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Abstract

The principal result of this paper states sufficient conditions for the convergence of the
solutions of certain linear algebraic equations to the solution of a (linear) singular
integral equation with Cauchy kernel. The motivation for this study has been the need to
provide a convergence theory for a collocation method applied to the singular integral
equation taken over the arc (-1, 1). However, much of the analysis will be applicable
both to other approximation methods and to singular integral equations taken over other
arcs or contours. An estimate for the rate of convergence is also given.

1. Introduction

We shall take as the singular integral equation of the title the equation defined
on -1 < / < 1 by

The real functions a, b, k and y are given and we require the unknown function
<t>. Following Muskhelishvili [7] we shall assume that a, b and y are Holder
continuous on [-1, 1]; k is assumed to be Holder continuous on [-1, 1] X
[-1, 1]. The Cauchy principal value integral /11(<KT)/(T ~ 0) * ' s defined by

lim

©Copyright Australian Mathematical Society 1981

539

https://doi.org/10.1017/S033427000000285X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000285X


540 David Elliott (2)

and we look for solutions <j> of (1.1) in the class of functions that Muskhelishvili
denotes by H*[-\, 1]. That is, a function g G H*[-l, 1] if g is Holder continu-
ous on every closed interval contained in (-1, 1) and is integrable at each end
point. Following Dow and Elliott [1] we choose as a new dependent variable in
place of <j> the function x defined by

x = r$/Z or $ = Zx/r, (1.2)

where r = (a2 + b2)l/2, it being assumed that .-(.') > 0 for •* G [-1, 1] so that
(1.1) is of normal type. The function Z of (1.2) is the so called fundamental
function (see [7] and [1, defn. 2.6]) and it can be shown that Z e H*[-\, 1]. It
then follows that x g H[-\, 1], the space of Holder continuous functions on
[-1, 1]. In terms of x we rewrite (1.1) as Ax + Kx = y where

Axit) = x(t) + p , (1.3)
•(/) it Lx KT)(T - t)

Kx(t) = I \z(r)k(t, T)*(T)A(T)) dr. (1.4)

It might be noted at this point that although we have chosen to consider the
singular integral equation taken over the arc (-1, 1), most of the analysis which
follows will be appropriate if (1.1) is taken over a closed contour Q, say. Equally
well we could take C to be a union of arcs and/or closed contours, but we shall
not pursue this generalization any further in this paper. When K = 0, the
equation Ax = y will be referred to as the dominant equation; otherwise the
equation (A + K)x = y is known as the complete equation.

In order to find approximate solutions of (1.1) we must first discretize it in
some way so that it is replaced by a sequence of linear algebraic equations each
member of which can be written as (An + Kn)xn = ym where An, Kn denote
m X n matrices, xn is an n X 1 column vector and ym is an m X 1 column
vector. The relationship between m and n will be made more precise later. The
purpose of the convergence theory is to provide sufficient conditions on An and
Kn so that the vectors xn converge, in some sense, to x as n -» oo. In Section 2 we
shall state some selected results from the theory of singular integral equations
which we shall require for our analysis. In Section 3 we first review briefly some
results from the theory of linear algebraic equations and then introduce the so
called restriction and prolongation operators which are needed to relate xn to x.
The convergence of approximate solutions of the dominant equation is discussed
in Section 4 and finally, in Section 5, we give a convergence theorem for the
complete equation.

It should be pointed out that, in one sense, much of what follows can be said
to be known. The operator A is known as a Fredholm (or Noether) operator and
a convergence theory which includes such operators has been given by Stummel
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131 Convergence singular integral equations 541

[10]. (The author wishes to thank a referee for bringing this and other references
to his attention.) Nevertheless it appears to be a useful exercise to exhibit a
convergence theory which is directly related to the particular context in which it
is required. There appears to be at present a growing interest in finding
approximate solutions to equations such as (1.1) and one can attempt to apply
Theorem 5.5 to any approximation scheme which may be proposed for solving
(1.1). An example of an application of this theorem has already been given by
the author [3].

