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1. Introduction

The graded centre of a triangulated category T with suspension functor Σ is a Z-graded
ring. The degree n component consists of all natural transformations from the identity
functor Id to Σn which commute modulo the sign (−1)n with Σ. The graded centre
is the universal graded commutative ring that acts on T . For instance, the Hochschild
cohomology HH∗(A) of an algebra A acts on the derived category D(A) via a morphism
HH∗(A) → Z∗(D(A)) into the graded centre.

Over the past few years, several authors have studied and used graded centres in various
settings: Avramov and Iyengar investigated support varieties of modules over Noetherian
rings via central cohomology operations [3]. The work of Buchweitz and Flenner uses
graded centres for studying the Hochschild cohomology of singular spaces [5]. For the
related work of Lowen and van den Bergh in the setting of differential graded categories
we refer the reader to [14]. Blocks of finite groups and their modular representation theory
provide the context for recent work of Linckelmann on the graded centre of stable and
derived categories [13]. Closely related is the study of cohomological support varieties,
which depends on the appropriate choice of a graded commutative ring acting on a
triangulated category [4].

In this paper, we prove some structural results and provide complete descriptions of
the graded centre for some small examples. The paper is organized as follows.

In § 2, it is shown that for any abelian category A with enough projective objects,
there is an isomorphism of graded commutative rings Z∗(Db(A)) ∼= Z∗(Db(Proj(A))).
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Here Proj(A) denotes the full subcategory of A consisting of all projective objects and
the isomorphism is given by restriction.

In §§ 3 and 4, we deal with derived categories of hereditary categories. Note that, for
a hereditary category, the derived category and the bounded derived category have the
same graded centre. In § 3, the category mod(R) of finitely generated modules over a
Dedekind domain R is considered. We calculate Z∗(D(mod(R))) explicitly. As we show,
it relates closely to the residue fields of all the maximal ideals of R.

In § 4, we consider the module category of a tame hereditary algebra and the category
of coherent sheaves on a weighted projective line of non-negative Euler characteristic. We
compute the graded centres of their bounded derived categories. Note that our methods
do not apply to wild cases. For a weighted projective line of wild type, we only get a
subalgebra of the graded centre.

In §§ 5 and 6, we describe the graded centres of Db(mod(k[x]/x2)) and mod(k[x]/xn)
for n � 2, respectively.

2. Morphisms between graded centres

Definition 2.1. Let T be a triangulated category and Σ the suspension functor of
T . We define a Z-graded abelian group Z∗(T ) = Z∗(T , Σ) as follows. For any n ∈ Z,
let Zn(T ) denote the collection of all natural transformations η : Id → Σn that satisfy
ηΣ = (−1)nΣη. The composition of natural transformations gives Z∗(T ), the structure
of a graded commutative ring, and we call it the graded centre of T . Graded commutative
here means that ηζ = (−1)mnζη for all η ∈ Zn(T ) and ζ ∈ Zm(T ).

Remarks 2.2.

(i) The definition of the graded centre Z∗(T ) makes sense for any graded category,
that is, an additive category equipped with an autoequivalence. In particular, the
choice of the exact triangles of T is not relevant for Z∗(T ).

(ii) The degree 0 part Z0(T ) is a subring of the usual centre Z(T ) of T , which by
definition consists of all natural transformations from the identity functor to itself.
Note that Z0(T ) = Z(T ) if Σ = Id.

(iii) The graded centre Z∗(T ) need not be a set in general. However, it will be a set
when the category T is small.

(iv) For any object M in T we define the graded ring Ext∗
T (M, M) by setting

Extn
T (M, M) = HomT (M, ΣnM)

for any integer n. By definition there is a canonical graded ring morphism

Z∗(T ) → Ext∗
T (M, M)

mapping a natural transformation η : Id → Σn to the morphism ηM : M → ΣnM .
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Following Rouquier [15], we set 〈M〉1 to be the full additive subcategory of T
which contains M and is closed under finite direct sums, summands and the action
of Σ, and for i � 2 we define inductively 〈M〉i as the full additive subcategory of T
consisting of all objects isomorphic to direct summands of objects Z for which there
exists an exact triangle X → Y → Z → ΣX with X ∈ 〈M〉1 and Y ∈ 〈M〉n−1.

Now suppose that M is an object of T with T = 〈M〉d+1 for some positive integer
d. We set N to be the kernel of the canonical morphism Z∗(T ) → Ext∗

T (M, M). It
can be shown in this case that N is a nilpotent ideal satisfying N 2d

= 0; see [13]
for a proof. In particular, Z∗(T ) is modulo nilpotent elements a set.

Let F : S → T be an exact functor between triangulated categories. An obvious ques-
tion to ask is when the functor F induces morphisms between Z∗(S) and Z∗(T ). Recently,
Linckelmann gave an affirmative answer to this question in the case in which there exists
a functor G : T → S that is simultaneously left and right adjoint to F and satisfies some
further compatibility conditions [13]. The answer for general F seems to be unknown.
The following proposition shows that in some very specific situation, for instance when
F is fully faithful, we do obtain some morphisms between the graded centres.

Proposition 2.3. Let T be a triangulated category and let S be a full triangulated
subcategory.

(i) The inclusion functor i : S → T induces a morphism of graded rings

i∗ : Z∗(T ) → Z∗(S),

where i∗(η)X = ηX for any η ∈ Z∗(T ) and X ∈ S.

(ii) The canonical functor π : T → T /S induces a morphism of graded rings

π∗ : Z∗(T ) → Z∗(T /S),

where π∗(η)X = π(ηX) for any η ∈ Z∗(T ) and X ∈ T /S.

Proof. The proof is routine. To check that π∗ is well defined, one uses the fact that,
for any commutative diagram in T ,

X �� s ���

α

��

Z
f ��

β

��

Y

γ

��
X ′ �� s′

��� Z ′ f ′
�� Y ′

with Cone(s) and Cone(s′) in S, we have γ ◦ (f/s) = (f ′/s′) ◦ α in the quotient category
T /S, where we use ��� to denote the morphisms whose cones are in S. �

Until now, little seems to have been known about the properties of the above mor-
phisms. For example, the question of when i∗ and π∗ are surjective or injective is of
special interest to us. Also, one might study the induced morphism of graded rings

(i∗, π∗) : Z∗(T ) → Z∗(S) × Z∗(T /S).
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Example 2.4. Let S � T denote the direct product of two triangulated categories, S
and T . We view S as a thick subcategory of S � T and the corresponding quotient is
equivalent to T . Then we have Z∗(T � S) ∼= Z∗(T ) × Z∗(S) via the morphism (i∗, π∗).

For the rest of this section we focus on homotopy categories and derived categories.
Firstly, we introduce some basic notation and conventions. Let A be any additive cat-
egory. We denote by C(A) the category of chain complexes in A. Recall that a chain
complex in A is a sequence of morphisms in A:

X = ( · · · �� Xn

dX
n �� Xn−1 �� · · · )

with dX
n dX

n+1 = 0 for all n ∈ Z. A morphism of complexes is a chain map f : X → Y

consisting of a family of morphisms fn : Xn → Yn in A with n ∈ Z such that fn ◦ dX
n+1 =

dY
n+1 ◦ fn+1 for all n, that is, the diagram

· · · �� Xn+1
dX

n+1 ��

fn+1

��

Xn

dX
n ��

fn

��

Xn−1 ��

fn−1

��

. . .

· · · �� Yn+1
dY

n+1 �� Yn

dY
n �� Yn−1 �� · · ·

commutes. We denote by C+(A) the full subcategory of C(A) that consists of all bounded
below complexes, that is, the complexes X with Xn = 0 for n � 0. Similarly, we denote
by C−(A) and Cb(A) the full subcategory of bounded above complexes and complexes
bounded in both directions, respectively.

If, moreover, A is abelian, then for any integer n the nth homology group Hn(X) is
by definition Ker(dX

n )/ Im(dX
n+1), and any morphism f of complexes induces morphisms

of homology groups Hn(f) : Hn(X) → Hn(Y ) for all n ∈ Z.
The homotopy category K(A) has the same objects as C(A). The morphisms are the

equivalence classes of the morphisms in C(A) modulo the null-homotopic morphisms,
that is, those with components of the form

dY
n+1 ◦ hn + hn−1 ◦ dX

n

for some family of morphisms hn : Xn → Yn+1 in A, n ∈ Z.
The suspension functor (or shift functor) Σ of C(A) is defined by (ΣX)n = Xn−1,

dΣX
n = −dX

n−1 on the objects and by (Σf)n = fn−1 on any morphism f . Clearly, Σ is not
only an autoequivalence but also an automorphism of C(A). Moreover, Σ also induces
an automorphism of K(A) and K(A) admits a triangulated structure with suspension
functor Σ.

