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1. Introduction

Shimura varieties have many interesting structures and symmetries which
encode arithmetic information. It is now a standard folklore conjecture that
the cohomology of Shimura varieties should realize the global Langlands
correspondence. It is natural to look for a purely local analogue of Shimura
varieties, whose cohomology should realize the local Langlands correspondence,
and ask how the local–global compatibility is encoded geometrically. For
example, Carayol [4] showed that the (height-2) Lubin–Tate tower plays the role
of ‘local Shimura varieties’ and the identification of the Lubin–Tate tower with
the completion of the modular tower at a supersingular point (by Serre–Tate
deformation theory) encodes the local–global compatibility.

Many interesting examples of Shimura varieties can be understood as moduli
spaces of certain polarised abelian varieties equipped with the action of some
semisimple algebra and level structure. Such Shimura varieties are called of
PEL type, and examples include modular curves, Siegel modular varieties, and
unitary Shimura varieties. The purely local analogue of PEL Shimura varieties
was constructed by Rapoport and Zink [26], which are now called Rapoport–Zink
spaces of EL or PEL type. In the good reduction case, Rapoport–Zink spaces are
moduli spaces of p-divisible groups with some action of semisimple algebra (and
possibly with polarization), up to rigidification (by quasi-isogeny). Furthermore,
they showed the relationship between certain Rapoport–Zink spaces of (P)EL type
and PEL Shimura varieties in a way that is analogous to the complex analytic
uniformization of Shimura varieties and generalizes some known examples (of
modular and Shimura curves via Lubin–Tate and Drinfeld towers); cf. [26, Ch. 6].
We call this result the Rapoport–Zink uniformization of PEL Shimura varieties.

There is a more general class of Shimura varieties which, over C, parametrize
abelian varieties with certain Hodge cycles. They are called Shimura varieties
of Hodge type. An example naturally comes up in relation to the construction
of an abelian variety associated to a polarized complex K3 surfaces (due to
Kuga and Satake). Although such moduli spaces are essentially defined only in
characteristic 0 (as Hodge cycles are defined using singular cohomology with
Q-coefficients), recent developments in integral p-adic Hodge theory allow us
to study certain ‘natural’ integral models of such Shimura varieties at odd good
reduction primes. See Kisin [14] and Vasiu [27–29] for the statement and the
proof.

In the author’s previous work [12], the local analogue of Hodge-type Shimura
varieties for p > 2 (called Rapoport–Zink spaces of Hodge type) was constructed
under a certain unramifiedness assumption, generalizing the construction of
Rapoport–Zink spaces of (P)EL type; loosely speaking, Rapoport–Zink spaces
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of Hodge type can be thought of as moduli spaces of p-divisible groups with Tate
tensors (instead of endomorphisms and polarization) up to rigidification by quasi-
isogeny. In this paper, we prove the Hodge-type generalization of the Rapoport–
Zink uniformization for odd good reduction prime.

Let (G,H) be a Shimura datum of Hodge type (with G connected), and
assume that G admits a reductive Z(p)-model for p > 2, also denoted as G. Let
E := E(G,H) denote the reflex field, and we choose a prime p over p, which
is necessarily unramified. Then the aforementioned result of Vasiu and Kisin
produces an ‘integral canonical model’ SK of ShK(G,H), where K = KpKp with
Kp = G(Zp) and Kp

⊂G(Ap
f ) is a ‘small enough’ open compact subgroup.

Let W := W (Fp) and K0 := Frac W , viewed as a OE,p-algebra. We choose
x ∈ SK(Fp). From x we can (noncanonically) choose an element b ∈ G(K0)

from the Frobenius operator on the Dieudonné module of the abelian variety with
extra structure corresponding to x , and let RZG,b denote the Rapoport–Zink space
of Hodge type [12] associated to (G, b); see Section 4.1 for the details.

Theorem 1.1 (cf. Theorems 4.7, 5.4). There exists an isomorphism of formal
schemes over W

Θφ
: I φ(Q)\RZG,b × G(Ap

f )/K
p
→ (SK,W )/I φ ,

where I φ(Q) is the group of self quasi-isogenies of abelian varieties with tensors
coming from a closed point of SK. The target of the isomorphism is the completion
of SK,W at the isogeny leaf I φ defined in Example 4.6.1. Furthermore, the
isomorphism Θφ naturally descends over OE,p, and on the rigid analytic generic
fibres the isomorphism extends to a G(Af)-equivariant isomorphism of towers on
the both sides.

When b is basic, we expect a stronger version of the theorem to hold; namely, if
b is basic then the isogeny leaf equals the basic Newton stratum and I φ is an inner
form of G. This is proved in [32, Corollary 7.2.16]. (The proof that appeared in
the earlier version of this paper had a gap. The author appreciates Xinwen Zhu
for informing me of this.)

Let us make a remark on the proof. Unlike the PEL case, SK does not have a
good moduli interpretation and this causes number of additional difficulties.

First, it is not trivial to construct the morphism RZG,b → ŜK,W , where the
target is the p-adic completion of SK,W . To overcome this problem, we use a
deformation-theoretic trick, exploiting that the completions of ŜK,W at closed
points are well-understood by construction, and the work of Chen, Kisin and
Viehmann [5] which allows us to control the connected components of RZG,b.
See Proposition 4.3 and subsequent remarks for more details. Now one can repeat
the proof of Theorems 6.21 and 6.23 in [26] to obtain this theorem.
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Recently, Howard and Pappas [9] gave another construction (using global
techniques) of Hodge-type Rapoport–Zink spaces that come from global Hodge-
type Shimura data, in such a way that the Rapoport–Zink uniformization holds
by construction. Indeed, their construction relies on the existence of integral
canonical models of Hodge-type Shimura varieties and the Rapoport–Zink
uniformization for Siegel modular varieties, and the Hodge-type Rapoport–Zink
uniformization is obtained by pulling back the Siegel case of Rapoport–Zink
uniformization. Note that some of the ideas in this paper are used in [9] for the
construction of Hodge-type Rapoport–Zink spaces. Our approach is to construct
Hodge-type Rapoport–Zink spaces by purely local means in [12], and separately
obtain the link with the global theory (that is, Rapoport–Zink uniformization).

We have excluded the case of p = 2 because the purely local construction of
Rapoport–Zink spaces of Hodge type given in [12] requires p > 2. (Note that the
2-adic integral canonical models were constructed in [13].) It is also natural to
expect that the purely local construction of Rapoport–Zink spaces of Hodge type
as well as the Rapoport–Zink uniformization can be extended to the case when
p = 2 (which is the author’s work in progress).

The Rapoport–Zink uniformization is more interesting in the bad reduction
case, but we do not consider this case as the construction of Rapoport–Zink spaces
in [12] has not been generalized in the bad reduction case. On the other hand,
the recent work of Kisin and Pappas on integral models of Hodge-type Shimura
varieties with parahoric level structure [16] suggests that the uniformization result
can be generalized to some bad reduction cases.

In Sections 2 and 3, we review basic notions and set up the notation—
Section 2 is for general notions, and Section 3 is for Shimura varieties and
Rapoport–Zink spaces of Hodge type. In Section 4, we obtain the Rapoport–Zink
uniformization at the hyperspecial maximal level at p, and in Section 5, we extend
the uniformization to rigid analytic towers.

2. Notation and preliminaries

2.1. For any ring R, an R-module M , and an R-algebra R′, we write MR′ :=

R′⊗R M . Similarly, if R is a noetherian adic ring and X is a formal scheme over
Spf R, then for any continuous morphism of adic rings R → R′ we write XR′ :=

X×Spf R Spf R′.

2.2. For definitions in category theory, see [31] and references therein. Let C
be a pseudo-abelian symmetric tensor category such that arbitrary (infinite) direct
sum exists. Let 1 denote the identity object for⊗-product in C, which exists by the
axioms of tensor categories. (Pseudo-abelian categories are defined in the same
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way as abelian categories, except that we only require the existence of kernel for
idempotent morphisms instead of requiring the existence of kernel and cokernel
for any morphism. In practice, the pseudo-abelian categories that we encounter
are the category of filtered or graded objects in some abelian category.)

Let D be a full subcategory of C which is stable under direct sums, tensor
products, and direct factors. Assume furthermore that D is rigid; that is, every
object of D has a dual. (For example, C can be the category of R-modules filtered
by direct factors, and D can be the full subcategory of finitely generated projective
R-modules.) Then for any object M ∈ D, we let

M⊗ ∈ C

denote the direct sum of any (finite) combination of tensor products, symmetric
products, alternating products, and duals of M . Note that we naturally have

M⊗ = (M∗)⊗.

2.3. Let S be a (not necessarily connected) scheme, and x̄ a geometric point
of S. Then π ét

1 (S, x̄) denotes the étale fundamental group of the connected
component of S containing x̄ .

2.4. Abelian Schemes. For any abelian scheme f :A → S (where S is any
scheme), we define

VdR(A)
(
=VdR(A/S)

)
:= H1

dR(A/S)∗; (2.4.1a)

VAf(A)
(
=VAf(A/S)

)
:=

∏
6̀=∞

′

(R1 fét∗Q`)
∗, (2.4.1b)

where
∏
′ is the restricted product with respect to {(R1 fét∗Z`)∗}. Note that (if S

is connected then) for any geometric point x̄ of S the fibre VAf(A)x̄ has a natural
continuous action of π ét

1 (S, x̄).
For any prime p, we can define the p-component VQp(A) := (R1 fét∗Qp)

∗ and
the prime-to-p component VAp

f
(A) with

VAf(A) = VAp
f
(A)× VQp(A). (2.4.1c)

With suitably chosen C and D, we can form VdR(A)⊗, VAf(A)⊗, and so on, as
in Section 2.2.

DEFINITION 2.4.2. Let A be an abelian scheme over some scheme S. A de Rham
tensor onA is a filteredOS-morphism tdR : 1→ VdR(A)⊗, where 1 isOS equipped
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with the filtration whose grading is concentrated in 0. We often abuse the notation
and denote by tdR ∈ Γ (S,VdR(A)⊗) the image of 1 ∈ Γ (S,OS) by tdR : 1 →
VdR(A).

An étale tensor on A is an Af-linear morphism tét : 1 → VAf(A)⊗ of étale
sheaves on S, where 1 is the constant Af-local system of rank 1. We similarly
define a prime-to-p étale tensor t p

ét : 1 → VAp
f
(A)⊗ and a p-adic étale tensor

tét,p : 1→ VQp(A)⊗.

If S is a smooth variety over C, then we can also define the following Q-local
system

V(A)
(
=V(A/S)

)
:= (R1 f an

∗
Q)∗, (2.4.3)

and we have natural isomorphisms Af⊗Q V(A) ∼= VAf(A) and OS ⊗Q V(A) ∼=
VdR(A). By classical Hodge theory, we obtain a variation of Q-Hodge structures.

With suitably chosen C and D, we can form V(A)⊗ as in Section 2.2. Given a
Q-linear morphism of locally constant sheaves tB : 1 → V(A)⊗ (where 1 is the
constant sheaf Q on S), we define the étale and de Rham components tét and tdR

of tB as follows:

tét : 1
Af⊗tB
−−−→ Af ⊗Q V(A)⊗ ∼

−→ VAf(A)⊗ (2.4.4a)

tdR : 1
OS⊗tB
−−−→ OS ⊗Q V(A)⊗ ∼

−→ VdR(A)⊗. (2.4.4b)

Clearly tét is an étale tensor, and we are often interested in tB such that tdR lies in
the 0th filtration for the Hodge filtration. Such tB can be thought of as a ‘family
of Hodge tensors’.

