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1. Introduction

The graded centre of a triangulated category 7 with suspension functor X' is a Z-graded
ring. The degree n component consists of all natural transformations from the identity
functor Id to X" which commute modulo the sign (—1)™ with Y. The graded centre
is the universal graded commutative ring that acts on 7. For instance, the Hochschild
cohomology HH"(A) of an algebra A acts on the derived category D(A) via a morphism
HH*(A) — Z*(D(A)) into the graded centre.

Over the past few years, several authors have studied and used graded centres in various
settings: Avramov and Iyengar investigated support varieties of modules over Noetherian
rings via central cohomology operations [3]. The work of Buchweitz and Flenner uses
graded centres for studying the Hochschild cohomology of singular spaces [5]. For the
related work of Lowen and van den Bergh in the setting of differential graded categories
we refer the reader to [14]. Blocks of finite groups and their modular representation theory
provide the context for recent work of Linckelmann on the graded centre of stable and
derived categories [13]. Closely related is the study of cohomological support varieties,
which depends on the appropriate choice of a graded commutative ring acting on a
triangulated category [4].

In this paper, we prove some structural results and provide complete descriptions of
the graded centre for some small examples. The paper is organized as follows.

In §2, it is shown that for any abelian category A with enough projective objects,
there is an isomorphism of graded commutative rings Z*(D"(A)) = Z*(D®(Proj(A))).
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Here Proj(.A) denotes the full subcategory of A consisting of all projective objects and
the isomorphism is given by restriction.

In §§3 and 4, we deal with derived categories of hereditary categories. Note that, for
a hereditary category, the derived category and the bounded derived category have the
same graded centre. In §3, the category mod(R) of finitely generated modules over a
Dedekind domain R is considered. We calculate Z*(D(mod(R))) explicitly. As we show,
it relates closely to the residue fields of all the maximal ideals of R.

In §4, we consider the module category of a tame hereditary algebra and the category
of coherent sheaves on a weighted projective line of non-negative Euler characteristic. We
compute the graded centres of their bounded derived categories. Note that our methods
do not apply to wild cases. For a weighted projective line of wild type, we only get a
subalgebra of the graded centre.

In §§5 and 6, we describe the graded centres of D?(mod(k[z]/2?)) and mod (k[z]/x™)
for n > 2, respectively.

2. Morphisms between graded centres

Definition 2.1. Let 7 be a triangulated category and X' the suspension functor of
T. We define a Z-graded abelian group Z*(T) = Z*(T,X) as follows. For any n € Z,
let Z™(T) denote the collection of all natural transformations n: Id — X" that satisfy
nX = (—1)"Xn. The composition of natural transformations gives Z*(T), the structure
of a graded commutative ring, and we call it the graded centre of 7. Graded commutative
here means that n¢ = (—1)™"(n for all n € Z™(T) and ¢ € Z™(T).

Remarks 2.2.

(i) The definition of the graded centre Z*(7) makes sense for any graded category,
that is, an additive category equipped with an autoequivalence. In particular, the
choice of the exact triangles of T is not relevant for Z*(T).

(ii) The degree 0 part Z°(T) is a subring of the usual centre Z(T) of T, which by
definition consists of all natural transformations from the identity functor to itself.
Note that Z°(T) = Z(T) if ¥ =1d.

(iii) The graded centre Z*(7) need not be a set in general. However, it will be a set
when the category 7T is small.

(iv) For any object M in T we define the graded ring Ext(M, M) by setting
Ext-(M, M) = Hom7 (M, X" M)
for any integer n. By definition there is a canonical graded ring morphism
Z*(T) — Ext(M, M)

mapping a natural transformation n: Id — X™ to the morphism ny: M — X" M.
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Following Rouquier [15], we set (M); to be the full additive subcategory of T
which contains M and is closed under finite direct sums, summands and the action
of ¥, and for ¢ > 2 we define inductively (M); as the full additive subcategory of T
consisting of all objects isomorphic to direct summands of objects Z for which there
exists an exact triangle X - Y — Z — XX with X € (M), and Y € (M),,_;.

Now suppose that M is an object of T with 7 = (M )41 for some positive integer
d. We set \V to be the kernel of the canonical morphism Z*(7) — Ext7-(M, M). It
can be shown in this case that A is a nilpotent ideal satisfying N2 = 0; see [13]
for a proof. In particular, Z*(7) is modulo nilpotent elements a set.

Let F: S — T be an exact functor between triangulated categories. An obvious ques-
tion to ask is when the functor F' induces morphisms between Z*(S) and Z*(T). Recently,
Linckelmann gave an affirmative answer to this question in the case in which there exists
a functor G: T — S that is simultaneously left and right adjoint to F' and satisfies some
further compatibility conditions [13]. The answer for general F' seems to be unknown.
The following proposition shows that in some very specific situation, for instance when
F' is fully faithful, we do obtain some morphisms between the graded centres.

Proposition 2.3. Let 7 be a triangulated category and let S be a full triangulated
subcategory.

(i) The inclusion functor i: S — T induces a morphism of graded rings
i Z°(T) — Z*(S),
where i*(n)x = nx for anyn € Z*(T) and X € S.
(ii) The canonical functor w: T — T /S induces a morphism of graded rings
ot Z°(T) = Z°(T/S),
where 7, (1) x = w(nx) for any n € Z*(T) and X € T/S.

Proof. The proof is routine. To check that 7, is well defined, one uses the fact that,
for any commutative diagram in 7,

X < 2 _Z*f>y
\LO‘ l’ﬁ \L’Y
s’ I
X' <> gL sy

with Cone(s) and Cone(s’) in S, we have yo (f/s) = (f'/s") o« in the quotient category
T /S, where we use --+ to denote the morphisms whose cones are in S. |

Until now, little seems to have been known about the properties of the above mor-
phisms. For example, the question of when ¢* and m, are surjective or injective is of
special interest to us. Also, one might study the induced morphism of graded rings

(i*,m): Z5(T) — Z*°(S) x Z*(T/S).
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Example 2.4. Let STIT denote the direct product of two triangulated categories, S
and 7. We view S as a thick subcategory of S II 7 and the corresponding quotient is
equivalent to 7. Then we have Z*(T 11 S) = Z*(T) x Z*(S) via the morphism (¢*, 7).

For the rest of this section we focus on homotopy categories and derived categories.
Firstly, we introduce some basic notation and conventions. Let A be any additive cat-
egory. We denote by C(A) the category of chain complexes in A. Recall that a chain
complex in A is a sequence of morphisms in A:

X=(-- X, —> X, 1 )

with dfdffH = 0 for all n € Z. A morphism of complexes is a chain map f: X — Y
consisting of a family of morphisms f,: X, — Y, in A with n € Z such that f, o df_H =

d¥ 1 © fag1 for all n, that is, the diagram

X, ax
"4>Xn+1 4>X7L¢>Xn—14>"'

f?L‘Fl\L fnl fnll
dY Y

n+1 n
e — n+1*>Yn4>Yn_1H-~-

commutes. We denote by CT(A) the full subcategory of C(A) that consists of all bounded
below complexes, that is, the complexes X with X,, = 0 for n < 0. Similarly, we denote
by C~(A) and C®(A) the full subcategory of bounded above complexes and complexes
bounded in both directions, respectively.

If, moreover, A is abelian, then for any integer n the nth homology group H,(X) is
by definition Ker(d;\)/Im(d;, ), and any morphism f of complexes induces morphisms
of homology groups H,(f): H,(X) — H,(Y) for all n € Z.

The homotopy category K (A) has the same objects as C(A). The morphisms are the
equivalence classes of the morphisms in C(A) modulo the null-homotopic morphisms,
that is, those with components of the form

dY 1 0hy +ho10dy

for some family of morphisms h,: X,, = Y41 in A, n € Z.

