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Abstract
Our objective was to quantify the cross-sectional associations between dietary fatty acid (DFA) patterns and cognitive function among
Hispanic/Latino adults. This study included data from 8942 participants of the Hispanic Community Health Study/Study of Latinos, a pop-
ulation-based cohort study (weighted age 56·2 years and proportion female 55·2 %). The National Cancer Institute method was used to
estimate dietary intake from two 24-h recalls. We derived DFA patterns using principal component analysis with twenty-six fatty acid and
total plant and animal MUFA input variables. Global cognitive function was calculated as the average z-score of four neurocognitive tests.
Survey linear regression models included multiple potential confounders such as age, sex, education, depressive symptoms, physical
activity, energy intake and CVD. DFA patterns were characterised by the consumption of long-chain SFA, animal-based MUFA and
trans-fatty acids (factor 1); short to medium-chain SFA (factor 2); very-long-chain n-3 PUFA (factor 3); very-long-chain SFA and plant-
based MUFA and PUFA (factor 4). Factor 2 was associated with greater scores for global cognitive function (β = 0·037 (SD 0·012)) and
the Digit Symbol Substitution (DSS) (β = 0·56 (SD 0·17)), Brief Spanish English Verbal Learning-Sum (B-SEVLT) (β = 0·23 (SD 0·11)) and
B-SEVLT-Recall (β = 0·11 (SD 0·05)) tests (P < 0·05 for all). Factors 1 (β = 0·04 (SD 0·01)) and 4 (β = 0·70 (SD 0·18)) were associated with
the DSS test (P < 0·05 for all). The consumption of short to medium-chain SFA may be associated with higher cognitive function among
US-residing Hispanic/Latino adults. Prospective studies are necessary to confirm these findings.
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Dementia and cognitive decline are of major public health
concern worldwide(1). The global cost of dementia increased
by 35 % between 2010 and 2015 to $818 billion annually(2).
Approximately 50 million individuals are living with dementia,
and this estimate is projected to triple by 2050(1,3). Based on lim-
ited data, it has been estimated that Hispanic/Latino adults in the
USA have a 47 % higher prevalence of dementia as compared
with non-Hispanic whites(4). The disproportionate burden of
cognitive decline experienced by Hispanic/Latino adults is
accompanied by lifestyle-related health conditions (i.e. CVD
and diabetes)(5–7) that may further contribute to this observation.

Whether dietary factors can inform lifestyle interventions to
prevent or treat cognitive decline and dementia is of great inter-
est. Past studies indicate that dietary fat, particularly saturated fat,
is amodifiable risk factor for CVD(8). Given that vascular diseases
are the second leading cause of dementia(9), the association of
dietary fat with cognitive function merits investigation. Past stud-
ies on this topic have been limited in scope because they do not
consider the potentially unique effects of specific fatty acids on
cardiometabolic pathways that may contribute to accelerated
cognitive decline and dementia. These include pathways related
to inflammation, insulin resistance and dyslipidaemia(10–12).
These shortcomings could partially explainwhy epidemiological
investigations of dementia based on total SFA, MUFA, PUFA
and trans-fatty acid (TFA) intakes have resulted in inconsistent
findings(13–16).

Total SFA and TFA consumption is generally considered to
adversely affect health. However, greater intakes or circulating
concentrations of short- (< 6 carbons (C)) to medium-chain
(6–12 C)(17) and very-long-chain SFA (≥ 20 C)(18,19) have been
related to lower risk of type 2 diabetes, a condition strongly
linked to chronic insulin resistance.Moreover, greater circulating
very-long-chain SFA have been associated with lower CVD
risk(20). Although the primary source of TFA in the US diet is proc-
essed foods, they naturally occur in ruminant animal meats and
milks(21). In one meta-analysis, trans-palmitoleic acid, also
known as trans-hexadecenoic acid, consumption and circulat-
ing concentrationwere inversely associatedwith type 2 diabetes,
whereas industrial TFA elevated the risk for CHD and all-cause
mortality(22). MUFA and PUFA are recommended as replace-
ments for SFA and TFA to improve cardiovascular health(8).
MUFA can be derived from a variety of plant and animal food
sources. Epidemiological evidence suggests that plant-based
MUFA consumption benefits cardiovascular risk to a greater
extent than animal-based MUFA(23,24), although investigations
with cognitive outcomes are not available. Very-long-chain
n-3 PUFA (e.g. DHA and EPA) consumption improves inflamma-
tory profiles(25) and reduces cognitive decline in elderly individ-
uals(26). The endogenous elongation of the plant-based n-3
(α-linolenic acid (ALA)) and n-6 PUFA (linoleic acid) to their
longer-chain products, EPA/DHA and arachidonic acid
(ARA), respectively, is dependent upon the same enzymes(27).
Considering that n-3 metabolism is slowed in the presence of
greater n-6 PUFA consumption(28), measuring the net impact
of dietary n-3 and n-6 intakes have on cognitive function is
essential to inform dietary fat recommendations for reduction
in cognitive decline. Collectively, these data suggest that indi-
vidual and subsets of fatty acids may differentially affect

cardiometabolic pathways; however, the importance of these
fatty acids to cognitive function is unknown.

Given the potentially unique effects of fatty acid subtypes and
individual species on risk factors for cognitive decline, a more
nuanced examination of dietary fat intake in relation to cognitive
function is needed irrespective of the dietary fat class. To
improve our understanding of the role of dietary fat intake
and cognitive function, the overall aim of this study was to mea-
sure the associations of dietary fatty acid (DFA) patterns,
informed by individual fatty acid species, with cognitive function
in a large cohort of US Hispanic/Latino adults. We hypothesised
that DFA patterns high in short to medium and very-long-chain
SFA, plant-basedMUFA and very-long-chainn-3 PUFAwould be
associated with greater global cognitive function, and, con-
versely, that DFA patterns characterised by industrially produced
TFA and long-chain SFA would be associated with lower global
cognitive function.