2. The theory of singular integral equations

In order to keep this section within reasonable bounds, proofs will not be
given but may be obtained from results in the standard texts (see [7], [4]). From
a knowledge of a and b we first determine the index K of (1.1), (see [1]). The
index K is an integer (positive, negative or zero) which determines the form of
the solution of (1.1). Thus, when K > 0 we find that the null space of A, ker(A),
is of dimension K and is spanned by the functions {b, tb, t2b, . . . , t"~lb). In
order to see the significance of K < 0 it is convenient at this point to introduce
the operator A* which is the adjoint of A and is defined by

for -1 < / < 1. The operator A * is such that for any v//,, »//2 E H[-1, 1 ] we have

C+MAMt) dt = [ V2('M •*!(') dt. (2.2)
J-\ J-i

The null space of A * is such that dim ker(̂ 4 *) = max(-K, 0) and when K < 0,
ker(/l*) is spanned by the functions {1/rZ, l/rZ, . . . , t~*~l/rZ). Since
dim ker(A) = max(ic, 0) we see that K = dim ker(/4) — dim ker(/4*).

To find the solution of (1.1) it is convenient at this point to introduce the
operator A' which is a sort of inverse of A. We define for -1 < / < 1

The explicit relationship between A and A ' is given as follows: When K > 0 we
have

AA'y = y, for a l l ^ G H\-\, l l , l

A'Ax = x + x<°\ forallx £ H[-\, 1],] V ' V "
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where x(0) is an element of ker(v4) depending on x. When K < 0 we have

A'Ax = x, for all x G H\-\, l l , l
[• (2 4(b))

AA'y =y+ / 0 ) , for ah> G H[-\, 1], J

where _y(0) is now some element of ker(A'). Thus we see that A ' is a right-inverse
of y4 when K > 0 and a left-inverse when K < 0; only when K = 0 is A' the
inverse of A. For any vaiue of K the solution of the dominant equation Ax = y is
given by

x = A'y + bPK_v provided that

(2.5)

Here PK _, denotes an arbitrary polynomial of degree < K — 1 and is taken to be
identically zero when K < 0. The second of equations (2.5) are the so-called
consistency conditions which can also be expressed as requiring that y is orthogo-
nal to ker(A*). When K > 0, we can solve Ax = y for all7 e H[-\, 1] and we
only have a restriction on>> when K < 0.

Let us consider now the complete equation. If we rewrite this as Ax — y —
Kx, consider the right hand side as known and apply the results of the preceding
paragraphs we find

x = A'(y - Kx) + bPK_x, provided that

The first of (2.6) can be rewritten as

x + A'Kx = A'y + bPK_, (2.7)

which turns out to be a Fredholm integral equation with a "weakly singular"
kernel. The reduction of (1.1) to (2.7) is known as the process of regularization
and we shall assume throughout that for a given element g, the Fredholm
equation x + A 'Kx = g possesses a unique solution; in other words that
(/ + A'K)' exists.

At this point it is convenient to look upon the equation {A + K)x = y in an
abstract setting. We shall consider A and K as linear operators mapping a
Banach space X into a Banach space Y. The domain of A, dom(A), will be
assumed to be dense in X. If we write X = ker(^4) © Ar(1) then 6om(A) = ker(^)
© {Ar(l) n dom(^)} so that A operating on Xm n dom(A) is one-to-one and
onto ran(/4). Consequently A ' is the inverse operator defined on ran(^4) into
Xw n dom(A). In order that the dominant equation Ax = y should possess a
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solution we require that ra.n(A) be closed in Y, but having chosen X, Y (see
below) this is merely a statement of the consistency conditions (see (2.5)).

There appear to have been two common choices of the spaces X and Y in the
literature to date. One is to choose X = C[-l , 1], the space of all continuous
functions on [-1, 1] equipped with the uniform norm || • H^ defined by

|g(O|, f o r a n y * E C [ - l , 1]. (2.8)

Since there are functions g e C[- l , 1] for which Ag does not exist we choose
dom(A) to be the space of all Holder continuous functions defined on [-1, 1].
This space, when equipped with the uniform norm, is not a Banach space but it
is dense in C[-l , 1]. If we choose Y to be the space of all Holder continuous
functions on [-1, 1] we can make Y a Banach space by giving it the so-called
Holder norm. The Holder norm || • \\H where 0 < ju < 1, is defined by

+ -p l * , ' ' ) - * ' a ) l . (2-9)

A second choice for X, Y is to choose X to be the Banach space of square
integrable functions on (-1, 1) with respect to the weight function Z / r and to
choose Y to be the Banach space of square integrable functions with respect to
the weight function l/Zr. These are the natural spaces to choose when using
Galerkin type methods for the approximate solution of (1.1); see [6] and [2].