The suspension functor (or shift functor) X of C(A) is defined by (X'X), = X,—1,
dZX = —dX_, on the objects and by (X'f), = fn_1 on any morphism f. Clearly, X is not
only an autoequivalence but also an automorphism of C(A). Moreover, X' also induces
an automorphism of K(A) and K(A) admits a triangulated structure with suspension
functor X.

Let D(A) denote the derived category of A, i.e. the localization of K (.A) with respect to
the quasi-isomorphisms. Note that D(.A) is again a triangulated category with suspension
functor X. One defines K*(A) and D*(A) with x € {+,b, —} in a similar way.

Now let A be an abelian category with enough projective objects, and let P be the
full subcategory consisting of all projective objects. We denote by K**(P) the thick
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subcategory of K (P) that consists of bounded below complexes X with H,,(X) = 0 for
almost all n. Clearly, we have K°(P) C K*°(P). In some cases, objects in K°(P) are
also called perfect complexes.

It is known that the composition of functors

IR
=~

K*(P) —— K" (A) — D*(A)

induces equivalences KT (P) = D*(A) and K°(P) = D"(A) of triangulated cate-
gories. The quotient category Dg,(A) = D°(A)/K®(P) is called the triangulated cate-
gory of singularities of A because it is an invariant of the singularities provided that A
is the category of sheaves on some variety. We know that Dgg(A) = 0 if and only if all
objects of A have finite homological dimension. When A = Mod(A) for some self-injective
ring A, Dgg(A) is equivalent to the stable module category Mod(A) of A.

We are now in a position to state the main result of this section.

Theorem 2.5. Let A be an abelian category with enough projective objects and
let ‘P be the full subcategory consisting of all projective objects. Then the embedding
Kb(P) - K*+*(P) induces an isomorphism Z*(K°(P)) = Z*(D"(A)) of graded com-
mutative rings.

To prove the theorem, we need some preparations.

For each n € Z the nth truncation functor :": C(A) — C(A) is defined for a complex
X by (t"X); = X; for i <n and 0 for i > n, and d*" X = dX for i <n and 0 for i > n.
Clearly, " sends C(A) to C~(A) and C*(A) to C’(A). Note that we have a natural
morphism i": /"X — X, and sometimes we use 7% to emphasize X. We have (i"); = id
for s < n and 0 for s > n. The following lemma is crucial in the proof of the main
theorem.

Lemma 2.6. Let X € C(P),Y € C(A) and f: X — Y be a chain map with H,(Y) =
0 forn > 0. Then f is null-homotopic if and only if the composition foi”: /"X - X — Y
is null-homotopic for some n = 0.

Proof. One direction is clear, since the null-homotopic morphisms form an ideal.
Conversely, suppose that f o™ is null-homotopic for some n > 0. To show that f is
also null-homotopic, it suffices to find a family {h,: X,, = Y,41 | n € Z}, such that
fn = d};lhn + hp_1dX holds for all n. By applying the shift functor, one can assume
without loss of generality that f o4° is null-homotopic. Thus, there exists a family of
morphisms in A, say {h,: X, = Yn4+1,n < 0}, such that f, = dxﬂhn + hp_1dX for all
n < 0.

Since f is a chain map, we have

dY f1 = fodf = d} hody +h_1d} dy,
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and hence dY (f1 — hod;) = 0, which implies that
Im(f; — hody) C Ker(dY) = Im(d} );

the last equality holds because Hy(Y') = 0. Now, the fact that X7 is projective implies that
f1—hody factors through d} | i.e. there exists hy: X1 — Y3 such that f; = dY hy +hods<;
thus, we get the required h;. Now repeat the argument and the lemma follows. ([l

Proposition 2.7. Let t € Z and let n: Id — X* be a natural transformation for the
category K°(P). Then n extends uniquely to a natural transformation 7j: Id — X* for
the category K°(P).

Proof. First we will construct a morphism 7jx: X — X'X for any X € KH°(P).
The idea is to use certain approximations.

Since 7 is a natural transformation for K°(P), we have for each n a morphism (" =
Nnx: "X — X4 X. Now we fix a chain map ¢°: .°X — X%°X that is a representative
of (Y. We can construct inductively the representatives ¢" of " for all n > 0, such that
C;H'l = (! foralln >0 and i < n.

In fact, suppose that (™ has been constructed, and let £ be any representative of
¢"*1X. Consider the morphism j: ("X — ("T!1X which is given by j,, = idx, for all
m < n and 0 otherwise. Since 7 is a natural transformation, the diagram

J
"X —— X

|,k

2
ryhynx —= yintlx
commutes in the category K°(P), i.e. § :=£o0j— X*jo (™ is null-homotopic. Explicitly,
0, =& —mn; fori <mand §; =0fori>n+1.
Now there exists a family of morphisms {h;: (:"X); — (Y41 X); 1 | i € Z} with
h; = 0 for ¢ > n, such that

t n+1 n
6 =dit" X ohi+hi_yod X,

The family {h;} can be viewed as a family of morphisms {h;: (:"T1X); — (X1 X0 |
i € Z}; thus, it gives a null-homotopic morphism §": ("1 X — X"+ X which satisfies
8 = §; for all i < n. We are done by setting ("1 = ¢ — §'.

Now we define 7jx by (7ix)n = (% for n < 0 and (fx)n = ¢? for n > 0. We claim that
7 is a natural transformation from Id to X* for the category K+:°(P).

Note that, by construction, nx satisfies the following condition: for any n > 0, there
exists a representative (% for 7,»x, which is given by (¢%); = (7x); for i < n, and
(C%); = 0 for i = n + 1. In other words, 7x 0% = X'"% on,nx as chain maps for all
n = 0, where 7% denotes the natural morphism from "X to X as before.

Now let X, Y € K™°(P) and let f: X — Y be any chain map. Assume that 7jx : X —
Y'X and 7y : Y — Y'Y are arbitrary chain maps with the property

fx 0oi% = X% onunx and Ay oif = X' onmy for n > 0.
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We will show that 7jy o f = X*f ofjx in K**(P). Note that in the cube below the other
five faces are commutative by the construction of 7jx, 7y, ¢’y and 3

nx

X >tX

Sl L

X ——= 34X =tf

7
Y — |5y
y

Ve b

Y ——— Yty

By Lemma 2.6 it suffices to show that 7jy o foiy = X forjx0i% for some sufficiently large
n. This is equivalent to showing that 7y 0if 0™ f = X fo X% on,n x. The left-hand side
is X4 onny o™ f, and since nny o™ f = X" fonny and Xt fo X% = Xl o Xt f,
the equality holds.

Thus, by fixing such 7x for each X, we can extend 7 to the category K*°(P). For
the uniqueness, we need only to take f = idx in the above argument. This completes
the proof. O

Corollary 2.8. Let A and P be as before. Then Z!(K"(P)) = 0 for all t < 0, and
therefore Z*(K°(P)) and Z*(D"(A)) are positively graded.

Proof. Suppose that 7 is a natural transformation from Id g py to Ei@ P) for some
t < 0. We prove that nx = 0 by using induction on the length of the support of X, where
the support of X means the interval [i, j], such that ¢ and j are respectively the minimal
and maximal integer m with X, # 0. Without loss of generality, we may assume that
1 = 0 and we use induction on j.

In the case j = 0, clearly Homgspy (X, XYtX) =0 for t < 0. Suppose nx = 0 for all
j < m and suppose X = (- -0 = X010 = -+ = Xo = 0 — ---). By the same
argument as in the proof of Proposition 2.7, there is a representative ¢ of nx, such that
¢; = 0 for all i < m, and now the assumption ¢ < 0 implies that (2*X),,+; = 0, which
forces that (,,+1 = 0, thus ( = 0 and hence nx = 0. O

With the above preparations, we can now prove the main theorem.