Let D(A) denote the derived category of A, i.e. the localization of K(A) with respect to
the quasi-isomorphisms. Note that D(A) is again a triangulated category with suspension
functor Σ. One defines K∗(A) and D∗(A) with ∗ ∈ {+, b,−} in a similar way.

Now let A be an abelian category with enough projective objects, and let P be the
full subcategory consisting of all projective objects. We denote by K+,b(P) the thick
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subcategory of K+(P) that consists of bounded below complexes X with Hn(X) = 0 for
almost all n. Clearly, we have Kb(P) ⊆ K+,b(P). In some cases, objects in Kb(P) are
also called perfect complexes.

It is known that the composition of functors

K+,b(P)� �

��

∼= ����������� Db(A)� �

��
K+(P) ��

∼=
��

K+(A) �� D+(A)

induces equivalences K+(P) ∼−→ D+(A) and K+,b(P) ∼−→ Db(A) of triangulated cate-
gories. The quotient category Dsg(A) = Db(A)/Kb(P) is called the triangulated cate-
gory of singularities of A because it is an invariant of the singularities provided that A
is the category of sheaves on some variety. We know that Dsg(A) = 0 if and only if all
objects of A have finite homological dimension. When A = Mod(A) for some self-injective
ring A, Dsg(A) is equivalent to the stable module category Mod(A) of A.

We are now in a position to state the main result of this section.

Theorem 2.5. Let A be an abelian category with enough projective objects and
let P be the full subcategory consisting of all projective objects. Then the embedding
Kb(P) → K+,b(P) induces an isomorphism Z∗(Kb(P)) ∼−→ Z∗(Db(A)) of graded com-
mutative rings.

To prove the theorem, we need some preparations.
For each n ∈ Z the nth truncation functor ιn : C(A) → C(A) is defined for a complex

X by (ιnX)i = Xi for i � n and 0 for i > n, and dιnX
i = dX

i for i � n and 0 for i > n.
Clearly, ιn sends C(A) to C−(A) and C+(A) to Cb(A). Note that we have a natural
morphism in : ιnX → X, and sometimes we use inX to emphasize X. We have (in)s = id
for s � n and 0 for s > n. The following lemma is crucial in the proof of the main
theorem.

Lemma 2.6. Let X ∈ C(P), Y ∈ C(A) and f : X → Y be a chain map with Hn(Y ) =
0 for n > 0. Then f is null-homotopic if and only if the composition f ◦in : ιnX → X → Y

is null-homotopic for some n � 0.

Proof. One direction is clear, since the null-homotopic morphisms form an ideal.
Conversely, suppose that f ◦ in is null-homotopic for some n � 0. To show that f is
also null-homotopic, it suffices to find a family {hn : Xn → Yn+1 | n ∈ Z}, such that
fn = dY

n+1hn + hn−1d
X
n holds for all n. By applying the shift functor, one can assume

without loss of generality that f ◦ i0 is null-homotopic. Thus, there exists a family of
morphisms in A, say {hn : Xn → Yn+1, n � 0}, such that fn = dY

n+1hn + hn−1d
X
n for all

n � 0.
Since f is a chain map, we have

dY
1 f1 = f0d

X
1 = dY

1 h0d
X
1 + h−1d

X
0 dX

1 ,
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and hence dY
1 (f1 − h0d

X
1 ) = 0, which implies that

Im(f1 − h0d
X
1 ) ⊆ Ker(dY

1 ) = Im(dY
2 );

the last equality holds because H1(Y ) = 0. Now, the fact that X1 is projective implies that
f1 −h0d

X
1 factors through dY

2 , i.e. there exists h1 : X1 → Y2 such that f1 = dY
2 h1 +h0d

X
1 ;

thus, we get the required h1. Now repeat the argument and the lemma follows. �

Proposition 2.7. Let t ∈ Z and let η : Id → Σt be a natural transformation for the
category Kb(P). Then η extends uniquely to a natural transformation η̃ : Id → Σt for
the category K+,b(P).

Proof. First we will construct a morphism η̃X : X → ΣtX for any X ∈ K+,b(P).
The idea is to use certain approximations.

Since η is a natural transformation for Kb(P), we have for each n a morphism ζ̄n =
ηιnX : ιnX → ΣtιnX. Now we fix a chain map ζ0 : ι0X → Σtι0X that is a representative
of ζ̄0. We can construct inductively the representatives ζn of ζ̄n for all n � 0, such that
ζn+1
i = ζn

i for all n � 0 and i � n.
In fact, suppose that ζn has been constructed, and let ξ be any representative of

ζ̄n+1X. Consider the morphism j : ιnX → ιn+1X which is given by jm = idXm
for all

m � n and 0 otherwise. Since η is a natural transformation, the diagram

ιnX
j ��

ζn

��

ιn+1X

ξ

��
ΣtιnX

Σtj �� Σtιn+1X

commutes in the category Kb(P), i.e. δ := ξ ◦ j − Σtj ◦ ζn is null-homotopic. Explicitly,
δi = ξi − ηi for i � n and δi = 0 for i � n + 1.

Now there exists a family of morphisms {hi : (ιnX)i → (Σtιn+1X)i+1 | i ∈ Z} with
hi = 0 for i > n, such that

δi = dΣtιn+1X
i+1 ◦ hi + hi−1 ◦ dιnX

i .

The family {hi} can be viewed as a family of morphisms {hi : (ιn+1X)i → (Σtιn+1X)i+1 |
i ∈ Z}; thus, it gives a null-homotopic morphism δ′ : ιn+1X → Σtιn+1X, which satisfies
δ′
i = δi for all i � n. We are done by setting ζn+1 = ξ − δ′.
Now we define η̃X by (η̃X)n = ζ0

n for n � 0 and (η̃X)n = ζn
n for n > 0. We claim that

η̃ is a natural transformation from Id to Σt for the category K+,b(P).
Note that, by construction, η̃X satisfies the following condition: for any n � 0, there

exists a representative ζn
X for ηιnX , which is given by (ζn

X)i = (η̃X)i for i � n, and
(ζn

X)i = 0 for i � n + 1. In other words, η̃X ◦ inX = ΣtinX ◦ ηιnX as chain maps for all
n � 0, where inX denotes the natural morphism from ιnX to X as before.

Now let X, Y ∈ K+,b(P) and let f : X → Y be any chain map. Assume that η̃X : X →
ΣtX and η̃Y : Y → ΣtY are arbitrary chain maps with the property

η̃X ◦ inX = ΣtinX ◦ ηιnX and η̃Y ◦ inY = ΣtinY ◦ ηιnY for n � 0.
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We will show that η̃Y ◦ f = Σtf ◦ η̃X in K+,b(P). Note that in the cube below the other
five faces are commutative by the construction of η̃X , η̃Y , ιnX and ιnY :

X
η̄X ��

f
��

ΣtX

Σtf

��

ιnX

in
X

������� ηιnX ��

��

ΣtιnX

�������

��

Y
η̄Y �� ΣtY

ιnY
ηιnY ��

in
Y

�������
ΣtιnY

�������

By Lemma 2.6 it suffices to show that η̃Y ◦f ◦inX = Σtf ◦η̃X ◦inX for some sufficiently large
n. This is equivalent to showing that η̃Y ◦inY ◦ιnf = Σtf ◦ΣtinX ◦ηιnX . The left-hand side
is ΣtinY ◦ηιnY ◦ ιnf , and since ηιnY ◦ ιnf = Σtιnf ◦ηιnX and Σtf ◦ΣtinX = ΣtinY ◦Σtιnf ,
the equality holds.

Thus, by fixing such η̃X for each X, we can extend η to the category K+,b(P). For
the uniqueness, we need only to take f = idX in the above argument. This completes
the proof. �

Corollary 2.8. Let A and P be as before. Then Zt(Kb(P)) = 0 for all t < 0, and
therefore Z∗(Kb(P)) and Z∗(Db(A)) are positively graded.

