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ABSTRACT 
Increasing product complexity and individual customer requirements make the design of optimal 
product families difficult. Numerical optimization supports optimal design but must deal with the 
following challenges: many design variables, non-linear or discrete dependencies, and many 
possibilities of assigning shared components to products. Existing approaches use simplifications to 
alleviate those challenges. However, for use in industrial practice, they often use irrelevant 
commonality metrics, do not rely on the actual design variables of the product, or are unable to treat 
discrete variables. We present a two-level approach: (1) a genetic algorithm (GA) to find the best 
commonality scheme (i.e., assignment scheme of shared components to products) and (2) a particle 
swarm optimization (PSO) to optimize the design variables for one specific commonality scheme. It 
measures total cost, comprising manufacturing costs, economies of scales and complexity costs. The 
approach was applied to a product family consisting of five water hose boxes, each of them being 
subject to individual technical requirements. The results are discussed in the context of the product 
family design process. 
 
Keywords: Product families, Numerical methods, Product modelling / models, Complexity, 
Optimisation 
 
Contact: 
Rötzer, Sebastian Josef 
Technische Universität München 
Mechanical Engineering 
Germany 
roetzer@pl.mw.tum.de 

https://doi.org/10.1017/pds.2021.587 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.587


3260  ICED21 

1 INTRODUCTION 

Due to globalization, companies face strong competition. Companies therefore strive to fulfil the 

customer needs in the best possible way. As customer needs are not uniform, companies are often 

forced to provide a wide variety of products. However, offering a large range of products usually goes 

along with an increasing internal variety of parts and components. Due to the high variety and the 

associated complexity, costs increase. Therefore, the product designers need to apply new strategies to 

decrease costs, while maintaining an adequate variety of products for the customers.  

One effective strategy is creating product families, in which components can be shared among product 

variants. The designer’s task is to determine which components will be shared among the product 

variants. In practice this task involves choosing (1) the components to be shared, (2) the product variants 

that will use the common components and (3) the optimal design values for the components.  

While this task might be manageable for smaller product families, it quickly becomes complex with an 

increasing size of the product family and with increasing dependencies between the parts of the product. 

Algorithms numerically optimize product families subject to the costs. However, most algorithms are 

not universally applicable to all product family design tasks. In the following we compare existing 

approaches for product family optimization and then present a new approach which closes the gap to a 

group of optimization problems that we observed as essential for industry practice. 

2 RELATED RESEARCH 

2.1 Variant management and product family design 

Designing a family of products to leverage the effect of component standardization represents an 

important opportunity for industrial companies, since it can reduce the costs of development, logistics 

and production (Robertson and Ulrich, 1998). On the other hand,  too high standardization rates can 

reduce the customer satisfaction (Robertson and Ulrich, 1998), or require an over-specification of the 

components, causing overheads for product functionality and costs (Fujita and Yoshida, 2004). The 

aim of variant management is therefore to find the right level of commonality for each component to 

strike a good balance between the beneficial and prejudicial effects of standardization.  

Besides qualitative frameworks developed for instance by Franke (1998), Long et al. (2009) or 

Johannesson et al. (2017), other works provide quantitative approaches for product family design 

which rely on mathematical models of component commonality and of its influence to enable 

algorithm-based optimization (Simpson et al., 2006b). The same way as in variant management, 

product family design aims at finding a good trade-off between commonality and differentiation and at 

designing the component variants (Simpson et al., 2001).  

Within the field of product family design, Simpson et al. (2006a) identify two main categories of 

product families. In module-based product families, new products are created by combining existing 

functional modules in different ways while, in scale-based product families, design variables (DV) 

take different values to scale components and create new products with different performance levels 

that fulfil their respective requirements. The approach presented in this paper is developed for the 

design of scale-based product families. 

2.2 Approaches for quantitative optimization of scale-based product families 

Quantitative optimization approaches provide an objective basis for decision-making and to 

numerically estimate the performance of a product family. They rely on optimization algorithms that 

aim at finding a value of a decision vector that minimizes one or several criteria evaluated by an 

objective function, subject to feasibility constraints. In product family design, the decision vector can 

include the design variables that characterize the dimensions of the products and a commonality 

scheme (Simpson, 2006). 

To identify the existing approaches, which solve such optimization problems, we conducted a 

literature study on the field of quantitative product family design using the Scopus database. From the 

obtained results, we retained only available sources that describe an optimization approach that 

includes the product design variables and the commonality scheme in their decision vector.  

