
Combinatorics, Probability and Computing (2023), 32, pp. 900–911
doi:10.1017/S0963548323000238

ARTICLE

On the maximum number of edges in k-critical graphs
Cong Luo1, Jie Ma1 and Tianchi Yang2

1School of Mathematical Sciences, University of Science and Technology of China, Hefei, China and 2Department of
Mathematics, National University of Singapore, Singapore, Singapore
Corresponding author: Tianchi Yang; Email: tcyang@nus.edu.sg

(Received 5 January 2023; revised 20 June 2023; accepted 26 June 2023; first published online 24 July 2023)

Abstract
A graph is called k-critical if its chromatic number is k but every proper subgraph has chromatic number
less than k. An old and important problem in graph theory asks to determine the maximum number
of edges in an n-vertex k-critical graph. This is widely open for every integer k≥ 4. Using a structural
characterisation of Greenwell and Lovász and an extremal result of Simonovits, Stiebitz proved in 1987
that for k≥ 4 and sufficiently large n, this maximum number is less than the number of edges in the
n-vertex balanced complete (k− 2)-partite graph. In this paper, we obtain the first improvement in the
above result in the past 35 years. Our proofs combine arguments from extremal graph theory as well as
some structural analysis. A key lemma we use indicates a partial structure in dense k-critical graphs, which
may be of independent interest.

Keywords: critical graphs
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1. Introduction
All graphs we consider are finite and simple. A graph G is k-colorable if we can assign k colours to
its vertices such that no adjacent vertices receive the same colour. We say a graph G is k-chromatic
if it is k-colorable but not (k− 1)-colorable. A graph G is called k-critical if G is k-chromatic but
each of its proper subgraphs is (k− 1)-colorable. For k ∈ {1, 2} the only k-critical graph is Kk,
and the family of 3-critical graphs is precisely the family of odd cycles. In this paper, we consider
k-critical graphs for k≥ 4.

A central problem in graph theory asks to determine the maximum number of edges fk(n) in
an n-vertex k-critical graph (see [6]). Before we discuss the literature on fk(n), we point out a
relevant yet easy fact that the Turán graph Tk(n) (that is, the n-vertex balanced complete k-partite
graph) has the maximum number of edges among all n-vertex k-chromatic graphs. Dirac [2] gave
f6(n)≥ 1

4n
2 + n by considering the graphs obtained by joining two vertex-disjoint odd cycles with

the same number of vertices. Toft [12] proved that for every k≥ 4, there exists a positive constant
ck such that fk(n)≥ ckn2 holds for all integers n≥ k (except n= k+ 1). In the most basic and
interesting cases k= 4, 5, the constants are given by

c4 ≥ 1
16

= 0.0625 and c5 ≥ 4
31

≥ 0.129.
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In the general case when k≥ 6, explicit constructions in [12] show that there exist infinitely many
values of n such that

fk(n)≥
(
1
2

− 3
2k− δk

)
n2,

where δk = 0 if k≡ 0 (mod 3), δk = 8/7 if k≡ 1 (mod 3), and δk = 44/23 if k≡ 2 (mod 3). To
our best knowledge, no construction for giving better constants fk(n)/n2 has been found since.
It is also an open question if limn→∞ fk(n)

n2 exists for each k≥ 4. In 2013, Pegden [8] consid-
ered dense triangle-free k-critical graphs. He constructed infinitely many n-vertex triangle-free
4-critical graphs with at least

( 1
16 − o(1)

)
n2 edges, triangle-free 5-critical graphs with at least( 4

31 − o(1)
)
n2 edges, and triangle-free k-critical graphs with at least

( 1
4 − o(1)

)
n2 edges for every

k≥ 6. The last bound is asymptotically best possible by Turán’s theorem. He also showed the exis-
tence of dense k-critical graphs without any odd cycle of length at most � for any �, which is again
asymptotically tight for k≥ 6.