Proof. Suppose that η is a natural transformation from IdKb(P) to Σt
Kb(P) for some

t < 0. We prove that ηX = 0 by using induction on the length of the support of X, where
the support of X means the interval [i, j], such that i and j are respectively the minimal
and maximal integer m with Xm �= 0. Without loss of generality, we may assume that
i = 0 and we use induction on j.

In the case j = 0, clearly HomKb(P)(X, ΣtX) = 0 for t < 0. Suppose ηX = 0 for all
j � m and suppose X = (· · · → 0 → Xm+1 → · · · → X0 → 0 → · · · ). By the same
argument as in the proof of Proposition 2.7, there is a representative ζ of ηX , such that
ζi = 0 for all i � m, and now the assumption t < 0 implies that (ΣtX)m+1 = 0, which
forces that ζm+1 = 0, thus ζ = 0 and hence ηX = 0. �

With the above preparations, we can now prove the main theorem.

Proof of Theorem 2.5. Fix η ∈ Zt(Kb(P)). By Proposition 2.7, η extends uniquely
to a natural transformation η̃ : Id → Σt for the category K+,b(P), and clearly i∗(η̃) = η,
where i∗ is induced by the embedding i : Kb(P) → K+,b(P). By the same argument as
in the last part of the proof of Proposition 2.7, one can show that η̃Σ = (−1)nΣη̃, which
implies that η̃ ∈ Zn(K+,b(P)). This proves the surjectivity of i∗. The injectivity of i∗

follows from the uniqueness of the extension. �

Remark 2.9. Suppose there are enough injective objects in A and denote by I the full
subcategory of injectives. Then we have Db(A) ∼= K−,b(I) and the dual version of the
theorem says that there is an isomorphism of graded centres Z∗(Kb(I)) ∼= Z∗(Db(A)).
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3. Finitely generated modules over Dedekind domains

The following two sections are devoted to studying the graded centre of the derived
category of some hereditary categories. We look at some basic examples and use explicit
calculations. First we discuss the derived category of the category of finitely generated
modules mod(R) for any Dedekind domain R. We start with some preparation.

Let R be an arbitrary unitary ring and denote by Z(R) the centre of R. Let z ∈ Z(R)
and M ∈ mod(R). Then we have a morphism lz ∈ HomR(M, M), which is given by
lz(m) = z · m. This is indeed a morphism of modules since z is in the centre of R.
Moreover, lz induces a natural transformation from the identity functor to itself for
mod(R) as well as for Db(mod(R)).

Now let H be a hereditary abelian category, that is, Exti
H(M, N) = 0 for any M, N ∈ H

and i � 2. Consider the derived category of H and observe that any object X ∈ D(H)
is isomorphic to

⊕
i∈Z Σi(Hi(X)). Here, Σ is the shift functor and Hi(X) is viewed as a

stalk complex concentrated in degree 0. For a simple proof of this, see [10, § 1]. We have
the following easy lemmas.

Lemma 3.1. Left multiplication induces an injective ring homomorphism Z(R) →
Z0(Db(mod(R))). Moreover, if R is hereditary, then this is an isomorphism.

Proof. For a proof, we just use the fact that left multiplication gives an isomorphism
from Z(R) to the usual centre of mod(R), i.e. the ring of natural transformations from
the identity functor to itself, and that mod(R) is a full subcategory of Db(mod(R)).

Moreover, if R is hereditary, then all objects of Db(mod(R)) are of the form
⊕

i∈Z ΣiMi

with Mi ∈ mod(R) viewed as a stalk complex concentrated in degree 0. Now the lemma
follows easily. �

Remark 3.2. Note that the morphism in the lemma need not be an isomorphism
(see [11] or § 5).

Lemma 3.3. Let H be an arbitrary hereditary category. Then Z∗(Db(H)) is concen-
trated in degrees 0 and 1. Moreover, the inclusions Db(H) ⊆ D−(H) ⊆ D(H) induce
isomorphisms of graded centres Z∗(Db(H)) ∼= Z∗(D−(H)) ∼= Z∗(D(H)).

Proof. We have HomD(H)(M, ΣmM) = Extm
H(M, M) = 0 for all M ∈ H and m � 2,

since H is hereditary. Thus, there is no non-trivial natural transformations from Id to
Σm for the category Db(H) for m � 2, and the first part of the lemma follows. The
last assertion follows from the fact that any element in the graded centre Z∗(D(H))
is uniquely determined by the restriction to the stalk complexes. The minor difference
between the two derived categories is that any object in D(H) is an infinite direct sum
of stalk complexes while objects in Db(H) can always be written as finite direct sums.
Similarly, we have Z∗(D+(H)) ∼= Z∗(D(H)). �

Due to the lemma, to study the graded centre of the derived categories of hereditary
abelian categories, we need only to consider the bounded ones.

Now suppose that H = H1 ∨ H2, where H1 and H2 are full additive subcategories of
H, and we use ∨ to indicate that any object of H is a direct sum of an object of H1
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and an object of H2, and HomH(M2, M1) = Ext1H(M1, M2) = 0 for all M1 ∈ H1 and
M2 ∈ H2. We set Σ∗H1 to be the minimal additive subcategory of Db(H) that contains
H1 and is closed under Σ: in other words, the subcategory consisting of all complexes with
homologies contained in H1. Note that Σ∗H1 is not a triangulated subcategory in general.
This will happen if H1 is a subcategory of H that is closed under extensions, kernels and
cokernels. In this case, H1 is also a hereditary abelian category and Σ∗H1 ∼= Db(H1).
For a proof of this, one again uses the fact that any object in Db(H) is a direct sum of
stalk complexes. Since Σ is an autoequivalence of Σ∗H1, we can also define the graded
centre of Σ∗H1 with respect to Σ, and denote it by Z∗(Σ∗H1).

Proposition 3.4. Let H = H1 ∨ H2 be a hereditary abelian category. Then the
restriction map induces an isomorphism of abelian groups

Z1(Db(H)) ∼= Z1(Σ∗H1) × Z1(Σ∗H2).

Proof. We produce an inverse map. First observe that any object in Db(H) can be
written uniquely as X1⊕X2 with X1 ∈ Σ∗H1 and X2 ∈ Σ∗H2. Let η1 : IdΣ∗H1 → ΣΣ∗H1

and η2 : IdΣ∗H2 → ΣΣ∗H2 be natural transformations. Then we define η : IdDb(H) →
ΣDb(H) by setting ηX1⊕X2 to be the map (η1)X1 ⊕ (η2)X2 . We will show that η is indeed
a natural transformation. To this end we need to check that, for any morphism f : X → Y

in Db(H), we have Σf ◦ ηX = ηY ◦ f .
Since any object of Db(H) can be uniquely written as

⊕
i∈Z Σi(M i

1 ⊕ M i
2) with M i

1 ∈
H1 and M i

2 ∈ H2, we need only to check the above compatibility for the morphisms
of the form f : ΣiM1 → ΣjM2 and g : ΣiM2 → ΣjM1 with M1 ∈ H1 and M2 ∈ H2.
We claim that Σf ◦ ηM1 = ηM2 ◦ f = 0 and Σg ◦ ηM2 = ηM1 ◦ g = 0. In fact, since H is
hereditary, both sides will vanish unless j = i + 1 or j = i. If j = i + 1, the equalities
hold since Ext2H(M, N) = 0 for all M, N ∈ H. Otherwise, if j = i, we have g = 0 and
Ext1H(M1, M2) = 0. Now the assertion follows easily, and this completes the proof. �

Now we can begin the study of Z∗(Db(mod(R))) for a Dedekind domain R. A Dedekind
domain is an integral domain such that each ideal can be written as a finite product of
prime ideals or, equivalently, a Noetherian integrally closed domain with Krull dimension
at most one. This name was given to such rings in honour of Dedekind, who was one of
the first to study such rings in the 1870s. The rings of algebraic integers of number fields
provide an important class of Dedekind domains, which play a crucial role in algebraic
number theory.