Methods

Participants

We examined data from the Hispanic Community Health Study/
Study of Latinos (HCHS/SOL) (n 16 415), a population-based US
cohort that aims to identify risk factors associated with various
health conditions and prevalence among Hispanic/Latinos 18–
74 years of age(29). Participants from diverse Hispanic/Latino
backgrounds (Mexican, Cuban, Puerto Rican, Dominican and
Central/South American) were recruited from four field sites
(Bronx, NY, Chicago, IL, Miami, FL, and San Diego, CA)(30).
Target areas surrounding the site locations were determined
via census blocks sampled from strata defined by the cross-clas-
sification of (i) high and low Hispanic/Latino concentration and
(ii) high and loweducational attainment from the 2000US decen-
nial census data. Baseline examinations (2008–2011) were con-
ducted in the participant’s preferred language (80 % in Spanish).

All participants provided informed consent which was wit-
nessed and formally recorded. This studywas conducted accord-
ing to the guidelines laid down in the Declaration of Helsinki,
and all HCHS/SOL study procedures were approved by the
Institutional Review Boards at each study site.

Assessment of dietary intake

Estimated intake from foods was measured using two
bilingual-interviewer administered 24-h dietary recalls according
to the multiple-pass method established by the Nutrition
Coordinating Center, University of Minnesota(31). An initial recall
was administered in person during the baseline examination,
and the second about 5–30 d later by telephone(32). Nutrients
were analysed using the Nutrition Data System (NDS-R) for
Research version 11 software(31). As previously described(32,33),
nutrient intake was estimated by the National Cancer Institute
method(34), with data from individuals with one or two valid
24-h recalls. The National Cancer Institute method includes a
weighting factor to account for the sampling probabilities. A
one-part model was fit with the following covariates: age, sex,
field site, Hispanic/Latino background (Central American,
Cuban, Dominican, Mexican, Puerto Rican, South American
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and more than one/other), first or second 24-h recall, recall day
of the week and self-reported intake being greater, same or less
than usual.

Total animal- and plant-based MUFA consumption was
derived using methods similar to others(35). Plant-based MUFA
included those from fruit, vegetables and grains products while
animal-based MUFA included meats, animal fats (e.g. lard) and
dairy products. For mixed foods/dishes with both animal- and
plant-based components (e.g. desserts, soups), food labels from
manufactures or recipes were used to identify plant and animal
ingredients. Total animal- and plant-based MUFAwas calculated
by summing the gram intake for each food/dish reported.

Dietary fatty acid patterns

Consistent with methods used previously(36,37), DFA patterns
were identified using principal component analysis with varimax
rotation (proc factor in SAS). Principal component analysis is a
statistical method widely employed in nutritional epidemiology
to identify latent underlying diet and nutrient patterns from a set
of foods and nutrients(38,39). Input variables were expressed as a
proportion of total energy and included twenty-six individual
fatty acids, as well as total animal and plant based MUFA
(Table 1). To decide on the number of DFA patterns (factors)

to retain, we initially selected three to eight factor solutions.
The choice to use a four-factor solution was based on the scree
plot, eigenvalues and interpretability of identified factors. For
each of these four DFA patterns, a factor score was calculated
by summing the fatty acid inputs weighted by loadings of each
fatty acid input.

Neurocognitive testing

At baseline, neurocognitive testing was conducted with partici-
pants ≥45 years, as previously described(40). The battery of tests
included the Spanish English Verbal Learning Test (B-SEVLT) to
evaluate episodic memory, the Word Fluency Test (WF) to
evaluate executive function and the Digit Symbol Substitution
test (DSS) to evaluate psychomotor speed. Tests were conducted
by trained examiners and in the language preferred by the par-
ticipant. The B-SEVLT asked participants to reiterate a list of fif-
teen words that were read to them over three trials. Two scores
were derived, including: (1) the sum total of correctly learned
words (B-SEVLT-Sum) and (2) the number of correctly recalled
words after an interference trial (B-SVELT-Recall). For the WF,
participants were asked to list as many words as they could that
began with the letter A or F in 60 s. The DSS test required par-
ticipants to decipher a code by translating numbers to symbols

Table 1. Factor loadings of dietary fatty acid patterns†
(Mean values and standard deviations)