Proof of Theorem 2.5. Fix n € Z*(K"(P)). By Proposition 2.7,  extends uniquely
to a natural transformation 7j: Id — X* for the category K+°(P), and clearly i*(7}) =,
where i* is induced by the embedding i: K?(P) — K*(P). By the same argument as
in the last part of the proof of Proposition 2.7, one can show that 7X = (—1)" X7, which
implies that 77 € Z"(K+*(P)). This proves the surjectivity of i*. The injectivity of i*
follows from the uniqueness of the extension. O

Remark 2.9. Suppose there are enough injective objects in A and denote by Z the full
subcategory of injectives. Then we have D?(A) = K~*(Z) and the dual version of the
theorem says that there is an isomorphism of graded centres Z*(K%(Z)) = Z*(D"(A)).
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3. Finitely generated modules over Dedekind domains

The following two sections are devoted to studying the graded centre of the derived
category of some hereditary categories. We look at some basic examples and use explicit
calculations. First we discuss the derived category of the category of finitely generated
modules mod(R) for any Dedekind domain R. We start with some preparation.

Let R be an arbitrary unitary ring and denote by Z(R) the centre of R. Let z € Z(R)
and M € mod(R). Then we have a morphism [, € Hompg(M, M), which is given by
I.(m) = z-m. This is indeed a morphism of modules since z is in the centre of R.
Moreover, [, induces a natural transformation from the identity functor to itself for
mod(R) as well as for D?(mod(R)).

Now let H be a hereditary abelian category, that is, ExtfH(M ,N)=0forany M,N € H
and ¢ > 2. Consider the derived category of H and observe that any object X € D(H)
is isomorphic to @),., X*(H;(X)). Here, X is the shift functor and H;(X) is viewed as a
stalk complex concentrated in degree 0. For a simple proof of this, see [10, § 1]. We have
the following easy lemmas.

Lemma 3.1. Left multiplication induces an injective ring homomorphism Z(R) —
Z%(D"(mod(R))). Moreover, if R is hereditary, then this is an isomorphism.

Proof. For a proof, we just use the fact that left multiplication gives an isomorphism
from Z(R) to the usual centre of mod(R), i.e. the ring of natural transformations from
the identity functor to itself, and that mod(R) is a full subcategory of D?(mod(R)).

Moreover, if R is hereditary, then all objects of D’(mod(R)) are of the form @, , X' M,
with M; € mod(R) viewed as a stalk complex concentrated in degree 0. Now the lemma
follows easily. O

Remark 3.2. Note that the morphism in the lemma need not be an isomorphism
(see [11] or §5).

Lemma 3.3. Let H be an arbitrary hereditary category. Then Z*(D®(H)) is concen-
trated in degrees 0 and 1. Moreover, the inclusions D*(H) C D~ (H) C D(H) induce
isomorphisms of graded centres Z*(DY(H)) = Z*(D~(H)) = Z*(D(H)).

Proof. We have Homp ) (M, X™ M) = Ext3; (M, M) = 0 for all M € H and m > 2,
since H is hereditary. Thus, there is no non-trivial natural transformations from Id to
X™ for the category D’(H) for m > 2, and the first part of the lemma follows. The
last assertion follows from the fact that any element in the graded centre Z*(D(H))
is uniquely determined by the restriction to the stalk complexes. The minor difference
between the two derived categories is that any object in D(H) is an infinite direct sum

of stalk complexes while objects in D*(H) can always be written as finite direct sums.
Similarly, we have Z*(D*(H)) = Z*(D(H)). O

Due to the lemma, to study the graded centre of the derived categories of hereditary
abelian categories, we need only to consider the bounded ones.

Now suppose that H = H1 V Hsy, where H; and Ho are full additive subcategories of
‘H, and we use V to indicate that any object of H is a direct sum of an object of H;
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and an object of Ha, and Homy (M, M7) = Ext%{(Ml,Mg) = 0 for all M; € H; and
My € Ho. We set X*H1 to be the minimal additive subcategory of D(#) that contains
‘H, and is closed under X: in other words, the subcategory consisting of all complexes with
homologies contained in H;. Note that X*?H; is not a triangulated subcategory in general.
This will happen if H; is a subcategory of H that is closed under extensions, kernels and
cokernels. In this case, H; is also a hereditary abelian category and X*H; = D®(H,).
For a proof of this, one again uses the fact that any object in D?(#) is a direct sum of
stalk complexes. Since X' is an autoequivalence of X*H;, we can also define the graded
centre of X*H{, with respect to X, and denote it by Z*(X*Hy).

Proposition 3.4. Let H = H1 V H2 be a hereditary abelian category. Then the
restriction map induces an isomorphism of abelian groups

ZY D (H)) = ZYH(Z*Hy) x ZH(Z*H,).

Proof. We produce an inverse map. First observe that any object in D’(H) can be
written uniquely as X1 @ Xo with X7 € Y*H; and Xy € X*Ho. Let n1: Idg-y, = Yo,
and n: Idg+y, — Xx+3, be natural transformations. Then we define n: Idpsgy —
Y pon) by setting nx, e x, to be the map (n1)x, @ (72)x,. We will show that 7 is indeed
a natural transformation. To this end we need to check that, for any morphism f: X — Y
in D(H), we have X f onx =ny o f.

Since any object of D’(H) can be uniquely written as @,., X* (M} & M) with M] €
H, and M3 € Ha, we need only to check the above compatibility for the morphisms
of the form f: XM, — X7M, and g: X*My — XIM; with M; € H, and My € Ho.
We claim that X' f oy, =01, o f =0 and XYgona, = nar, 0 g = 0. In fact, since H is
hereditary, both sides will vanish unless j =i+ 1 or j = 4. If j = i + 1, the equalities
hold since Ext?_[(M, N) =0 for all M, N € H. Otherwise, if j = i, we have ¢ = 0 and
Ext%{(Ml, Ms) = 0. Now the assertion follows easily, and this completes the proof. O

Now we can begin the study of Z*(D®(mod(R))) for a Dedekind domain R. A Dedekind
domain is an integral domain such that each ideal can be written as a finite product of
prime ideals or, equivalently, a Noetherian integrally closed domain with Krull dimension
at most one. This name was given to such rings in honour of Dedekind, who was one of
the first to study such rings in the 1870s. The rings of algebraic integers of number fields
provide an important class of Dedekind domains, which play a crucial role in algebraic
number theory.

The assumption on the Krull dimension implies that each non-zero prime ideal of R is
maximal, and that the category H = mod(R) is hereditary and any object M of mod(R)
is a direct sum of a torsion-free module and a torsion module. Any finitely generated
torsion-free module is projective, and any finitely generated torsion module is a finite
direct sum of cyclic modules. Moreover, by the Chinese Remainder Theorem, each cyclic
module is a finite direct sum of modules of the form R/p! with p a maximal ideal of R
and [ > 1.

We have a decomposition of categories H = H V Ho, where H, denotes the full sub-
category of H consisting of all projective modules and Hg consists of all torsion modules.
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Note that Hg is an exact abelian subcategory and therefore hereditary. Moreover, there
exists an Auslander—Reiten translation 7 in Hg, which is by definition an autoequivalence
of H such that there exists a natural isomorphism D Extj,(X,Y) 2 Homy (Y, 7X). This
identity is usually called Serre duality and implies the existence of Auslander—Reiten
sequences in Hg.