The assumption on the Krull dimension implies that each non-zero prime ideal of R is
maximal, and that the category H = mod(R) is hereditary and any object M of mod(R)
is a direct sum of a torsion-free module and a torsion module. Any finitely generated
torsion-free module is projective, and any finitely generated torsion module is a finite
direct sum of cyclic modules. Moreover, by the Chinese Remainder Theorem, each cyclic
module is a finite direct sum of modules of the form R/pl with p a maximal ideal of R

and l � 1.
We have a decomposition of categories H = H+ ∨ H0, where H+ denotes the full sub-

category of H consisting of all projective modules and H0 consists of all torsion modules.
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Note that H0 is an exact abelian subcategory and therefore hereditary. Moreover, there
exists an Auslander–Reiten translation τ in H0, which is by definition an autoequivalence
of H0 such that there exists a natural isomorphism D Ext1H(X, Y ) ∼= HomH(Y, τX). This
identity is usually called Serre duality and implies the existence of Auslander–Reiten
sequences in H0.

Let max(R) denote the set of all maximal ideals of R. Then all the indecomposables in
H0 are given by {R/pl | p ∈ max(R), l � 1}. Denote by Hp the subcategory of H0 consist-
ing of all p-torsion modules, i.e. the additive category generated by {R/pl | l � 1} that is
an exact abelian subcategory of H0. Note that Hp is τ -invariant and H0 =

∐
p∈max(R) Hp.

One can show that Hp is equivalent to the subcategory of mod(Rp) that consists of
torsion Rp-modules, where Rp is the localization of R at p; and Hp is obviously a full
subcategory of mod(R̂p), where R̂p is the completion of R with respect to p, i.e. the
inverse limit lim←−R/pl. Note that we have an isomorphism R/p ∼= Rp/pRp of residue
fields, and we denote it by kp.

Fix an element x ∈ p\p2. Since Rp is a discrete valuation ring, the multiplication with
x gives us an isomorphism R/pl ∼= p/pl+1 of R-modules for any l � 1. Thus, we have in
Hp Auslander–Reiten sequences

σ1
p : 0 → R/p → R/p

2 → R/p → 0

and

σl
p : 0 → R/p

l → R/p
l−1 ⊕ R/p

l+1 → R/p
l → 0

for all l � 2, where the morphism from R/pl+1 to R/pl is the natural quotient map, and
we use the isomorphism R/pl ∼= p/pl+1 induced by the multiplication with x. This says
that the Auslander–Reiten quiver of Hp is a tube of τ -period 1. For the Auslander–Reiten
sequences for Dedekind domains, see also [2, Example 3.1]. Note that we have a natural
equivalence τ ∼= IdHp

.
It is easy to show that Ω(R/ps) ∼= Rp for any s � 1, where Ω : mod(Rp) → mod(Rp)

is the syzygy functor. We have a presentation of R/ps

0 −→ Rp

lxs−−→ Rp −→ R/p
s −→ 0,

where lxs denotes the multiplication by xs. Note that we have an isomorphism R/ps ∼=
Rp/psRp. Now the above exact sequence induces an epimorphism

HomR(Rp, R/p
i) → Ext1R(R/p

s, R/p
i),

and when i � s this induces an isomorphism. Now it is easy to show that the Auslander–
Reiten sequence σs

p corresponds to the composition Rp → R/p ∼= ps−1/ps ↪→ R/ps.
Moreover, all the Auslander–Reiten sequences with starting term R/ps are given by the
morphisms of the form Rp → Soc(R/ps) ↪→ R/ps, which equals λσs

p for some 0 �= λ ∈ kp.
On the other hand, we identify HomDb(H)(M, ΣN) = Ext1H(M, N) for any abelian

category H and any objects M, N ∈ H. Now we can write down the graded centre of
Db(Hp) explicitly by using the notion of a trivial extension.
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Let A be an arbitrary ring and let M be an A–A-bimodule. The trivial extension ring
of A by the bimodule M , denoted by T (A, M), is defined to be the ring whose additive
ring is A ⊕ M with multiplication given by

(a, m) · (a′, m′) = (aa′, am′ + ma′)

for all a, a′ ∈ A and m, m′ ∈ M . Note that T (A, M) can be identified with the subring
of the upper triangular ring (

A M

0 A

)

that consists of all the matrices with equal diagonal entries.
The trivial extension ring is a positively graded ring which is concentrated in degree

0 and 1 with T (A, M)0 = A and T (A, M)1 = M . Conversely, let A = A0 ⊕ A1 be an
arbitrary positively graded ring which is concentrated in degree 0 and 1. Then A ∼=
T (A0, A1) as graded rings, where the A0-bimodule structure on A1 is induced by the
multiplication of A. If A is commutative and M an A-module, one can also define the
trivial extension T (A, M), where M is viewed as an A–A-bimodule. Note that in this
case T (A, M) is always graded commutative.

Proposition 3.5. Let R be a Dedekind domain, p a maximal ideal of R and kp the
residue field. Then, as a graded ring,

Z∗(Db(Hp)) ∼= T

(
R̂p,

∏
l∈Z, l�1

kp

)
,

where kp is viewed as a simple R̂p-module.

Proof. Note that elements in R̂p are by definition sequences q = (qi)i∈Z,i�0 with
qi ∈ R/pi and satisfying πi,j(qi) = qj for all i > j, where πi,j : R/pi → R/pj is the
natural quotient map. Now the collection of morphisms {lqi : R/pi → R/pi, i ∈ N}
determines uniquely an element in Z0(Db(Hp)), where lqi

is given by multiplication
with qi, and it is easy to show this correspondence gives a bijection between R̂p and
Z0(Db(Hp)), which means that Z0(Db(Hp)) ∼= R̂p.

Now we consider the degree-1 component of the graded centre. For any l ∈ Z, l � 1,
we define ηl

p ∈ Z1(Db(Hp)) by setting (ηl
p)R/ps = 0 for all s �= l, (ηl

p)R/pl = σl
p and

(ηl
p)Σi(R/ps) = (−1)iΣi(ηl

p)R/ps for all i, s. To show that ηl
p ∈ Z1(Db(Hp)), it suffices

to show that ηl
p is a natural transformation. For this, one needs to check that, for all

i, j, m, n and f : ΣiR/pm → ΣjR/pn, the equality

Σf ◦ (ηl
p)ΣiR/pm = (ηl

p)ΣjR/pn ◦ f

holds. This is clear since both sides of the above equality vanish, unless f is an isomor-
phism, where we use the fact that any σl

p is given by an almost split sequence.
The argument above shows that if, for each l, we fix an Auslander–Reiten sequence,

say λlη
l
p for some λl ∈ kp, with starting term R/pl, then we obtain an element Σlλlη

l
p in
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Z1(Db(Hp)). The infinite product makes sense, since when it is applied to any object in
Db(Hp) it becomes a finite sum.

Conversely, let η ∈ Z1(Db(Hp)). We claim that ηR/pl either corresponds to an
Auslander–Reiten sequence or is zero for all l. This can be done by induction on l.
Clearly, it holds for l = 1. Assume that it holds for all l � n − 1; we will show that it is
also true for l = n.

From the exact sequence 0 → pn−1/pn → R/pn π−→ R/pn−1 → 0 we obtain an exact
sequence

Ext1R(R/p
n, R/p) → Ext1R(R/p

n, R/p
n)

f−→ Ext1R(R/p
n, R/p

n−1) → 0.

It is easy to show that Ker(f) is one dimensional and spanned by the Auslander–
Reiten sequences with starting term R/pn. Since η is a natural transformation, the map
π : R/pn → R/pn−1 yields Σπ ◦ ηR/pn = ηR/pn−1 ◦ π = 0, where the last equality holds
since ηR/pn−1 is given by some Auslander–Reiten sequence or zero. Thus, ηR/pn corre-
sponds to an Auslander–Reiten sequence by the above argument. The proposition now
follows. �

Next we combine Lemma 3.1, Proposition 3.4 and the condition that mod(R) = H+ ∨
H0 with H0 =

∐
p∈max(R) Hp. This gives the following proposition. Note that H+ consists

of free modules and hence Z1(Σ∗H+) = 0.

Proposition 3.6. Let R be a Dedekind domain and let max(R) be the set of all
maximal ideals. Then, as a graded ring

Z∗(Db(mod(R))) ∼= T

(
R,

∏
p∈max(R)

∏
l∈Z,l�1

kp

)
,

where each kp
∼= R/p is viewed as a simple R-module.