Fatty acid

g or mg‡ % of energy Dietary fatty acid pattern

Mean SD Mean SD Factor 1 Factor 2 Factor 3 Factor 4

SFA
Butyric (4:0), mg/d 428 148 0·22 0·067 0·23 0·89* 0·08 –0·07
Caproic (6:0), mg/d 229 86 0·12 0·039 0·16 0·92* 0·04 –0·06
Caprylic (8:0), mg/d 211 80 0·11 0·036 0·11 0·95* 0·04 –0·03
Capric (10:0), mg/d 358 119 0·18 0·051 0·24 0·96* 0·04 –0·05
Lauric (12:0), mg/d 640 268 0·32 0·12 0·16 0·80* –0·02 –0·01
Myristic (14:0), g/d 1·73 0·55 0·87 0·2 0·44* 0·87* 0 –0·06
Palmitic (16:0), g/d 11·4 3·4 5·65 0·7 0·83* 0·36* –0·06 0·22
Margaric (17:0), mg/d 69·4 21·2 0·035 0·008 0·43* 0·32 0·19 0·19
Stearic (18:0), g/d 4·99 1·56 2·48 0·37 0·85* 0·36* –0·09 0·14
Arachidic (20:0), mg/d 103 31 0·051 0·009 0·05 0·03 0·08 0·89*
Behenic (22:0), mg/d 57·4 23·2 0·029 0·008 0·03 0·09 0·04 0·80*
MUFA
Myristoleic (14:1), mg/d 83·3 33·2 0·042 0·014 0·48* 0·12 –0·02 0·02
Palmitoleic (16:1), g/d 1·08 0·33 0·54 0·084 0·83* –0·05 0·24 0·07
Oleic (18:1), g/d 21·9 6·8 10·8 1·41 0·63* –0·03 –0·08 0·62*
Gadoleic (20:1), mg/d 178 55 0·09 0·016 0·39* –0·19 0·43* 0·51*
Erucic (22:1), mg/d 11·3 4·5 0·006 0·002 0·17 0·04 0·71* 0·07
Plant MUFA, g/d 10·9 3·5 5·41 1·03 0·02 –0·13 0·01 0·76*
Animal MUFA, g/d 12·6 3·9 6·29 1·06 0·88* 0·17 0·11 0·05
PUFA
Linoleic (18:2), g/d 12·1 3·9 0·65 0·12 0·18 –0·16 0·03 0·71*
Linolenic (18:3), g/d 1·31 0·44 0·014 0·007 0·10 0·05 0·03 0·71*
Parinaric (18:4), mg/d 1·3 0·29 0·013 0·006 –0·09 0·22 0·75* 0·09
Arachidonic (20:4), mg/d 140 39 0·039 0·015 0·28 –0·17 0·75* 0·04
EPA (20:5), mg/d 26·9 13·2 6·02 0·93 –0·03 0·06 0·86* 0·01
Docosapentaenoic (22:5), mg/d 24·1 9·7 0·0007 0·0002 –0·14 0·01 0·88* –0·01
DHA (22:6), mg/d 76 28·8 0·07 0·016 –0·03 0·01 0·96* 0
Trans fatty acids
Trans-hexadecenoic (16:1), mg/d 32·9 12·5 0·016 0·004 0·67* 0·07 –0·01 0·07
Elaidic (18:1), g/d 1·98 0·71 0·99 0·25 0·63* 0·18 0·04 –0·01
Linolelaidic (18:2), mg/d 330 111 0·16 0·034 0·59* 0·28 –0·07 0·15

* Factor loadings greater than 0·35.
† Dietary fatty acid patterns were derived using principal component analysis; Variation explained by DFA patterns 1, 2, 3 and 4 was 8·1, 4·8, 4·1 and 2·3%, respectively.
‡ Values expressed as grams or mg per 2000 kcal.
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from a key on the test form within a 90 s window. Our primary
outcome was global cognitive function, which was calculated as
the average score of each of the four cognitive test scores, follow-
ing a z-score transformation(41). The secondary outcomes were
individual scores on the B-SEVLT-Sum, B-SEVLT-Recall, WF
and DSS.

Covariates

Socio-demographic covariates reported at baseline included sex
(male/female), age (years), education (< high school, high
school or equivalent, > high school), household income
(< $30 000 or ≥ $30 000), field centre (Miami, Bronx, San
Diego, Chicago), Hispanic/Latino background (Central
American, Cuban, Dominican, Mexican, Puerto Rican, South
American or more than one/other) and smoking status (current
smoker v. not). Clinical covariates included: type 2 diabetes (yes/
no), CVD (yes/no), hypertension (yes/no), depressive symp-
toms score and physical activity level (MET-min/d), ascertained
using the WHO Global Physical Activity Questionnaire(42).
Participants were categorised as having type 2 diabetes if they
(1) self-reported, (2) were using anti-hyperglycaemic medica-
tion, (3) had fasting blood glucose> 126 mg/dl or≥ 200 mg/dl
on an oral glucose tolerance test or (4) HbA1c≥ 6·5 %. CVD
was determined based on self-reported history of myocardial
infarction, transient ischaemic attack or stroke. Hypertension
was defined by (1) self-report, (2) anti-hypertension medication
use or (3) systolic blood pressure> 140mmHg or diastolic blood
pressure>90mmHg. Depressive symptomswere assessed using
the 10-item Center for Epidemiologic Studies Depression
Scale(43).

We also considered dietary factors that may confound
associations between fat intakes and cognitive function,
including added sugar(44), fruits and vegetables(45), and alco-
hol(46). Animal products, including red meat, are sources of
saturated fat, but are also rich in certain B vitamins, including
B6, B12 and niacin. Intake of these nutrients has been associ-
ated with better cognitive functioning(47–52). Therefore, mod-
els were also adjusted for these micronutrients. Dietary factors
were expressed relative to total energy intake, either as a per-
centage of total energy or as servings or g/8368 kJ (2000 kcal).

Statistical analyses

Of the 16 415 participants, 9714 individuals were eligible to par-
ticipate in neurocognitive testing (≥ 45 years). From these, 9170
had complete neurocognitive data available, 9553 had one
or two valid 24-h dietary recalls and 9141 had complete cova-
riate information. The final analytic sample size was 8942.
Analyses were conducted using SAS version 9.4 (SAS Institute).
Significance was set at P< 0·05 for all analyses. Survey linear
regression was utilised for descriptive purposes and primary
and secondary analyses, as this process accounts for the non-
random sampling methods conducted in HCHS/SOL, and the
oversampling of individuals older than 45 years(29). Differences
in baseline characteristics by quintile of DFA pattern scores were
adjusted for age and sex, as appropriate.