2.5. Group theory preliminaries. Throughout this section, let R be either a
field of characteristic zero or a discrete valuation ring of mixed characteristic. In
practice, R will be one of Q, Z(p), and Zp. Let G be a reductive group over R;
that is, an affine smooth group scheme over R such that all the fibres are reductive
groups. Let M be a free R-module of finite rank, and we fix a closed immersion
of group schemes G ↪→ GLR(M). Let M⊗ be as defined in Section 2.2, where C
is the category of R-modules and D is the category of locally free R-modules of
finite rank.

Proposition 2.5.1. In the above setting, here exists a finitely many elements sα ∈
M⊗ such that G is the pointwise stabilizer of (sα); that is, for any R-algebra R′,
we have

G(R′) = {g ∈ GLR(M)(R′); g(sα) = sα ∀α}.

Proof. The case when R is a field is proved in [7, Proposition 3.1], and the case
of discrete valuation rings is proved in [14, Proposition 1.3.2].
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EXAMPLE 2.5.2. If G is a ‘classical group’ then one can often explicitly write
down (sα) that define G in the sense of Proposition 2.5.1. For example, for a
perfect alternating formψ :M⊗M→ R on a projective R-module M , we can find
a tensor sψ ∈ M⊗ whose pointwise stabilizer is GSp(M, ψ), which is explained
in [12, Example 2.1.4].

DEFINITION 2.5.3. Let X be an R-scheme (or a formal scheme over R). For
a cocharacter µ :Gm → GLR(M)X, we say that a grading gr•(OX⊗R M) is
induced from µ if the Gm-action on OX⊗R M via µ leaves each grading stable,
and the resulting Gm-action on gra(OX⊗R M) is given by

Gm
z 7→z−a

−−−→ Gm
z 7→z id
−−−→ GL(gra(OX ⊗R M)).

We additionally fix finitely many (sα)⊂M⊗ defining G⊂GLR(M). Let E be
a vector bundle on X. Then we can form E ⊗ in the category of quasicoherent
sheaves. For (finitely many) global sections (tα)⊂Γ (X,E ⊗), we define the
following scheme over X

PX := isomOX

(
[E , (tα)], [OX ⊗R M, (1⊗ sα)]

)
⊂ isomOX

(
E ,OX ⊗R M

)
,

(2.5.4)
which classifies isomorphisms of vector bundles over X which match (tα) and
(1 ⊗ sα). There is a natural left GX-action on PX through its natural action
on OX⊗R M . Note that PX is a trivial G-torsor if and only if there exists an
isomorphism ς :E

∼

−→ OX⊗R M which matches (tα) and (1⊗ sα). Indeed, such ς
defines a section X→ PX and any other sections are translates by the G-action.

From now on, assume that R is either a field or a henselian discrete valuation
ring, and let Rsh denote the strict henselization of R. (If R is a field, then Rsh is its
algebraic closure. If R = W (Fp) then R = Rsh.) For a cocharacter µ :Gm → G Rsh

and g ∈ G(Rsh), we write gµ := gµg−1 and let {µ} := {gµ : g ∈ G(Rsh)} denote
the G(Rsh)-conjugacy class of µ :Gm → G Rsh . We assume that the conjugacy
class {µ} is defined over R.

The following terminology of ‘{µ}-filtrations’ is a slight generalization of
[12, Definition 2.2.3].

DEFINITION 2.5.5. Let X be a scheme (or a formal scheme) over R. Let E be a
vector bundle over X, with (tα)⊂Γ (X,E ⊗).

First, assume that PX, defined in (2.5.4), is a trivial G-torsor and {µ} contains
a cocharacter µ defined over R. Then a filtration Fil•E of E is called a
{µ}-filtration (with respect to (tα)) if there exists an isomorphism ς :E

∼

−→

OX⊗R M , matching (tα) and (1 ⊗ sα), that takes Fil•E to a filtration of
OX⊗R M induced by µ for some µ ∈ {µ}.
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When PX is a G-torsor, a filtration Fil•E of E is called a {µ}-filtration (with
respect to (tα)) if it is étale-locally a {µ}-filtration; in other words, there exists
an étale covering f :Y→ X such that PY is a trivial G-torsor and (Fil•E )Y is
a {µ}-filtration with respect to ( f ∗tα). (Note that the conjugacy class {µ} has a
cocharacter defined over some finite étale extension R′ of R, so we may choose
Y to be an étale covering of XR′ , which is also an étale covering of X.)

Note that Γ (X,G) naturally acts on the set of {µ}-filtrations. In practice (that
is, when E comes from a suitable cohomology sheaf for an abelian scheme), it
is too much to expect that PX is a trivial G-torsor – for example, E may not
necessarily be a free OX-module. But it is certainly reasonable to impose that PX

is a G-torsor; that is, that (E , (tα)) étale-locally looks like (M, (sα)).
When G = GLR(M), then a filtration Fil•E of E is a {µ}-filtration for some

cocharacter µ if and only if associated grading gr•E is of constant rank, and the
conjugacy class of µ is uniquely determined by the rank of each grading.

Let us fix G⊂GLR(M), (sα), and {µ} as in Definition 2.5.5, and consider a
vector bundle E on X and (tα)⊂Γ (X,E ⊗). Let FlE ,(tα)

G,{µ} denote the functor on

schemes on X, which associates to Y
f
−→ X the set of {µ}-filtration of f ∗E with

respect to ( f ∗tα). We write FlE
{µ} := FlE ,∅

GL(M),{µ}, and we use the same letter
to denote the scheme representing the functor, which is relative projective and
smooth over X.

Lemma 2.5.6. The natural inclusion FlE ,(tα)
G,{µ} ↪→ FlE

{µ} can be represented by a
closed immersion of schemes over X. Furthermore, if PX (as in (2.5.4)) is a G-
torsor, then FlE ,(tα)

G,{µ} is representable by a (nonempty) connected scheme which is
relatively projective and smooth over X.

Proof. By étale descent of closed immersions, we may prove the lemma after
replacing R with some finite étale extension. So it suffices to show the lemma
when {µ} contains a cocharacter defined over R, in which case the lemma was
proved in [12, Lemma 2.2.6].

2.6. Review on G-isocrystals. We set W := W (Fp) and K0 := Frac W .

DEFINITION 2.6.1. Let D be a pro-torus with character group X ∗(D) = Q; that
is, D = lim

←−
Gm where the transition maps is the N th power maps ordered by

divisibility.
For any morphism ν :D→ GL(n)K0 we obtain a Q-grading of K n

0 by the weight
decomposition. More explicitly, choose an integer r such that rν factors through
Gm . Then the (d/r)th grading of K n

0 is the subspace where the action of (rν)(z)
for z ∈ Gm(K0) coincides with the scalar multiplication of zd .
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Proposition 2.6.2 (Kottwitz [18]). Let G be a connected reductive group over
Qp. Then, for each b ∈ G(K0), there exists a unique homomorphism

νb : D→ G K0

such that for any representation ρ :G K0 → GL(n)K0 the Q-grading associated to
ρ ◦ νb is the slope decomposition for (K n

0 , bσ). The G(K0)-conjugacy class of νb

only depends on the σ -conjugacy class of b in G(K0).
Furthermore, any σ -conjugacy class of G(K0) contains an element b ∈ G(K0)

which satisfy the following ‘decency equation’ for some r ∈ Z:

(bσ)r = (rνb)(p)σ r , (2.6.3)

where the equality takes place in 〈σ 〉 n G(K0). (Recall that rνb factors
through Gm .)

It follows (from the uniqueness assertion) that for any g, b ∈ G(K0) we have
νgbσ(g)−1 = gνbg−1.

Consider the following group valued functor Jb = JG,b defined as follows:

Jb(R) := {g ∈ G(R ⊗Qp K0)| gbσ(g)−1
= b} (2.6.4)

for any Qp-algebra R. Note that for any g, b ∈ G(K0) we have Jgbσ(g)−1(R) =
g Jb(R)g−1 as a subgroup of G(R ⊗Qp K0); in particular, Jb essentially depends
only on the σ -conjugacy class of b in G(K0).

Proposition 2.6.5. Assume that b ∈ G(K0) satisfies the decency equation (2.6.3)
for r ∈ Z. Then we have (rνb)(p) ∈ G(Qpr ) ∩ Jb(Qp), where the intersection
takes place in G(K0), and Jb is representable by an inner form of the centralizer
G(rνb)(p), which is a Levi subgroup of G. (In particular, (rνb)(p) lies in the centre
of Jb(Qp).)

Proof. See [26, Corollaries 1.9, 1.14] for the proof.

2.7. Review of Dieudonné crystals. Let X be a formal scheme over SpfZp,
and consider the crystalline site (X/Zp). By an isocrystal over X, we mean
an object in the isogeny category of crystals of quasicoherent O(X/Zp)-modules.
For any crystal of quasicoherent O(X/Zp)-modules D, we let D[ 1

p ] denote the
associated isocrystal.

For a p-divisible group X over X, we have a contravariant Dieudonné crystal
D(X) equipped with a filtration (Lie X)∗ ∼= Fil1

X ⊂D(X)X by a subvector
bundle, where D(X)X is the pull-back of D(X) to the Zariski site of X. We call
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Fil1
X the Hodge filtration for X . If X = Spf R, then we can regard the Hodge

filtration as a filtration on the R-sections Fil1
X ⊂D(X)(R). From the relative

Frobenius morphism F : XX → σ ∗XX, we obtain the Frobenius morphism
F : σ ∗D(X) → D(X). On tensor products of D(X)’s, we naturally extend the
Frobenius structure and filtration. (See [22], [21], or [1] for the construction of
D(X) and the extra structure.)

If X = A[p∞] for some abelian scheme f :A → X, then we have D(X) ∼=
R1 fCRIS,∗O(A/Zp), where the Frobenius morphism F on D(X) matches with
the crystalline Frobenius on the right hand side. Furthermore, restricting the
isomorphism to the Zariski site, we obtain a filtered isomorphism between the
vector bundle D(X)X and the de Rham cohomology H1

dR(A/X) = V(A)∗ (both
equipped with the Hodge filtration).

Let 1 := D(Qp/Zp) and 1(−1) := D(µp∞). We set

• 1(−c) := 1(−1)⊗c if c > 0;

• 1(−c) := (1(−1)∗)⊗|c| if c < 0;

• 1(0) := 1.

We often use the same notation 1(−c) for the isocrystal associated to it. Note
that the underlying crystal of 1(−c) is the structure sheaf OX/Zp with F = pc id,
identifying σ ∗1(−c) with OX/Zp as well. (Note that such F is only defined up to
isogeny if c < 0.) The Hodge filtration on 1(−c)X is concentrated at degree c.