4. Tame hereditary algebras and weighted projective lines

This section deals with the derived category for some further classes of hereditary cate-
gories. We consider either the category of modules mod(A) of a tame hereditary algebra
A or the category Coh(X) for a weighted projective line X of non-negative Euler char-
acteristic. Unfortunately, our methods do not work for the wild cases. What we want to
emphasize is that tubes are of special importance in our calculations.

Throughout this section, k denotes an algebraically closed field and all categories
considered are assumed to be k-linear; therefore, the graded centres are k-algebras. Note
that most results hold for an arbitrary base field k; however, the proofs would require
modifications.

We begin by studying tubes. The tubes occurring in this section are different from
those for Dedekind domains and we will use a different method to deal with them. Note
that one can use completed path algebras to unify the proofs.

Let C be a uniserial hom-finite hereditary length k-category. Recall that a length
category is an abelian category such that any object has a composition series of finite
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length. Note that a length category is always a Krull–Remak–Schmidt category, i.e. any
object can be written as a finite direct sum of indecomposables and the endomorphism
ring of any indecomposable object is local. Following [1], a locally finite abelian category
is called uniserial if any indecomposable object of finite length has a unique composition
series.

It follows from [16, Theorem 2.13], that any hom-finite length category is equivalent to
the category of finite-length comodules of some basic coalgebra. And since k is assumed
to be algebraic closed any basic coalgebra is pointed, that is, it can be realized as a
subcoalgebra of certain path coalgebra of some quiver.

A quiver Q = (Q0, Q1, s, t) is by definition an oriented graph, where Q0 is the set of
vertices, Q1 the set of edges that are usually called arrows, s and t are two maps from Q1

to Q0 such that, for each arrow α, s(α) and t(α) denote respectively the starting vertex
and the terminating vertex of α. A path in Q is a sequence of arrows α1α2 · · ·αn with
t(αi) = s(αi+1) for 1 � i � n − 1; s(α1) and t(αn) are called the starting vertex and the
terminating vertex, respectively, and n is the length. Each vertex v can be viewed as a
path of length 0 which starts and terminates at v.

It is well known that there are a path algebra and a path coalgebra structure on the
vector space kQ with their basis consisting of all paths in Q, and the multiplication and
comultiplication are given by composing and splitting the paths. Denote by kQa and
(kQc, ∆, ε) the path algebra and path coalgebra of Q, respectively.

We denote the category of k-representations by Rep(Q) and the subcategory of locally
nilpotent representations by NRep(Q). As usual, we denote the subcategories consisting
of finite-length objects by rep(Q) and nrep(Q). It is well known that Rep(Q) is equiva-
lent to the module category of the path algebra kQa and NRep(Q) is equivalent to the
comodule category of the path coalgebra kQc.

Let n, m ∈ Z ∪ {−∞, +∞} with n � m. We use A[n,m] to denote the following quiver.
The vertices are indexed by {i ∈ Z | n � i � m} and for each n � i � m − 1 there is
exactly one arrow which starts at the vertex i and terminates at i + 1. Now denote the
quivers A[−∞,0], A[−∞,+∞], A[0,+∞] and A[0,n] for any n � 1 by A∞, A∞

∞, A∞ and An,
respectively. Also, we denote by Zn the basic cycle of length n for any n � 1, i.e. the
quiver obtained from An by gluing the vertices 0 and n.

The following classification is a special case of [6, Theorem 2.10 (i)].

Lemma 4.1. Let C be a uniserial hereditary length k-category. Then C is equivalent
to nrep(Q) for some quiver Q, where Q is a disjoint union of quivers of type A∞, A∞

∞,
A∞, An or Zn.

The idea of the proof is easy. As shown in [16], C is equivalent to the category of
finite-length comodules of some pointed coalgebra C, and that C is hereditary means
that C must be a path coalgebra and hence C is given by some nrep(Q). The fact that C
is uniserial implies that, for each vertex v ∈ Q0, there is at most one arrow starting at v

and at most one arrow terminating at v, and hence the lemma follows.
Now suppose that Q is one of A∞, A∞

∞, A∞ and An. Then the category nrep(Q)
is directed. More explicitly, any indecomposable object M ∈ nrep(Q) is a stone,
i.e. EndC(M) ∼= k and Ext1C(M, M) = 0. This has the following consequence.
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Proposition 4.2. Z∗(Db(nrep(Q))) ∼= k for Q = A∞, A∞
∞, A∞ and An.

The only case left is Q = Zn, where n � 1 is a positive integer. It is well known that
nrep(Zn) is a tube of τ -period n. We need to fix some notation. Denote by Si the simple
representation with respect to the vertex i, and M

[l]
i the indecomposable representation

with socle Si and of length l, for any i and l � 1. In the category nrep(Q), there is
neither a non-zero projective object nor a non-zero injective object, while in the category
NRep(Q) there are enough injective objects, and we denote by M

[∞]
i or simply Mi the

indecomposable injective module with socle Si. Note that {M
[l]
i | 0 � i � n − 1, 1 � l �

∞} gives a complete set of isoclasses of indecomposables in NRep(Q).
There is a monomorphism ils : M

[l]
s → M

[l+1]
s and an epimorphism π

[l]
s : M

[l]
s → M

[l−1]
s−1

for any s and l, and any morphism between the indecomposables is a linear combination
of compositions of such morphisms. For convenience, we again write π∞

s as πs, and we
set M

[l]
s = 0 and ils = πl

s = 0 for l � 0. More generally, we can define monomorphisms

il,ts = il+t−1
s ◦ · · · ◦ ils : M [l]

s → M [l+t]
s , ∀0 � s � n − 1, l � 1, t � 1,

and epimorphisms

πl,t
s = πl−t+1

s−t+1 ◦ · · · ◦ πl
s : M [l]

s → M
[l−t]
s−t , ∀0 � s � n − 1, l � 1, 1 � t � l − 1.

We also set il,∞s to be the inclusion M
[l]
s → Ms and il,0s = πl,0

s = id
M

[l]
s

. Note that we
have the equality of morphisms

πl+1
s ◦ ils = il−1

s−1 ◦ πl
s : M [l]

s → M
[l]
s−1

for all s and l. The syzygy functor Ω−1 is given by Ω−1(M [l]
s ) = Ms−l, Ω−1(ils) = πs−l

and Ω−1(πl
s) = idMs−l

. In the case n = 1, the subscript s is omitted for simplicity.

Lemma 4.3. Let Q = Zn. Then Z0(Db(nrep(Q))) ∼= k[[ξ]], where ξ is the natural
transformation from the identity functor to itself, which is given by

ξ
M

[l]
s

= il−n,n
s−n ◦ πl,n

s : M [l]
s → M [l]

s .

It is easy to check that ξ is a natural transformation. Moreover, the infinite sum∑
m�0 λmξm gives a natural transformation, where λm ∈ k for all m. Observe that this

does make sense, because the sum is indeed a finite sum when applied to any object in
nrep(Q). To show that this gives all the natural transformations, one just uses the fact
that {ξm

M
[l]
s

, m � 0} spans EndC(M [l]
s ) for any M

[l]
s ∈ nrep(Q).

Clearly, we have an exact sequence

0 → M [l]
s

il,∞
s−−−→ Ms

π∞,l
s−−−→ Ms−l −→ 0

for any M
[l]
s . This induces an epimorphism

HomC(M [m]
r , Ms−l) � Ext1C(M [m]

r , M [l]
s ),

which is an isomorphism when m � l. In particular, we can identify HomC(M [l]
s , Ms−l)

with Ext1C(M [l]
s , M

[l]
s ).

The following lemma is needed to describe the degree 1 component of the graded centre
of Db(nrep(Q)).

https://doi.org/10.1017/S0013091509001199 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001199


On the centre of a triangulated category 457

Lemma 4.4. Let Q = Zn and n � 1. If n � 2, then Z1(Db(nrep(Q))) = 0; if n = 1,
then as a k-vector space,

Z1(Db(nrep(Q))) ∼=
∏

l∈Z, l�1

k · ηl,

where ηl is given by (ηl)M [l] = i1,∞ ◦ πl,l−1 and (ηl)M [a] = 0 for a �= l.

Proof. First we consider the case n � 2. Fix η ∈ Z1(Db(nrep(Q))). We show that
η

M
[l]
s

= 0 for all s and l by using induction on l. Clearly, η
M

[1]
s

= 0 for all s, since there
is no self-extension for the simple objects if n � 2.