Spearman correlations were used to identify food categories
most closely associated with each DFA pattern. Correlations
were adjusted for age, sex and total energy intake. Food catego-
ries were informed by the Nutrition Coordinating Center pre-
defined food groupings available in the NDS-R software
package. The 135 food groups were subsequently collapsed
to thirty-two broader food categories. The consumption of
each food category was estimated using the mean value from
two valid 24-h recalls. Correlations were only conducted for
individuals with two valid 24-h recalls (n 8435).

In primary analyses, survey linear regression was used to
examine the linear association between each continuous DFA
pattern and the global cognitive function continuous score. As
a complementary analysis, we also examined DFA pattern
scores expressed in quintiles. Tukey’s post hoc tests were used
to conduct pairwise DFA pattern comparisons across quintiles.
Model covariates included age, sex, total energy intake, physi-
cal activity, education, income, Hispanic/Latino background,
field site, Center for Epidemiologic Studies Depression Scale
score, smoking status, diabetes, CVD and hypertension, as
well as intakes of added sugar, alcohol, vitamin B6, vitamin
B12, niacin, fruit and vegetables. In secondary analyses, we
examined relationships between continuous DFA patterns
and the continuous score of each neurocognitive test. For
all models, total energy was adjusted for using the nutrient
density approach.

Several additional analyses were considered. We examined
the associations between fatty acid subgroups and global cogni-
tive function using survey linear regression. Fatty acids were
grouped as follows: short- and medium-chain SFA (butyric, cap-
roic, caprylic, capric and lauric acids), long-chain SFA (myristic,
palmitic, margaric and stearic acids), very-long-chain SFA
(arachidic and behenic acids), plant-based MUFA, animal-based
MUFA, n-6 PUFA (linoleic, parinaric and arachidonic), very-
long-chain n-3 PUFA (EPA, DPA and DHA) and linolenic acid
(LA). Due to limitations of the dietary analysis software version,
LA could not be distinguished between α-linolenic and γ-lino-
lenic isomers, which are n-3 and n-6 class fatty acids, respec-
tively. The nutrient density approach was used to model the
associations with the proportions of energy from fatty acid
subgroups as independent variables modelled simultaneously
along with total energy and the proportions of energy from
protein and alcohol. Regression coefficients represent the pre-
dicted change in global cognitive function (z-score) when the
fatty acid subgroup increases by 1 % of energy at the expense
of an equal amount of energy from carbohydrates. Models
were adjusted for age, sex, total energy intake, physical activ-
ity, education, Hispanic/Latino background, field site, Center
for Epidemiologic Studies Depression Scale score, smoking
status, diabetes, CVD, hypertension and dietary B6, B12, nia-
cin, fruits and vegetables.

CVD predicts the onset of dementia(53,54). Due to concerns
that individuals with CVD may have altered dietary fat intake
as part of disease management, we also conducted sensitivity
analyses, where models were repeated excluding individuals
with prevalent CVD (n 549). Further, as greater educational
attainmentmay lower the risk of dementia(55), we also conducted
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sensitivity analyses excluding individuals attaining less than a
high school education (n 3738).

Results

Dietary fatty acid patterns

Four DFA patterns were identified using principal component
analysis (Table 1). Factor 1 was characterised by long-chain
(13–20 C) SFA and MUFA, as well as animal-based MUFA and
TFA. Short- (<6 C) and medium-chain SFA (6–12 C) loaded onto
factor 2. The animal-based n-3 PUFA (EPA, DPA and DHA) and
the n-6 PUFA ARA loaded onto factor 3. Factor 4 was distin-
guished by long-chain plant-based MUFA and PUFA (linoleic
and LA). Factors 1 through 4 explained 8·1, 4·8, 4·1 and 2·3 %
of the variability in fatty acid intake, respectively.

Factor 1 was most strongly and positively correlated with the
consumption of red, processed, and organ meats, and eggs, and
negatively correlatedwith pasta and rice dishes, fruit, vegetables,
and cold and cooked cereals (online Supplementary Table S1).
Factor 2 was positively correlated with milk, cheese and related
products, as well as animal fats (e.g. butter) and other grain-
based recipes (e.g. tacos), and negatively with red, processed,
and organ meats and meat, poultry, and fish recipes. Factor 3
was most strongly associated with seafood, poultry and egg con-
sumption. Factor 4 was positively correlated with the consump-
tion of plant-based fats and oils specifically margarine and
shortening, oil, salad dressing, and nuts and nut butters and neg-
atively correlated with breads and related products.

Descriptive characteristics by dietary fatty acid patterns

Age was positively associated with factors 2 and 4, but inversely
with factor 1 (Table 2). Participants with high DFA intake most
reflective of factor 1 tended to be women, whereas men had
DFA patterns more consistent with factors 2 and 3. Total energy
intake was inversely associated with factors 1–3 (Table 2).
Hispanic/Latino background and field site location, and intakes
of fruit and vegetables, added sugar, alcohol and B vitamins (B6,
B12 and niacin) varied significantly across DFA patterns.