Turning to the upper bound of fk(n), since any n-vertex k-critical graph with n> k does not
containKk as a subgraph, by Turán’s theorem one can easily obtain that fk(n)< e(Tk−1(n)) for any
n> k≥ 4. Using a characterisation of Greenwell and Lovász [5] for subgraphs of k-critical graphs
and a classical theorem of Simonovits [10], Stiebitz [11] improved this trivial bound in 1987 by
showing that

fk(n)< e(Tk−2(n)) for sufficiently large integer n. (1)

It has been 35 years since then and as far as we are aware, this remains the best upper bound.
There is a natural relation between fk(n) and the problem of determining the maximum num-

ber of copies of Kk−1 in k-critical graphs. Abbott and Zhou [1] generalised an earlier result of
Stiebitz [11] on 4-critical graphs and showed that for each k≥ 4 every k-critical graph on n ver-
tices contains at most n copies ofKk−1. The bound was further improved in [7]. Recently, Gao and
Ma [4] proved a sharp result that for each n> k≥ 4, every k-critical graph on n vertices contains
at most n− k+ 3 copies of Kk−1. If we delete one edge for every Kk−1 in a k-critical graph on n
vertices, then this can result in a graph without containing Kk−1. Using Turán’s theorem and the
above result of [4], we can derive that

fk(n)≤ e(Tk−2(n))+ n− k+ 3 for any n> k≥ 4.

In this paper, we focus on the upper bound of fk(n). Our first result improves the long-standing
upper bound (1) of Stiebitz [11].

Theorem 1.1. For every integer k≥ 4 there exist constants nk and ck ≥ 1
36(k−1)2 such that if n≥ nk

then fk(n)≤ e(Tk−2(n))− ckn2.

Our second result considers 4-critical graphs. A better upper bound for f4(n) than Theorem 1.1
is obtained in the following.

Theorem 1.2. There exists a constant n4 such that if n≥ n4 then f4(n)< 0.164n2

The proofs of both theorems rely on arguments from extremal graph theory (such as the sta-
bility lemma of Füredi [3]) and a structural lemma (Lemma 2.1) given in the coming section.
Lemma 2.1 indicates a partial structure in dense critical graphs (under certain constraints), which
can be witnessed in many classical constructions of dense critical graphs (see the discussion at
the beginning of Section 2). For that, we would like to give a full construction for the well-known
Toft graph (see Figure 1 or [12]). The vertex set of the Toft graph is formed by 4 disjoint sets
A, B, C,D with the same odd size, where A and D are odd cycles, B and C are independent sets,
the edges between B and C form a complete bipartite graph, and both of the edges in (A, B) and in
(C,D) form perfect matchings. It is easy to check that the n-vertex Toft graph is 4-critical and has
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Figure 1. Toft graph: |A| = |B| = |C| = |D| = 5.

Figure 2. The red shading indicatesW ⊆ N(x1)∩ . . . ∩ N(xk−3), and the blue shading indicatesW ⊆ N(u). Note thatW′ andW
may intersect when |W| ≤ 2.

1
16n

2 + n edges. We remark that the Toft graph remains the best construction for dense 4-critical
graphs.

We use standard notation in graph theory. Let G denote the complement of the graph G. For
a vertex v in a graph G, let NG(v) denote the neighbourhood of v in G, and let dG(v) := |NG(v)|
denote the degree of v in G. When G is clear from the context, we often drop the subscript. Let
d(G) denote the average degree of the graphG. Also, for any S⊆V(G), letG[S] denote the induced
subgraph ofG on the vertex set S. For any disjoint setsA, B⊆V(G), letG[A, B] denote the induced
bipartite subgraph of G with bipartition (A, B).

The rest of the paper is organised as follows. In Section 2, we prove a lemma which is key for
the coming proofs. Then we prove Theorem 1.1 in Section 3 and Theorem 1.2 in Section 4.

2. Key lemma
In this section, we prove our key lemma, which roughly says that if a k-critical graph G contains
certain t copies of Kk−2 sharing k− 3 common vertices, then there exists an “induced” matching
of size t in G which are connected to these cliques (see Figure 2). This indicates a substructure
similar to the Toft graph (and many other examples of k-critical graphs). In particular, it reveals
that the structure of k-critical graphs cannot be close to the Turán graph Tk−2(n) and thus the
inequality (1) should not be tight.

Lemma 2.1. Let k≥ 4 and let G be a k-critical graph. Suppose that G
[{x1, x2, . . . , xk−3}