Now assume that the assertion holds for l − 1. Applying the naturality of η to the
injection il−1

s : M
[l−1]
s → M

[l]
s , we get the equality

η
M

[l]
s

◦ il−1
s = Σil−1

s ◦ η
M

[l−1]
s

= 0.

We claim that this equality holds only if η
M

[l]
s

= 0. Otherwise, if

η
M

[l]
s

: M [l]
s → Ms−l

is non-zero, then the dimension of Im(η
M

[l]
s

) is at least n since M
[n]
s−l is the minimal

submodule of Ms−l with the same top as M
[l]
s ; thus, the dimension of Im(η

M
[l]
s

◦ il−1
s )

is at least n − 1 and hence non-zero (here we see the difference between the n = 1 and
n � 2 cases), and now we use the isomorphism

HomC(M [l−1]
s , Ms−l) ∼= Ext1C(M [l−1]

s , M [l]
s )

to obtain that the left-hand side of the above equality is non-zero; this introduces a
contradiction.

Now we assume that n = 1. Note that any Auslander–Reiten sequence with starting
term M

[l]
s is given by a non-zero multiple of ηl

M [l] . Now we can use the same argument
as in the proof of Proposition 3.5. �

Combining Lemmas 4.3 and 4.4, we get the following.

Proposition 4.5. Let Q = Zn and n � 1. If n � 2, then Z∗(Db(nrep(Q))) ∼= k[[ξ]] is
a graded k-algebra concentrated in degree 0; if n = 1, we have an isomorphism

Z∗(Db(nrep(Q))) ∼= T

(
k[[ξ]],

∏
l∈Z, l�1

k

)

of graded algebras, where k is viewed as the unique simple k[[ξ]]-module on which ξ acts
trivially. Moreover, we have an isomorphism of graded algebras

T

(
k[[ξ]],

∏
l∈Z, l�1

k

)
∼= k[[ξ]][η]/(η2),

where ξ is of degree 0 and η is of degree 1.
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Remark 4.6. In case that n = 1, we know that nrep(Z1) is equivalent to the cate-
gory of finite-dimensional nilpotent k[x]-modules, which is just the category of finitely
generated (x)-torsion modules over the Dedekind domain k[x]. Thus, Lemma 3.5 applies
and we get the same result. More generally, one can consider the completed path algebra
kẐn of the quiver Zn. Then nrep(Zn) is equivalent to the category of finite-dimensional
nilpotent modules over kẐn, and the centre of kẐn is isomorphic to k[[x]].

Remark 4.7. Combining Lemma 4.1 with Propositions 4.2 and 4.5, we have now a
description of Z∗(Db(C)) for any uniserial hereditary length k-category C.

Next we consider the category of finite-dimensional modules over finite-dimensional
hereditary k-algebras. Since k is assumed to be algebraically closed, we need only consider
the path algebras. Now let Q be a finite, connected quiver without oriented cycles and
let A = kQ be the path algebra. Note that in this case the centre of the algebra is the
field k. First we consider the finite-type case.

Proposition 4.8. Let Q be a quiver such that the path algebra kQ is of finite-
representation type. Then Z∗(Dbmod(kQ)) ∼= k.

Proof. The proof is almost the same as that of Proposition 4.2. If A is of finite-
representation type, then any indecomposable A-module M is a stone. In particular,
HomDb(A)(M, Σ1M) = Ext1A(M, M) = 0. �

Next we consider the tame case. Let τ be the Auslander–Reiten translation in mod(A).
The Auslander–Reiten quiver of mod(A) consists of the pre-projective part, the pre-
injective part and the regular part. Recall that a A-module M is pre-projective if and
only if τnM = 0 for sufficiently large n; and M is pre-injective if and only if τ−nM = 0
for sufficiently large n. Modules without pre-projective and pre-injective summands are
called regular modules. Denote by P, R and I the full subcategories of pre-projective
modules, regular modules and pre-injective modules, respectively. We have the decom-
position mod(A) = P ∨ R ∨ I. Let η ∈ Z1(Db(mod(A))). Since pre-projective and pre-
injective modules have no self-extensions, we get the following easy lemma by applying
Proposition 3.4.

Lemma 4.9. Let Q be a quiver such that the path algebra kQ is of tame representation
type, and let R denote the full subcategory of mod(kQ) consisting of regular modules.
Then Z1Db(mod(kQ)) ∼= Z1(Db(R)).

Recall that for a tame quiver the regular part of the Auslander–Reiten quiver is a
disjoint union of tubes, and there are neither morphisms nor extensions between different
tubes, i.e. R =

∐
t∈T

Rt, where T is an index set for all the tubes, Rt
∼= nrep(Zp(t))

and p(t) denotes the τ -period of Rt. Each tube is an abelian subcategory and we have
Db(R) ∼=

∐
t∈T

Db(Rt). Applying Propositions 4.5 and 3.4, we get the following.

Proposition 4.10. Let Q be a tame quiver, and let T1 be the index set of all homo-
geneous tubes. Then

Z∗(Db(mod(kQ))) ∼= T

(
k,

∏
t∈T1

∏
m�0

k

)
.
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Next we consider the weighted projective lines over the field k. Recall that a weighted
projective line X is defined through the attached category Coh(X) of coherent sheaves,
which is a small k-category satisfying certain axioms. This concept was introduced by
Geigle and Lenzing in [7] to study the interaction between pre-projective modules and
regular modules for tame hereditary algebras. For a definition we refer the reader to [12,
§ 10], where one can also find most references about this subject.

Weighted projective lines play an important role in the classification of hereditary
categories. By a theorem of Happel [8], any connected, Ext-finite, hereditary abelian
k-category which has a tilting complex is derived to be equivalent to either the category
mod(A) for some finite-dimensional hereditary algebra A or the category Coh(X) for
some weighted projective line X.

First we recall some basic facts. Let X be a weighted projective line and let H = Coh(X)
be the category of coherent sheaves. The category H has Serre duality, i.e. there exist an
equivalence τ : H → H and a natural isomorphism D Ext1H(X, Y ) ∼= HomH(Y, τX). We
denote by H0 the full subcategory consisting of all objects of finite length. Then H0 is a
hereditary abelian subcategory and H0 =

∐
x∈C Ux for some index set C, where Ux is a

tube with finite τ -period p(x). Members of C are called the points of H. Note that there
are only finitely many points with p(x) > 1.

We denote by H+ the subcategory consisting of all objects without a simple subobject.
Objects of H+ are called vector bundles. Any indecomposable object of H is either of
finite length or a vector bundle. There is a linear form rk: K0(H) → Z, called rank,
which is τ -invariant, vanishes on objects of H0 and takes positive values on objects of
H+. Objects of H+ of rank 1 are called line bundles, and by definition H contains a line
bundle. For any vector bundle E, we have a filtration E0 ⊆ E1 ⊂ · · · ⊆ Er = E with the
line bundle factors Ei/Ei−1, where r = rk(E).

For any line bundle L and any point x ∈ C,
∑

S∈Ux
dimk HomH(L, S) = 1, where S

runs through all simple objects in Ux. Clearly, we have H = H+ ∨ H0, and therefore any
non-zero morphism between line bundles is a monomorphism.

Now we consider the graded centre of Db(H). Note that one can define the Euler
characteristic χH for H. If χH > 0, then H is derived as equivalent to the category
mod(A) for some finite-dimensional tame hereditary algebra A, and in this case the
graded centre has been computed. Firstly, we have the following easy lemma.

Lemma 4.11. Let X be a weighted projective line. Then Z0(Db(Coh(X))) = k.

Proof. We denote Coh(X) by H as before. Since H contains a line bundle, we choose
one and denote it by L. Let η : IdH → IdH be a natural transformation. To prove the
lemma, it suffices to show that if ηL = 0, then η = 0.