To model the effect of component commonality, many approaches include a Commonality Metric 

(CM) as well as the product performances in a multi-objective optimization process. The CM is a 

measure of the degree of standardization of a product family that is assumed to be correlated with the 
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overall profit of the product family. On the contrary, the cost-model presented by Rötzer et al. (2020b) 

avoids that hypothesis and directly predicts the impact of standardization on the product family cost. 

Existing approaches suggest several ways to reduce the complexity of the considered optimization 

problem. A possible way is for instance to enforce a component commonality by considering only 

discrete values of the design variables (Liu et al., 2011). Some approaches assume a restrained 

commonality by considering standardizing a component for either all or none of the product variants 

(Simpson and D’Souza, 2004), as opposed to a generalized commonality where a component variant 

can be shared by subsets of the product variants (Fellini et al., 2006). Prior to the optimization itself, 

some approaches reduce the pool of candidate commonality schemes using a pre-study to identify the 

most relevant ones. Fellini et al. (2006) first optimize each product individually and perform a cluster 

analysis to identify standardizations that are likely to be relevant. Wei et al. (2019) compute the 

sensitivity of the product performances with respect to each design variables and chose the variables 

with little influence as standard variables.  

Besides the optimization heuristics they use, the optimization algorithms differ in the way they 

organize the optimization of the commonality scheme and the design variables. Some algorithms 

separate the optimization on two levels: an upper level, which performs the optimization of the 

commonality scheme, and the lower level which evaluates each pattern by optimizing the design 

variables within it. On the contrary, in one-level algorithms, both the commonality scheme and the 

design variables are optimized at the same time. 

Approaches that eliminate candidate solutions, such as  Fellini et al. (2006), Chen and Wang (2008), 

Wei et al. (2019), Simpson and D’Souza (2004), Liu et al. (2011) or Wei et al. (2019) reduce the 

dimension of the problem, but also exhibit two weaknesses: First, the efficiency of the optimization 

algorithms used for such reduced problem formulations is not proven. Second, the mathematical 

modelling of the commonality scheme required to embed it within the decision vector is not suitable 

for a problem with a generalized commonality.  

To model the adverse effect of a too high commonality, Simpson and D’Souza (2004), Fellini et al. 

(2006), Li and Huang (2009), Khajavirad et al. (2009), Liu et al. (2011) or Chowdhury et al. (2013) 

perform a multi-objective optimization to maximize the commonality as well as a measure of the 

product performance. Some of them build a Pareto-front between those objectives (Simpson and 

D’Souza, 2004; Chen and Wang, 2008; Li and Huang, 2009; Wei et al., 2019), while other aggregate 

them in a meta-objective function (Khajavirad et al., 2009; Liu et al., 2011; Chowdhury et al., 2013). 

In both cases, the cost or profit are not explicitly estimated and the decision making therefore heavily 

relies on human judgement. However, the algorithms used by approaches that rely on the meta-

objective function can be suitable for our problem formulation.  

Although the approach presented by Fujita and Yoshida (2004), which relies on gradient-based 

algorithms to optimize the design variables, requires therefore the continuity of all objective and 

constraint functions. That requirement makes it inappropriate for discontinuous problem statements. 

3 METHOD 

The goal of our approach is to determine the optimal set of common components for a product family. 

For the product designer the approach involves three major steps. First, she/he needs to create a model 

of the problem. This includes (1) a technical model, covering the dependencies between the design 

variables of the product and its quantities of interest and (2) a parametric cost model. The second step 

is the optimization itself. Here, the designer applies the optimization algorithm that we present in this 

paper. In the last step the designer needs to interpret the optimization results which involves deciding 

on a commonality scheme and choosing the values of the design variables.  

The technical model quantifies the technical dependencies between the design variables and the 

quantities of interest (see Roetzer et al. (2020)). The goal of the cost model is to decide on the optimal 

design of the product family. Therefore, the cost model should cover all relevant cost effects. 

However, to reduce the effort for creating the cost model, most approaches only cover certain cost 

effects: Chowdhury et al. (2011) include the material cost as a function of the design variables. Liu et 

al. (2010) account for the effect of increased production volumes on the production cost. Park and 

Simpson (2008) use activity-based-costing to cover the aspect of complexity cost caused by increased 

variety. Our experience from consultancy projects shows that decisions towards the optimal level of 

variety are supported best by combining the following three cost effects simultaneously: 
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• Manufacturing cost dependent on design values of the components 

• Complexity cost dependent on the number of variants 

• Economies of scale dependent on the production volume of the components 

Those costs depend on the design of the product family. If a component is shared among large shares 

of the product family, the component will be over-dimensioned, which results in increased 

manufacturing cost. Complexity cost decrease with a lower number of component variants. And 

finally, economies of scale result from sharing a component between multiple products, thus 

increasing its production volume. In our approach we use a parametric cost model presented by Rötzer 

et al. (2020). It covers these three cost aspects.  