Let C be the category of crystals of quasicoherent O(X/Zp)-modules, and D⊂ C
be the full subcategory of finitely generated locally free objects. We now define
D(X)⊗ ∈ C as in Section 2.2. Then the Hodge filtration on D(X)X induces a
natural filtration on D(X)⊗X, and the Frobenius morphism on D(X) induces an
isomorphism of isocrystals F : σ ∗D(X)⊗[ 1

p ]
∼

−→ D(X)⊗[ 1
p ].

DEFINITION 2.7.1. Let X be a p-divisible group over a formal scheme X over
SpfZp. For a morphism of crystals t : 1→ D(X)⊗, we let tdR : 1→ D(X)⊗X denote
the pull-back of t to the Zariski site. By abuse of notation, we also denote by
tdR ∈ Γ (X,D(X)⊗X) the image of 1 ∈ Γ (X,OX) by tdR.

DEFINITION 2.7.2. Let X be a p-divisible group over a formal scheme X over
SpfZp. A crystalline Tate tensor on X is a morphism of crystals t : 1→ D(X)⊗,
which satisfies the following properties:

(1) The map on isocrystals 1→ D(X)⊗[ 1
p ] induced t is F-equivariant.

(2) The map tdR is a de Rham tensor; that is, the section tdR ∈ Γ (X,D(X)⊗X) lies
in the 0th filtration with respect to the filtration induced by Fil1

X ⊂D(X)X.
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Let X be a formal scheme over SpfZp, and f :A→ X be an abelian scheme.
Then a crystalline Tate tensor on A is a morphism of crystals

t : 1→ (R1 fCRIS,∗OA/Zp)
⊗
= D(A[p∞])⊗, (2.7.3)

which is a crystalline Tate tensor on A[p∞].

EXAMPLE 2.7.4. Given an endomorphism of p-divisible groups f : X → X we
obtain a morphism of crystals D( f ) :D(X) → D(X), which gives rise to the
following crystalline Tate tensor:

t f : 1→ D(X)⊗ D(X)∗⊂D(X)⊗.

To a principal polarization λ : X
∼

−→ X∨ one can associate a crystalline Tate
tensor tλ : 1→ D(X)⊗ by the same recipe as in [12, Example 2.1.4].

3. Review on Shimura varieties of Hodge type

We review basic results on Shimura varieties of Hodge type and their integral
models in the good reduction case. Our notation is a global analogue of the
notation introduced in [12, Section 2]. In Section 4 we recall the main results
of [12].

3.1. Review of Shimura varieties of Hodge type in characteristic 0.
Consider a 2g-dimensional Q-vector space V , equipped with a nondegenerate
alternating bilinear form (that is, a symplectic form) ψ : V × V → Q. Consider
the symplectic similitude group GSp(V, ψ) which is a connected reductive
group. One can find an R-basis of VR so that the matrix representation of
VR is J :=

( idg
−idg

)
, which identifies GSp(V, ψ)R with GSp2g/R defined

by (R2g, J ). Let S± be the set of GSp2g(R)-conjugates of the cocharacter
h : ResC/R Gm → GSp2g/R which induces the following on the R-points:

C×→ GSp2g(R); a + bi 7→
( aidg bidg
−bidg aidg

)
.

Then (GSp(V, ψ),S±) is a Shimura datum, often referred to as a Siegel Shimura
datum. Its reflex field is Q.

DEFINITION 3.1.1. A Shimura datum (G,H) is called of Hodge type if there is
an embedding of Shimura data

(G,H) ↪→ (GSp(V, ψ),S±)

for some rational symplectic vector space (V, ψ).
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Clearly, (GSp(V, ψ),S±) is of Hodge type. More generally, PEL-type Shimura
data (cf. [6, Section 4], [19, Section 4]) are of Hodge type.

3.1.2. Let (G,H) be a Shimura datum of Hodge type. To simplify the notation, let
E := E(G,H) denote the reflex field and we write ShK := ShK(G,H) to denote
the canonical model over E . We fix an embedding (G,H) ↪→ (GSp(V, ψ),S±),
and let K⊂G(Af) and K′⊂ GSp(V, ψ)(Af) be ‘small enough’ open compact
subgroups with K⊂K′ such that the natural map ShK(G,H) → ShK′(GSp(V,
ψ),S±)E(G,H) is a closed immersion. (Indeed, up to replacing K⊂G(Af) with
some finite-index open subgroup it is always possible to find K′ as above; cf.
[6, Proposition 1.15].)

Recall that ShK′(GSp(V, ψ),S±) can be interpreted as a moduli space of
polarized complex abelian varieties with level structure, so we have a universal
abelian scheme AK′,Q → ShK′(GSp(V, ψ),S±) defined up to isogeny. By
restriction, we obtain an abelian scheme f :AK,E → ShK(G,H). Pulling back
by E ↪→ C, we can explicitly write down a ‘universal abelian scheme (up to
isogeny)’ f :AK,C → ShK(G,H)C in terms of the associated variation of Q-
Hodge structures. First, the first Betti homology can be obtained as follows:

V(AK,C) = G(Q)\(V × H× G(Af))/K, cf. (2.4.3), (3.1.3)

where G(Q) acts diagonally and K acts only on G(Af). To define the Hodge
filtration, consider the following filtration Fil•H of V × H whose fibre at h ∈ H
is given by grading induced from the cocharacter µh :Gm → GC (in the sense of
Definition 2.5.3), where µh is as below:

µh : Gm
z 7→(z,1)
−−−−→ Gm ×Gm

∼= SC
hC
−→ GC. (3.1.4)

Then Fil•H descends to a holomorphic filtration Fil•K of OShK,C ⊗Q V(AK,C).
This define a variation of Q-Hodge structures that defines AK,C.

Lemma 3.1.5. Let s ∈ V⊗ be an element fixed by G. Then the morphism
1→ V⊗ defined by 1 7→ s induce a morphism tuniv

B : 1→ V(AK,C)
⊗ of ‘variations

of Q-Hodge structures’. Furthermore, such tuniv
B is compatible under the natural

projection maps of the tower {ShK(G,H)C}K⊂G(Af), and are invariant under the
natural G(Af)-action.

Proof. If s is fixed by G, then the global section s ∈ Γ (H, V⊗ × H) induce a
global section s of V(AK,C). Therefore we obtain a Q-linear morphism of locally
constant sheaves tuniv

B : 1→ V(AK,C)
⊗. To show that the image of this map is in the

0th filtration, it suffices to show the claim over H, but by definition of the filtration
Fil•H the global section s has to lie in the 0th filtration (as s is fixed by G).
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The last assertion (on the compatibility with the tower and the Hecke G(Af)-
action) is clear.

Lemma 3.1.6. Let s ∈ V⊗ be an element fixed by G, and tuniv
B : 1→ V(AK,C)

⊗ be
the morphism constructed from s by the recipe in Lemma 3.1.5. Then the de Rham
component tuniv

dR : 1 → VdR(AK,C)
⊗ of tuniv

B (cf. (2.4.4b)) descends to a de Rham
tensor tuniv

dR : 1→ VdR(AK,E)
⊗, and the étale component tuniv

ét : 1→ VAf(AK,C)
⊗ of

tuniv
B (cf. (2.4.4a)) descends to an étale tensor tuniv

ét : 1→ VAf(AK,E)
⊗.

Proof. This lemma is essentially proved in Lemma 2.2.1 and Corollary 2.2.2 in
[14], by choosing a finitely many tensors (sα)⊂ V⊗ such that their pointwise
stabilizer is G and one of sα is s. We now explain how to deduce the lemma
from [14].

The existence of the de Rham tensor tuniv
dR on AK,E is proved in [14,

Corollary 2.2.2]. Let us now prove the assertion on the étale components.
Let η be a generic point of ShK, and η̄ be a geometric point supported at η. By
[14, Lemma 2.2.1], the fibre tuniv

ét,η̄ is invariant under the action of Gal(η̄/η).
Let {η}⊂ShK be the connected component of ShK containing η. Since

π ét
1 ({η}, η̄) is a quotient of Gal(η̄/η) by normality, it follows tuniv

ét,η extends over {η}.
Hence we obtain tuniv

ét over ShK by repeating this process for each of the generic
points.

3.2. ‘Universal’ abelian schemes over Hodge-type Shimura varieties (in
characteristic 0). We fix finitely many elements (sα)⊂ V⊗ whose pointwise
stabilizer is G⊂GLQ(V ); cf. Proposition 2.5.1. Consider tuniv

α,B : 1 → V(AK,C)
⊗

associated to (sα) by Lemma 3.1.5, which produce tuniv
α,dR and tuniv

α,ét defined over ShK
by Lemma 3.1.6. We now list the properties and extra structures possessed by
AK,E .

3.2.1 (G-torsor). Consider the following closed subscheme of the isom scheme
over ShK

PK,E ⊂ isomShK

(
VdR(AK,E),OShK ⊗Q V

)
,

defined by the condition of matching (tuniv
α,dR)⊂Γ (ShK,VdR(AK,E)

⊗) with
(sα)⊂ V⊗ for each α. Then PK,E is a G-torsor. Indeed, it suffices to show
that PK,C is a G-torsor over ShK,C. On the other hand, PK,C splits under the
complex analytic topology (which can be seen from the natural isomorphism
VdR(AK,C) ∼= OShK,C ⊗Q V(AK,C) and the explicit construction of V(AK,C)), so
PK,C→ ShK,C is flat with nonempty fibre everywhere and the natural G-action is
simple and transitive.
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3.2.2 (The Hodge filtration is a {µ}-filtration.). Recall that the conjugacy class
{µ} of µh associated to some h ∈ H by (3.1.4) is independent of h and is defined
over E = E(G,H). Then the Hodge filtration Fil0(VdR(AK,E)) is a {µ}-filtration
with respect to (tuniv

α,dR) in the sense of Definition 2.5.5. Indeed, since ShK is reduced
and of finite type, it suffices (by Lemma 2.5.6) to show that at each closed point
x ∈ ShK(C) the fibre

Fil0(VK,x)⊂VdR(AK,E)x
∼= H1

dR(AK,x/C)∗

defines a point in Fl
VdR(AK,E ),(tuniv

α,dR)

G,{µ} over x ∈ ShK(C). And this is clear from the
definition, as the Hodge filtration at x is given by the cocharacter µh associated to
some h ∈ H.

3.2.3 (Level Structure). For an open compact subgroup K⊂G(Af), we define a
universal global section

ηK ∈ Γ
(
ShK, isom

[
(VAf, (1⊗ sα)), (VAf(AK,E), (tuniv

α,ét ))
]
/K
)
,

where VAf := Af⊗Q V . Note that ηK only depends on the isogeny class of (AK,E ,

(tuniv
α,ét )); that is, AK,E up to isogeny respecting (tuniv

α,ét ).
For a geometric point x ∈ ShK(C), let π ét

1 (ShK, x) and π ét
1 (ShK,C, x) denote

the étale fundamental group of the component containing x . Then defining ηK is
equivalent to giving, for a point x ∈ ShK(C) on each connected component, an
isomorphism

ηx : VAf

∼

−→ VAf(AK,E)x ,

matching (1 ⊗ sα) and (tuniv
α,ét,x), such that the right coset ηxK is stable under the

action of π ét
1 (ShK, x).

Note that the pull-back of VK to H × G(Af) is a trivial local system. We first
define η̃ : VAf ×H×G(Af)→ VAf ×H×G(Af) by (v, h, g) 7→ (gv, h, g). Given
a point x ∈ ShK(C), we pick a lift (h, g) ∈ H× G(Af) of x and set

ηx := η̃|VAf×{(h,g)}
: VAf → VAf .