Now assume that ηL = 0. Let x ∈ C be an arbitrary point, and let S ∈ Ux be
the simple object with HomH(L, S) �= 0. Note that such S exists and is unique. By
Proposition 4.3, ηUx = 0 if and only if ηS[mr+1] = 0 for all m � 0, where r = p(x) is the
τ -period and S[mr+1] is the object in Ux with socle S and of length mr + 1. By using
induction we have dimk HomH(L, S[mr+1]) = m + 1 for any m � 0. We claim that there
exists an epimorphism from L to S[mr+1]. Otherwise, all morphisms will factor through
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S[(m−1)r+1], and hence

dimk HomH(L, S[mr+1]) = dimk HomH(L, S[(m−1)r+1]) = m,

which gives a contradiction.
Let f : L → S[mr+1] be an epimorphism. Since η is a natural transformation, we have

ηS[mr+1] ◦ f = f ◦ ηL = 0, and hence ηS[mr+1] = 0. Now we have shown that ηH0 = 0.
Conversely, using a similar argument, one can show that if ηH0 = 0, then ηN = 0 for any
line bundle N . Since any vector bundle E has a filtration with line bundle factors, we
get, using the Five Lemma, that ηE = 0. This completes the proof. �

Combining the above results with Proposition 3.4, Lemma 4.4 and Proposition 4.5, we
obtain the following embedding of algebras.

Lemma 4.12. Let X be a weighted projective line, let H = Coh(X) and let C1 be the
set of points of τ -period 1. Then the algebra

Z = T

(
k,

∏
x∈C1

∏
m�0

k

)

is isomorphic to a subalgebra of Z∗(Db(H)).

In the tubular case, i.e. χH = 0, we have H =
∨

q∈Q∪{∞} H〈q〉, where for each q we
have H〈q〉 ∼= H0. In fact, one can define the slope for objects of H and, roughly speaking,
for any q ∈ Q, H〈q〉 is just given by objects of slope q, and H〈∞〉 = H0. With this
decomposition of categories, we have the following proposition.

Proposition 4.13. Let X be a weighted projective line of Euler characteristic 0,
H = Coh(X) and C1 the set of points of τ -period 1. Then

Z∗(Db(H)) ∼= T

(
k,

∏
q∈Q∪{∞}

∏
x∈C1

∏
m�0

k

)
.

5. The graded centre of Db(mod(k[x]/(x2)))

In this section, we study the ring of dual numbers, which is by definition the k-algebra
A = k[x]/(x2), where k is an arbitrary base field. Set C = mod(A) and P the full
subcategory of C consisting of projective modules. One has a complete description of
the indecomposable objects of Db(C) = K+,b(P), and therefore one can write down
the elements in Z∗(Db(C)) explicitly. By Theorem 2.5, we need only to consider the
category Kb(P).

The indecomposable objects in Kb(P) are well understood (see, for example, [11]).
They are given by {An

m | −∞ < m � n < ∞}, where An
m is the complex

· · · �� 0 �� A︸︷︷︸
n

x �� A
x �� · · · x �� A︸︷︷︸

m

�� 0 �� · · · ,
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that is, (An
m)i = A for m � i � n and 0 otherwise, and d

An
m

i = x for all m < i � n − 1,
where we use x to denote the multiplication map lx. If we allow n to take the value ∞,
then we get all indecomposable objects in K+,b(P), in fact A∞

m
∼= ΣmS in the derived

category, where S is the simple A-module, regarded as a stalk complex concentrated in
degree 0. Note that ΣAn

m
∼= An+1

m+1. The following lemma is basic for our computations.

Lemma 5.1. Let −∞ < m � n < ∞ and let −∞ < m′ � n′ < ∞. If (m, n) �=
(m′, n′), then HomKb(P)(An

m, An′

m′) is at most one dimensional. The morphisms between
indecomposable objects in Kb(P) are linear combinations of compositions of the following
four classes of morphisms:

(a) πn,n′

m : An
m → An′

m for m � n′ � n, (πn,n′

m )m = x and (πn,n′

m )i = 0 for all i �= m;

(b) πn
m,m′ : An

m → An
m′ for m � m′ � n, (πn

m,m′)i = 1 for all m′ � i � n;

(c) in,n′

m : An
m → An′

m for m � n � n′, (in,n′

m )i = 1 for all m � i � n;

(d) inm,m′ : An
m → An

m′ for m′ � m � n, (inm,m′)m = x, and (inm,m′)i = 0 for all i �= m.

The morphisms in the lemma look as follows.

(a) 0 ��
n︷︸︸︷
A �� · · · ��

n′︷︸︸︷
A ��

0
��

· · · ��
m︷︸︸︷
A ��

x
��

0

0 �� A �� · · · �� A �� 0

(b) 0 ��
n︷︸︸︷
A ��

1
��

· · · ��
m′︷︸︸︷
A ��

1
��

· · · ��
m︷︸︸︷
A �� 0

0 �� A �� · · · �� A �� 0

(c) 0 �� A

1
��

�� · · · �� A

1
��

�� 0

0 �� A︸︷︷︸
n′

�� · · · �� A︸︷︷︸
n

�� · · · �� A︸︷︷︸
m

�� 0

(d) 0 �� A

0
��

�� · · · �� A
x

��

�� 0

0 �� A︸︷︷︸
n

�� · · · �� A︸︷︷︸
m

�� · · · �� A︸︷︷︸
m′

�� 0

The proof is straightforward and left to the reader. For any m � n < ∞, the space
HomKb(P)(An

m, An
m) is two dimensional, and we denote the morphism inm,m = πn,n

m by
xn

m. Now let η : IdKb(P) → IdKb(P) be a natural transformation. Clearly, η is uniquely
given by some datum {µn

m, λn
m ∈ k, − ∞ < m � n < ∞} with ηAn

m
= µn

m · 1 + λn
mxn

m.
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Proposition 5.2. Let η : IdKb(P) → IdKb(P) be a natural transformation and let
{µn

m, λn
m} be the corresponding datum.

(i) We have µn
m = µn′

m′ for any m, m′, n and n′. Conversely, any datum of the form
{µ, λn

m ∈ k, ∞ < m � n < ∞} arises as the datum of some natural transformation
η : IdKb(P) → IdKb(P) by setting ηAn

m
= µ + λn

mxn
m for any m and n.

(ii) If η ∈ Z0(Kb(P)), then λn
m = λn+r

m+r for any m, n and r, and any elements in
Z0(Kb(P)) are obtained in this way.

(iii) As an algebra, Z0(Kb(P)) ∼= T (k,
∏

r�0 k), where T (k,
∏

r�0 k) is viewed as a
graded algebra concentrated in degree 0.

Proof. (i) Apply the naturality of η to get in,n′

m ◦ ηn
m = ηn′

m ◦ in,n′

m and πn
m,m′ ◦ ηn

m =
ηn′

m ◦ πn
m,m′ . From this follows that µn

m = µn′

m′ for any m, m′, n and n′.
Conversely, for any datum of the form {µ, λn

m ∈ k, ∞ < m � n < ∞}, we claim that
the η constructed above is indeed a natural transformation. In fact, one can easily show
that the equalities f ◦ ηn

m = ηn′

m′ ◦ f hold for those morphisms f : An
m → An′

m′ listed in
Lemma 5.1. Now, using the fact that Kb(P) is a Krull–Remak–Schmidt category and any
morphism is some linear combination of compositions of morphisms listed in Lemma 5.1,
we get that ηY ◦ f = f ◦ ηX holds for any morphism f : X → Y in the category Kb(P).
Thus, η is a natural transformation.

(ii) Use the fact that by definition η ∈ Z0(Kb(P)) if and only if Ση = ηΣ, and this is
equivalent to the requirement that λn

m = λn+1
m+1 for any m and n.

(iii) is an easy consequence of (ii). In fact we can explicitly write down the elements
in Z0(Kb(P)). For any r � 0, let ηr ∈ Z0(Kb(P)) denote the natural transformation
obtained by setting (ηr)An

m
= xn

m for m − n = r and 0 otherwise. Thus, as vector spaces,

Z0(Kb(P)) = k · 1 ⊕
∏
r�0

k · ηr.

By direct computation, the multiplication satisfies ηrηr′ = 0 for any r and r′ and the
isomorphism in (iii) follows. �

Now we consider the natural transformations from the identity functor to Σt for any
positive integer t > 0. Note that HomKb(P)(An

m, ΣtAn
m) = 0 for any m, n with n < m+t,

and in the case n � m + t, the morphism space is one dimensional with basis element
fn

t;m = in,n+t
m+t ◦ πn

m,m+t. Let ζ : IdDb(P) → Σt be a natural transformation; it is uniquely
determined by the datum {λn

t;m, n � m + t}, where ζAn
m

= λn
t;mfn

t;m. Applying the
naturality of ζ to the morphisms in,n′

m and πn
m,m′ , one gets fn

t;m = fn′

t;m′ for any m, m′, n

and n′. Thus, we get the following lemma.

