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Quantum tomography

The authors are grateful to Richard Kueng for reviewing this chapter.

Rough overview (in words)

In quantum tomography, often also termed quantum state estimation, we are

given repeated copies of an unknown quantum state (or quantum channel)

and the goal is to obtain a full classical description of the quantum state (or

quantum channel) by extracting information by means of performing measure-

ments. Here, we focus on quantum state tomography, with multiple indepen-

dent and identical copies of an unknown quantum state ρ provided—that is

of fixed and of known dimension—and the task is to find an estimate of the

density matrix of the quantum state up to an approximation error in some dis-

tance measure (and up to some failure probability). We are then typically in-

terested in the optimal sample complexity in terms of the number of copies

n, the quantum state dimension d, the approximation error ε, and the overall

failure probability δ. Additionally, algorithmic complexity aspects of the used

schemes might be of importance as well.

Rough overview (in math)

Given (many copies of) an unknown quantum state ρ of known dimension d,

the goal is to give a description of ρ̃ with the statistical estimate ρ̃ ≈ε ρ, up

to some distance measure with corresponding approximation parameter ε ≥ 0.

This is achieved by extracting classical information by applying measurements

Mn(·) via ρ⊗n. To start with, one has to distinguish tomography schemes based

on different types of measurements used. This includes in particular:

(i) Independent and identical (IID) measurements, where the choice of mea-

surementMn =M⊗n is fixed and the same for each copy.
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(ii) Adaptive measurements, where the choice of measurement M2 on the

second copy can depend on the outcomes of measurement M1 on the

first copy, and so on.

(iii) Entangled measurements, where one measurementMk with 1 < k ≤ n

is performed on k copies at once.

Further, if one has some information about the type of quantum state provided,

then tomography schemes can become more efficient. This includes, for exam-

ple, pure state tomography, low-rank-k state tomography, matrix product state

tomography, or ground/thermal state tomography of Hamiltonians (some ref-

erences on tight schemes are given later on). For some schemes, one a priori

has certain information about the state in question and under this assumption

the scheme is then promised to work (e.g., low-rank tomography [462]). Other

schemes work generally, but are only a posteriori guaranteed to be more effi-

cient if the unknown state happens to be approximately of the type sought after

(e.g., matrix product state tomography [317]). Finally, for maximum likelihood

estimates or Bayesian statistical estimates and alike, priors could be added as

well.

Note that the best understood case of pure state tomography can also be

used for general quantum states, if one has access to the relevant purification.

Specifically for pure state tomography, one then also needs to specify in what

form access is given to the quantum state. Possible access models for pure state

tomography include:

• Via samples of computational basis measurements p(x) = ⟨x|ρ|x⟩ for esti-

mating the probabilities in the computational basis (not yet the pure state

amplitudes).

• Via copies of the state that can be processed before measurement.

• Via the state preparation unitary U |0n⟩⟨0n|U† = ρ (with ρ pure).

• Via the controlled version of aforementioned state preparation unitary U.

• Via aforementioned state preparation unitary U and its inverse U†.

Typically studied distance metrics to measure closeness of the statistical es-

timate to the true quantum state are the trace distance T (ρ, σ) = 1
2
tr
[|ρ − σ|],

the quantum fidelity F(ρ, σ) =
(
tr
[∣∣∣√ρ√σ

∣∣∣
])2

, and for pure quantum states

also the ℓ2-norm of the difference ∥ |ψ⟩ − |ϕ⟩ ∥ of the pure states |ψ⟩, |ϕ⟩ corre-

sponding (up to global phase) to ρ and σ, respectively.

Dominant resource cost (gates/qubits)

Besides some potential ancilla qubits (few for typical tomographic schemes),

the number of qubits is fixed by the dimension of the quantum state (of course,
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288 21. Quantum tomography

whenever entangled measurements are used, the corresponding number of

copies is needed). As such, the sample complexity is typically the relevant

figure of merit. In the following, the notation Θ(·) stands for simultaneous

upper O(·) and lower Ω(·) bounds on the asymptotic sample complexity, and

the variant Θ̃(·) denotes the same up to factors that scale polylogarithmically in

the relevant parameters. Tight sample and query complexity characterizations,

in terms of an approximation error ε ∈ [0, 1], then include the following

noteworthy results:

• Θ̃(dε−2) sample complexity for pure state tomography in ℓ2-norm up to

global phase [49] ([610] gave an algorithm with similar complexity, but re-

quiring a state preparation unitary). The main idea is to use computational

basis measurements to recover the absolute values of the amplitudes and

then create some interference pattern for learning the phases.