We now show that the right coset ηxK only depends on x , not on the choice of lift
(h, g), where g′ ∈ K acts as ηx 7→ ηx ◦ g′.

Firstly, for any g′ ∈ K we obtain another lift (h, gg′) ∈ H × G(Af) of x . Then
we have

η̃(v, h, gg′K) = (gg′v, h, gg′K) = η̃(g′v, h, gK) ∈ VAf × H× G(Af)/K;

that is, we have η̃(h,gg′K) = η(h,gK) ◦ g′.
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Secondly, for any γ ∈ G(Q) we obtain another lift (γ h, γ g) ∈ H×G(Af) of x .
Then we have

η̃(v, γ h, γ gK) = (γ gv, γ h, γ gK) = (γ, γ, γ ) ◦ η̃(v, h, gK).

Now, recall that VK = G(Q)\(V × H × G(Af))/K where G(Q) acts diagonally.
Therefore, we obtain the same map ηx if we replace (h, g) with (γ h, γ g).

This shows that the right coset ηxK is stable under the action of π ét
1 (ShK,C, x).

We now show that ηxK is stable under the action of π ét
1 (ShK, x). Clearly, we

may replace K with a finite-index open normal subgroup, so we may assume
that there exists a ‘small enough’ open compact subgroup K′⊂ GSp(V, ψ)(Af)

containing K such that ShK → ShK′(GSp(V, ψ),S±)E is a closed immersion.
Then ηxK′ defines a universal level structure on AK′,C, so it ‘descents’ to a level
structure on AK′,E (by the universal property of AK′,E ). In particular, ηxK′ is stable
under the action of π ét

1 (ShK, x). But since ShK(C)→ ShK′(GSp(V, ψ),S±)(C)
is injective, ηxK is the only right K-coset contained in ηxK′ whose elements match
(1 ⊗ sα) and (tuniv

α,ét,x). (Indeed, if there were any other K-coset ηyK⊂ ηxK′ with
this property, then ηxK and ηyK define C-points of ShK which map to the same
point in ShK′(GSp(V, ψ),S±).) Since (tuniv

α,ét,x) are invariant under the action of
π ét

1 (ShK, x) by Lemma 3.1.6, it also follows that ηxK is stable under the action of
π ét

1 (ShK, x).

3.2.4 (Hecke action). For any K⊂G(Af), the right translation by g ∈ G(Af) on
H× G(Af) descends to an isomorphism

[g] : ShgKg−1,C
∼

−→ ShK,C.

By the standard rigidity result (cf. [24, Theorem 13.6]), this map is defined over
the reflex field

[g] : ShgKg−1
∼

−→ ShK.

We can describe the pull-back by [g] of the universal abelian scheme and the level
structure (AK, ηK) as follows. The isogeny class of [g]∗(AK, (tuniv

α,ét )) coincides with
(AgKg−1, (tuniv

α,ét )), and [g]∗ηK corresponds to (η′x g)K for any x ∈ ShgKg−1(C) where
η′x : VAf

∼

−→ VAf(AgKg−1)x is a representative of the fibre of ηgKg−1 at x . (These
claims can be explicitly verified over C.)

3.3. Integral canonical models. In this section, we review the basic
properties of integral canonical models of Hodge-type Shimura varieties in
the good reduction case, constructed independently by Kisin [14] and Vasiu
[27–29]. We refer to the aforementioned references for the full details including
the definition of integral canonical model.
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3.3.1 (Good Reduction Hypothesis). From now on, we fix a prime p. Let (G,H)
be a Hodge-type Shimura datum, and assume that G admits a reductive Z(p)-
model GZ(p) . Then we can choose the following extra data:

(1) We choose an embedding of Shimura data (G,H) ↪→ (GSp(V, ψ),S±),
and a ψ-stable Z(p)-lattice ΛZ(p) ⊂ V such that the closed immersion G ↪→

GSp(V, ψ) ↪→ GL(V ) over Q extends to a closed immersion GZ(p) ↪→

GL(ΛZ(p)) of reductive groups over Z(p). If p > 2 then for any embedding
(G,H) ↪→ (GSp(V, ψ),S±) there exists a lattice ΛZ(p) with the above
property by [14, Proposition 2.3.1]. (Indeed, [14] shows that for any G(Zp)-
stable Zp-latticeΛ⊂Qp⊗Q V ,ΛZ(p) :=Λ∩V satisfies the desired property,
unless p = 2 and GQ has no normal subgroup isomorphic to SO2n+1.)

(2) We choose finitely many elements (sα)⊂Λ⊗Z(p) such that the pointwise
stabilizer of (sα) in GL(ΛZ(p)) is GZ(p) , which is possible by
Proposition 2.5.1.

We do not requireψ to be a perfect alternating form onΛZ(p) , although by Zarhin’s
trick it is possible to arrange (V, ψ) so that ψ induces a perfect alternating form
on some choice of ΛZ(p) .

The following lemma is proved in [23, Corollary 4.7]:

Lemma 3.3.2. Let (G,H) be any Shimura datum. Assume that G is unramified at
p; that is, there exists a reductive Z(p)-model of G. Then the reflex field E(G,H)
is unramified at any prime p over p.

Recall that we fix a reductive Z(p)-model of G, also denoted by G, which
is a closed subgroup of GL(ΛZ(p)). Set Kp := G(Zp)⊂G(Qp), which is a
hyperspecial maximal compact subgroup. Choose an open compact subgroup
Kp
⊂G(Ap

f ) so that the product KpKp
⊂G(Af) is ‘small enough’. From now

on, we always assume that K := KpKp with the hyperspecial maximal compact
subgroup Kp, in which case we expect that ShK should admit a smooth integral
model over OE,(p) for any prime p of E := E(G,H) over p. Here, OE,(p) is the
(uncompleted) localization of OE at p, which is an unramified extension of Z(p)
by Lemma 3.3.2.

Let us recall the main result and basic properties on integral canonical models:

Theorem 3.3.3 (Vasiu, Kisin). Assume that p > 2. Then for any small enough Kp

there exists an integral canonical OE,(p)-model SKpKp of ShKpKp in the following
sense: The G(Ap

f )-equivariant tower {ShKpKp}Kp extends to a G(Ap
f )-equivariant

tower {SKpKp}Kp of smooth OE,(p)-schemes with finite étale transition maps, and
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the tower satisfies the (uniquely characterizing) extension property formulated by
Milne (cf. [25, Section 3]).

Furthermore, the following additional properties hold:

(1) Choose a ψ-stable Z-latticeΛZ⊂ΛZ(p) . Then the universal abelian scheme
AKpKp,E → ShKpKp , corresponding to the choice of Z-lattice ΛZ, extends to
an abelian scheme AKpKp → SKpKp .

(2) The de Rham tensors (tuniv
α,dR) on AKpKp,E , associated to (sα)⊂Λ⊗Z(p) by

Lemma 3.1.6, extends over the integral canonical model tuniv
α,dR : 1 →

VdR(AKpKp)⊗. Furthermore, the formation of tuniv
α,dR respects the natural

projections and the natural G(Ap
f )-action on the tower {SKpKp}Kp .

Proof. Vasiu ([27], [28, 29]) and Kisin [14] constructed an integral canonical
model SK =SK(G,H) of ShK by normalizing ShK in a certain integral model of
ShK′(GSp(V, ψ),S±) (for a suitable choice of K′⊂ GSp(V, ψ)(Af)) constructed
from a Mumford moduli scheme. (The main content is to verify that this
construction yields an integral canonical model.) The existence of AKpKp →

SKpKp follows from the construction. For (2), see [14, Corollary 2.3.9]

REMARK 3.3.4. The discussion on Hecke action in Section 3.2.4 can be extended
to the prime-to-p Hecke action (that is, the G(Ap

f )-action) on the integral
canonical models, which we explain now. Let K := KpKp be as before, and pick
a geometric point x of ShK, viewed also as a geometric point of SK. As SK is
normal, the open immersion ShK ↪→SK induces a (surjective) quotient morphism
π ét

1 (ShK, x)→ π ét
1 (SK, x).

Note that the lisse sheaf VAp
f
(AK,E) on ShK extends to a lisse sheaf VAp

f
(AK)

on SK. By considering the monodromy action at geometric points, it now follows
that the prime-to-p étale tensors tuniv,p

α,ét : 1 → VAp
f
(AK,E)

⊗ on the generic fibre
extend to the integral canonical model:

tuniv,p
α,ét : 1→ VAp

f
(AK)

⊗.

Furthermore, the prime-to-p part of the level structure ηKp (that is, the image of
ηK in isom(VAp

f
,VAp

f
(AK,E)) extends to the integral canonical model:

ηKp ∈ Γ (SK, isom
[
(VAp

f
, (sα)), (VAp

f
(AK), (t

univ,p
α,ét ))

]
/Kp), (3.3.5)

which only depends on the prime-to-p isogeny class of (AK, (t
univ,p
α,ét )). Now

for any g ∈ G(Ap
f ), Theorem 3.3.3 gives an isomorphism [g] :SgKg−1

∼

−→ SK

extending the map on the generic fibre described in Section 3.2.4. Then, we have
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[g]∗(AK, (t
univ,p
α,ét )) = (AgKg−1, (tuniv,p

α,ét )) as prime-to-p isogeny classes, and the pull-
back [g]∗ηKp over the integral canonical model has exactly the same description
as in Section 3.2.4.

Let us now move on to the p-adic part of the (co)homology of AK and tensors
thereof. Since the p-adic lisse sheaf VQp(AK,E) on ShK does not extend over SK,
we cannot extend the p-adic étale tensor tuniv

α,ét,p : 1→ VQp(AK,E)
⊗ to the integral

canonical model. Instead, one would expect that tuniv
α,ét,p should give rise to a natural

crystalline Tate tensor by p-adic Hodge theory.
Let ŜK denote the p-adic completion of SK (that is, the formal completion of

SK at the special fibre), and f̂ : ÂK → ŜK the p-adic completion of f :AK →

SK. Then we have a natural isomorphism H1
dR(ÂK/ŜK) ∼= (R1 f̂CRIS,∗OÂK/Zp

)ŜK
,

where the right hand side is the pull-back of the crystal to the Zariski site. In
particular, the de Rham tensor (tuniv

α,dR) on AK induce an OŜK/Zp
-linear morphisms

of crystals:

tuniv
α : 1→ (R1 f̂CRIS,∗OÂK/Zp

)⊗ = D(ÂK[p∞])⊗. (3.3.6)

By construction, tuniv
α,dR coincides with the de Rham tensor associated to tuniv

α by
Definition 2.7.1.

Proposition 3.3.7. The morphisms (tuniv
α ) in (3.3.6) are crystalline Tate tensors

on ÂK in the sense of Definition 2.7.2. Furthermore, the p-adic comparison
isomorphism matches (tuniv

α ) with (tuniv
α,ét,p).

Proof. This is essentially a corollary of relative crystalline comparison
for p-divisible groups and the theorem of Blasius and Wintenberger; cf.
[2, Theorem 0.3].

Consider the p-adic étale tensor

tuniv
α,ét,p : 1→ VQp(AK,E)

⊗.