The analysis of the optimized commonality scheme requires a representation of the commonality. We 

use a representation based on binary variables where the value is 1 if a component is shared between 

two products. Similar representations of the commonality scheme are used by Chowdhury et al. (2013) 

or Fujita and Yoshida (2004). On one hand, the use of the binary variables makes it easy to evaluate 

different commonality schemes. On the other hand, the number of variables to store the information 

increases exponentially with the number of components and products. To decrease the combinatorial 

challenge, we apply a simplification that is reasonable for scale-based product families: We only 

consider commonality schemes, in which components are shared between “neighbouring” product 

variants. This means solutions, in which a component would be only shared for example among the 

largest and smallest product variants are excluded a-priori from the evaluation. Using this 

simplification, the combinatorics of sharing components within a product family increases linearly 

with the number of products - and not exponentially anymore. 

As stated in the literature review, product family optimization can be solved as one-level or two-level 

optimization. We adopt the idea of two-level optimization from Fujita and Yoshida (2004) as it makes 

it possible to divide the complex optimization problem and solve the sub-problems more efficiently 

with appropriate algorithms. On the upper level, we search for the optimal commonality scheme, 

represented by the binary variables. On this level, we use a genetic algorithm, due to its strong ability 

to solve combinatorial problems. On the lower level, the algorithm determines the optimal values for 

the design variables of the components for a given commonality scheme.  

The optimization problem can be formulated as follows, where 𝝃 represents the current commonality 

scheme passed from the upper to the lower level, 𝒙 the DVs of the components of the product family, 

𝒈(𝒙) the technical requirements on the product, and 𝐶𝐹 the total cost of the product family: 

min
𝝃

𝑓(𝝃, 𝒙) = 𝐶𝐹  

Subject to 𝝃 ∈ {0; 1} 

min
𝒙

𝑓(𝝃, 𝒙) = 𝐶𝐹                                  

Subject to {
𝒈(𝒙) ≤ 0

𝒉(𝒙, 𝝃) = 0
𝒙𝒍 ≤ 𝒙 ≤ 𝒙𝒖

 

While the design variables 𝒙 are varied on the lower level, the binary commonality variables 𝝃 are 

varied on the upper level and are fixed on the lower level. To further reduce computational effort, we 

do not explicitly enforce a specific commonality scheme on the lower level by an equal constraint 

function 𝒉(𝒙, 𝝃), but directly adopt the number of design variables used according to the specific 

commonality schemes. Thus, less function evaluations are necessary and the equal constraint function 

does not need to be ensured. Figure 1 depicts our algorithm to solve the optimization problem 

formulated above. 

For the lower level optimization, Fujita and Yoshida use sequential quadratic programming (SQL), 

which works for continuous problems. However, the experience from industry projects shows, that 

many industry problems involve discontinuities of the optimization problem. For this reason, we saw 

the necessity to choose an algorithm that can handle discontinuous functions. While the MATLAB 

implementation of the genetic algorithm was not able to find results in our test, particle swarm 

optimization (PSO) yielded good results. Other works on product family optimization also use PSO as 

the optimization algorithm (Wang, 2011; Chowdhury et al., 2013). We think that also other heuristic 

algorithms like simulated annealing or ant colony optimization could prove successful in this task. Our 

approach allows the exchange of the used algorithm. Due to the stochastic nature of PSO the results of 

the optimization of the design variables are subject to variance. This means, that the results  
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Figure 1. Flow chart of the two-level product family optimization (TL-PFO) algorithm. Upper 
level with GA and lower level with PSO 

differ from one run to another. To cope with this problem, the lower level optimization is carried out 

several times for each commonality scheme and the best result is taken. The number of evaluations for 

each pattern is a parameter of the approach. The higher the parameter, the lower the impact of the 

variance. In return, the computational effort increases with the number of evaluations. 