Let max(R) denote the set of all maximal ideals of R. Then all the indecomposables in
Ho are given by {R/p' | p € max(R), [ > 1}. Denote by H,, the subcategory of H consist-
ing of all p-torsion modules, i.e. the additive category generated by {R/p’ | I > 1} that is
an exact abelian subcategory of Ho. Note that H,, is 7-invariant and Ho = [ [, cmax(r) Hs-

One can show that 7, is equivalent to the subcategory of mod(R,) that consists of
torsion Rp-modules, where R, is the localization of R at p; and #, is obviously a full
subcategory of mod(Rp), where flp is the completion of R with respect to p, i.e. the
inverse limit @R/pl. Note that we have an isomorphism R/p = R,/pR, of residue
fields, and we denote it by k.

Fix an element 2 € p\ p2. Since Ry, is a discrete valuation ring, the multiplication with
x gives us an isomorphism R/p' = p/p!T! of R-modules for any [ > 1. Thus, we have in
‘H, Auslander-Reiten sequences

0y: 0> R/p = R/p> - R/p— 0
and
oh:0—= R/p' = R/pT @ R/pT = R/ — 0

for all [ > 2, where the morphism from R/p‘*! to R/p! is the natural quotient map, and
we use the isomorphism R/p' = p/p!*! induced by the multiplication with 2. This says
that the Auslander—Reiten quiver of Hy, is a tube of 7-period 1. For the Auslander—Reiten
sequences for Dedekind domains, see also [2, Example 3.1]. Note that we have a natural
equivalence T = Idy, .

It is easy to show that 2(R/p®) = R, for any s > 1, where 2: mod(R,) — mod(R,)
is the syzygy functor. We have a presentation of R/p®

O—>R,,l””—’s>Rp—>R/ps—>0,

where [, denotes the multiplication by x°. Note that we have an isomorphism R/p® =
R, /p°R,. Now the above exact sequence induces an epimorphism

Hompg(Ry, R/p") — Exth(R/p®, R/p"),

and when i < s this induces an isomorphism. Now it is easy to show that the Auslander—
Reiten sequence oy corresponds to the composition R, — R/p = p*~1/p® — R/p°.
Moreover, all the Auslander—Reiten sequences with starting term R/p® are given by the
morphisms of the form R, — Soc(R/p*) — R/p*, which equals Ao, for some 0 # X € k.

On the other hand, we identify Hompe(y) (M, XN) = Ext%_[(M, N) for any abelian
category H and any objects M, N € H. Now we can write down the graded centre of
D"(H,) explicitly by using the notion of a trivial extension.
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Let A be an arbitrary ring and let M be an A—A-bimodule. The trivial extension ring
of A by the bimodule M, denoted by T(A, M), is defined to be the ring whose additive
ring is A & M with multiplication given by

(a,m) - (a',m') = (aa’,am’ + ma")
for all a,a’ € A and m,m’ € M. Note that T(A, M) can be identified with the subring

of the upper triangular ring
A M
0 A

that consists of all the matrices with equal diagonal entries.

The trivial extension ring is a positively graded ring which is concentrated in degree
0 and 1 with T(A,M)? = A and T(A, M)! = M. Conversely, let A = A’ @ A! be an
arbitrary positively graded ring which is concentrated in degree 0 and 1. Then A =
T(AY A') as graded rings, where the A°-bimodule structure on A' is induced by the
multiplication of A. If A is commutative and M an A-module, one can also define the
trivial extension T'(A, M), where M is viewed as an A—A-bimodule. Note that in this
case T'(A, M) is always graded commutative.

Proposition 3.5. Let R be a Dedekind domain, p a maximal ideal of R and k, the
residue field. Then, as a graded ring,

20" =1 (R, T] 1)

1€z, 1>1
where ky is viewed as a simple Ry,-module.

Proof. Note that elements in Rp are by definition sequences ¢ = (¢;)icz,i>0 with
¢ € R/p" and satisfying m; ;(¢;) = g; for all ¢ > j, where m; ;: R/p* — R/p7 is the
natural quotient map. Now the collection of morphisms {l,,: R/p’ — R/p’, i € N}
determines uniquely an element in Z°(D®(H,)), where l,, is given by multiplication
with ¢;, and it is easy to show this correspondence gives a bijection between Rp and
Z%(D"(H,)), which means that Z°(Db(H,)) = Rp.

Now we consider the degree-1 component of the graded centre. For any [ € Z, [ > 1,
we define n}, € Zl(Db(Hp)) by setting (n})r/ps = 0 for all s # I, (1)) = o} and
(1h) s (rypsy = (—1)' X4 (nh)rype for all i, s. To show that n, € Z'(D"(H,)), it suffices
to show that nfj is a natural transformation. For this, one needs to check that, for all
i, j, m,nand f: XIR/p™ — XIR/p™, the equality

Xfo (Ué)ziR/pm = (W,lg)ZJR/pn of

holds. This is clear since both sides of the above equality vanish, unless f is an isomor-
phism, where we use the fact that any U)lj is given by an almost split sequence.

The argument above shows that if, for each [, we fix an Auslander—Reiten sequence,
say /\mé for some \; € ky, with starting term R/p!, then we obtain an element El/\m]lg in
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A 1(Db(’;’-[p)). The infinite product makes sense, since when it is applied to any object in
D"(H,) it becomes a finite sum.

Conversely, let n € Z'(D"(H,)). We claim that NRypt either corresponds to an
Auslander—Reiten sequence or is zero for all [. This can be done by induction on I.
Clearly, it holds for I = 1. Assume that it holds for all I < n — 1; we will show that it is
also true for [ = n.

From the exact sequence 0 — p”~'/p™ — R/p™ =5 R/p"~! — 0 we obtain an exact
sequence

Exth(R/p", R/p) — Exth(R/p", R/p") L Exth(R/p", R/p"") — 0.

It is easy to show that Ker(f) is one dimensional and spanned by the Auslander—
Reiten sequences with starting term R/p™. Since 7 is a natural transformation, the map
T R/p™ — R/p"~! yields ¥ o ngjgn = ngjpn—1 o m = 0, where the last equality holds
since 7 pn-1 is given by some Auslander—Reiten sequence or zero. Thus, ng/p» corre-
sponds to an Auslander—Reiten sequence by the above argument. The proposition now
follows. d

Next we combine Lemma 3.1, Proposition 3.4 and the condition that mod(R) = H V
Ho with Hog = Hp emax(R) H,. This gives the following proposition. Note that H consists
of free modules and hence Z1(X*H,) = 0.

Proposition 3.6. Let R be a Dedekind domain and let max(R) be the set of all
maximal ideals. Then, as a graded ring

o) =r(r. IT T &),

pEmax(R) lE€Z,1>1

where each k, = R/p is viewed as a simple R-module.

4. Tame hereditary algebras and weighted projective lines

This section deals with the derived category for some further classes of hereditary cate-
gories. We consider either the category of modules mod(A) of a tame hereditary algebra
A or the category Coh(X) for a weighted projective line X of non-negative Euler char-
acteristic. Unfortunately, our methods do not work for the wild cases. What we want to
emphasize is that tubes are of special importance in our calculations.

Throughout this section, k denotes an algebraically closed field and all categories
considered are assumed to be k-linear; therefore, the graded centres are k-algebras. Note
that most results hold for an arbitrary base field k; however, the proofs would require
modifications.

We begin by studying tubes. The tubes occurring in this section are different from
those for Dedekind domains and we will use a different method to deal with them. Note
that one can use completed path algebras to unify the proofs.

Let C be a uniserial hom-finite hereditary length k-category. Recall that a length
category is an abelian category such that any object has a composition series of finite
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length. Note that a length category is always a Krull-Remak—Schmidt category, i.e. any
object can be written as a finite direct sum of indecomposables and the endomorphism
ring of any indecomposable object is local. Following [1], a locally finite abelian category
is called uniserial if any indecomposable object of finite length has a unique composition
series.

Tt follows from [16, Theorem 2.13], that any hom-finite length category is equivalent to
the category of finite-length comodules of some basic coalgebra. And since k is assumed
to be algebraic closed any basic coalgebra is pointed, that is, it can be realized as a
subcoalgebra of certain path coalgebra of some quiver.