Then the relative comparison isomorphism provides an F-equivariant morphism
of isocrystals

tα : 1→ (D(AK[p∞])∗)⊗[1/p] = D(AK[p∞])⊗[1/p].

Indeed, the argument [8, Section 6] can be generalized to prove this; see
[11, Theorem 5.3] for the precise statement, which globalizes to show the claim.

It remains to show that tα = tuniv
α , which can be extracted from the construction

of SK (cf. the proof of Proposition 2.3.5 and Corollary 2.3.9 in [14]). One can
also extract a direct argument from [14] as follows. By smoothness of SK, both tα
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and tuniv
α are determined by the induced sections on H1

dR(AK/Ŝ
rig
K )
⊗, so the claim

tα = tuniv
α can be verified on the fibres at a Zariski dense set of points of Ŝ rig

K .
Indeed, the (classical) points of Ŝ rig

K which come from Q-points of SK is Zariski
dense in Ŝ rig

K , and the fibres of tα and tuniv
α (at Q-points) coincide by the theorem

of Blasius and Wintenberger [2, Theorem 0.3].

We fix an embedding κ(p) ↪→ Fp, and set W := W (Fp) and K0 = Frac W . Let
σ denote the Witt vectors Frobenius endomorphism on W and K0.

For K = KpKp with Kp = G(Zp), we consider x̃ : Spec W → SK, and let x
denote the Fp-point induced by x̃ . Let AK,x̃ and AK,x respectively denote the pull-
back of AK.

The following result was originally conjectured by Milne and was proved by
Vasiu and Kisin (independently) in the course of constructing SK (that is, proving
Theorem 3.3.3):

Proposition 3.3.8. There is a W -linear isomorphism

W ⊗Z(p) Λ
∗

Z(p)
∼= D(AK,x̃ [p∞])(W )

matching (1 ⊗ sα) and (tuniv
α,dR,x̃). In particular, the pointwise stabilizer of (tuniv

α,dR,x̃)

in GL(D(AK,x [p∞])(W ) is isomorphic to GW .

Proof. We first show that there exists an isomorphism

Zp ⊗Z(p) ΛZ(p)
∼= Tp(AK,x̃)

which matches (1⊗ sα) and (tuniv
α,ét,p). Indeed, by fixing an embedding τ :W ↪→ C

we obtain an isomorphism

Tp(AK,x̃) ∼= H1(τ
∗AK,x̃ ,Zp)

matching (tuniv
α,ét,p) and the ‘Betti tensors’ (tuniv

α,B ) constructed in Lemma 3.1.5. Now
by construction, there exists an isomorphism Zp ⊗Z(p) ΛZ(p)

∼= H1(τ
∗AK,x̃ ,Zp)

matching the tensors.
Now it remains to show the existence of an isomorphism

W ⊗Zp Tp(AK,x̃)
∗ ∼= D(AK,x [p∞])(W ) (3.3.9)

matching (1 ⊗ tuniv
α,ét,p) and (tuniv

α ). Since these étale and crystalline tensors are
related by the p-adic comparison isomorphism by Proposition 3.3.7, the existence
of such an isomorphism was proved by Vasiu and Kisin in the course of
constructing integral canonical models; cf. [14, Proposition 1.3.4], [30].
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We now extend the G-torsor PK,E over ShK (Section 3.2.1) to the integral
canonical model SK. Consider the following closed subscheme of the isom
scheme over SK

PK⊂ isomSK

(
VdR(AK),OSK ⊗Z(p) ΛZ(p)

)
,

defined by the condition of matching (tuniv
α,dR)⊂Γ (SK,VdR(AK)

⊗) with
(sα)⊂Λ⊗Z(p) for each α. Then we have PK,E = PK ×Spec OE,(p) Spec E , which
is a G-torsor over ShK.

Lemma 3.3.10. The scheme PK above is a G-torsor over SK.

Proof. It follows from the construction of SK (cf. [15, Proposition 1.3.9(1)]) and
Proposition 3.3.8 that PK pulls back to a G-torsor over the completion of SK at
any Fp-point. This proves the claim.

Next, we need a notion of {µ}-filtrations over SK. Recall that the conjugacy
class {µ} of µh for some h ∈ H (by the recipe given in (3.1.4)) is independent
of the choice of h and defined over E . Therefore, by choosing a place p|p of
E we may view {µ} as a conjugacy class of cocharacters over Ep. Clearly, this
conjugacy class {µ} is defined over Ep.

We obtain the following lemma using the assumption that G is unramified at p.

Lemma 3.3.11. The geometric conjugacy class {µ} over Ep contains a
cocharacter µ :Gm → GOEp

defined over the valuation ring OEp .

Proof. By [17, Lemma 1.1.3(a)], the geometric conjugacy class {µ} contains a
cocharacter µ′ :Gm → G Ep defined over Ep (since {µ} is defined over Ep and
GQp is quasisplit by unramifiedness). Let S⊂G Ep be a maximal Ep-split torus
containing the image of µ′. Since any maximal Ep-split tori are G(Ep)-conjugate
to each other (cf. [3, Theorem 20.9(ii)]), there exists g ∈ G(Ep) such that g S :=
gSg−1 is the generic fibre of a maximal split torus in GOEp

. We set µ := gµ′,
which extends over OEp .

Corollary 3.3.12. The Hodge filtration for AK → SK is a {µ}-filtration
with respect to (tα,dR), where {µ} is the G(W )-conjugacy class of µ as in
Lemma 3.3.11.

Proof. By Lemmas 3.3.10 and 3.3.11, {µ}-filtrations in VdR(AK)
∗ form a smooth

closed subscheme of a certain grassmannian over SK (cf. Lemma 2.5.6). Since
the Hodge filtration for AK,E → ShK is a {µ}-filtration (cf. Section 3.2.2), to
prove the corollary it suffices to show that the Hodge filtration of AK becomes a
{µ}-filtration after pulling back by any morphism x̃ : Spec R → SK, where R is
a p-adic discrete valuation ring. But this follows from the valuative criterion for
properness (applied to the grassmannian of {µ}-filtrations over SK).
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3.3.13. We fix x ∈ SK(Fp) and x̃ ∈ SK(W ) as before, and write X := AK,x [p∞]
and X̃ := AK,x̃ [p∞]. We choose a W -isomorphism D(X)(W ) ∼= W ⊗Z(p) Λ

∗

Z(p)
matching (tuniv

α,x̃ ) and (1 ⊗ sα), as in Proposition 3.3.8. Then we obtain b ∈
GL(K0 ⊗Z(p) ΛZ(p)) such that F = b(σ ⊗ id). Since each of (tuniv

α,x̃ ) is fixed by
F , it follows that b fixes each of (1 ⊗ sα); that is, we have b ∈ G(K0). By
Corollary 3.3.12, the Hodge filtration Fil1

X̃ is induced by gµ for some g ∈ G(W )

where µ is a cocharacter as in Lemma 3.3.11.

Lemma 3.3.14. In the above setting, we have b ∈ G(W )(p−1)σ
∗µG(W ).

Proof. This lemma follows from [12, Lemma 2.5.7(2)], which can be applied
thanks to Corollary 3.3.12 and Proposition 3.3.8.

4. Rapoport–Zink uniformization via formal schemes

In this section, we relate Rapoport–Zink spaces of Hodge type constructed
in [12] with a certain completion of SK (cf. Theorem 4.7), generalizing (the
unramified case of) Rapoport–Zink uniformization of PEL Shimura varieties (cf.
[26, Theorem 6.23]).

Using Kisin’s theorem on quasi-isogeny groups of abelian varieties with tensors
(which we recall in Theorem 4.8), we refine the uniformization; namely, we
descend the uniformization over OE,p (Section 4.9). (See [26, Proposition 6.16]
for the PEL case.)

From now on, we always assume that p > 2 without mentioning it.

4.1. Review of Rapoport–Zink spaces of Hodge type. We recall the
definitions and main results in [12]. We work in the setting of Section 3.3.13.

Let NilpW be the category of W -algebras where p is nilpotent. For b ∈ G(K0)

and X0 as in Section 3.3.13, we define a functor RZb : NilpW → (Sets) so that
RZb(R) is the set of isomorphism classes of pairs (X, ι) where X is a p-divisible
group over R and ι :XR/p 99K X R/p is a quasi-isogeny (that is, an invertible global
section of Hom(XR/p, X R/p)[

1
p ]). Note that RZb only depends, up to isomorphism,

on the σ -conjugacy class of b in GL(K0 ⊗ ΛZ(p)). By [26, Theorem 2.16], RZb

is representable by a formal scheme which is locally formally of finite type and
formally smooth over W . We also let RZb denote the representing formal schemes.

REMARK 4.1.1. For any p-divisible group X over R ∈ ARW which lifts X, there
exists a unique quasi-isogeny XR/p 99K X R/p lifting the identification X ∼

−→ XFp
.

This identifies the universal deformation space of X with the completion of RZb

at the point (X, id) ∈ RZb(Fp); cf. [26, Proposition 3.33].
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Let sα,D(:= tuniv
α,x ) : 1 → D(X)⊗ be the crystalline Tate tensors induced from

(tuniv
α ) on ÂK; that is, we have sα,D(W ) = 1 ⊗ sα under the identification as in

Proposition 3.3.8, where (sα)⊂Λ⊗ define G. Then, for any (X, ι) ∈ RZb(R) with
R ∈ NilpW , we have a Frobenius-equivariant morphism of isocrystals sα,D : 1→
D(X)⊗[ 1

p ] which uniquely lifts

sα,D : 1
(sα,D)R/p
−−−−→ D(X0,R/p)

⊗
[

1
p ]

D(ι)−1

−−−→ D(X R/p)
⊗
[

1
p ]; (4.1.2)

alternatively, one may uniquely lift ι to ι̃ : X̃R 99K X and obtain sα,D from
the tensor on X̃.

In general, there may not exist any morphism of (integral) crystals giving rise
to sα,D. On the other hand, there is a natural closed formal subscheme of RZb over
which (sα,D) is induced from crystalline Tate tensors.

Theorem 4.1.3 [12, Theorem 4.9.1]. Assume that p > 2. Then there exists
a closed formal subscheme RZG,b⊂RZb, which is formally smooth over W ,
with the following universal property: Let R be a formally smooth formally
finitely generated algebra over either W or W/pm , and consider a morphism
f : Spf R → RZb. Let X be a p-divisible group over Spec R which pulls back
to f ∗XRZb over Spf R. Then f factors through RZG,b if and only if there exists a
crystalline Tate tensors tα : 1→ D(X)⊗ for each α such that

(1) For some ideal of definition J of R containing p, the pull-back of tα over
R/J induces the map of isocrystals sα,D : 1→ D(X R/J )

⊗
[

1
p ].

(2) Let R̃ be a p-adic lift of R which is formally smooth over W . Then the
R̃-scheme

PR̃ := isomR̃

[
(D(X)(R̃), (tα(R̃))], [R̃ ⊗Zp Λ

∗, (1⊗ sα)]
)
,

defined as in (2.5.4), is a G-torsor.

(3) The Hodge filtration Fil1
X ⊂D(X)(R) is a {µ}-filtration with respect to

(tα,dR)⊂D(X)(R)⊗.