Dietary fatty acid patterns and cognitive function

The distribution of the cognitive scores is reported in online
Supplementary Table S2. Factor 2 was linearly and positively
associated with the global cognitive function score (P= 0·002)
and there was a trend towards a positive association with factor
4 (P= 0·053) (Table 3). However, significant associations were
not observed for factors 1 or 3. In complementary analyses,
global cognitive function scores were significantly higher among
individuals in factor 2 quintile 5, compared with quintiles 1 and 2
(Table 3, PF-test = 0·008). Therewas a suggestion of differences in
global cognitive function score between factor 3 quintiles 1 and 2
(PF-test = 0·04; P Q1 v. Q2= 0·08). Conversely, the global cogni-
tive function score did not vary significantly by factor 1 or factor 4
score quintile. In secondary analyses, we evaluated associations
between theDFA patterns and individual cognitive function tests
(Table 4). Factor 2was associatedwith greater scores on theDSS,
B-SEVLT-Sum and B-SEVLT-Recall (P= 0·03–0·007) and

approached significance with WF (P= 0·06). Both factors 1
and 4 were positively and significantly associated with the
DSS test, but not with other tests. Null associations were
observed with factor 3.

Additional analyses

The exclusion of individuals with CVD did not change the
observed associations between the DFA patterns and global cog-
nitive function (online Supplementary Table S3). In general, the
result with global cognitive function remained similar after
excluding individuals with less than a high school education,
although we observed a significant and positive association
between factor 4 and global cognitive function (online
Supplementary Table S4). Factor 2 remained significantly and
positively associated with DSS and B-SEVLT-Sum neurocogni-
tive tests in sensitivity analyses excluding individuals with
CVD (online Supplementary Table S5) or less than a high school
education (online Supplementary Table S6). In contrast, effect
estimates strengthened between factor 2 and WF, but associa-
tions with B-SEVLT-Recall were not statistically significant (on-
line Supplementary Tables S5 and S6).

Global cognitive function was regressed on to fatty acid sub-
groups: short- and medium-chain SFA, long-chain SFA, very-
long-chain SFA, plant-based MUFA, animal-based MUFA, LA,
n-3 PUFA, n-6 PUFA, trans-hexadecenoic acid (ruminant TFA)
and industrial TFA (online Supplementary Table S7). Using sur-
vey linear regression, most fatty acid subgroups were not signifi-
cantly associated with global cognitive function. However, we
observed that the predicted change in global cognitive score
was 0·13 (SD 0·06) units for a 1 % of energy increase in short-
and medium-chain SFA consumption in exchange for an equiv-
alent amount of energy from carbohydrates (P= 0·04, online
Supplementary Table S7).

Considering the observed significant and positive associa-
tions of factor 2 (short- and medium-chain length SFA) with
global cognitive function and multiple individual neurocogni-
tive tests examined, we conducted food rankings (online
Supplementary Table S8) to identify foods contributing to
food categories that were most correlated with factor 2 (online
Supplementary Table S1). Both reduced and regular fat milk,
as well as regular fat cheese, ice cream and yogurt were the
main contributors to the ‘Milk, cheese, and related products’
food category. Butter was the main contributor to animal
fat. Lastly, masa-based mixed dishes (e.g. enchiladas and tam-
ales); pizzas/calzones; quesadillas; burritos; and dumplings,
turnovers and fritters were the main contributors to the
‘Miscellaneous Grain Recipes without Meat, Poultry, and
Fish’ food category.

Discussion

Using data fromHCHS/SOL, we identified four DFA patterns that
varied in their associations with cognitive function. Most consis-
tently, the DFA pattern distinguished by greater short- to
medium-chain SFA (factor 2) was associated with greater global
cognitive function, as well as better scores on each neurocogni-
tive test. The DFA pattern consistent with the consumption of
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Table 2. Age and sex adjusted characteristics by dietary fatty acid pattern score (quintile) (n 8942)†
(Mean values and standard deviations)

Factor 1 (quintile) Factor 2 (quintile) Factor 3 (quintile) Factor 4 (quintile)

1 3 5 1 3 5 1 3 5 1 3 5
n 1788 n 1788 n 1788 n 1788 n 1788 n 1788 n 1788 n 1788 n 1788 n 1788 n 1788 n 1788

Age, years % % % % % % % % % % % %
Mean 57·9 56·2 54·5 55 56·3 57·4 55·7 56 56·6 55·1 56·2 56·9
SE 0·35 0·32 0·27** 0·29 0·30 0·37** 0·32 0·32 0·32 0·29 0·32 0·30*

Female, % 32·2 43·7 58·5** 68·3 49 20·0** 53 44 42·0** 48·9 43·6 41·7
Hispanic/Latino Background, %

Central American 8 6·6 4·7** 11·6 5·8 3·4** 5·1 6·4 5·9** 7·6 7·2 4·6**
Cuban 23·3 34·8 18·9 32·6 27 24 56·1 22·7 5 5·5 19·2 55·1
Dominican 22·8 5·2 2·1 9·6 9·5 5·7 0·7 4·8 24·9 14·1 8·8 3·6
Mexican 22·8 29·1 43·5 28·3 34·6 30·2 22·2 38·2 31·8 39 36·2 20·3
Puerto Rican 13·1 16·3 23·2 8·4 14·9 30·7 12·4 19·9 20·7 22·7 19·2 10·3
South American 8·4 5·9 3·3 5·7 6·4 4·7 1·8 4·8 9·6 7·1 6·8 3·9
> One/Other 1·7 2·2 4·3 3·8 1·8 1·4 1·7 3·2 2 4·1 2·6 2·2

Study Site, %
Bronx 40·1 19·6 19·2** 17·3 25·5 36·4* 7·6 20 52·0** 47·6 25·3 7·9**
Chicago 11·7 13·1 14·1 20·3 12·9 5·4 15·2 14·4 6·6 15·9 14·9 7
Miami 34·6 45·1 26·3 44·6 35·9 30·1 65·5 33·9 11·2 10·3 30·3 66·4
San Diego 13·6 22·2 40·4 17·8 25·8 28·1 11·7 31·7 30·2 26·2 29·5 18·7

