4-2).
Consider the following two short exact sequence:

0— Op1 = By — Op1(1)%2 = 0,

0= Op1 = E4 — Op1(2) ® Op1 — 0.

We have two types of the tautological divisor. The first one is isomorphic to ¥ = P* x P!
and the second one is isomorphic to X5. These are obtained as follows:

Let Xo, X1 € H°(Ow,(Ty — F)) and X, € H°(Ow,(T4)) be global sections defin-
ing the homogenecous coordinates of each fibre of 4. Any ¥ € H°(Ow,(T})) can be
written as

U =oXo+ 1 X1+ 2Xa  (Yo,91 € H(Op1(1)), ¢z € C.)

The following lemma is trivial:

Lemma 4. Let the notation be as above. Then (V) is isomorphic to P! x P! if and
only if co # 0. (V) is isomorphic to Xg if and only if co = 0 and ¥y and 1; have no
common zero. (V) is reducible if and only if co = 0 and ¥y and v ; have a common zero.

Definition 1. In the above notation, let us call Ty € |Ty| the tautological divisor of
type (to) if Ty = P x P! and the tautological divisor of type (t2) if Ty = Xo. Note that any
member of |Ty — F| is irreducible and isomorphic to ¥;. For any member T" € |Ty — F|,
let us call the divisor T' + F the tautological divisor of type (t1).

Lemma 5. Let the notation be as above. The classification of subpencils P of |Ty4| is
as follows:

(4-1) P is generated by the tautological divisors of type (to) and (t2).
(4-11) P is generated by the tautological divisors of type (to) and (t1).
(4-iii) P is generated by two tautological divisors of type (t1).

(4-iv) P is generated by the tautological divisors of type (t2) and (t1).

Proof. Let ¥ and ¥ be the global sections of Oy, (T4) generating the two-dimensional

subspace V C H%(Ow, (T4)) corresponding to P. Assume ¥ and U’ are written as ¥ =
Yo Xo + 1 X1 + c2Xp and U = (X + 1 X1 + 5 Xo.
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First, assume co # 0. Put ¥ := U' — (¢4 /co)W. Assume it is written as U = ¢ X +
i X1. If ¢ and 97 are linearly independent, then P is of type (4-1). If ¢ and ¢} are
linearly dependent, then P is of type (4-ii).

Next, assume ¢y = ¢4 = 0. If at least one of ¥ and ¥’ is of type (t1), then there is
nothing to prove. So we may assume 1o and ¢; do not have a common zero and neither
do ¢ and Y. If ¥y and 1) are linearly dependent, then P is of type (4-iv). Assume that
the pairs (¢, ¥() and (¢1,17) are both linearly independent. Furthermore, assume that
it is written as v = Ay + By} and ¢ = Ciyy + Dy} for A, B,C, D € C. Let m be the
solution of the quadric equation

(4.2)

m—A -C —0
B —m+D ’

and (z,y) = (k,1) the nonzero solution of

(L)) ()

Then we have ki + ¢y = m(ki1 +1¢]) and the tautological divisor defined by k¥ + 10’
is of type (t1). If Equation (4.2) has two distinct solutions, then P is of type (4-iii).
If Equation (4.2) has a multiple solution, then P is of type (4-iv). O

4.2.1. Type (4-i)

We may assume S is contained in W, since we assume that S does not go through the
vertex of Q. Let P be the pencil of type (4-i) defining P. Then there exists a tautological
divisor Ty € P of type (t2), and all the other members are the tautological divisor of
type (to). Since we assume that a general member of P is smooth, it is an EH-general
curve of genus 4. Moreover, there exists a member that is an EH-special curve of genus
4. If P is generic in Gr(3,1), then the base locus of P consists of six points and any
two distinct member intersects at these points transversally. Hence, P is of type R4-1 of
Theorem 1.

Remark 5. Let Ty, T, € P be of type (to). For the image @ C P* of Wy, we may
consider as Ty, T; C Q. There exist hyperplanes H, H' C P* with H|g =Ty and H'|g =
T;. Put P := HN H'. Then we have P = P2 Let o : X — P* be the blow-up along P.
We have X = P(Op1(2) @ Op1(1)®3). Let T be the tautological divisor of X, § a fibre of
the P3-bundle 3 : X — P! and Q the proper transform of @ by o. Then Q ~ 2% — 2§
holds. Namely, X and 9 are the latter of the case of [16, Remark 3].

4.2.2. Type (4-i1)

Similarly to 4.2.1, if P is of type (4-ii) and generic in Gr(3,1), then the corresponding
pencil P on S is of type R4-2 of Theorem 1.
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4.2.8. Type (4-iii)

Let ¥ and ¥; be the basis of two-dimensional subspace of H°(Oyw, (T})) corresponding
to P. Assume that W; is written as U; = ¢, X; (1; € H°(Op1(1)) for i = 0,1. Let p; € P*
be the point such that ¢;(p;) = 0, and put F; = 7, *(p;). Assume py # p1. Denote by By
the section of 7y defined by Xo = X1 = 0. For ¢ = 0,1, denote by ¢; the intersection of
F; and X, (;), where o is the permutation of 0 and 1. Then we have BsP = By U £y U {;.