]
forms

a copy of Kk−3 and there exists a set W ⊆N(x1)∩ . . . ∩N(xk−3)∩N(u) for some vertex u /∈
{x1, x2, . . . , xk−3}. Then there exist a set W′ and a bijection ϕ :W →W′ such that N(ϕ(w))∩W =
{w} and N(w)∩W′ = {ϕ(w)} hold for each w ∈W.Moreover, if |W| ≥ 3, thenW is an independent
set in G, and W′ ∩W = ∅.
Proof. For each vertex w ∈W, by deleting the edge uw from the k-critical graph G, we can get a
(k− 1)-chromatic graphG′. We denote the colour classes ofG′ by C1, C2, . . . , Ck−1. It is easy to see
the vertices u and w are in the same colour class. Since G[{x1, x2, . . . , xk−3,w}] is a (k− 2)-clique,
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we can assume x1 ∈ C1, x2 ∈ C2,. . ., xk−3 ∈ Ck−3, and u,w ∈ Ck−2. The fact W ⊆N(x1)∩ . . . ∩
N(xk−3)∩N(u) tells us that the set W\{w} (if not empty) must be contained in Ck−1, and thus
W\{w} is an independent set in G. We claim N(w)∩ Ck−1 must contain a vertex, say ϕ(w). Since
otherwise C1, . . . , Ck−3, Ck−2 − {w}, Ck−1 ∪ {w} can be a (k− 1)-coloring of G, which contradicts
the fact that G is k-critical. Besides, {ϕ(w)} ∪ (W\{w})⊆ Ck−1 tells us that N(ϕ(w))∩W = {w}.
Now we defineW′ := {ϕ(w) :w ∈W}. As we have shown that N(ϕ(w))∩W = {w} holds for each
w ∈W, it is easy to see |W′| = |W|, ϕ :W →W′ is a bijection, and N(w)∩W′ = {ϕ(w)} holds for
each w ∈W.

Moreover, if |W| ≥ 3, thenW is an independent set in G (sinceW\{v} is an independent set in
G for each vertex v ∈W). By the fact that the edges betweenW′ andW precisely form a matching,
we can seeW′ ∩W = ∅ in this case. �

It would be very interesting to see if this lemma (or its proof) can be extended further.

3. The general case: k-critical
Providing a simple and new proof of the stability for the Turán number ex(n,Kr+1), Füredi [3]
showed that if an n-vertex graph G is Kr+1-free and has at least e(Tr(n))− t edges where 0≤ t <
e(Tr(n))< n2, then there exists a partition V1, . . . ,Vr of V(G) such that

∑r
i=1 e(G[Vi])≤ t. The

statement following Corollary 3 in [3] also suggests that the partition V1, . . . ,Vr is approximately
balanced. We summarise this observation in the following lemma.

Lemma 3.1 (Füredi [3]). Suppose that G is an n-vertex Kr+1-free graph with e(G)≥ e(Tr(n))− t
where 0≤ t < e(Tr(n))< n2. Then there exists a complete r-chromatic graph K := K(V1, . . . ,Vr)
with V(K)=V(G) such that

|E(K)\E(G)| ≤ 2t,

and
r∑

i=1

(
|Vi| − n

r

)2
< 4t + o(n2).

We are ready to use Lemmas 2.1 and 3.1 to prove Theorem 1.1.

Proof of Theorem 1.1. Fix k≥ 4 and letC = 1
36(k−1)2 . LetG be a k-critical graph on n vertices with

e(G)> e(Tk−2(n))− Cn2. In the rest of the proof, we will always assume that n is large enough,
and we denote V(G) by V for convenience. The result in [1] tells us the number of copies of Kk−1
in G is at most n. So by deleting at most n edges in G, we obtain a spanning subgraph G′ which is
Kk−1-free. Obviously we have e(G′)≥ e(G)− n> e(Tk−2(n))− (Cn2 + n).

With the application of Lemma 3.1, we get a partition V0,V1, . . . ,Vk−3 of V and a complete
(k− 2)-chromatic graph K := K(V0, . . . ,Vk−3) such that |E(K)\E(G′)| ≤ 2(Cn2 + n) and∣∣∣|Vi| − n

k− 2

∣∣∣<√
4Cn2 + o(n2)<

n
3(k− 1)

+ o(n) for each 0≤ i≤ k− 3.

Without loss of generality, we assume |V0| ≥ . . . ≥ |Vk−3|. Thus |V0| ≥ n/(k− 2), and |Vi| ≥
n

k−2 − n
3(k−1) − o(n) for each 0≤ i≤ k− 3. We call the edges in E(K)\E(G′) missing edges. And

the number of missing edges incident to the vertex v in K is called themissing degree of v. For each
0≤ i≤ k− 3, we define Bi to be the set of

⌈
n

3(k−1)

⌉
vertices in Vi satisfying that there exists some

mi such that the missing degree of any vertex in Bi is at least mi, and the missing degree of any
vertex in Ui := Vi − Bi is at mostmi. Note thatmi is unique, while Bi may be not. Since there are
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at most 2(Cn2 + n) missing edges in total, we have
∑k−3

i=0 mi|Bi| < 4(Cn2 + n), and thus we can
get

k−3∑
i=0

mi < 4(Cn2 + n)
/⌈

n
3(k− 1)

⌉
≤ n

3(k− 1)
+ 12(k− 1).