A quiver @Q = (Qo, Q1, s,t) is by definition an oriented graph, where Qg is the set of
vertices, (J1 the set of edges that are usually called arrows, s and t are two maps from Q1
to Qo such that, for each arrow «, s(«) and t(«) denote respectively the starting vertex
and the terminating vertex of a. A path in @ is a sequence of arrows ajas - - - a,, with
t(a;) = s(ajpq) for 1 <i < n—1; s(ar) and t(ay,) are called the starting vertex and the
terminating vertex, respectively, and n is the length. Each vertex v can be viewed as a
path of length 0 which starts and terminates at v.

It is well known that there are a path algebra and a path coalgebra structure on the
vector space k@ with their basis consisting of all paths in @), and the multiplication and
comultiplication are given by composing and splitting the paths. Denote by kQ® and
(kQ°, A, €) the path algebra and path coalgebra of @, respectively.

We denote the category of k-representations by Rep(Q) and the subcategory of locally
nilpotent representations by NRep(Q). As usual, we denote the subcategories consisting
of finite-length objects by rep(Q) and nrep(Q). It is well known that Rep(Q) is equiva-
lent to the module category of the path algebra kQ® and NRep(Q) is equivalent to the
comodule category of the path coalgebra kQ°.

Let n,m € Z U {—o0, +-00} with n < m. We use Ay, ,,,) to denote the following quiver.
The vertices are indexed by {i € Z | n < i < m} and for each n < ¢ < m — 1 there is
exactly one arrow which starts at the vertex ¢ and terminates at ¢ + 1. Now denote the
quivers A[_ 0], Aj—co,400]5 A[0,400] a0d Ajg ) for any n > 1 by A>, A, Ay and A,
respectively. Also, we denote by Z, the basic cycle of length n for any n > 1, i.e. the
quiver obtained from A,, by gluing the vertices 0 and n.

The following classification is a special case of [6, Theorem 2.10 (i)].

Lemma 4.1. Let C be a uniserial hereditary length k-category. Then C is equivalent
to nrep(Q) for some quiver @, where Q is a disjoint union of quivers of type A®, A%,
Ay, Ay, or Z,.

The idea of the proof is easy. As shown in [16], C is equivalent to the category of
finite-length comodules of some pointed coalgebra C, and that C is hereditary means
that C' must be a path coalgebra and hence C is given by some nrep(Q). The fact that C
is uniserial implies that, for each vertex v € @, there is at most one arrow starting at v
and at most one arrow terminating at v, and hence the lemma follows.

Now suppose that @ is one of A®, AL, A, and A,. Then the category nrep(Q)
is directed. More explicitly, any indecomposable object M € nrep(Q) is a stone,
i.e. Ende(M) = k and Ext} (M, M) = 0. This has the following consequence.
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Proposition 4.2. Z*(D(nrep(Q))) = k for Q = A®, AX, A, and A,.

The only case left is Q@ = Z,,, where n > 1 is a positive integer. It is well known that
nrep(Z,) is a tube of 7-period n. We need to fix some notation. Denote by S; the simple
representation with respect to the vertex 7, and Mi[l] the indecomposable representation
with socle S; and of length I, for any ¢ and [ > 1. In the category nrep(Q), there is
neither a non-zero projective object nor a non-zero injective object, while in the category
NRep(Q) there are enough injective objects, and we denote by M[ >l o simply M, the
indecomposable injective module with socle S;. Note that {M[l] [0<i<n—1,1<I<
oo} gives a complete set of isoclasses of indecomposables in NRep(Q)

There is a monomorphism i, : M; LN Ms 1) and an epimorphism WL] Ms LNV S[l:ll]
for any s and [/, and any morphism between the indecomposables is a linear combination
of compositions of such morphisms. For convenience, we again write 72° as m,, and we
set M, s[l] =0 and i\, = 7! = 0 for [ < 0. More generally, we can define monomorphisms

bt =i ooy M M o< s<n—1, 121, t>1,
and epimorphisms
abt =gt ool MU 5 MU VO<s<n—1, 121, 1<t<I—1.

We also set i4> to be the inclusion MY 5 M, and i0 =qxl0 = id),u. Note that we
have the equality of morphisms

ﬂ'iJrlois it 1lo7ri: Mé[l] —>M£lll
for all s and [. The syzygy functor _Q_l is given by Q_I(Ms[l]) =M, j, 27iL) = my

S

and 271(7l) =idys,_,. In the case n = 1, the subscript s is omitted for simplicity.

Lemma 4.3. Let Q = Z,. Then Z°(D"(nrep(Q))) = k[¢], where ¢ is the natural
transformation from the identity functor to itself, which is given by

Eyn = " ok MU — MY,

It is easy to check that £ is a natural transformation. Moreover, the infinite sum
Zm>0 Am&™ gives a natural transformation, where A, € k for all m. Observe that this
does make sense, because the sum is indeed a finite sum when applied to any object in
nrep(Q). To show that this gives all the natural transformations, one just uses the fact
that {§ 1, m >0} spans Endc(M[l]) for any ML € nrep(Q).

Clearly, we have an exact sequence

oo R
0> MU s M, s M, —0

[0

for any Ms"'. This induces an epimorphism

Home (MI™, M,_;) — Bxtd (MM, M,

which is an isomorphism when m < [. In particular, we can identify Home¢ (Ms[], M,_y)
with Exts (ML, alh.

The following lemma is needed to describe the degree 1 component of the graded centre
of D*(nrep(Q)).
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Lemma 4.4. Let Q = Z, and n > 1. If n > 2, then Z'(D®(nrep(Q))) = 0; if n = 1,
then as a k-vector space,

ZN(D (wrep(@))) = [[ k-4,
1€Z, 11

where ' is given by (n') i = 2> o 71 and (n') yy) = 0 for a # 1.

Proof. First we consider the case n > 2. Fix n € Z1(D"(nrep(Q))). We show that
Myl = 0 for all s and I by using induction on [. Clearly, 1 = 0 for all s, since there
is no self-extension for the simple objects if n > 2.

Now assume that the assertion holds for I — 1. Applying the naturality of n to the
injection {~1: My_l] — Ms[l], we get the equality

Mgl

T]M[z] o Z = EZ o 77M[1,—1] =0.

We claim that this equality holds only if 1, 1y = 0. Otherwise, if
7’]MS[Z] : Ms[l] — Ms—l

is non-zero, then the dimension of Im(nM[z ) is at least n since M| . ]l is the minimal

submodule of M;_; with the same top as MSH7 thus, the dimension of Im(n,,n o oql=1)

is at least n — 1 and hence non-zero (here we see the difference between the n'=1 and
> 2 cases), and now we use the isomorphism

Home (MY, M) 2= Extp (M1, Ml

to obtain that the left-hand side of the above equality is non-zero; this introduces a
contradiction.

Now we assume that n = 1. Note that any Auslander—Reiten sequence with starting
term Ms[l] is given by a non-zero multiple of 775\/[[”. Now we can use the same argument
as in the proof of Proposition 3.5. O

Combining Lemmas 4.3 and 4.4, we get the following.

Proposition 4.5. Let Q = Z, and n > 1. If n > 2, then Z*(D"(nrep(Q))) = k[¢] is
a graded k-algebra concentrated in degree 0; if n = 1, we have an isomorphism

2" rep@) =1 (Hiel, T] *)
€7, 1>1

of graded algebras, where k is viewed as the unique simple k[{]-module on which & acts
trivially. Moreover, we have an isomorphism of graded algebras

r(kel. T[T #) = kel o)

l€2,1>1

where £ is of degree 0 and 1 is of degree 1.
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Remark 4.6. In case that n = 1, we know that nrep(Z;) is equivalent to the cate-
gory of finite-dimensional nilpotent k[z]-modules, which is just the category of finitely
generated (x)-torsion modules over the Dedekind domain k[z]. Thus, Lemma 3.5 applies
and we get the same result. More generally, one can consider the completed path algebra
kZ, of the quiver Z,. Then nrep(Z,) is equivalent to the category of finite-dimensional
nilpotent modules over kZ,, and the centre of kZ,, is isomorphic to k[z].