Lemma 5.3. Let t > 0. All natural transformations from IdKb(P) to Σt form a one-
dimensional k-space with a basis element ζt, where ζt is given by (ηt)An

m
= fn

t;m for all
n � m + t and 0 otherwise. Moreover, the multiplication satisfies ζtζt′ = ζt+t′ for any
t, t′ > 0 and ζtηr = ηrζt = 0 for any t > 0 and r � 0, where the ηr are given as in the
proof of Proposition 5.2.
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Note that Σζt = (−1)tζtΣ if and only if either char(k) = 2 or char(k) �= 2 and t is
even. Combined with the last lemma and Proposition 5.2, we get the graded centre of
Db(mod(A)).

Proposition 5.4. Let k be an arbitrary base field. Then, as a graded algebra,

Z∗(Db(mod(k[x]/(x2)))) ∼= T

(
k[ζ],

∏
r�0

k

)
,

where k is identified with k[ζ]/(ζ) as a k[ζ]-module,

Z0(Db(mod(k[x]/(x2)))) ∼= T

(
k,

∏
r�0

k

)
,

and ζ is of degree 2 if char(k) �= 2, and of degree 1 if char(k) = 2.

6. The graded centre of the stable category mod(k[x]/(xn))

Another important class of triangulated categories is the stable categories of self-injective
algebras. We calculate the graded centres in some special cases, namely for the algebras
of the form k[x]/(xn) with n � 2. These calculations are based on the fact that the
indecomposable objects and their morphisms are well understood. Note that algebras
of the form k[x]/(xn) are Brauer tree algebras, and we refer the reader to [9] for the
calculation of the graded centres of their stable module categories.

Let A = k[x]/(xn) with k an arbitrary base field. It is well known that A is uniserial and
that all the indecomposable objects in mod(A) are of the form Al = A/xlA = xn−lA with
1 � l � n. There are epimorphisms πl

r = lxl−r : Al � Ar for l � r and monomorphisms
irl : Al ↪→ Ar for l � r. For any l and r, HomA(Al, Ar) has a basis {f l,r

s = irs ◦ πl
s |

1 � s � min(l, r)}. Moreover, the syzygy functor Ω is given by Ω(Al) = An−l and

Ω(f l,r
s ) = πn−s

n−r ◦ in−s
n−l = fn−l,n−r

n−r−l+s for all 1 � l � n − 1, r, s � l.

Now let C = mod(A) be the stable category. One knows that C is a triangulated
category with suspension functor Σ = Ω−1 = Ω. In particular, we have Ω2 = IdC in C.
The indecomposable objects in C are given by Al = A/xlA = xn−lA with 1 � l < n, and
f̄ l,r

s = 0 if and only if l + r − n � s. Consequently, HomC(Al, An−l) = HomA(Al, An−l).
For any self-injective ring R, let Z(R) denote the graded centre of R. There is a

canonical morphism from Z(R) to Z0(mod(R)). As we will show below, this map is not
injective in general. The more interesting question is whether or not it is surjective. In
the case A = k[x]/(xn), the answer is affirmative. In fact, for an arbitrary uniserial self-
injective algebra, all natural transformations from the identity functor to itself for the
stable category come from the centre of the algebra.

Proposition 6.1. Let A = k[x]/(xn) with n � 2 and C = mod(A). Then Z0(C) ∼=
k[x]/(x[n/2]), where [n/2] denotes the maximal integer which is no larger than 1

2n.
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Proof. Note that A[n/2] is of special importance since EndC(A[n/2]) is of maximal
dimension among the indecomposable objects. Let η be a natural transformation from
IdC to IdC . We will show that η is uniquely determined by ηA[n/2] .

We fix some a ∈ A such that ηA[n/2] = l̄a, where la is given by the multiplication with
a as before. Since η is a natural transformation, we have πl

[n/2] ◦ ηAl
= l̄a ◦ πl

[n/2] for
l > [ 12n] and i

[n/2]
l ◦ηAl

= l̄a ◦ i
[n/2]
l for any l < [ 12n]. Now it is easy to show that ηAl

= l̄a
for any l, since the solutions of the equations above are unique. Therefore, we have an
epimorphism from A to Z0(C), and easy computations show that lx[n/2] = 0 in C. �

Next we will compute the natural transformations from the identity functor to Ω. The
following lemma is easy.

Lemma 6.2. Let ζ : IdC → Ω be a natural transformation. Then, for any 1 � l < n, we
have ζAl

= λl · f̄ l,n−l
1 for some λl ∈ k. And conversely, any family {λl, 1 � l < n} induces

a natural transformation ζ by setting ζAl
= λl · f̄ l,n−l

1 for any l. Moreover, ζ ∈ Z1(C) if
and only if λl = −λn−l for any l.

Proof. We use induction on l. Clearly, we have ζA1 = λ1 · f̄1,n−1
1 . Now assume that

ζAs = λs · f̄s,n−s
1 for some λs ∈ k, and consider the inclusion is+1

s . One obtains

ζAs+1 ◦ īs+1
s = π̄n−s

n−s−1 ◦ ζAs
= 0,

and hence ζAs+1 = λs+1 · f̄s+1,n−s−1
1 . The remaining part is straightforward. �

Now let ζs denote the natural transformation given by (ζs)Al
= δl

sf̄
s,n−s
1 for any 1 �

l < n. We also denote by t the identity map from IdC to Ω2 = IdC and view it as an
element in Z2(C).

Let Z̃∗(C) be the Z-graded space with Z̃n(C) consisting of all natural transformations
from IdC to Ωn. Note that Z̃∗(C) forms a graded algebra and Z∗(C) is a subalgebra of
Z̃∗(C).

Observe that the case n = 2 is slightly different. In fact, in this case, not only Ω2 but
also the shift functor Ω itself is equivalent to the identity functor. We deal with this case
separately. With the above notation, we get the following results.

Proposition 6.3. Let C = mod(k[x]/(x2)). Then Z̃∗(C) = k[ζ1, ζ
−1
1 ] with ζ1 of degree

1. We have Z∗(C) = Z̃∗(C) if char(k) = 2, and Z∗(C) = k[ζ2
1 ] if char(k) �= 2.

Note that ζ2
1 equals t as defined above, and clearly ζ−1

1 is of degree −1. The proof
follows directly from Proposition 6.1 and Lemma 6.2.

Proposition 6.4. Let C = mod(k[x]/(xn)) and n � 3. Then we have

Z̃∗(C) = k[x, ζ1, . . . , ζn−1, t, t
−1]/〈x[n/2], xζs, ζsx, ζsζs′〉,

where x, each ζs and t are of degree 0, 1 and 2, respectively. Moreover, Z∗(C) is the
subalgebra generated by x, t, t−1 and ζs − ζn−s with 1 � s � [ 12n] if either n is odd or
char(k) �= 2; if char(k) = 2 and n is even, then Z∗(C) is the subalgebra generated by x,
t, t−1, ζ[n/2] and ζs − ζn−s with 1 � s � [ 12n].
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Corollary 6.5. Let C = mod(k[x]/(xn)) and n � 3. Then, as a graded algebra,

Z∗(C) = k[x, ζ1, . . . , ζl, t, t
−1]/〈x[n/2], xζs, ζsx, ζsζs′〉

with x, each ηs and t of degree 0, 1 and 2, respectively, where l = [ 12 (n − 1)] if either n

is odd or char(k) �= 2, and l = [12n] if char(k) = 2 and n is even.

Remark 6.6. For a self-injective algebra A, one has

Db(mod(A))/Kb(projA) ∼= mod(A).

We have already seen that Z∗(Db(mod(A))) ∼= Z∗(Kb(projA)), but what can we say
about the ring homomorphism π∗ : Z∗(Db(mod(A))) → Z∗(mod(A))?

For the algebra A = k[x]/(x2) we can describe π∗ explicitly, since both graded centres
are known. Recall that

Z∗(Db(mod(k[x]/(x2)))) =
(

k ⊕
∏
r�0

k · ηr

)
[ζ]/〈ηrη

′
r, ηrζ〉

and Z∗(mod(A)) = k[t, t−1]. We know that in this case π∗ is neither injective nor surjec-
tive. Explicitly, Im(π∗) = k[t] and Ker(π∗) =

∏
r�0 k · ηr.
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