• Θ̃(dε−1) query complexity for pure state tomography in ℓ2-norm with ac-

cess to controlled state preparation unitary and its inverse [49], featuring a

quadratic speedup in 1/ε reminiscent of amplitude estimation. The achiev-

ability results are based on the subroutine of quantum gradient estimation

via an unbiased version of quantum phase estimation. Note that [267] used

an alternative simpler algorithm based on iterative refinement and ampli-

tude amplification that achieves the same query complexity but comes with

improved gate complexity.

• Θ(dk2ε−2) sample complexity for rank-k state tomography in trace distance

with IID measurements [656, 478, 471]. The achievability results are based

on low-rank matrix recovery techniques, where semidefinite programs have

to be solved for reconstructing the quantum state from the collected mea-

surement statistics. Note that the special case k = 1 corresponds to pure

state tomography as in the setting of the first bullet point.

• Θ̃(dkε−2) sample complexity for rank-k state tomography in trace distance

with entangled measurements [807, 478, 1075]. The achievability results are

based on representation-theoretic techniques around the Schur transform.

• Θ̃(dkε−1) query complexity for rank-k state tomography in trace distance

with access to controlled state preparation unitary of a purification and its

inverse [49], featuring a quadratic speedup in 1/ε reminiscent of amplitude

estimation.

For variations of the above, additional results in terms of lower and upper

bounds are known. The derivations of the sample complexity lower bounds

are often based on information-theoretic methods, exploiting the monotonic-

ity of quantum-entropy-based measures. For sample complexity upper bounds,

it is in practice additionally important that the algorithmic complexities of
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the underlying schemes become efficient (in particular for entangled measure-

ments performed on all n copies at once). Relevant metrics for the algorithmic

complexity include quantum gate depth and number of measurement outcomes

needed, as well as runtime and memory requirements of the classical postpro-

cessing stage. We refer to [723] for a recent discussion on these computational

aspects.

Caveats

As shown by the presented information-theoretic lower bounds, the sample

complexity for general quantum state tomography grows exponentially in the

number of qubits. As such, whenever quantum tomography is invoked as a

subroutine in quantum algorithms, one has to carefully analyze if this step does

not eliminate any claimed speedups of the quantum algorithm compared to

state-of-the-art classical methods. One also has the inverse polynomial scaling

in terms of the approximation parameter from the finite statistics, which is

often prohibitively expensive for certain applications.

Additionally, on top of sample complexity for tomography schemes, the ac-

companying gate complexity should be considered as well. We refer to [49] for

a discussion.

An alternative is to resort to only revealing partial classical information

about quantum states, which might still be informative for the (algorithmic)

task at hand. One such example with favorable scaling is shadow tomogra-

phy, where the task is to not estimate the density matrix itself, but (very)

many observables thereof. Shadow tomography—also known as quantum data

analysis—can achieve exponential sample complexity improvements in terms

of Hilbert space dimension compared to full state tomography and is guaran-

teed to yield exponential improvements in the number of target observables

(compared to directly measuring all of them sequentially). The strongest re-

sult of this kind [2, 5, 209] requires entangled measurements across many state

copies, as well as prohibitively large gate counts. More hardware-friendly pro-

tocols have been derived, known as classical shadow tomography [540, 823,

373]. In more detail, there exist algorithmically efficient and universal schemes

that can simultaneously ε-approximate M linear functions tr[Oiρ] of an un-

known quantum state ρ by only using O(log(M) ·maxi ∥Oi∥2sε−2) IID measure-

ments. Note the scaling with log(M) instead of the standard M scaling. The

shadow norm term ∥Oi∥2s scales in general as d, leading to the worst-case query

complexity O(d log(M)ε−2). However, for observables with bounded Hilbert–

Schmidt norm or for local observables, the overall dimension-free query com-

plexity O(log(M)ε−2) is achievable.
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290 21. Quantum tomography

Example use cases

Quantum tomographic or related data collection schemes are omnipresent in

quantum algorithms. Some applications include:

• Quantum linear system solvers that output the full classical solution vector,

where such solvers are, for example, employed for quantum interior point

methods or for solving differential equations.

• Classical data about quantum states for variational quantum algorithms.

• Characterizing the performance of physical devices.

• Probing entanglement dynamics throughout a quantum simulation.

• Characterizing quantum processes.

Further reading

• Short perspective article, entitled “Focus on quantum tomography” [87].

• Recent overview on query complexity aspects [49].

• Recent overview on computational complexity aspects [723].

• Shadow tomography of quantum states [2].

• Review article on classical shadows and randomized measurements [373].
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