And we can check that for each 0≤ i≤ k− 3, we have

|Ui| = |Vi| − |Bi| > n
k− 2

− n
3(k− 1)

− n
3(k− 1)

− o(n)>
n

3(k− 2)
>

k−3∑
i=0

mi + 2. (2)

Fix an arbitrary vertex x0 ∈U0 and let Y := NG′(x0)\V0. It is clear that

|Y| ≥ n− |V0| −m0.

Next, we want to find a copy of Kk−3 in G′ on vertices x1, x2, . . . , xk−3 with xi ∈Ui ∩ Y =
Ui ∩NG′(x0) by greedily choosing the vertex xi ∈Ui ∩NG′(x0)∩ . . . ∩NG′(xi−1) for 1≤ i≤ k− 3
one by one. By the definition of Uj, we know each vertex x ∈Uj has at most mj missing degree,
whichmeans |S\NG′(x)| ≤mi for any S⊆V\Vj. Then in the i’th iteration, we have |Ui ∩NG′(x0)∩
. . . ∩NG′(xi−1)| ≥ |Ui| −∑i−1

j=0 |Ui\NG′(xj)| ≥ |Ui| −∑i−1
j=0 mj > 2 choices of xi, where the last

inequality comes from (2). Thus this algorithm will give us a copy of Kk−3 as desired.
Then, since |Ui| −mk−2 ≥ |Ui| −∑k−3

i=0 mj > 2 holds for each 1≤ i≤ k− 3 by (2), we can
find a vertex u ∈Ui0 ∩ Y distinct from x1, x2, . . . , xk−3, where we choose i0 such that mi0 =
min{m1, . . . ,mk−3}. Let W := NG′(x1)∩ . . . ∩NG′(xk−3)∩NG′(u)∩Vk−2. We can see W � x0,
W ∩ Y = ∅, and

|W| ≥ |Vk−2| −
k−3∑
i=1

mj −mi0 ≥ |Vk−2| −
(
1+ 1

k− 3

) k−3∑
i=1

mj.

Then by using Lemma 2.1, we get a set W′ with |W′| = |W| such that |NG(w)∩W′| = 1 for each
w ∈W′, and |W′ ∩W| ≤ 2. Note that all vertices in Y are adjacent to the vertex x0 ∈W in G′ ⊆G,
so we can see |W′ ∩ Y| ≤ 1.

As W ∩ Y = ∅, |W′ ∩W| ≤ 2, |W′ ∩ Y| ≤ 1, and |W′| = |W|, we get n≥ |W ∪ Y ∪W′| ≥
2|W| + |Y| − 3. Thus

2|W| + |Y| ≤ n+ 3.

But on the other hand, we can check that

2|W| + |Y| ≥ 2

⎛
⎝|V0| −

(
1+ 1

k− 3

) k−3∑
j=1

mj

⎞
⎠+ (n− |V0| −m0)

≥ n+ |V0| − 2
(
1+ 1

k− 3

) k−3∑
j=0

mj

≥ n+ n
k− 2

− 2
(
1+ 1

k− 3

)(
n

3(k− 1)
+ 12(k− 1)

)
> n+ 3.

This derives a contradiction. So we have fk(n)≤ e(Tk−2(n))− Cn2 for n sufficiently large. �
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We would like to remark that the above proof relies on the existence of Kk−2. (Recall that in
Lemma 2.1, G[{w, x1, x2, . . . , xk−3}] forms a copy of Kk−2 for each vertex w ∈W.) So using this
approach, we will not be able to improve the upper bound to the following

e(G)≤ ex(n,Kk−2)= e(Tk−3(n))≤ e(Tk−2(n))− n2

2(k− 2)(k− 3)
;

that says we are not able to obtain a constant ck better than the order of magnitude k−2.

4. The 4-critical case
In this section, we consider 4-critical graphs and prove Theorem 1.2.

Before presenting the proof of Theorem 1.2, we give a short proof of a slightly weaker bound
(see Theorem 4.1) than Theorem 1.2 to illustrate the proof ideas. In doing this, we study certain
local structure based on 2-paths (i.e., a path of length two) in the proof of Theorem 4.1, while we
consider 4-cycles (i.e., a cycle of length four) in place of 2-paths in the proof of Theorem 1.2.