The closed formal subscheme RZG,b⊂RZb is independent of the choice of (sα).

4.1.4. Let f : Spf R → RZG,b be as in Theorem 4.1.3 and we use the notation as
above. Then (tα) are uniquely determined by f (cf. [12, Lemma 4.6.4]). Therefore,
applying the universal property to an open affine covering of RZG,b we obtain a
‘universal family’ of crystalline Tate tensors

tα : 1→ D((XRZb)|RZG,b)
⊗.
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Let us recall the description of RZG,b(Fp) and the formal completion R̂ZG,b,y at
y ∈ RZG,b(Fp) from [12, Section 4.8].

If we fix an isomorphism [D(X)(W ), (sα,D)] ∼= [W ⊗Zp Λ
∗, (1 ⊗ sα)], then

(X, ι) ∈ RZG,b(Fp), the quasi-isogeny ι induces a map g ∈ G(K0) on W ⊗Zp Λ
∗.

Since the choice of the isomorphism [D(X)(W ), (sα,D)] ∼= [W ⊗Zp Λ
∗, (1⊗ sα)]

admits a simply transitive G(W )-action, we get an injective map RZG,b(Fp) ↪→

G(K0)/G(W ). And its image is given by the following affine Deligne–Lusztig
set (cf. [12, Proposition 2.5.9]):

RZG,b(Fp)
∼

−→ {g ∈ G(K0)| g−1bσ(g) ∈ G(W )bG(W )}/G(W ). (4.1.5)

Now, given y ∈ RZG,b(Fp), one can identify the formal completion R̂ZG,b,y

with the explicit deformation space with Tate tensors constructed by Faltings; cf.
[12, Section 4.8]. Instead of recalling the precise description, let us record the
following consequence which will be used later.

Let ŜK,x denote the completion of SK at x : SpecFp →SK. We also view x =
(X, id) ∈ RZG,b(Fp). As observed in Remark 4.1.1, we have a morphism ŜK,x →

R̂Zb,x given by rigidity of quasi-isogeny, which is a closed immersion of formal
schemes by Serre–Tate deformation theory [10, Theorem 1.2.1]. Furthermore,
this closed immersion factors through R̂ZG,b,x by the universal property of RZG,b

(Theorem 4.1.3). Indeed, the crystalline Tate tensors (tuniv
α ) on ÂK induce the

required (tα), which satisfy (1) by taking J to be the maximal ideal and the
remaining conditions by Corollary 3.3.12.

Proposition 4.1.6. The morphism of formal schemes ŜK,x → R̂ZG,b,x , defined
above, is an isomorphism.

Proof. Note that both completions as well as the deformations of X over them
have the same explicit description, and the morphism we constructed match them;
cf. [12, Theorem 4.9.1] and [15, Proposition 1.3.9(1)].

4.1.7. Assume that there is another embedding (G,H) ↪→ (GSp(V ′, ψ ′),S ′±) of
Shimura data and a Z(p)-lattice Λ′Z(p) ⊂ V ′ as in Section 3.3.1. This choice gives
rise to another abelian scheme A′K over SK. We set X′ := A′K,x for x ∈ SK(Fp)

and let RZ′G,b⊂RZ
′

b denote the moduli spaces constructed using X′ instead. Then
the functoriality part of [12, Theorem 4.9.1] shows that there exists a unique
isomorphism RZG,b

∼= RZ′G,b respecting the description of Fp-points and the
completions thereof given in (4.1.5) and Proposition 4.1.6.

We recall some of the extra structures that RZG,b possesses.
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4.1.8. By classical Dieudonné theory, Jb(Qp) (2.6.4) can be identified with the
group of quasi-isogenies of X that preserve the crystalline Tate tensors (sα,D).
It turns out to be a Qp-point of an inner form of a Levi subgroup of G; cf.
[26, Corollary 1.14]. We define the left action of Jb(Qp) on RZG,b as follows.
For any (X, ι) ∈ RZG,b(R) and g ∈ Jb(Qp), we set

g(X, ι) = (X, ι ◦ g−1).

4.1.9. Put d := [Ep :Qp], and let q = pd be the cardinality of the residue field
of Ep. Let τ = σ d

∈ Gal(K0/Ep) denote the q-Frobenius element (that is, the
lift of the qth power map on Fp). For any formal scheme X over Spf W , we write
Xτ
:= X ×Spf W,τ Spf W . For any R ∈ NilpW , note that Xτ (R) = X(Rτ ), where

Rτ is R viewed as a W -algebra via τ . By Weil descent datum over OE,p we mean
an isomorphism Φ :X→ Xτ . Note that if there exists an OE,p-formal scheme X0

with (X0)W
∼= X, then X has a Weil descent datum over OE,p. Such a Weil descent

datum is called effective.
We define a Weil descent datum Φ :RZb

∼

−→ RZτb over OE,p, sending (X, ι) ∈
RZG,b(R) to (XΦ, ιΦ) ∈ RZG,b(Rτ ), where XΦ is X viewed as a p-divisible group
over Rτ , and ιΦ is the following quasi-isogeny:

ιΦRτ /p : XRτ /p = (τ
∗X)R/p

Frob−d

99K X R/p
ι
99K X R/p = XΦ

R/p,

where Frobd
:X→ τ ∗X is the relative q-Frobenius (with q = pd). One can check

thatΦ restricts to a Weil descent datumΦ :RZG,b
∼

−→ RZτG,b over OE,p (by looking
at Fp-points and the formal completions thereof; cf. [12, Definition 7.3.5]).

Clearly the Jb(Qp) action commutes with the Weil descent datum Φ. Note that
Φ is not an effective Weil descent datum for RZG,b.

4.1.10. Over the rigid analytic generic fibre of RZG,b we can naturally define
a tower of étale coverings with Galois group G(Zp) equipped with a natural
G(Qp)-action. The Jb(Qp)-action and the Weil descent datum naturally lifts to
each layer of the tower in a compatible way. We give a brief review when we use
it (Section 5.2), and see [12, Section 7.4] for the details.

4.2. Isogeny classes of mod p points. We continue to work in the setting
of Section 3.3.13. Let ι :A 99K A′ be a quasi-isogeny of abelian schemes over
R ∈ NilpW ; that is, an invertible global section of Hom(A,A′) ⊗Z Q. Then ι
induces the following isomorphisms:

D(A[p∞])[1/p]
∼

← D(A′[p∞])[1/p]; (4.2.1a)

VAp
f
(A) ∼−→ VAp

f
(A′). (4.2.1b)
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DEFINITION 4.2.2. We define an equivalence relations x ∼ x ′ for x, x ′ ∈SK(Fp)

if there exists a quasi-isogeny ι :AK,x 99KAK,x ′ such that the isomorphisms (4.2.1)
induced by ιmatches (tuniv

α,x ) with (tuniv
α,x ′ ), and (tuniv,p

α,ét,x ) with (tuniv,p
α,ét,x ′ ). An equivalence

class φ containing x ∈ SK(Fp) is called an isogeny class of x .

Let (X, ι) ∈ RZG,b(R) for R ∈ NilpW , and for the choice of the W -lift X̃ as in
Section 3.3.13 let ι̃ : X̃R 99K X denote the unique lift of ι. Assume that pn ι̃ : X̃R →

X is an isogeny, and let

A := (AK,x̃)R/ ker(pn ι̃) (4.2.3a)

be an abelian scheme over R. Note that A[p∞] = X by construction, and we have
a quasi-isogeny

ι̃ : (AK,x̃)R
p−n
//(AK,x̃)R

// //A . (4.2.3b)

Note that ι̃ induces crystalline Tate tensors tα : 1 → D(A[p∞])⊗[ 1
p ], and an

isomorphism of Ap
f -local systems

VAp
f
(ι̃) : VAp

f
((AK,x̃)R)

∼

−→ VAp
f
(A).

Via this isomorphism, (tuniv
α,ét,x̃) induces prime-to-p étale tensors on A as follows

t p
α := VAp

f
(ι̃) ◦ tuniv

α,ét,x̃ ,

and the prime-to-p level structure x̃∗ηKp (3.3.5) induces

ηp
= V(ι̃) ◦ (x̃∗ηKp) ∈ Γ (Spec R, isom

[
(VAp

f
, (sα)), (VAp

f
(A), (t p

α ))
]
/Kp).

(4.2.3c)

The next aim is to construct a morphism of formal schemes RZG,b→ ŜK where
the target is the p-adic completion of SK.

Proposition 4.3. There exists a unique morphism of formal schemes

Θφ
: RZG,b → ŜK,W

(depending on x ∈ SK(Fp) but not on the choice of ΛZ(p) and (sα)), such that Θφ

maps (X, ι) ∈ RZG,b(R) (with R ∈ NilpW ) to an R-point f ∈ ŜK(R) with f ∗(AK,

(tuniv
α ), ηKp) ∼= (A, (tα), ηp) where the target is defined by (4.2.3). Furthermore,
Θφ commutes with the Weil descent data over OE,p = W (κ(p)).
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Proof. The unique existence of Θφ(Fp) :RZG,b(Fp) → SK(Fp) (depending
on x ∈ SK(Fp)), as well as independence of choice, follows from [15,
Proposition 1.4.4], which was proved using the main result of [5]. (To obtain the
map RZG,b(Fp) → SK(Fp) from [15, Proposition 1.4.4], note that RZG,b(Fp)

can be identified with a certain affine Deligne–Lusztig set by [12, (4.8.1)].)
Considering the description of Θφ on the points valued in artin local rings
with residue field Fp, it follows that Θφ should induce the isomorphism
R̂ZG,b,y

∼

−→ ŜK,Θφ(y) for any y ∈ RZG,b(Fp), given by Proposition 4.1.6. Note
that this isomorphism is independent of the choice of ΛZ(p) and (sα). Since Θφ

is a map between formal schemes locally formally of finite type over W , it is
determined by the map it induces on the set of Fp-points and the completions
thereof (cf. [12, Lemma 5.4.2]).

It remains to show the existence of Θφ using some suitable choice of ΛZ(p) .
Indeed, by Zarhin’s trick we may assume that GZ(p) ⊂ GSp := GSp(ΛZ(p), ψ)

where ψ is a perfect alternating form on ΛZ(p) . Then we may choose an open
compact subgroup K′ = K′pK

′p
⊂ GSp(Af) such that K′p = GSp(Zp) and we have

a natural closed immersion ShK ↪→ ShK′,E (with the obvious notation); cf. [14,
Lemma 2.1.2]. Since K′p is hyperspecial maximal, we have an integral canonical
model SK′ of ShK′ , and SK is the normalization of the Zariski-closure S −

K of ShK
in SK′ .