During an optimization run, the GA on the upper level might generate the same commonality scheme 

twice or more in different generations. In this case, the evaluation of this commonality scheme on the 

lower level would have to be carried out repeatedly. To avoid this unnecessary effort, we safe the 

results of the lower level evaluation. So, the second time an individual appears, the algorithm will use 

existing results without additional computation. 

The process of determining an initial population for the PSO has a strong impact on the computation 

time of the algorithm and even influences on the quality of the results. Our approach follows this 

logic: First, we build a latin hypercube sample (LHS) of the design space. The size of the hypercube 

equals the size of the initial swarm. Samples, that violate the constraint functions, are modified by 

solving a multi-objective goal attainment problem. If some samples cannot be turned into good 

designs, they will be replaced by generating a new LHS. In the case, that in the first round all samples 

are invalid and none can be turned into a good sample, we assume that no solution exists for the 

currently analysed commonality scheme. Then a new commonality will be determined by the GA on 

the upper level. Figure 1 shows the steps our two-level product family optimization (TL-PFO) 

approach and visualizes the interaction between upper and lower level. 

4 RESULTS 

We applied TL-PFO on an example from an industry project of a consulting company. First, a 

statistical evaluation performed on many optimizations for reduced product families using different 

sets of cost parameters made it possible to check the plausibility of the results. Then, we discuss the 

results of TL-PFO using the complete product family.  

4.1 Application example: a family of garden hose boxes 

The considered application example consists of a family of water hose boxes composed of three 

components  each: a  spool where the  hose is rolled up, a cylindric housing and a spring to automatically 
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Figure 2. (1) design variables of the hose box, (2) Projection of feasible and unfeasible hose 
box designs; blue spikes indicate discontinuous dependencies  

roll in the hose (see Figure 2). A particular box variant is defined by ten design variables and ten 

quantities of interest that are deduced from the design variables using the mathematical model 

developed by Rötzer et al. (2020). The box variants differ from one another according to the hose 

length they must store: 15m, 20m, 25m, 30m and 35m. 

Figure 2 shows the solution space for a hose box variant. In this case two design variables illustrate a 

discontinuous effect: 𝑑𝑟 is the diameter of the spool where the hose is rolled up; 𝑙𝑆: length of the 

spring strip. The relevant requirement is the minimum insertion force (𝑦4), which is necessary to roll 

up the hose automatically. 𝑙𝑆 (together with other design variables) determines the available torque of 

the spring. 𝑑𝑟 (together with other design variables) determines the radial position of the hose. The 

torque of the spring together with maximum radial position of the hose (lever) defines the minimum 

insertion force available, which is compared against requirement 𝑦4. If the minimum insertion force is 

too small (𝑦4 violated), it is indicated by the blue area in the diagram. We can see that increasing 𝑑𝑟 

lead to lower minimum insertion forces and thus violate the requirement 𝑦4. Increasing 𝑙𝑆 increase the 

available torque and thus, can compensate this effect. Increasing 𝑑𝑟 also increase the maximum length 

which can be rolled up by the spool. At certain value we can save a radial hose layer. Then the lever 

decreases, and the available minimum insertion force increases by leaps and bounds. These effects 

induce spikes that create local optima, which cause problems for gradient-based optimization 

algorithms – and also for designers, as they are highly non-linear.  

An optimization algorithm, and more likely a gradient-based algorithm, might get stuck in those spikes 

while looking for the most cost-efficient design. This reduces the quality and the repeatability of the 

results. As a result, the performed plausibility check also aims at assessing the impact of those local 

optima on the performance and robustness of the algorithm. 

4.2 Plausibility check of the algorithm 

We restricted the product families to the two smallest box variants to reduce computational effort. We 

defined three cost scenarios: in the pessimistic scenario, the economies of scales and complexity costs 

are zero and component commonality has therefore no effect on the total costs while, on the contrary, 

it is very beneficial in the optimistic scenario. In the realistic scenario, it has a moderate impact on the 

costs. For each cost scenario, we performed 100 optimizations of a family including only the 15m and 

20m box and 50 optimizations of a family including the three smallest boxes (15m, 20m and 25m). 

Figure 3 shows the costs obtained by the optimization runs for the 15m and 20m box. For the 

pessimistic and realistic scenarios, the relative standard deviation of the obtained total costs amounts 

respectively 1.32% and 2.47%. For the optimistic scenario, its value reaches 10.86% due to a small 

number of obtained costs laying above the mean value. This phenomenon illustrates the possible 

impact of local optima on the results and the robustness of the algorithm.  