3. Discrete equations; restriction and prolongation operators

Given the equation (A + K)x = y, where A is of index K, we must discretize
this in some way to give a system of linear algebraic equations which behaves at
least qualitatively in the first instance like the original equation. To achieve this
let us first define the index of any m X n matrix to be simply n — m.
Throughout the remainder of this paper whenever the integers m, n are used we
shall have

n — m = K, (3.1)

where K is the index of (1.1). Next we observe that if any m X n matrix An

has rank = min(m, n) then dim ker(/ln) = max(K, 0) and dim ker(A^)
= max(-»c, 0). Again, for such a matrix An we have that when K > 0 it possesses
an infinity of right inverses and when K < 0 it possesses an infinity of left
inverses. If we denote any such inverse by A'm then An, Al

m are related by
equations similar to (2.4). In particulart we might note that for all xn e Xn and
any value of K we have

A'mAnxn = xn + x<°>, (3.2)
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where x<0) is an element of ker(^n) which depends upon xn. Finally if An again
denotes an m X n matrix with rank = min(/w, n) then the equation Anxn = ym

possesses a solution only if ym is orthogonal to ker(v4n
r), see for example

[8, Theorem 10.22]. With these results in mind we shall discretize (1.1) by
choosing, for each n, a system of (real) linear algebraic equations of the form

(An + Kn)xn = ym, (3.3)

where An is an m X n matrix of rank = min(/w, ri), Kn is an m X n matrix and
xn,ym are n X 1 and m X 1 column vectors respectively. Arguing as in Section 2
we have that (3.3) is equivalent to

(/„ + A'mKn)xn = A^ym + *<°>, (3.4)

where JC<0) e ker(/4n) and provided that>»m — Knxn is orthogonal to ker(Af).
So much for the qualitative aspects of the discrete system. We must now

choose An, Kn so that in some sense they are good approximations to A, K
respectively. More fundamentally we must relate the spaces Xn, Ym to X, Y
respectively where Xn denotes the space of all n X 1 column vectors and Ym that
of all m X 1 column vectors. To do this we introduce the so-called restriction
and prolongation operators. A restriction operator rn maps X into Xn, a. prolonga-
tion operator/>„ maps Xn into X, subject to the following conditions:

(0 sup ||rn|| < r < oo, sup||/>n|| < p < oo;
n n

(ii) lim ||rnx|| = ||x||, for all x £ X;
n—* oo

(i") V » = In\
(iv) lim ||/»«r«jc - x|| = 0, for all x G X.

n—*oo

(3-5)

Examples of such operators are to be found in [9]. Similarly for the spaces Ym

and Y we introduce a restriction operator sm which maps Y into Ym, and a
prolongation operator qm which maps Ym into Y such that:

(i) sup||.yj| < s < oo, sup||?J| < q < oo;
m m

(ii) lim | |wl l= ll^ll. forall^G Y;
m—>oo

('») Sm<lm = Jm'

(iv) lim \\qmSmy -y\\ = 0, for ally e Y. .

(3.6)

We can now give a precise meaning to the statement that the sequence {*„},
with xn e Xn, n = 1, 2, 3, . . . , converges to an element x G X.

DEFINITION 3.1 (i). A sequence {*„}, with xn G. Xn, converges discretely to
x 6 A ' i / l i m l l _ J | / - I I x - x J | = 0 .
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(ii) A sequence {xn}, with xn G Xn, converges globally to x G X if
l i m ^ J I * - / > „ * „ | | = 0 .

From (3.5) it is straightforward to show that discrete convergence implies
global convergence, and vice-versa, so that we can talk loosely of the conver-
gence of {xn} to x.

As we shall see in Section 4, we also need a more restrictive definition of
convergence than that given by Definition 3.1. First we introduce the idea of an
a-convergent sequence.

DEFINITION 3.2 (i). A sequence {an} is said to be a-convergent to an element a
if, for all n > n0, there exist positive constants C and ax, independent of n, such
that \\an - a\\ < C/i""1.

(ii) If a sequence {an} is a-convergent to the zero element it is said to be a-null.

In relation to elements out of the spaces Xn and X we now have the following
definition.

DEFINITION 3.3 (i). A sequence {xn}, xn G Xn, is said to converge a-discretely
to an element x G X if the sequence {rnx — xn} is a-null.