Given x ∈ SK(Fp), we let x ∈ SK′(Fp) also denote its image. Then we also
obtain RZGSp,b⊂RZb by working with GSp instead of G, and clearly RZG,b is a
closed formal subscheme of RZGSp,b. Now, the desired map for GSp instead of G

RZGSp,b → ŜK′,W

was already constructed in [26, Theorem 6.21]. We want to show that the
restriction RZG,b → ŜK′,W factors through ŜK,W . This holds on the level of Fp-
points and the completions thereof, which follows from [15, Proposition 1.4.4]
and the formal-local description of SK,W as in [14, Proof of Proposition 2.3.5],
respectively. This at least shows that the map RZG,b → ŜK′,W factors through the
formal closed subscheme Ŝ −

K,W . (Note that given a map f : S → R of noetherian
rings and an ideal I ⊂ S, we can verify f (I ) = 0 on the completion of R at
each maximal ideal.) Now, by formal smoothness RZG,b is also normal as a
locally noetherian formal scheme. Therefore by choosing suitable irreducible
formal open affines Spf R of RZG,b and Spf S of Ŝ −

K,W respectively, the map
RZG,b → Ŝ −

K,W is locally given by injective maps of domains S → R where
R is a normal domain. (To see the injectivity, it suffices to work on the level
of completions at each maximal ideals, and this follows from [14, Proof of
Proposition 2.3.5].) This shows that RZG,b → Ŝ −

K,W lifts to RZG,b → ŜK,W , as
SK is the normalization of S −

K .
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To show that Θφ commutes with the Weil descent data, note that it suffices to
check this forΘφ

Fp
, in which case the claim is more or less clear from the definition.

Cf. the proof of [26, Theorem 6.21].

REMARK 4.3.1. In some sense, the proof of [15, Proposition 1.4.4] essentially
proves Proposition 4.3, except that RZG,b was not defined in [15] and some ad
hoc notion for RZG,b(R) was used instead. So Proposition 4.3 can be proved by
‘repeating’ the proof [15, Proposition 1.4.4] in the following way (taking [5] as the
main input). By the argument in [15, Section 1.4.10], the map can be extended to
RZ◦G,b → ŜK,W , where RZ◦G,b is the connected component containing x = (X, id).
Now, it follows from the main result of [5] that the Hecke action at p transitively
permutes the connected components of RZG,b; cf. [15, Proposition 1.2.22].

Corollary 4.3.2. The map Θφ
:RZG,b → ŜK in Proposition 4.3 extends to

Θφ
: RZG,b × G(Ap

f )/K
p
→ ŜK,W

so that on points over R ∈ NilpW we have (X, ι, gKp) 7→ (A, (tα), ηpg). This
morphism commutes with the Weil descent data over OE,p.

DEFINITION 4.4. Let I φ(Q) be the group of quasi-isogenies AK,x 99K AK,x

which preserve (tuniv
α,x ) and (tuniv,p

α,ét,x ) over some finite field. (Note that AK,x and
the tensors are defined over some finite field as they are obtained from a mod p
point of SK.) Note that I φ(Q) only depends on φ, not on the individual x . We
view I φ(Q) naturally as a subgroup of Jb(Qp) and G(Ap

f ). We let I φ(Q) act on
RZG,b × G(Ap

f )/K
p via left translation.

REMARK 4.4.1. In the general Hodge-type (non-PEL) setting, it is a nontrivial
theorem of Kisin that I φ(Q) is the Q-points of an inner form of some Levi
subgroup of G with explicit description at each place of Q. (This result
can be proved much more easily in the PEL case.) We state this result in
Theorem 4.8, and it will be used to prove the stronger statement of Rapoport–
Zink uniformization; cf. Section 4.9.

Lemma 4.4.2. The subgroup I φ(Q)⊂ Jb(Qp)× G(Ap
f ) is discrete.

Proof. (Compare with the proof of Theorem 6.23 in [26, p. 289].) Note that
Jb(Qp) has an open compact subgroup consisting of isomorphisms of X; namely,
Jb(Qp)∩GL(W⊗Λ). Let U ⊂ Jb(Qp)×G(Ap

f ) be an open subgroup such that the
image in G(Ap

f ) stabilizes
∏
6̀=p T`(AK,x) and the image in Jb(Qp) is contained in

the open compact subgroup of isomorphisms. This is always possible to arrange
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by replacing U with an open subgroup of finite index. Then I φ(Q) ∩ U is a
finite group since it is a subgroup of the automorphism group of polarized abelian
variety (AK,x , λ).

Proposition 4.5. Assume that Kp is ‘small enough’. Then the quotient

I φ(Q)\RZG,b × G(Ap
f )/K

p

is representable by a formal scheme which is locally formally of finite type and
formally smooth over W , and the Weil descent datum Φ of RZG,b induces a Weil
descent datum on this quotient.

The morphism Θφ
:RZG,b × G(Ap

f )/K
p
→ ŜK, defined in Corollary 4.3.2, is

invariant under the I φ(Q)-action and the induced morphism of formal schemes

Θφ
: I φ(Q)\RZG,b × G(Ap

f )/K
p
→ ŜK,W

is a monomorphism of functors on NilpW .

Proof. Let us first show that the quotient I φ(Q)\RZG,b × G(Ap
f )/K

p is
representable by a formal algebraic space. Note that

I φ(Q)\RZG,b × G(Ap
f )/K

p
=

∐
Γ

Γ \RZG,b (4.5.1)

where Γ ⊂ Jb(Qp) runs over discrete subgroups of the form I φ(Q) ∩ gKpg−1 for
g ∈ G(Ap

f ). Such a group Γ is separated with respect to the profinite topology
and discrete by Lemma 4.4.2. Also Γ is torsion-free if Kp is ‘small enough’
(more precisely, if Kp fixes the n-torsion points of AK,x for some n > 3; cf. the
proof of Theorem 6.23 in [26, pp. 289–290]). Then, the Γ -action on RZG,b has no
fixed point since the Γ -action on RZb has no fixed point by [26, Corollary 2.35].
We then show that Γ \RZG,b is representable by a formal algebraic space by
repeating the proof of [26, Proposition 2.37]. (Alternatively, one may apply [26,
Proposition 2.37] to show that the quotient Γ \RZb is representable by a formal
algebraic space and observe that RZG,b is a Γ - stable closed formal subscheme of
RZb.)

It is clear that Θφ
:RZG,b × G(Ap

f )/K
p
→ ŜK,W is invariant under the I φ(Q)-

action. We now show that the induced map of formal algebraic spaces

Θφ
: I φ(Q)\RZG,b × G(Ap

f )/K
p
→ ŜK,W

is a monomorphism of functors on NilpW . Indeed, the injectivity on Fp-points is
clear from Proposition 4.3, and Θφ induces an isomorphism on the completions
at any Fp-point (by Proposition 4.1.6). The claim now follows from descent and
direct limit consideration.

https://doi.org/10.1017/fms.2018.18 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.18


Rapoport–Zink uniformization of Hodge-type Shimura varieties 29

Note that any algebraic space which is separated and locally quasifinite over
a scheme is a scheme (cf. [20, Théorème (A.2)]). This shows that any closed
algebraic subspace of I φ(Q)\RZG,b × G(Ap

f )/K
p is a scheme, which shows that

I φ(Q)\RZG,b ×G(Ap
f )/K

p can be represented by a formal scheme. (For example,
the image of RZG,b(h)m,n × G(Ap

f ) in I φ(Q)\RZG,b × G(Ap
f )/K

p is a scheme for
each (m, n), where RZG,b(h)m,n is introduced in [12, Section 6.1].)

The assertion on the Weil descent datum follows since I φ(Q) act on RZG,b via
I φ(Q) ↪→ Jb(Qp) whose action commutes with the Weil descent datum Φ of
RZG,b. This concludes the proof.

We finish by identifying I φ(Q)\RZG,b ×G(Ap
f )/K

p as the completion of ŜK,W

at a (possibly infinite) chain of closed subschemes. We first recall the following
definition:

DEFINITION 4.6. Let X be a formal scheme and Z := {Z i}i∈I where Z i ⊂ |X| is
a closed subset such that for each i ∈ I there are only finitely many j ∈ I with
Z i ∩ Z j 6= ∅.

We define the completion X/Z of X along Z to be the following formal scheme.
The underlying topological space is

|X/Z | :=
⋃
i∈I

Z i

with the direct limit topology. For each x ∈ |X/Z |, we consider the open subset
of |X/Z |:

Z(x) :=
(⋃

x∈Zi

Z i

)∖(⋃
x /∈Zi

Z i

)
,

which is also a locally closed subset of X. We give a formal scheme structure on
Z(x) as the completion of X along Z(x). The formal scheme X/Z is obtained by
glueing these formal schemes on Z(x) as we vary x ∈ |X/Z |.

Note that if the index set I is finite (that is, Z :=
⋃

i∈I Z i is a Zariski-closed
subset of |X|) then X/Z is the completion of X along Z .

EXAMPLE 4.6.1. We give an example of Z = I φ for X = ŜK,W . For an isogeny
class φ, set I φ

:= {Z i}i∈I, where I be the set of I φ(Q)-orbits of irreducible
components of RZG,b ×G(Ap

f )/K
p, and Z i ⊂ |ŜK,W | for i ∈ I is the image by Θφ

of the I φ(Q)-orbit of irreducible components corresponding to i ∈ I. To see that
Z i is a closed subset, note that any irreducible component of RZred

G,b is projective.
One can check that any Z i intersects with only finitely many Z j ’s from (4.5.1).
Therefore we can define (ŜK,W )/I φ as in Definition 4.6.
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The following theorem is a Hodge-type generalization of the unramified case
of [26, Theorem 6.23].

Theorem 4.7. The morphism Θφ , obtained in Proposition 4.5, induces an
isomorphism of formal schemes respecting the natural Weil descent datum over
OE,p:

Θφ
: I φ(Q)\RZG,b × G(Ap

f )/K
p ∼
−→ (ŜK,W )/I φ .

Proof. Note thatΘφ in the statement is a formally étale surjective monomorphism
which induces a proper morphism on the underlying reduced schemes. Such a
morphism between locally noetherian formal schemes is an isomorphism; see the
proof of Theorem 6.23 in [26, p. 290].

For the remainder of the section, we prove some refinements of Theorem 4.7;
namely, we descend the isomorphismΘφ in Theorem 4.7 over OE,p (not just over
W = W (Fp)). For this, we need the following theorem of Kisin (which is highly
nontrivial in the non-PEL case):

Theorem 4.8 (Kisin). The group I φ(Q) as in Definition 4.4 is the Q-points of
reductive Q-group I φ , which is an inner form of some Levi subgroup of G. More
precisely, there exists an element γ0 ∈ G(Q) such that I φ is an inner form of the
centralizer Gγ0 ⊂G of γ0.

Furthermore, we have I φQp
⊂ Jb, and g ∈ Jb(Qp) lies in I φ(Qp) if and only if g

corresponds to a quasi-isogeny of AK,x [p∞] defined over some finite field.

Proof. This is a direct consequence of [15, Corollaries 2.3.1 and 2.3.5].

Note that the closed immersion I φQp
⊂ Jb may not be an isomorphism in general.

On the other hand, if b is basic then one can show that I φQp
∼= Jb; cf. [32,

Lemma 7.2.14].

4.9. Effectivity of Weil descent. Although the Weil descent datum Φ on
RZG,b is not effective, we show that Φ induces an effective Weil descent datum
on I φ(Q)\RZG,b×G(Ap

f )/K
p. In particular, by Theorem 4.7 (ŜK,W )/I φ descends

over Spf OE,p; cf. Corollary 4.9.3. In the PEL case, this result can be obtained
from [26, Theorem 3.49 and Proposition 6.16].