Education, %
< High school 40·8 35·5 37·9 39·5 39·8 38·4 34·8 36 44·3* 44·2 37·4 30·7**
High school 20·5 24·4 20 22·8 20·2 20·8 21·7 24·5 20·4 22·9 20 23·6
> High school 38·7 40 42·1 37·7 40 40·9 43·5 39·5 35·2 32·9 42·7 45·7

Household income > $30 000, % 27·2 29·4 34·8* 28·2 31·3 27·1 25·6 33·8 29·6* 30·6 30·5 28·1
Diabetes, % 26·3 23·7 25·1 26 22·9 24·8 28·1 26 20·9* 24·9 26·4 26·3
CVD, % 6·6 6·2 7·3 8·2 8·7 5·3 7·9 7·1 7·8 6·7 7·9 7·7
Hypertension, % 43·1 43·6 44·6* 38·8 43·3 47 42·3 41·9 44·8 39·1 42·5 47·4

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

CES-D score 7·03 0·24 7·28 0·22 7·49 0·22 7·18 0·24 7·28 0·21 7·91 0·33 7·62 0·23 7·21 0·22 7·33 0·3 7·52 0·21 7·23 0·31 7·08 0·22
Physical activity, MET-min/d 597 34 529 31 515 30 603 36 510 29 531 30 533 32 555 37 568 28 643 37 510 26 483 25*
Current smoker
% 15·5 21·1 23·2 25·7 17·6 18·6 28·3 18·9 12·2** 21 18·3 22·1
Diet‡
Total energy, kcal/d 1941 19·6 1956 14·7 1787 14·9** 1960 17·4 1941 17·0 1811 12·7** 2216 12·0 1913 12·9 1575 11·5** 1909 18·2 1888 15·7 1922 14·1
Fat, % of energy 27·7 0·11 30·2 0·08 32·1 0·07** 29·6 0·11 29·9 0·09 30·8 0·10** 30·9 0·08 30·3 0·07 29·1 0·13** 28·4 0·09 29·8 0·09 31·8 0·07**

Saturated 8·62 0·04 10·2 0·04 11·7 0·06** 9·11 0·04 10·1 0·04 11·6 0·05** 10·2 0·05 10·3 0·05 10·3 0·07 9·87 0·06 10·2 0·06 10·4 0·05**
Monounsaturated 10·2 0·06 11·6 0·05 13·1 0·05** 11·7 0·07 11·6 0·05 11·7 0·06* 11·7 0·06 11·7 0·06 11·7 0·08 10·4 0·05 11·5 0·04 12·9 0·05**
Polyunsaturated 6·53 0·05 6·85 0·03 7·0 0·03** 6·97 0·05 6·77 0·05 6·63 0·03** 6·63 0·04 6·82 0·04 7·09 0·05** 5·76 0·021= 6·76 0·03 7·82 0·03**
Trans fat 0·913 0·008 1·15 0·009 1·43 0·012** 1·06 0·011 1·16 0·012 1·28 0·012** 1·11 0·013 1·2 0·012 1·21 0·014** 1·14 0·014 1·19 0·012 1·12 0·012**

Vegetables, s/d 2·21 0·03 2·25 0·03 2·33 0·03* 2·34 0·03 2·26 0·02 2·14 0·03** 2·05 0·02 2·23 0·03 2·53 0·04** 2·02 0·03 2·27 0·04 2·51 0·03**
Fruit, servings/d 1·72 0·04 1·25 0·03 1·27 0·03** 1·41 0·03 1·42 0·04 1·24 0·03** 1·05 0·03 1·31 0·03 1·79 0·04** 1·61 0·03 1·39 0·03 1·14 0·03**
Added sugar, % of energy 13 0·18 12·8 0·14 12·4 0·17* 11·8 0·16 13 0·14 13·7 0·18** 12·8 0·16 13·1 0·16 12·1 0·16* 14 0·21 12·8 0·15 11·2 0·09**
Alcohol, g/d 0·275 0·02 0·271 0·01 0·25 0·01 0·312 0·02 0·258 0·01 0·233 0·01** 0·264 0·02 0·261 0·01 0·267 0·01 0·349 0·02 0·252 0·01 0·215 0·01**
Vitamin B6, mg/d 2·15 0·02 2·02 0·01 2·06 0·02** 2·12 0·02 2·07 0·01 1·98 0·01** 1·87 0·01 2·03 0·01 2·34 0·02** 2·07 0·02 2·09 0·01 2·05 0·01*
Vitamin B12, mg/d 4·69 0·06 4·85 0·05 5·48 0·07** 4·49 0·06 4·99 0·05 5·41 0·06** 4·51 0·05 4·98 0·07 5·68 0·07** 4·99 0·08 5·15 0·07 4·88 0·05*
Niacin, mg/d 23·8 0·13 23·7 0·12 24·5 0·16** 24·5 0·13 23·8 0·12 23·5 0·14** 22·1 0·10 23·6 0·11 26·7 0·16** 23·2 0·17 24 0·13 24·6 0·11**

* PF-test < 0·05 and
** PF-test < 0·0001 indicate significant differences across dietary fatty acid categories (factor score quintile).
† Values are age and sex-adjusted means with their standard error and proportions estimated using survey procedures. Survey linear and logistic regression were used to compare means and proportions between factor score categories
(quintiles).