(ii) A sequence {xn}, xn G Xn, is said to converge a-globally to an element
x G X if the sequence {x — pnxn] is a-null.

It is trivial to show that a-global convergence implies a-discrete convergence;
for the converse to be true we need to modify (3.5)(iv) but shall not pursue this
further here.

We now introduce two basic ideas concerning sequences of linear operators
which are fundamental to the convergence analysis.

DEFINITION 3.4 (i). Suppose B, Bn, n = 1, 2, 3, . . . , are linear operators such
that B: X —* Y and Bn: Xn —> Ym. The sequence of operators {#„} is said to be
a-discretely consistent with B on G C dom(5) if, for all x G G, the sequence
{Sfx} is a-null where

Sn
Bx = smBx - Bnrnx. (3.7)

(ii) Analogously if C, Cm, m = 1, 2, 3, . . . , are linear operators such that C:
Y—>X, Cm: Ym-*Xn then {Cm} is a-discretely consistent with C on H C
dom(C) if, for every y G H, the sequence {8fy} is a-null where

Sn
Cy = rnCy~ CmSmy. (3.8)

https://doi.org/10.1017/S033427000000285X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000285X


546 David Elliott (8]

In addition to operators being consistent we must also introduce the idea of
stability. The definition to be given next is suggested by the detailed analysis
given in [3] for the case of classical collocation.

DEFINITION 3.5. The sequence of linear operators {An} where An: Xn —* Ym is
said to be a-stable if, for each n > n0, there exists a linear operator A^: Ym —» Xn

suck that !|.4^|| < C, + C2 log .•;, where C,, C2 are positive constants independent
of n.

With this definition we observe that if the sequence {eOT}, em G Ym, is a-null
then the sequence {A^em} is also a-null.

In the next section we shall consider convergence of approximate solutions of
the dominant equation; an analysis of the complete equation will be given in
Section 5.

4. Convergence of approximate solutions of the dominant equation

We can now give a convergence theorem for the dominant equation.

THEOREM 4.1. Consider the equations Ax = y, where y is orthogonal to ker(/4*),
and Anxn = ym, whereym is orthogonal to ker(/ln

r)- / /
(i) {An} is a-discretely consistent with A on dom(A),
(ii) {An} is a-stable,

(i") {ym ~ W ) 's a-null,
then to each solution x of Ax = y there exists a solution xn of Anxn = ym such that
{xn} converges a-discretely to x.

PROOF. From Anxn = ym we have xn = Ajnym + ^ 0 ) where x*0) is any element
of ker^ , , ) . On using (3.2) we have

*„ - rHx = A'm(ym - Smy) + A'ms^ + 4°> - (A'mAnrnx + z«>),

where z^0) is an element of ker(y4n) which depends on rnx. On choosing
x^0) = z^0) and recalling that^ = Ax we have

xn ~ rnx = A'm(ym - Smy) + A'm{smAx - Anrnx).

Thus

\\xn - rnx\\ < \\Ai,\\{\\ym - s^\\ + \\Sn
Ax\\}, (4.1)

and the result follows.
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{91 Convergence singular integral equations 547

As an immediate consequence of this theorem we can determine the rate of
convergence of the sequence {xn - rnx) to zero. If \\ym - s^W < Cxn~r\ \\8*x\\
< C2n~ri and \\A^,\\ < C3 + C4 log n then from (4.1) we have that \\xn - rnx\\ <
{A + B log n)n~r where r = min(r,, r^) and the constants A, B are independent
of n.

Before being able to discuss the complete equation we need two further results
concerning the dominant equation.

THEOREM 4.2. Suppose {An} is a-discretely consistent with A on dom(/4), then to
every y G ran(A) there exists an element ym G ran(y4n) such that the sequence

ym) is a-null.

PROOF. Let x G dom(A) be any element such that Ax = y. Choose xn = rnx.
Then xn G dom(^n) and ym = Anxn is, by definition, in ran(^n). Now s^ - ym

= smAx — Anrnx = Sfx, see (3.7). Since {An} is a-discretely consistent with A
on dom(A), the sequence {s^ — ym) is a-null.

Before stating the next theorem we require one further property for our
operators An, A.

DEFINITION 4.3. The sequence of operators {An} is said to be compatible with
the operator A if rn{ker(A)} = ker(An),for each n > n0.

Note that when K < 0 it is trivially true that the sequence of operators {An} is
compatible with A.