Although the stochastic behaviour of the used algorithm also leads to a variability of the obtained 

commonality schemes, a detailed analysis shows that the variation of the parameter values has the 

expected impact on the results of the algorithm. 
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Figure 3. Costs obtained by optimizing a family of two hose boxes for three different cost 

scenarios (i.e., sets of cost parameters) depicted as box plots. 

The mean value of the obtained product family cost is lower in the optimistic scenario than in the 

pessimistic scenario due to the important savings made possible by component commonality. In 

addition, the optimized product families exhibit a higher commonality if the economies of scale and 

complexity costs are larger. In the optimistic scenario, for instance, 84 out of the 100 optimizations 

suggested a fully standardized family. On the contrary, for the pessimistic scenario, the most frequent 

commonality scheme includes no commonality at all. However, that pattern only appears in 37 out of 

100 results. In that case, the repeatability of the results is negatively affected by the existence of 

different designs of the product family that exhibit similar costs. More generally, the possible 

compensation of oversizing by component commonality as well as the interaction between the 

components, for instance if a larger spool also requires building a larger housing, create local optima 

that reduce the repeatability of the results. The optimizations performed on the family of three 

products lead to similar observations. The total product family cost for the optimistic, realistic, and 

pessimistic scenario varies respectively 3.24%, 2.09% and 1.14%. In that case, component 

standardization rate also increases with higher economies of scales and complexity costs. 

4.3 Optimization of the complete product family using TL-PFO 

After a statistical evaluation of the results, we use the TL-PFO approach to optimize the complete 

family of five boxes. Due to the higher computational effort, five optimizations are performed using 

TL-PFO. Table 1 shows the result of five optimization runs. The observations resemble the statistical 

evaluation of the approach. The lowest and highest costs obtained by an optimization (run 2 and 4 

respectively) exhibit a deviation from the average result of respectively 1.7% and 2.3%. The obtained 

commonality schemes differ from one another. However, despite that variability, some similarities 

between them provide valuable indications to support decision-making. Figure 4 illustrates the 

resulting product families with their corresponding component variants for the five optimization runs.  

For instance, run 2 - 4 include highly standardized housing with only one variant. While, on the 

contrary, the spring tends to be strongly differentiated in all optimization runs. The spool also tends to 

standardization with one component (run 2) or two components (run 1, 3, 4). Run 5 suggests a highly 

differentiated product family with individual components for nearly each product variant. All results 

are optimized product families. Due to the complexity of the problem different solutions can lead to 

similar costs: Run 2 reduces complexity costs by standardization; run 5 reduces costs by designing the 

components specifically for each product, thus no over-dimensioning is needed, and manufacturing  

Table 1. Commonality schemes of the optimization of the family of garden hose boxes and 
their objective function value. 
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Figure 4. Product families with their component variants resulting from optimization results 
from Table 1 

costs can be saved. Both effects lead to similar overall costs in this example. 

TL-PSO makes it possible to find an optimized design for the considered product family despite the 

large number of possible commonalities. In the considered example with five boxes made of three 

components each, the total number of possible commonality schemes outreaches 140.000, and is 

reduced to 4096 by the assumption of sharing components between neighbouring products. Within 

each commonality scheme, the optimization problem to be solved can include between 3 (if all 

components are standard) and 50 (if there is no commonality) design variables. This leads to 

computation time of, on average, 8 h 48 min to optimize a family of five boxes. For larger product 

families, an extrapolation foresees for instance over 47 h to optimize a family of seven products. 

5 SUMMARY AND DISCUSSION 

In this paper we present a method to optimize a product family with respect to its costs. The suggested 

method is based on a literature review. Among the existing approaches we could not find an optimization 

algorithm, which can be applied to the problem at hand. The problem originates from an industry project 

at a consulting company. A family of five water hose boxes needs to be optimized. It consists of three 

main components. They are described by ten design variables. The product is described by ten quantities 

of interests and their variant-specific requirements. Challenges arose from discrete constraint functions, a 

high number of evaluations due to combinatorics, and the cost modelling of the objective function. 