Let p; : W4 — Wy be the blow-up along Bg. Consider that ¢; (i =0, 1) is the curve of
W4, and let ps : W4 — W4 be the blow—up/\along lo U 1. Then by the same argument as

in case (3-ii-a) of § 4.1.2, we obtain that W, coincides with Equation (3.3) and that the
subpencil of type R4-3 of Theorem 1 exists.

4.2.4. Type (4-iv)

We may assume that the basis ¥ and ¥’ of the subspace corresponding P are written as
U = 1hy X+ 11 X1 and ¥’ = 91 X;. Hence, in the proof of Lemma 5, we have C = D = 0.
If the quadric equation (4.2) has the multiple solution, we have A =0. Hence, we may

assume ] = 1.
Let By be as in the previous subsection, and {o be the curve defined by ¢o = X1 = 0.

Then we have BsP = By U¥y. Let py : W4 — W4 be as in the previous subsection and

W4 — W4 the blow-up along £y. Then W4 has the structure of the P!-bundle ¢, :
W4 — P! x P!, Furthermore, if we put qo := (4({p), and if we denote by vy : Y — Pl x P!
the blow-up at qo, then we have W4 &~ W4 Xpl y pl Y. Let (4 W4 — ¥ be the obtained
P'-bundle. For the proper transform i; of T4 by p1 o po, there exists an infinitely near
point gg € S with Bs ‘ﬁ‘ = Z;l(ijo). Put ¢, := Z;l(ifo).

Let p, : Wy — /V[74 be the blow-up along ¢;. By the same argument as before, we
obtain that W coincides with Equation (3.4).

In this case, the only degenerate fibre of f with positive H-index is of the form Cy +
Cy + Z?:1 E;, where C; and Cs are elliptic curves, and F; is a (—2)-curve. f has three
sections E; (¢ = 1,2,3) as (—1)-curves. We may assume E;F;, = 1 and E;E; = 0 if and
only if i #j. Furthermore, we have E;C; = 0. Let vy : S — S; be the blow-down of
E1,Es and E3. Then the images of general fibres of f by v intersect at three points. Let
vy 1 S1 — S be the blow-down of the image of F; + E5 + F3 by v1. Then the images of
general fibres of f by vy o1y contact at three points with intersection multiplicity 2, while
the image of Cj intersects the images at these points transversally. Hence, the obtained
subpencil is of type R4-4 of Theorem 1.

4.3. The case rk(Q) = 5 (The proof for (3) of Theorem 1)

Let @ be a hyperquadric of rank 5. By the similar argument to Lemma 2, we obtain
the following:

Lemma 6. Let the notation be as in Lemma 2. For any subpencil Pg C \HQ|, there
exists a double covery : Q — P3 such that any member of Pg is mapped onto a hyperplane
by v as a branched double cover.
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Let S C @ be our surface and P the subpencil of the complete linear system of
the hyperplane sections. Let P be the subpencil of the complete linear system of the
hyperplane sections of () whose restriction to S is P. Let v : Q — P3 be the double cover
of Lemma 6. If P is the subpencil of the hyperplanes of P3 corresponding to P, then
¢ := BsP is a line of P3. Let @y C P? be the branch locus of 7. We have Qo = P! x P'.

There are following three cases:

(5-1) ¢ and Qo intersect at two distinct points.
(5-ii) ¢ and @ contact at a point.
(5-iii) ¢ C Qo holds. In this case, ¢ is a fibre of one of the natural projection for the
direct product.

4.3.1. The case (5-i)

Let us consider the case (5-1).

Let P, be the restriction of P to Qo- If g1, g2 € Qg are the points with £NQo = {q1, 2},
then we have BsPy = {q1,¢2}. Let n; : Qo — P! be the natural projection for the ith
element (i = 1,2), Ay; the fibre of ; with ¢; € Ay; and I'y; the fibre of 1, with g; € I'y;.
We have A11+F21, A12—|—F22 € PQ. Furthermore, any member of PO\{All —1—1_‘217 Alg +F22}
is irreducible and non-singular. Hence, P has two quadric cones and any other member
is a smooth hyperquadric. If we consider BsP as a divisor of a general member, then
it is a smooth diagonal divisor, while if we consider it as a divisor of the quadric_cone,
then it is smooth section not going through the vertex. If we put ¢ := BsP, then /¢ is an
irreducible and non-singular rational curve. Let P be the pencil of the complete linear
system of hyperplanes of P4 corresponding to P. We have H := BsP is a two-dimensional
subspace with H|g = ¢.

Let a : X — P* be the blow-up along H. Then X = P(Op1(2) & Op1(1)®3). Let
B : X — P! be the natural projection, T the tautological divisor of X and § a fibre of 3.
If we put E := o' (H), then we have E = P! x P? and E ~ T — 2. If Q is the proper
transform of @) by «, then we have Q ~ 2% — 2F. This situation is similar to that of 4.2.1.
The differences from 4.2.1 are that £ is smooth and that the fibration Q — P! has two
degenerate fibres of rank 3. Namely, the discriminant locus of £ is a reduced divisor of
degree 2, and hence, f is of type (I-i). In a general case, BsP consists of six points over
Z, and general members intersect at these points transversally. We obtain the pencil of
type R5-1 of Theorem 1.