THEOREM 4.4. Suppose
(i) {An} is compatible with A,
(ii) {An} is a-discretely consistent with A on dom(A),
(iii) {An) is a-stable.

Then the sequence {A^} is a-discretely consistent with A1 on ran(A).

PROOF. Firstly let us write X = ker(y4) © X0) and Xn = ker(y4n) + A^0. By (i)
and Theorem 4.1 it follows that if x0) G Xm and Ax(X) = y, then there exists
xj,l) e XP such that Anxj,l) = ym and the sequence {rnx

w - xj,n} is a-null.
Next, we need to show that for every y G ra.n(A), the sequence {rnA'y —

^msmy) is a-null. By Theorem 4.2, to each.y G ran(/l) we can find a sequence
{ym} with/m G ran(/4n) such that {s^ - ym) is a-null. Let xm G Xw be that
unique element such that Axm = y and xj,]) G Xjp that unique element such
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that Anx<,»=ym. Theii

Sn
A'y = rj'y - A'mSmy

= (,•„*<'> - x") - A^Smy - ym).

Since each sequence on the right hand side is a-null, the result follows.

5. Convergence of discrete solutions for the complete equation

When considering the complete equation we shall take as our starting point
the fact that it is equivalent to a Fredholm integral equation (see (2.7)) and make
use of the convergence theory for such equations. This equation has been
extensively studied; a suitable form of convergence theorem has been given by
Linz [5].

THEOREM 5.1. Consider the equation (/ + J)x = g where J is a compact
operator on a Banach space X into X, I is the identity operator and g is an element
of X. Consider further the system of n linear algebraic equations (/„ + Jn)xn — gn

where gn G Xn. If
(i) (/ + J)' exists and is bounded,
(ii) {Jn} is a consistent approximation to J,
(iii) \xmn^J\rng - gn\\ = 0,
(iv) {pnJn} is collectively compact,

then {/„ + /„} is stable and \\mn^\\rnx - xj = 0.

PROOF. See Linz [5, Theorems 3 and 4], where definitions of consistency and
stability are also given.

In comparing the statement of this theorem with equations (2.7) and (3.4) we
see that we have J = A'K and /„ = A'mKn. Since we are assuming that k is
Holder continuous on [-1, 1] X [-1, 1] we have that K is compact. Furthermore
if we define \\A'\\ = supv_t0(||i'//||0O/||^||//), then A1 is bounded so that A'K is
compact as required by Theorem 5.1. Again, condition (i) of Theorem 5.1
expresses the fact that (2.7), and consequently (1.1), is solvable, which we
certainly assume to be true. It remains to consider conditions (ii)-(iv) of
Theorem 5.1.
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THEOREM 5.2. In addition to conditions (i)-(iii) of Theorem 4.4, let us suppose
that {Kn} is a-discretely consistent with K on a sub space X(2) say of X which is
such that

X(2) = {x: Kx e ran(yl)} and Xm D dom(/4).

Then {A^Kn} is consistent with AlK on X(2\

PROOF. Since J = A'K is a mapping from X into itself and Jn = Al
mKn is a

mapping from Xn into Xn we need to show that Iim(t_oo||51f.x|| = 0 for every
x G X(2\ where Sfx = rnJx - Jnrnx. Now

8J
nx = rJ'(Kx) - Ai(smKx - Sn

Kx), by (3.7),

= Sn
A'(Kx) + Al8n«x, by (3.8).

By Theorem 4.4 the first sequence on the right is a-rull. From the assumptions
of this theorem, the second sequence on the right is a-null so that {8^x} is a-null
and therefore null.

THEOREM 5.3. If in addition to conditions (i)-(iii) of Theorem 4.4 we suppose ym

is such that the sequence {ym — s^} is a-null, then condition (iii) of Theorem 5.1
is satisfied.

PROOF. From (2.7) and (3.4) it is obvious that we have g = A 'y + x(0) say
where x(0) G ker(/4), the space spanned by bPK_l, and gn = A^ym + x^0). Since
we shall assume compatibility of {An) with A we shall choose x^0) = rnx

ia) so
that we need to show that {rnA

 ly — Aj^m) is a-null. But

- ym),

and each sequence on the right hand side is a-null, so that the result follows.

It finally remains to consider condition (iv) of Theorem 5.1.