‡ Dietary intake variables are expressed per 2000 kcal/d, unless otherwise indicated.
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plant-based fatty acids (factor 4) tended to be associated with
better global cognitive function, and significantly so with the
DSS test. There was a lack of evidence for the very-long-chain
n-3 DFA pattern (factor 3) or the DFA pattern characterised by
greater long-chain SFA, animal-based MUFA and TFA (factor
1) in relation to global cognitive function, although the latter
was positively associated with the DSS test.

Observational studies examining associations between total
SFA intake and dementia, mild cognitive impairment and cogni-
tive decline have reported null and adverse associations(13–15).
This inconclusive evidence could be because SFA chain lengths
may differentially impact cognitive function and metabolic
risk factors that contribute to cognitive decline (e.g. inflamma-
tion and insulin resistance). We observed that the short- to
medium-chain SFA pattern was associated with better scores
on all cognitive measures examined. In animal models, the
short chain SFA, butyric acid, has been shown to improve
learning and memory performance, as well as restore cognitive
function post neurodegeneration(56), although human trials are
lacking. Conversely, medium-chain SFA supplementation has
been shown to benefit cognitive performance in individuals with
mild cognitive impairment or Alzheimer’s disease(57). Murine
studies demonstrated that short- and medium-chain SFA exhibit
insulin sensitising(58,59) and anti-inflammatory properties(58,60).
This is supported by data from a large prospective cohort study,
where intake of these SFA was associated with lower risk of type
2 diabetes(17). The anti-inflammatory and insulin sensitising
effects of SCFA may be through activation of G-protein coupled
receptors and inhibition of histone deacetylase(61,62).

It is also thought that medium-chain SFA may serve as an
alternative fuel source in the impaired glucose metabolism(63)

observed in mild cognitive impairment and dementia(64,65).
Although the brain primarily uses glucose for energy metabo-
lism, it has the capacity to utilise ketone bodies. Medium-chain
SFA are unique compared with longer chain fatty acids in that
they bypass the general circulation post-absorption and are
directed to the liver where ketogenesis occurs. Indeed, exper-
imental studies demonstrate that the consumption of medium-
chain SFA increases circulating ketone bodies as compared
with longer chain fatty acids(57) and up-regulates brain ketone
metabolism(66). In the current study, we observed that the
short- andmedium-chain SFA pattern was distinctly correlated
with milk and milk product consumption. Systematic reviews
of primarily observational studies suggest that the impact of
dairy consumption on cognitive function is inconclusive,
and that randomised controlled trials are needed to clarify
these associations(67,68).

We observed that a DFA pattern correlated with very-long-
chain SFA (arachidic and behenic acid) and plant-based
MUFA and PUFA (linolenic and linoleic acids), tended to be asso-
ciatedwith better global cognitive function score andwas signifi-
cantly and positively associated with processing speed (DSS
score). Greater adherence to this DFA pattern correlated with
intakes of vegetable fats and oils and nuts and nut butters.
There is a lack of evidence examining very-long-chain SFA
intake with cognitive function. However, these fatty acids may
positively impact cognitive performance through improvement
in cardiometabolic risk profiles. Greater intake or circulatingT
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concentrations of very-long-chain SFA have been related to
lower risk of the metabolic syndrome(69), type 2 diabetes(18,19)

and CVD(20). We know of no previous epidemiological studies
that have examined plant-based MUFA in relation to cognitive
outcomes. Our results are consistent with findings from the
PREDIMED (Prevención con Dieta Mediterránea) trial con-
ducted among older Spaniards with high CVD risk. Compared
with the low-fat diet control arm, the Mediterranean diet with
olive oil or mixed nuts arms improved cognitive function after
4·1 years of follow-up(70). Olive oil is mainly composed of
MUFA, whereas nuts are a source of PUFA and very-long-chain
SFA.

Due to limitations of the nutrient database, we could not
examine undifferentiated LA, which is composed of the n-3
ALA and the n-6 γ-linolenic acid. A paucity of evidence is
available on the impacts of ALA, γ-linolenic acid and LA con-
sumption on cognitive function or dementia. Circulating ALA
concentration has been shown to be lower among individuals
with dementia(71) and, inversely, associated with incident
dementia(72). The nature of the relationship between LA con-
sumption and cognitive function is inconclusive. A recent study
among older Puerto Rican adults found that LA consumption and
circulating concentration were not associated with 2-year
change in cognitive function, as assessed using the Mini-
Mental-State Exam or an aggregate neurocognitive test score
indicative of executive function(73). Similarly, LA intake was
not related to cognitive decline in a study among older Dutch
men(74). In contrast, greater consumption of total n-6 FA, pri-
marily composed of LA (90 %), was cross-sectionally associated
with better score on the Audio Recorded Cognitive Screen test,
but not the Mini-Mental-State Exam(75) among Australian adults.
Theoretically, ALA may improve cognitive function through

reduction in CVD risk(76). Evidence from randomised controlled
trial supports that γ-linolenic acid and LA intake improves total
cholesterol(77), which is adversely related to dementia(78).

Inconsistent with our hypotheses, the DFA pattern character-
ised by greater consumption of long-chain SFA, animal-based
MUFA and TFA (factor 1)was not adversely related to global cog-
nitive function. Further, it was positively associated with the DSS
test to evaluate psychomotor speed. This DFA pattern was
positively correlated with red meat, processed and organ meat
consumption. Although we considered neuroprotective nutrients
found in red meat including B6, B12 and niacin, the association
with DSS still remained. Additional research is needed to replicate
this finding. In particular, longitudinally designed studies should
be implemented to overcome the limitations of the cross-sectional
analysis used in our study.