Remark 4.7. Combining Lemma 4.1 with Propositions 4.2 and 4.5, we have now a
description of Z*(D?(C)) for any uniserial hereditary length k-category C.

Next we consider the category of finite-dimensional modules over finite-dimensional
hereditary k-algebras. Since k is assumed to be algebraically closed, we need only consider
the path algebras. Now let @) be a finite, connected quiver without oriented cycles and
let A = kQ be the path algebra. Note that in this case the centre of the algebra is the
field k. First we consider the finite-type case.

Proposition 4.8. Let Q be a quiver such that the path algebra k(@ is of finite-
representation type. Then Z*(D'mod(kQ)) = k.

Proof. The proof is almost the same as that of Proposition 4.2. If A is of finite-
representation type, then any indecomposable A-module M is a stone. In particular,
Hom py(4) (M, 2 M) = Ext}y (M, M) = 0. O

Next we consider the tame case. Let 7 be the Auslander—Reiten translation in mod(A).
The Auslander-Reiten quiver of mod(A) consists of the pre-projective part, the pre-
injective part and the regular part. Recall that a A-module M is pre-projective if and
only if 7" M = 0 for sufficiently large n; and M is pre-injective if and only if 77"M =0
for sufficiently large n. Modules without pre-projective and pre-injective summands are
called regular modules. Denote by P, R and Z the full subcategories of pre-projective
modules, regular modules and pre-injective modules, respectively. We have the decom-
position mod(A4) = PV RV Z. Let n € Z(D"(mod(A))). Since pre-projective and pre-
injective modules have no self-extensions, we get the following easy lemma by applying
Proposition 3.4.

Lemma 4.9. Let Q be a quiver such that the path algebra kQ is of tame representation
type, and let R denote the full subcategory of mod(kQ) consisting of regular modules.
Then Z'D%(mod(kQ)) = Z'(D*(R)).

Recall that for a tame quiver the regular part of the Auslander—Reiten quiver is a
disjoint union of tubes, and there are neither morphisms nor extensions between different
tubes, i.e. R = [[;cs R¢, where T is an index set for all the tubes, R¢ = nrep(Z,))
and p(t) denotes the T-period of R¢. Each tube is an abelian subcategory and we have
D*(R) = Hies DP(Ry). Applying Propositions 4.5 and 3.4, we get the following.

Proposition 4.10. Let Q be a tame quiver, and let T, be the index set of all homo-
geneous tubes. Then

Z*(D°(mod(kQ))) = T<k, 1T 11 k)

te®; m>0
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Next we consider the weighted projective lines over the field k. Recall that a weighted
projective line X is defined through the attached category Coh(X) of coherent sheaves,
which is a small k-category satisfying certain axioms. This concept was introduced by
Geigle and Lenzing in [7] to study the interaction between pre-projective modules and
regular modules for tame hereditary algebras. For a definition we refer the reader to [12,
§10], where one can also find most references about this subject.

Weighted projective lines play an important role in the classification of hereditary
categories. By a theorem of Happel [8], any connected, Ext-finite, hereditary abelian
k-category which has a tilting complex is derived to be equivalent to either the category
mod(A) for some finite-dimensional hereditary algebra A or the category Coh(X) for
some weighted projective line X.

First we recall some basic facts. Let X be a weighted projective line and let H = Coh(X)
be the category of coherent sheaves. The category H has Serre duality, i.e. there exist an
equivalence 7: H — H and a natural isomorphism DExt%{ (X,Y) 2 Homy (Y, 7X). We
denote by Hg the full subcategory consisting of all objects of finite length. Then H, is a
hereditary abelian subcategory and Ho = [, - U, for some index set C, where U, is a
tube with finite 7-period p(z). Members of C are called the points of H. Note that there
are only finitely many points with p(z) > 1.

We denote by H the subcategory consisting of all objects without a simple subobject.
Objects of Hy are called vector bundles. Any indecomposable object of H is either of
finite length or a vector bundle. There is a linear form rk: Ko(H) — Z, called rank,
which is 7-invariant, vanishes on objects of Hy and takes positive values on objects of
‘H. Objects of H of rank 1 are called line bundles, and by definition H contains a line
bundle. For any vector bundle E, we have a filtration Ey C E; C --- C F,. = E with the
line bundle factors E;/FE;_1, where r = rk(E).

For any line bundle L and any point x € C, ES’GL{I dimy, Homy (L, S) = 1, where S
runs through all simple objects in U,. Clearly, we have H = H, V Hg, and therefore any
non-zero morphism between line bundles is a monomorphism.

Now we consider the graded centre of D”(#H). Note that one can define the Euler
characteristic xy for H. If x5 > 0, then H is derived as equivalent to the category
mod(A) for some finite-dimensional tame hereditary algebra A, and in this case the
graded centre has been computed. Firstly, we have the following easy lemma.

Lemma 4.11. Let X be a weighted projective line. Then Z°(D®(Coh(X))) = k.

Proof. We denote Coh(X) by H as before. Since H contains a line bundle, we choose
one and denote it by L. Let n: Idy; — Idy be a natural transformation. To prove the
lemma, it suffices to show that if n;, = 0, then n = 0.

Now assume that n;, = 0. Let x € C be an arbitrary point, and let S € U, be
the simple object with Homy(L,S) # 0. Note that such S exists and is unique. By
Proposition 4.3, m,, = 0 if and only if ngumrr1; = 0 for all m > 0, where r = p(z) is the
r-period and S+ is the object in U, with socle S and of length mr + 1. By using
induction we have dimy, Homy (L, S +t1) = m + 1 for any m > 0. We claim that there

mr+1

exists an epimorphism from L to S I. Otherwise, all morphisms will factor through
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Slm=1)r+1] “and hence
dimy, Homy (L, ST+ = dimy, Homy (L, SIM=Dm 1) =

which gives a contradiction.

Let f: L — S+l be an epimorphism. Since 7 is a natural transformation, we have
Ngimr11 © f = fomnr = 0, and hence Ngimr+11 = 0. Now we have shown that ny, = 0.
Conversely, using a similar argument, one can show that if ny, = 0, then ny = 0 for any
line bundle N. Since any vector bundle E has a filtration with line bundle factors, we
get, using the Five Lemma, that ngy = 0. This completes the proof. O

Combining the above results with Proposition 3.4, Lemma 4.4 and Proposition 4.5, we
obtain the following embedding of algebras.

Lemma 4.12. Let X be a weighted projective line, let H = Coh(X) and let Cy be the
set of points of T-period 1. Then the algebra

ZT(k, 11 Hk)

zeCr m2>20

is isomorphic to a subalgebra of Z*(D®(H)).

In the tubular case, i.e. x4y = 0, we have ‘H = \/quU{OO} H{2 where for each ¢ we
have H(? 2 7. In fact, one can define the slope for objects of H and, roughly speaking,
for any ¢ € Q, H(? is just given by objects of slope ¢, and H(*®) = H,. With this
decomposition of categories, we have the following proposition.