Motivated by this industry example, we created a new approach by combining different ingredients from 

existing approaches. The result is a two-level optimization algorithm: on the first level the commonality 

scheme is optimized, the second level algorithm optimizes the costs of one specific commonality scheme 

with respect to its technical requirements. Thus, the second level optimization provides input for the first 

level. For the first level optimization we use a genetic algorithm due to the binary structure of 

commonality schemes. On the second level we use particle swarm optimization (PSO) to deal with 

discontinuous constraint functions. The PSO provides a cost optimized set of design variables for a given 

commonality scheme subject to the fulfilment of the technical requirements on the product family. To 

alleviate the high number of function evaluations, we used three measures: (1) We only allow 

commonality between neighboured product variants, which is reasonable for a scale-based product 

family. (2) We use a genetic algorithm for the optimization of the commonality scheme. Already 

optimized commonality schemes are stored and can be re-used directly in the genetic algorithm. (3) We 

do not explicitly enforce a specific commonality scheme on the lower level by an equal constraint 

function, but directly adopt the number of design variables used according to the specific commonality 

As an objective function we used a model that includes manufacturing costs (dependent on the design 

variables 𝒙); multiplied by a factor to consider enconomies of scale (dependent on the sales volumes of 

the different product variants 𝑛𝑃); and complexity costs (dependent on the number of component 

variants 𝑛𝐶). The result of the algorithm is a cost optimized commonality scheme with its design variable 

values and overall product family cost.  

Due to the stochastic algorithms, the results are subject to variance. In order to check both plausibility 

and repeatability of the results, we conducted a study with 100 optimization runs for two product 

variants and 5 runs for five product variants. Within the optimization runs all parameters are fixed. For 

optimistic cost scenarios we get patterns with high commonality. For pessimistic scenarios, the algorithm 
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tends to individual optimization of the components according to their manufacturing costs. The results 

are thus plausible. Whereas the values of the objective function are subject to comparatively small 

deviations, the commonality schemes deviate more from each other. This can be explained by looking at 

the pessimistic scenario: the most likely pattern (a unique component for each product) appeared in only 

37/100 runs, but the costs deviate only by approx. 1%. When we look at the results, we can find many 

local minima with very similar cost values. In realistic scenarios positive effects of standardization for 

one component can lead to negative effects for another component (e.g. bigger spool leads to bigger 

housing). Thus, different commonality schemes can lead to similar objective function values. 

Due to combinatorics the designer would have to evaluate more than 140000 possibilities. Furthermore, 

the designer needs to check that the requirements of all product variants are met and calculate the overall 

cost. The proposed method provides alternatives with minimized costs to the designer. She/He can then 

choose the best-fitting alternative for the problem. She/He can also augment the decision process with 

implicit information, which can hardly be included in algorithms (such as product differentiation on the 

market). For the family of water hose boxes, we get five different optimized alternatives (see Figure 4). 

Run 2, 3 and 4 propose one standardized housing. Thus, customers cannot immediately identify the 

different product variants. The different spools in run 3 and 4 are not visible. Run 1 suggests two housing 

variants. Run 5 completely differentiates the product family. From a customer’s perspective this is the 

most transparent alternative. Assuming increasing sales volumes run 5 would have disadvantages 

compared to an alternative with higher commonality. According to this criterion, run 2 is best. The 

company can differentiate a product family according to run 2 with the different springs. As they have 

higher manufacturing costs due to higher material costs, this is reasonable. Furthermore, springs could be 

semi-standardized by e.g. using the same values for the thickness and the width of the spring steel and 

varying the lengths of the spring steel and the diameters of the spring. Therefore, we would suggest the 

alternative from run 2 in this specific example.  

With respect to the calculation time the algorithm provides results in an adequate time for relatively 

small numbers of product variants. It increases exponentially with higher numbers of product variants. 

Considering the need to run an optimization several times due to the stochastic deviation, this can be a 

major drawback for more complex products with more components and product variants. Furthermore, 

the modelling of the technical system and the costs induces high efforts.  

6 CONCLUSION AND OUTLOOK 

Our approach addresses the challenges that arise from industry applications. It solves both an assignment 

and a cost optimization problem subject to technical constraints. There are no limitations on the 

constraint functions. The method needs quantifiable requirements, dependencies, and cost effects. In this 

use case, the algorithm optimizes a product family with five product variants, ten design variables, ten 

quantities of interest in an adequate time of about 530min. Systematic tuning of the parameters of the 

optimization algorithm may alleviate the high computational times. To reduce the modelling effort we 

suggest the automated modelling by Rötzer et al. (2020a). To cope with an increasing number of product 

variants and design variables a combination with the Solution Space Engineering approach for product 

families might be beneficial (Rötzer et al., 2020b). It reduces complexity by decoupling design variables 

from each other. The decoupling comes along with a loss of solution space. Thus, the trade-off between 

computational time and optimality is a focus for future research. 
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