THEOREM 5.4. In addition to conditions (i)-(iii) of Theorem 4.4 let {qmKn} be
collectively compact on Xn into ran(/l). Then {pnA^Kn} is collectively compact on
Xn into X.

PROOF. From (3.6)(iii) we can write

PJIK. = (pAm)(qmKn) = Mn(qmKn)
say, where Mn = PnA^sm is a linear operator from ran(.4) into X. We shall first
show that to every element y e ran(y4), there exists x G &om(A) such that
um

n-,a> Mj = x. From Theorem 4.2 we know that under the given conditions
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we can find an element .ym e ran(An) such that {s^ — ym) is a-null. If Ax = y
and Anxn = ym then, by Theorem 4.1, {xn} can be chosen so that it converges
a-discretely to x. In particular it will converge globally to x, that is
l i m ^ J I * - pnxn\\ = 0. Now

Mj - x = pnA
l
m{Sny - yj + (pnxn - x)

sir»H cinr*#» II n II < n ĉ*»*» C\ ^\(W\ it fr»11rvu/c that l i m Kf \i = v
M.r/111 ~* -f v v / \ - / / — n—»oo — / ^ —

Let {*„}, with xn £ A ,̂ be any bounded sequence. Since {qmKn} is collec-
tively compact on Xn into ran(^) it follows that there exists a sub-sequence {x^}
say, such that {qmkKnkxnk} converges to an elements say of ran(>4). Furthermore
we can always choose this subsequence so that Wq^K^x^ — y\\ < Ck'a' so that
it is a-convergent to y when suitably relabelled. Consider

PnA'mKnxnk - x = M^q^K^x^ -y) + (A/B^ - x).

We have already shown that the second sequence on the right hand side tends to
zero as k —* oo. Since pn and sm are uniformly bounded, since {An} is a-stable,
and since we have shown that {q^K^x^ — y] is a-null it follows that the first
sequence on the right hand side also tends to zero as k -* oo. Thus from any
bounded sequence {xn} we can extract a sub-sequence {p^A^K^x^} which is
convergent to an element of X. Hence {pnA^,Kn} is collectively compact on Xn

into X.

Having considered the conditions of Theorem 5.1, we can now state the
principal result of this paper.

THEOREM 5.5. Suppose A is of index K and y is such that (A + K)x = y
possesses a solution. Consider the sequence of linear algebraic equations
(An + Kn)xn = ym, m = n — K, where An, Kn are m X n matrices, An is of
rank = min(m, n) andym G ran(/*n). Suppose, in addition, that

(i) {An} is compatible with A,
(ii) {An} is a-discretely consistent with A on dom(A),
(iii) [An] is a-stable,
(iv) ran(tfn) C ran(>Jn),
(v) {Kn} is a-discretely consistent with K on X(2) D &om(A),
(vi) [qmKn) is collectively compact on Xn into ran(^4),

(v i i) {ym ~ V ) is a-null.
Then, for all n > n0, to each solution x of (A + K)x = y there corresponds a
solution xn say of (An + Kn)xn = ym such that the sequence {xn} converges both
discretely and globally to x. Furthermore (/„ + A^Kn)' exists and is uniformly
bounded.
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PROOF. This is an immediate consequence of the preceding theorems.

Finally, let us consider the rate of convergence of the approximate solutions
to the solution of the complete equation. Let Bn = /„ 4- A'mKn, then from
Theorem 5.5 we have that {Bn} is stable. From (2.7) and (3.4), on choosing
X(P) = rnx

(0\ we have

rnx - xn B'nBnrnx -

= KA'Mnrnx + Knrnx - ym)

since rnx £ X™ and (see (3.2)) we have that A'mAnx
(^ = x™ for every x<'>

. From definitions of 8*x and Sfx we find

rnx ~ xn = -B&iti* + S?x + (ym

from which it follows that

\\rnx - xn\\ < \\Bl\\ • 11^11(11^*11 + \\8?x\\ + \\ym - Smy\\}.

If, as in Section 4, we assume \\ym — s^W < Cln~r', \\8*x\\ < C2n~r2 and addi-
tionally 118fx11 < CJ/I"'3 then since ||5n

7|| is uniformly bounded and \\A^\\ < C4

+ C5 log n it follows that

IIV - * J I < (A + B log n)n~r,

where r = min(/-,, r2, r3) and A, B are independent of n.
For an example of the application of these results see Elliott [3].
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