Proposition 4.13. Let X be a weighted projective line of Euler characteristic 0,
H = Coh(X) and C the set of points of T-period 1. Then

Z*(Db(’H))NT(k, I 1II Hk>

qeQU{oco} z€C1 m20

5. The graded centre of D’(mod(k[x]/(x2)))

In this section, we study the ring of dual numbers, which is by definition the k-algebra
A = k[z]/(z?), where k is an arbitrary base field. Set C = mod(A) and P the full
subcategory of C consisting of projective modules. One has a complete description of
the indecomposable objects of D?(C) = K**(P), and therefore one can write down
the elements in Z*(D®(C)) explicitly. By Theorem 2.5, we need only to consider the
category K°(P).

The indecomposable objects in K°(P) are well understood (see, for example, [11]).
They are given by {A7, | —oo < m < n < oo}, where A?, is the complex

0 A A A 0 )
-~ -
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that is, (A7); = A for m < i < n and 0 otherwise, and d‘iA; =gforallm<i<n-—1,
where we use x to denote the multiplication map I,.. If we allow n to take the value oo,
then we get all indecomposable objects in K+*(P), in fact A% = ™S in the derived
category, where S is the simple A-module, regarded as a stalk complex concentrated in
degree 0. Note that YA = Af,;:_ll. The following lemma is basic for our computations.

Lemma 5.1. Let —0o < m < n < oo and let —co < m/ < n’ < co. If (m,n) #
(m’,n"), then Hom g (py(Aj,, AJ,) is at most one dimensional. The morphisms between
indecomposable objects in K°(P) are linear combinations of compositions of the following
four classes of morphisms:

(a) ' A" — A for m < n/ < n, (75" ) = 2 and (") = 0 for all i # m;

(b) ot Apyy = Apy form <m’ <, (my,,0)i = 1 for allm’ <i < n;
(c) i s A" — A™ form < n < n/, (i%"); =1 for all m < i < n;
(d) iy, Apy — Ap form! <m <n, (i, ,.)m = @, and (i, /)i = 0 for all i # m.

The morphisms in the lemma look as follows.

=~ =~
lo I
00— A—...— A—0(
b) 0— A =-..> A >...> A —0
I I
I I
0— A =-...> A =>-...> A —0
hd ~~ ~~
n’ n m

N

00— A =-...> A =>...> A —0
e ~~ ~~

The proof is straightforward and left to the reader. For any m < n < oo, the space
Hom g (p) (A7, Ay,) is two dimensional, and we denote the morphism 4y, ., = m." by
xp,. Now let n: Idgs(py — Idgs(py be a natural transformation. Clearly, n is uniquely
given by some datum {u;,, A}, € k, —oo <m <n < oo} with nan = py, - 14+ A 27,
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Proposition 5.2. Let n: Idgop)y — Idgs(py be a natural transformation and let
{p ;A } be the corresponding datum.

i) We have pu™ = p™, for any m, m’, n and n’. Conversely, any datum of the form
Hm = Hm
{p, A, € k, 0o <m < n < oo} arises as the datum of some natural transformation
n: Idgopy = Idgo(py by setting nan = p+ A7, @y, for any m and n.

(ii) If n € Z°(KY(P)), then N, = N''" for any m, n and r, and any elements in

m—+r

Z°(K"(P)) are obtained in this way.

(iii) As an algebra, Z°(K"(P)) = T(k,JI,50k), where T'(k,[[,5¢k) is viewed as a
graded algebra concentrated in degree 0.

!’
“n,M

Proof. (i) Apply the naturality of n to get i/
" o T.me- From this follows that iy, = u:};, for any m, m/, n and n’.

Conversely, for any datum of the form {u, A\, € k, co < m < n < oo}, we claim that
the 7 constructed above is indeed a natural transformation. In fact, one can easily show
that the equalities f on) = 777’;;, o f hold for those morphisms f: A7}, — A:’;;, listed in
Lemma 5.1. Now, using the fact that K°(P) is a Krull-Remak-Schmidt category and any
morphism is some linear combination of compositions of morphisms listed in Lemma 5.1,
we get that 7y o f = f o nx holds for any morphism f: X — Y in the category K°(P).
Thus, n is a natural transformation.

(i) Use the fact that by definition n € Z°(K®(P)) if and only if ¥n = nX, and this is
equivalent to the requirement that A, = )\Zﬁll for any m and n.

! ’
n o o__ ,n n,n n n o __
onpy, =mnp, oir™ and Tonms © Ty =

(iil) is an easy consequence of (ii). In fact we can explicitly write down the elements
in Z°(K"(P)). For any r > 0, let 1, € Z°(K®(P)) denote the natural transformation
obtained by setting (1) An = xy, for m —n = r and 0 otherwise. Thus, as vector spaces,

Z2K"P) =k-1& ] k- n,

r>0

By direct computation, the multiplication satisfies n,.n,» = 0 for any r and r’ and the
isomorphism in (iii) follows. O

Now we consider the natural transformations from the identity functor to 2* for any
positive integer ¢ > 0. Note that Hom s () (A7, YtA™ ) =0 for any m, n with n < m+t,
and in the case n > m + t, the morphism space is one dimensional with basis element
frn =it onn . Let ¢: Idpypy — X* be a natural transformation; it is uniquely
determined by the datum {A},,, n > m + t}, where (an = )‘?;mlft?m- Applying the

and one gets f{,,, = [, for any m, m', n

7
M

naturality of ¢ to the morphisms 4%
and n’. Thus, we get the following lemma.

n
m,m’?

Lemma 5.3. Let t > 0. All natural transformations from Id g py to X* form a one-
dimensional k-space with a basis element (;, where (; is given by (n)an = f{,, for all
n = m +t and 0 otherwise. Moreover, the multiplication satisfies (;(y = (v for any
t,t' > 0 and ¢ = npC = 0 for any t > 0 and r > 0, where the 7, are given as in the
proof of Proposition 5.2.
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Note that X¢; = (—1)!¢; X if and only if either char(k) = 2 or char(k) # 2 and ¢t is
even. Combined with the last lemma and Proposition 5.2, we get the graded centre of
D?(mod(A)).

Proposition 5.4. Let k be an arbitrary base field. Then, as a graded algebra,

2*(D"(mod(klz]/(+2)))) = T(km, 11 k),

r=0

where k is identified with k[(]/({) as a k[(]-module,

270" woa(kla] () =1 (k. [T 1),

r>0

and ( is of degree 2 if char(k) # 2, and of degree 1 if char(k) = 2.

6. The graded centre of the stable category mod(k[x]/(z™))

Another important class of triangulated categories is the stable categories of self-injective
algebras. We calculate the graded centres in some special cases, namely for the algebras
of the form k[z]/(2™) with n > 2. These calculations are based on the fact that the
indecomposable objects and their morphisms are well understood. Note that algebras
of the form k[z]/(«™) are Brauer tree algebras, and we refer the reader to [9] for the
calculation of the graded centres of their stable module categories.

Let A = k[z]/(«™) with k an arbitrary base field. It is well known that A is uniserial and
that all the indecomposable objects in mod(A) are of the form 4; = A/z'A = 2"~' A with
1 <1 < n. There are epimorphisms 7\ = [,1—.: A; — A, for [ > r and monomorphisms
ir: Ay — A, for I < r. For any [ and r, Homa(4;, A,) has a basis {f\" = i7 o7l |
1 < s < min(l,r)}. Moreover, the syzygy functor (2 is given by 2(4;) = A,—; and

QP =anTioin Ty = frT forall 1<I<n—1, rs <.

Now let ¢ = mod(A) be the stable category. One knows that C is a triangulated
category with suspension functor X = 27! = (2. In particular, we have 22 = Id¢ in C.
The indecomposable objects in C are given by 4; = A/x'A = 2" ' A with 1 < < n, and
fbm =0 if and only if [ +r —n > s. Consequently, Home (A;, A,,_;) = Homa(A;, A,_y).