Our findings do not support our a priori hypothesis that an n-
3 DFA pattern (factor 3) would be beneficially associated with
cognitive function. Similarly, another cross-sectional study in
Australians reported a null association between total n-3 intake
and global cognitive function(75). In contrast, among Puerto
Rican adults, total n-3 fatty acid (EPA, DPA and DHA) consump-
tion and circulating concentrations were associated with better
executive function after 2 years of follow-up(73). This is consis-
tent with evidence from randomised controlled trial where n-3
supplementation reduced the rate of cognitive decline among
patients with mild to moderate cognitive impairment(26). One
possible explanation for the null association observed in our
study is that the impact of the very-long-chain n-3 PUFA may
have been offset by ARA intake, which also loaded onto factor
3. Circulating ARA has been adversely related to cognitive func-
tion in prospective studies(73,79). This n-6 fatty acid is a direct pre-
cursor to proinflammatory eicosanoids, whereas those from EPA

Table 4. Associations between dietary fatty acid patterns and individual neurocognitive tests (n 8942)
(β-coefficients and standard error of the mean)

Dietary fatty acid patterns* Neurocognitive test

Standardised Unstandardised

Pβ SE† β SE†

Factor 1 Word Fluency 0·027 0·016 0·19 0·18 0·11
Digit Symbol Substitution 0·040 0·013 0·54 0·17 0·003
B-SEVLT-Sum 0·009 0·020 0·051 0·11 0·65
B-SEVLT-Recall –0·005 0·016 –0·013 0·047 0·76

Factor 2 Word Fluency 0·031 0·016 0·23 0·11 0·057
Digit Symbol Substitution 0·042 0·015 0·56 0·20 0·007
B-SEVLT-Sum 0·040 0·019 0·23 0·11 0·03
B-SEVLT-Recall 0·036 0·017 0·11 0·050 0·04

Factor 3 Word Fluency –0·002 0·026 –0·013 0·18 0·94
Digit Symbol Substitution –0·019 0·018 –0·25 0·24 0·29
B-SEVLT-Sum –0·009 0·019 –0·050 0·11 0·63
B-SEVLT-Recall –0·018 0·020 –0·051 0·058 0·37

Factor 4 Word Fluency 0·018 0·015 0·13 0·11 0·23
Digit Symbol Substitution 0·052 0·013 0·70 0·18 0·0001
B-SEVLT-Sum 0·011 0·017 0·059 0·095 0·54
B-SEVLT-Recall 0·007 0·017 0·020 0·049 0·70

* Dietary fatty acid patterns were characterised by: long-chain (13–20 C) SFA andMUFA, as well as animal-basedMUFA and TFA (factor 1); short- (<6 C) andmedium-chain SFA (6–
12 C) (factor 2); animal-based n-3 PUFA (EPA, DPA and DHA), but also the n-6 PUFA arachidonic acid (factor 3); and long-chain plant-basedMUFA, as well as PUFA found in plant
food sources (linoleic and linolenic acid) (factor 4).

† Survey linear regression was used to examine associations with factor and neurocognitive test scores treated as continuous variables. Models are adjusted for age (years), sex (M/
F), energy intake (kcal/d), physical activity (MET-min/d), education (< high school, high school or equivalent,> high school), Hispanic/Latino background (Central American, Cuban,
Dominican, Mexican, Puerto Rican, South American and multiple/other/missing), field site (Bronx, Chicago, Miami, San Diego), CES-D score, type 2 diabetes (y/n), CVD (y/n),
current smoker (y/n), hypertension (y/n), household income (< $30 000 or not) and dietary intakes of fruits (servings/d/kcal), vegetables (servings/d/kcal), alcohol (servings/d/kcal),
added sugar (% of energy/d), B12 (mg/d/kcal), B6 (mg/d/kcal) and niacin (mg/d/kcal).
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and DHA are anti-inflammatory(27). Eicosanoid receptors dem-
onstrate a stronger affinity for ARA-derived eicosanoids, as com-
pared with those derived from EPA(27,80). Thus, higher ARA
consumption may have blunted the anti-inflammatory potential
of the very-long-chain n-3 PUFA.

Our study has several notable strengths. We used a novel
approach of constructing DFA patterns to assess associations
with cognitive function. This method allowed us to evaluate
the net impact of combinations of individual fatty acids on cog-
nitive function. The large sample size (n 8942) increased our
ability to detect associations. Further, we provide evidence for
Hispanic/Latino adults, an underrepresented population in cog-
nitive function research. Our research findings should be inter-
preted in consideration of some limitations. The cross-sectional
design prohibits any causal relationships. For example, reverse
causation may be at play if individuals with higher cognitive
function choose to consume fatty acids that are thought to be
healthy (e.g. n-3 fatty acid and plant-based MUFA)(81).
Another limitation of the dietary data is measurement error, as
the data are self-reported. The HCHS/SOL SOLNAS ancillary
study validated their intake measures by comparing with bio-
markers of energy, protein, Na and K using doubly labelled
water, urinary N, Na and K, and showed substantial under-
reporting of energy and protein that varied by BMI and
Hispanic/Latino background(82,83).

Among participants of the HCHS/SOL study, a DFA pattern
distinguished by greater intakes of short- and medium-chain
SFA was associated with better cognitive function using individ-
ual and aggregate measures from a battery of neurocognitive
tests. Our results also suggest that intake of plant-based MUFA
and PUFA and very-long-chain SFA may benefit global cognitive
function and processing speed. Although these results are cross-
sectional, they provide evidence that food sources of these fatty
acids, including dairy products, vegetable oils and nuts, as part of
an overall healthy dietary pattern, may benefit cognitive function
among Hispanic/Latino adults. Future research in similar and
additional cohorts should be conducted using prospective study
designs to replicate these novel findings.
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