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Thermoelectric materials, capable of scavenging electric power from sources of waste heat, are one of 

promising choices for relaxing global energy problems [1]. However, the low energy conversion 

efficiency limits such smart materials to put into use widely. We achieved an excellent thermoelectric 

performance in 2.5% K doped PbTe0.7S0.3 sample: one of the highest dimensionless figure of merit (ZT) 

of 2.2 at 923 K and the highest energy conversion efficiency of ~20.7% (i.e. the highest average ZT of 

1.56) for non-segmented thermoelectric devices. Hopefully, this work highlights a realistic prospect of 

wide thermoelectric application with high ZT (above 3). In order to obtain the above high performance, 

we subtly tuned K doping level in spinodal decomposed PbTe0.7S0.3 system to firstly realize a 

simultaneous enhancement of electrical conductivity and Seebeck coefficient and a reduction of thermal 

conductivity [2]. Accordingly, a precise characterization and analysis of microstructure as they relate to 

thermoelectric performance are vitally important for the fundamental understanding of this peculiar 

thermoelectric material. The presentation will cover S/TEM microscopy and microanalysis strategy 

to unravel microstructural influence on thermoelectric properties and associated phenomena. 

 

The nominal x% K doped PbTe0.7S0.3 composition spinodally decomposes into two phases: PbTe and 

PbS. Meanwhile, mesoscale grains can be obtained via spark plasma sintering. Thus high density of 

grain/phase boundaries can be got, as shown in Fig. 1(a) and (b). Lattice images and schematic maps in 

Fig. 1(c-f) reveal that both grain/phase boundaries are semi-coherent and full of edge dislocations and 

strains. Besides the mesoscale grain regions, nanoscale precipitates can always be found widely but 

distinctly inside PbTe and PbS regions. Fig. 2 gives microstructure evolution of precipitates as a 

function of K doping in PbS and PbTe regions in x% K doped PbTe0.7S0.3 samples. For PbS regions 

(Fig. 2(a-d)), with the increase of K doping, the density of precipitates is almost unchanged, while the 

morphology changes a lot, from platelet-like for lowly K doping (x<2.5) to cubical one for certain K 

doping (x=2.5), and finally to sticking-sphere for highly K doping (x>2.5). On the contrast, the density 

and size of precipitates in PbTe regions increase with the increase of K doping, Fig. 2(e-g). The 

underlying mechanism of the above evolutions is the solubility difference of K in PbTe, PbS and PbTeS 

compounds. Fig. 3 is detailed structural analysis of the cubical precipitates of 2.5% K doped PbTe0.7S0.3. 

Diffraction patterns in Fig. 3(a), 3(c) and 3(e) show two types of superlattices besides the main 

reflections, i.e., near-1/3 (2,0,0) and near-(1,1/3,0) supperlattices, from different precipitates. 

Correspondingly, lattice images of cubical precipitates in real space exhibit a 3-layers period, Fig. 3(b) 

and 3(d). Furthermore, the near-1/3 superlattices can be expressed as (1/3-ε)(2, 0, 0) or (1/3-ε)(0, 2, 0) 

accurately due to the substitution of Te on S sites, with deviation parameter ε, Fig. 3(g). It is clearly 

shown that superlattices are due to chemical ordering in cubical PbTe1/6S5/6 precipitates, as shown in 

Fig. 3(f). Therefore, nanoscale precipitates combining with long-wavelength phonon scattering centers 

(mesoscale grain/phase boundaries), and short-wavelength phonon scattering centers (atomic-scale 

506
doi:10.1017/S1431927614004255

Microsc. Microanal. 20 (Suppl 3), 2014
© Microscopy Society of America 2014

https://doi.org/10.1017/S1431927614004255 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927614004255


dislocation/strain/point defects), established a hierarchical architecture to effectively scatter phonons 

with all lengths. 
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Figure 1. (a) TEM image reveals mesoscale PbTe/PbS grains; (b) Grain size distribution histogram; (c) 

and (d) Lattice image of PbS/PbS grain boundary and PbTe/PbS phase boundary, respectively. ED 

patterns, enlarged images for edge dislocations and GPA analysis images are inserted; (e) and (f) 

schematic figures showing the grain and phase boundary, respectively. 

 

 
Figure 2. (a-d) Images showing platelet-like, cubical, and sticking-sphere precipitates in PbS regions for 

0.5% K, 2.5% K and 3.0% K samples, respectively. (e-g) Images showing roughly homogeneous 

contrast with only some weak-contrast particles, low density of precipitates with a grown size, and high 

density of larger precipitates for 0.5% K, 2.0% K and 2.5% K samples, respectively. 

 

 

 

 

 

 

 

 

Figure 3. (a-g) Structural analysis of cubical precipitates of 2.5% K sample: (a) ED pattern of Figure 

2(b), showing two types of superlattices besides the main reflections, i.e., near-1/3 (200) and near-(1 1/3 

0) superlattices; (b) and (d) Enlarged image of precipitates, 3-layers period is marked; (c) and (e) IFFT 

images of (b) and (d), the respective superlattices are marked; (f) The atomic modeling of the cubical 

precipitates, the unit cell of superlattices is marked; (g) Statistical reciprocal positions of near-1/3 (200) 

superlattices (red dots) and the 1/3 (200) (black crosses, non-existed) are counted, and their average 

values are also shown. 
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