For any self-injective ring R, let Z(R) denote the graded centre of R. There is a
canonical morphism from Z(R) to Z°(mod(R)). As we will show below, this map is not
injective in general. The more interesting question is whether or not it is surjective. In
the case A = k[z]/(z™), the answer is affirmative. In fact, for an arbitrary uniserial self-
injective algebra, all natural transformations from the identity functor to itself for the
stable category come from the centre of the algebra.

Proposition 6.1. Let A = k[z]/(z") with n > 2 and C = mod(A). Then Z°(C) =
k[z]/(z!"/?), where [n/2] denotes the maximal integer which is no larger than in.
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Proof. Note that Ap,/9 is of special importance since End¢(Ap, ) is of maximal
dimension among the indecomposable objects. Let  be a natural transformation from
Id¢ to Ide. We will show that 7 is uniquely determined by 74, -

We fix some a € A such that n Apn2 = la, Where [, is given by the multiplication with
a as before. Since 7 is a natural transformation, we have ﬂfn o) O 1A = lg0 an/Q] for
[ > [4n] and iE"/Q] ona, =l Oz.gn/2] for any | < [$n]. Now it is easy to show that na, = lo
for any [, since the solutions of the equations above are unique. Therefore, we have an
epimorphism from A to Z°(C), and easy computations show that [,z = 0 in C. (]

Next we will compute the natural transformations from the identity functor to 2. The
following lemma is easy.

Lemma 6.2. Let (: Id¢ — (2 be a natural transformation. Then, for any 1 <1 < n, we
have (4, = A\; - f{’”fl for some \; € k. And conversely, any family {\;, 1 <1 < n} induces
a natural transformation ¢ by setting Ca, = \; - f{’"fl for any I. Moreover, ¢ € Z'(C) if
and only if Ay = —\,,_; for any [.

Proof. We use induction on [. Clearly, we have (4, = A1 - fll’"fl. Now assume that
Ca, = Xs - fi"7° for some \g € k, and consider the inclusion i$71. One obtains

541 _ =n—s o
CAS+1 Oly  =Tp_s-1° CAs =0,

and hence (a,,, = Asy1 - ff+1’n_5_l. The remaining part is straightforward. (]

Now let (; denote the natural transformation given by ((s)a, = 6Lf;""° for any 1 <
I < n. We also denote by t the identity map from Ide to 22 = Ide and view it as an
element in Z2(C).

Let Z*(C) be the Z-graded space with Z"(C) consisting of all natural transformations
from Ide to £2". Note that Z*(C) forms a graded algebra and Z*(C) is a subalgebra of
Z*(C).

Observe that the case n = 2 is slightly different. In fact, in this case, not only 22 but
also the shift functor (2 itself is equivalent to the identity functor. We deal with this case
separately. With the above notation, we get the following results.

Proposition 6.3. Let C = mod (k[z]/(z?)). Then Z*(C) = k[C1, ;Y] with ¢; of degree
1. We have Z*(C) = Z*(C) if char(k) = 2, and Z*(C) = k[¢?] if char(k) # 2.

Note that ¢? equals t as defined above, and clearly (; 1'is of degree —1. The proof
follows directly from Proposition 6.1 and Lemma 6.2.

Proposition 6.4. Let C = mod(k[z]/(z™)) and n > 3. Then we have

Z*(C) = k[x7<1> e 7<n713t,t71]/<$[n/2]71(57 Csl'a CSCS’>7

where x, each (s and t are of degree 0, 1 and 2, respectively. Moreover, Z*(C) is the
subalgebra generated by z, t, t ' and (s — Cp—s with 1 < 5 < [%n] if either n is odd or
char(k) # 2; if char(k) = 2 and n is even, then Z*(C) is the subalgebra generated by z,
t,t71, C[n/Q] and (s — (p—s with 1 < s < [%n]
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Corollary 6.5. Let C = mod(k[z]/(xz")) and n > 3. Then, as a graded algebra,

Z*(C) = k[x,C1y e, Gt t 7 (@A 2, Cor, CoCor)

with z, each ns and t of degree 0, 1 and 2, respectively, where | = [%(n — 1)] if either n
is odd or char(k) # 2, and | = [in] if char(k) = 2 and n is even.

Remark 6.6. For a self-injective algebra A, one has
D®(mod(A))/K®(proj A) = mod(A).

We have already seen that Z*(D’(mod(A))) = Z*(K®(proj A)), but what can we say
about the ring homomorphism 7, : Z*(D®(mod(A))) — Z*(mod(A))?

For the algebra A = k[z]/(x?) we can describe 7, explicitly, since both graded centres
are known. Recall that

Z*(D"(mod(k[z]/(2%)))) = (k o]k nr) €1/ (mpmyes e C)

>0

and Z*(mod(A)) = k[t,t~1]. We know that in this case 7, is neither injective nor surjec-
tive. Explicitly, Im(7.) = k[t] and Ker(m.) = [[,50 &k - 1y

Acknowledgements. Y.Y. gratefully acknowledges support by the Alexander von
Humboldt Foundation. He is supported in part by the National Natural Science Foun-
dation of China (Grant 10971206).

References

1. I. K. AMDAL AND F. RINGDAL, Catégories unisérielles, C. R. Acad. Sci. Paris Sér. A
267 (1968), 85-87.

2.  D. M. ArNOLD AND R. C. LAUBENBACHER, Almost split sequences for Dedekind-like
rings, J. Lond. Math. Soc. (2) 43 (1991), 225-235.

3. L. L. AvRamMoVv AND S. B. IYENGAR, Constructing modules with prescribed cohomolog-
ical support, Illinois J. Math. 51(1) (2007), 1-20.

4. D. BENsoON, S. B. IYENGAR AND H. KRAUSE, Local cohomology and support for trian-
gulated categories, Annales Scient. Ec. Norm. Sup. 4 (2008), 573-619.

5. R.-O. BUCHWEITZ AND H. FLENNER, Global Hochschild (co-)homology of singular spaces,
Adv. Math. 217 (2008), 205-242.

6. J. CUADRA AND J. GOMEZ-TORRECILLAS, Serial coalgebras, J. Pure Appl. Alg. 189
(2004), 89-107.

7.  W. GEIGLE AND H. LENZING, A class of weighted projective lines arising in represen-
tation theory of finite dimensional algebras, in Singularities, representation of algebras,
and vector bundles, Lecture Notes in Mathematics, Volume 1273, pp. 265-297 (Springer,
1987).

8. D. HAPPEL, A characterization of hereditary categories with tilting object, Invent. Math.
144 (2001), 381-398.

9. R. KESSAR AND M. LINCKELMANN, The graded center of the stable category of a Brauer
tree algebra, Q. J. Math. 61 (2010), 337-349.

10. H. KRAUSE, Derived categories, resolutions and Brown representability, in Interactions
between homotopy theory and algebra, Contemporary Mathematics, Volume 436, pp. 101—
139 (American Mathematical Society, Providence, RI, 2007).

https://doi.org/10.1017/50013091509001199 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091509001199

466

11.
12.

13.

14.

15.

16.

H. Krause and Y. Ye

M. KUNZER, On the center of the derived category, Preprint (2006).

H. LENZING, Hereditary categories, in Handbook of tilting theory, pp. 105—146 (Cambridge
University Press, 2007).

M. LINCKELMANN, On graded centers and block cohomology, Proc. Edinb. Math. Soc. 52
(2009), 489-514.

W. LOWEN AND M. VAN DEN BERGH, Hochschild cohomology of abelian categories and
ringed spaces, Adv. Math. 198 (2005), 172-221.

R. ROUQUIER, Representation dimension of exterior algebras, Invent. Math. 165 (2006),
357-367.

D. SiMSON, On coalgebras of tame comodule type, in Representations of algebra, Vol-
ume 11, pp. 450-486 (Beijing Normal University Press, 2002).

https://doi.org/10.1017/50013091509001199 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091509001199