By Kottwitz’ theorem (Proposition 2.6.2), we may assume that b ∈ G(K0)

satisfies the equation (bσ)r = (rνb)(p)σ r by replacing b up to σ -conjugacy in
G(K0). Viewing (rνb)(p)∈ Jb(Qp) as a quasi-isogeny of X (cf. Proposition 2.6.5),
the height of (rνb)(p) is precisely r dimX. (Note that we work with contravariant
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Dieudonné theory, while the formula in [26, Section 3.41] is deduced via covariant
Dieudonné theory.) Therefore, we have an isomorphism

〈(rνb)(p)〉\RZG,b
∼=

r dim X0−1∐
h=0

RZG,b(h),

where RZG,b(h) is a quasicompact open and closed formal subscheme defined by
requiring the height of the quasi-isogeny to be h ∈ Z.

Since (rνb)(p) is in the centre of Jb(Qp) (cf. Proposition 2.6.5), the natural left
action of Jb(Qp) on RZG,b descends to the quotient, and the Weil descent datum
Φ on RZG,b induces a Weil descent datum on this quotient.

Proposition 4.9.1. The Weil descent datumΦ on 〈(rνb)(p)〉\RZG,b is effective for
any r ∈ Z such that rνb :D→ G K0 factors through Gm (via the natural projection
D� Gm).

Proof. Note that the closed immersion RZG,b ↪→ RZb commutes with the Weil
descent datum Φ over OE,p, so it suffices to prove the claim for RZb instead of
RZG,b. The case of RZb was already handled in [26, Theorem 3.49].

Next, we would like to approximate a suitable power of (rνb)(p) to a global
element. By considering the image of x ∈ SK(Fp) in the Siegel modular variety
x ∈ SK′(Fp), we may apply [26, Lemma 6.17] to obtain that (rνb)(p) ∈
(End(AK,x) ⊗ Qp)

×. In particular, (rνb)(p) ∈ Jb(Qp) corresponds to a self
quasi-isogeny of AK,x [p∞] defined over some finite field, so by Kisin’s theorem
(Theorem 4.8) we have (rνb)(p) ∈ I φ(Qp).

Now, let Zφ
⊂ I φ denote the centre. Since (rνb)(p) is in the centre of Jb(Qp),

it follows that (rνb)(p) ∈ Zφ(Qp), which is contained in Zφ(Af).
Set U φ,p

= Zφ(Ap
f ) ∩ K

p where the intersection is taken inside G(Ap
f ), and

choose an open compact subgroup U φ
p ⊂ Zφ(Qp) so that it is contained in the open

compact subgroup of Jb(Qp) consisting of automorphisms of X. Since U φ
:=

U φ
p U φ,p is an open compact subgroup of Zφ(Af), the following abelian group

Zφ(Q)\Zφ(Af)/U φ

is finite. We may assume that (rνb)(p) ∈ Zφ(Q)·U φ by replacing r with a suitable
integer multiple of r . Therefore, we may (and do) choose r ∈ Z, so that there
exists z ∈ Zφ(Q) with z ≡ (rνb)(p) mod U φ .

We have just proved the following proposition, which generalizes [26,
Proposition 6.16]:

Proposition 4.9.2. The map Θφ
:RZG,b × G(Ap

f )/K
p
→ ŜK,W (cf.

Corollary 4.3.2) factors through 〈(rνb)(p)〉\RZG,b × G(Ap
f )/K

p, where r is
chosen as above.
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The following Corollary is straightforward from Propositions 4.9.1 and 4.9.2:

Corollary 4.9.3. The Weil descent datum Φ on I φ(Q)\RZG,b × G(Ap
f )/K

p is
effective.

5. Rapoport–Zink uniformization via rigid geometry

We continue to assume that (G,H) is a Hodge-type Shimura datum such that
G is unramified at p. Using our results in Section 4 for hyperspecial maximal
level at p we can obtain a rigid analytic uniformization result for other levels at p
(Theorem 5.4), generalizing the unramified case of [26, Theorem 6.36].

We continue to assume that p > 2 without mentioning it.

5.1. Level structures at p for Hodge-type Shimura varieties in
characteristic 0. In Sections 3.2.3 and 3.2.4, we described level structures
at p and G(Qp)-action for Hodge-type Shimura varieties in characteristic 0,
working with abelian varieties up to isogeny. Here, we reformulate them only
using prime-to-p isogeny classes (so that we can relate it to the rigid analytic
tower over RZrig

G,b). We assume that (G,H) is of Hodge type with G unramified at
p, and make auxiliary choices as in Section 3.3.1.

Let Kp be an open compact subgroup of G(Zp). For example, we may consider
K(0)p := G(Zp) and K(i)p := ker(G(Zp) → G(Z/pi)) for i > 0. Let K := KpKp,
and consider (AK,E , ηK) where AK,E is viewed up to isogeny and ηK is as in
Section 3.2.3. We can decompose ηK into the prime-to-p part ηKp (3.3.5) and the
p-part

ηKp ∈ Γ (ShK(i)p Kp , isom
[
(VQp , (sα)), (VQp(AK(i)p Kp,E), (t

univ
α,ét,p))

]
/Kp). (5.1.1)

In the isogeny class of AK,E , consider the pull-back of the abelian scheme
AK(0)p Kp,E , up to prime-to-p isogeny, that extends to the integral canonical model.
We also denote it by AK,E . Then ηKp can be viewed as a right Kp-coset of
isomorphisms Λ

∼

−→ Tp(AK,E) matching tensors. With such identification, we
obtain the following description of ShKpKp :

ShKpKp
∼

−→ isomSh
K
(0)
p Kp

(
[ΛZp , (sα)], [Tp(AK(0)p Kp,E), (t

univ
α,ét,p)]

)
/Kp, (5.1.2)

where the morphism is defined by restricting ηKp to ΛZp .
When Kp = K(i)p for some i , then (5.1.2) can be interpreted as follows:

ShK(i)p Kp
∼

−→ isomSh
K
(0)
p Kp

(
[ΛZ(p)/pi , (sα)], [AK(0)p Kp,E [p

i
], (tuniv

α,ét,p)]
)
. (5.1.3)
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For g ∈ G(Qp), assume that gKp ⊂G(Zp). (This can be arranged by replacing
Kp by a finite-index open subgroup; namely, G(Zp) ∩

gKp.) In Section 3.2.4, we
showed that pulling back by [g] :ShgKpKp

∼

−→ ShKpKp , we have [g]∗AKpKp ∼AgKpKp

up to isogeny, and changes the level structure at p by ‘right translation by g’.
To translate this in terms of the level structure at p described as in (5.1.2), the
prime-to-p isogeny class of [g]∗AKpKp is the unique one in the isogeny class of
AgKpKp which matches the Zp-lattices ΛZp and Tp([g]∗AKpKp) via [g]∗ηKp , and
then [g]∗ηKp defines a section of the right hand side of (5.1.2).

5.2. Rigid analytic tower of Hodge-type Rapoport–Zink spaces. Since
RZG,b is locally formally of finite type over Spf W , it is possible to associate the
‘rigid analytic generic fibre’, denoted by RZrig

G,b.

We use the notation from Section 5.1, such as K(i)p ⊂G(Zp), and set RZK
(0)
p

G,b :=

RZrig
G,b. For any Kp ⊂K(0)p , we now define, in a way analogous to (5.1.2), the

following rigid analytic étale cover of RZrig
G,b:

RZ
Kp
G,b := isomRZ

rig
G,b

(
[ΛZp , (sα)], [Tp(XG,b), (tuniv

α,ét,p)]
)
/Kp, (5.2.1)

where XG,b is the universal p-divisible group over RZG,b, Tp(XG,b) =

{XG,b[pn
]

rig
} is the Zp-local system over RZrig

G,b (that is, the Tate module of
XG,b), and (tuniv

α,ét,p : 1 → Tp(XG,b)
⊗) are the étale tensors associated to the

‘universal crystalline tensors’. (See [12, Section 7.4] for more details. In [12] the
tensors (tuniv

α,ét,p) were denoted as (tα,ét).)
When Kp = K(i)p for some i , then we have

RZ
K(i)p
G,b := isomRZ

rig
G,b

(
[ΛZ(p)/pi , (sα)], [XG,b[pi

], (tuniv
α,ét,p)]

)
. (5.2.2)

It is possible to extend the Galois action of G(Zp) on the tower {RZKp
G,b}Kp

naturally to a G(Qp)-action in a way that is analogous to the case of Shimura
varieties as discussed in Section 5.1; cf. [12, Section 7.4].

5.3. Rigid analytic Rapoport–Zink uniformization. We write K := KpKp

with Kp = G(Zp). For an isogeny class φ of Fp-points of SK, we set

Shrig
K (φ) :=

(
(ŜK,W )/I φ

)rig
. (5.3.1)

If I φ is a finite collection of irreducible subvarieties of SK,Fp
, then Shrig

K (φ) is
the tube of I φ in ŜK,W . In general, Shrig

K (φ) is a union of tubes of the irreducible
subvarieties Z ∈ I φ .
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Since the construction of rigid analytic generic fibre is functorial, we obtain
the following maps of rigid analytic spaces over K0 from Theorem 4.7 for K :=
K(0)p K

p:

Θφ,rig
: I φ(Q)\RZrig

G,b × G(Ap
f )/K

p ∼
−→ Shrig

K (φ). (5.3.2)

Furthermore, the rigid analytic spaces and the maps in (5.3.2) descend over Ep by
Corollary 4.9.3.

From now on, assume that K := KpKp
⊂G(Af) such that Kp ⊂K(0)p = G(Zp),

and K⊂G(Af) is a ‘small enough’. We let Shrig
K,K0

and Shrig
K,Ep

respectively denote
the rigid analytifications of ShK,K0 and ShK,Ep .

DEFINITION 5.3.3. We let Shrig
K (φ) denote the preimage of Shrig

K(0)p Kp(φ) via the

natural projection map Shrig
KpKp,K0

→ Shrig

K(0)p Kp,K0
. Equivalently, by (5.1.2) we have

Shrig
KpKp(φ) ∼= isomSh

rig

K
(0)
p Kp

(φ)

(
[ΛZp , (sα)], [Tp(AK(0)p Kp), (tuniv

α,ét,p)]
)
/Kp.

Since Shrig

K(0)p Kp(φ) is defined over Ep (by Corollary 4.9.3), it follows that

Shrig
KpKp(φ) is also defined over Ep.

By matching the definitions of the coverings Shrig
KpKp(φ) → Shrig

K(0)p Kp(φ)

(Definition 5.3.3) and RZKp
G,b → RZrig

G,b (5.2.1), we obtain the following theorem:

Theorem 5.4. Assume that K := KpKp
⊂G(Af) such that Kp ⊂K(0)p = G(Zp).

Then, we can lift Θφ,rig (5.3.2) to

Θφ
K : I φ(Q)\RZKp

G,b × G(Ap
f )/K

p ∼
−→ Shrig

K (φ),

which also descends over Ep. Furthermore, by varying Kp and Kp, the
isomorphism {Θφ

K} is equivariant for the G(Af)-action. (On the left hand
side, G(Qp) acts naturally on {RZKp

G,b}Kp , and G(Ap
f ) acts by left translation on

{G(Ap
f )/K

p
}Kp . On {Shrig

K (φ)}K, the G(Af)-action is the restriction on the natural
G(Af)-action on {ShK}K.)
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