4.8.2. The case (5-ii)

The similar argument to the case (5-1) is applied. We use the same notation. The
base locus BsPy consists of one point, say ¢ € Qp. Let Az and I's be fibres of the
natural projection 17 and 72, respectively, such that A3NI's = {q}. Py contains Az +T's
and all the other members of Py are smooth diagonal divisors contacting at ¢ with
intersection multiplicity 2. P contains a quadric cone, and any other member is a smooth
hyperquadric. Since BsP is a line in P? contacting with Qo at_g, the base locus BsP is a
union of two rational curves intersecting at a point. Put ¢; + ¢5 = BsP.

Let a : X — P* be as in the case (iii-a). Moreover, we use the same other notation
related to X. Then 9 is a relative hyperquadric and a general member of Q — P! is
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isomorphic to P' x P'. There exists only one degenerate fibre that is isomorphic to the
quadric cone. Namely, the discriminant locus of 9 is a non-reduced divisor of degree 2 and
we obtain the subpencil of type R5-2 of Theorem 1. If P is generic, then BsP consists of
six points. Three of them are on ¢, and the rest three points are on f5. General members
of P intersect at these points transversally one another.

4.3.3. The case (5-iii)

Let us consider the case (5-iii). All the members of P are quadric cones, and they
contact along a generating line to one another. On the other hand, the vertices of any
two distinct cones are the distinct points on the generating line. Let ¢ be the generating
line, and « : 9T — P* the blow-up along ¢. We have 9 = P(Op2(1) & O]fff), which is a
P2-bundle over P2. Let n : 9t — P2 be the projection Denote by Tyn the tautological
divisor of M. Let L € P? be a line, and put E := a~!(¢). We have Ton ~ E + n*L and
E = P! x P2, If Q is the proper transform of @ by «, then we have Q Ton + n* L.
Denote by g the natural projection E — P? and by 8 the natural projection E — P!, If
we consider the restriction Q|g as a divisor of E, then we have

Qle ~ Tk + niL,

where T is a fibre of 8. The restricted morphism ng @\E — P? coincides with the
blow-up of P? at a point, namely, we obtain Qg = %;. Put E := IE\Q Then E is the
exceptional divisor of the blow-up g Q - Q. If HQ is the proper transform of HQ €
P(c |Hg)), then we have HQ =) and all the members of |HQ| intersect along some
fibre (say T'g) transversally Moreover, HQ and E intersect along I'g transversally. The
restriction of HQ to E is the (—1)-curve, and hence, it is the section of the ruling E(

Y1) - PLIfa: Q — Q is the blow-up along I'y, we obtain the following commutative
diagram:

Q —— Q

i J1s

2 —— P2,
M1

If we consider ﬁQ as a divisor of @, then ﬁ@ is the pull back of a fibre of p1, and the
restricted morphism 7] : E — Y1 is an isomorphism. Cj has the structure of X-bundle
over P!, and the discriminant locus of CAQ is zero.

For our K3 surface S, if we assume ¢ C S, then P has a fixed component, and this
case is excluded by the assumption that a general member of P is smooth. Hence, we
may assume ¢ ¢ S. Then S and £ intersect at three points scheme theoretically. Put
{p1,p2,p3} = SNL. For i = 1,2, 3, there exists a member Hg ; € |Hg| such that p; is the

vertex of fIQl The curve &~ !(p;) is mapped onto a fibre of y; isomorphically. Namely,
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the set of degenerate members of P is one of (II-i-a), (II-i-b) and (II-i-c), and P is the
subpencil of type R5-3 of Theorem 1.

From now on, we assume that p; # p; if and only if i #j. Let F; be the member of P
contained in fIQJ- (i = 1,2,3). General members of P are irreducible and non-singular
and contact at pi,ps and ps with intersection multiplicity 2. On the other hand, F;
intersects with a general member at py(;) and p_2 o) transversally and contacts at p;
with intersection multiplicity 2, where o is one of the nontrivial cyclic permutation of
1,2 and 3 of order 3.

Let f : S — S be as before. Then f has three sections Cy,Cs and C'3 that are
(—1)-curves. Any degenerate fibre of f with positive H-index is of the form &; + D;,
where &; is a (—2)-curve that is the preimage of &@~!(p;), and D; is a hyperelliptic curve
of genus 3. We may assume C;&; = 1 and that C;&; = 0 if and only if ¢ #j. If C¢, C'» and
C5 are contracted to smooth points, then the images of &1, &2 and &3 are (—1)-curves. If
these three (—1)-curves are contracted to smooth points, we obtain S and P. The images
of any two distinct general members contact at three points with intersection multiplicity
2, while the image of D; has an ordinary node at p; and contact at p,(;) and p_2 ) with
intersection multiplicity 2.
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