4.1 A weaker upper bound
We first show the following result.

Theorem 4.1. For any integer n≥ 4, it holds that f4(n)< 1
6n

2 + 10n≤ 0.167n2 + 10n.

We also need two lemmas as follows. For a graph G, we let t(G) be the number of triangles in
G. Note that Stiebitz [11] found out that

t(G)≤ n holds for every 4-critical graph G on n vertices. (3)

For a vertex v, let tG(v) be the number of triangles containing the vertex v in G. When G is clear,
we often drop the subscript.

Lemma 4.2. Suppose G has at most n triangles and minimum degree of at least 3. Then G contains
a 2-path xyz such that

d(x)+ d(y)+ d(z)− 3t(x)− 3t(z)≥ 6e(G)
n

− 9n2

e(G)
.

Proof. For some vertex v ∈V(G), write N(v)= {v1, v2, . . . , vs} for some s≥ 3. Let

Pv := {v1vv2, . . . , vs−1vvs, vsvv1}
be a family of 2-paths with centre v. We have |Pv| = d(v), and∑

xyz∈Pv

(
d(x)+ d(y)+ d(z)

)= d(v)2 + 2
∑

u∈N(v)
d(u),

∑
xyz∈Pv

(t(x)+ t(z)) = 2
∑

u∈N(v)
t(u).

Then let P := ⋃
v∈V(G) Pv. We have

|P| =
∑

v∈V(G)
d(v)= 2e(G).
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Using Jensen’s inequality, we get∑
xyz∈P

(d(x)+ d(y)+ d(z))=
∑

v∈V(G)
d(v)2 + 2

∑
v∈V(G),u∈N(v)

d(u)=
∑

v∈V(G)
d(v)2 + 2

∑
u∈V(G),v∈N(u)

d(u)

=
∑

v∈V(G)
d(v)2 + 2

∑
u∈V(G)

d(u)2 = 3
∑

v∈V(G)
d(v)2 ≥ 12e(G)2/n.

Since every vertex in G has degree at most n− 1 and
∑

u∈V(G) t(u)= 3t(G)≤ 3n, we get∑
xyz∈P

(t(x)+ t(z))= 2
∑

v∈V(G)

∑
u∈N(v)

t(u)= 2
∑

u∈V(G)
d(u)t(u)≤ 2n

∑
u∈V(G)

t(u)≤ 6n2.

So by picking a 2-path xyz in P uniformly and randomly, we see

E[d(x)+ d(y)+ d(z)− 3t(x)− 3t(z)]≥ 12e(G)2/n− 18n2

|P| = 6e(G)
n

− 9n2

e(G)
.

Thus, we can find a 2-path xyz as desired. �
Lemma 4.3. For any 2-path xyz in a 4-critical graph G, we have

d(x)+ d(y)+ d(z)− 3t(x)− 3t(z)≤ n+ 1.

Proof. Let X := N(x), Y := N(y), Z := N(z), and W := X ∩ Z. If u ∈ X ∩ Y , uxy is a triangle. So
|X ∩ Y| ≤ t(x). Similarly, |Z ∩ Y| ≤ t(z). Then we have

|X ∪ Y ∪ Z| ≥ |X| + |Y| + |Z| − |X ∩ Y| − |Z ∩ Y| − |X ∩ Z|
≥ d(x)+ d(y)+ d(z)− t(x)− t(z)− |W|.

By Lemma 2.1, we can find a set W′ ⊆V(G) and a bijection ϕ :W →W′ such that W′ =
{ϕ(w) :w ∈W′}, and for eachw ∈W, we have bothN(ϕ(w))∩W = {w} andN(w)∩W′ = {ϕ(w)}.

We consider the size of W′ ∩ (X ∪ Y ∪ Z). Since both N(ϕ(w))∩W = {w} and N(w)∩W′ =
{ϕ(w)} hold for eachw ∈W, and we know y ∈W, we can see |W′ ∩ Y| ≤ |W′ ∩N(y)| ≤ 1. Suppose
v′ ∈W′ ∩ X. There is a vertex v ∈W such that vv′ is an edge. Then we see xvv′ is a triangle. So
|W′ ∩ X| ≤ 2t(x). Similarly, |W′ ∩ Z| ≤ 2t(z). Totally, we have

|W′ ∩ (X ∪ Y ∪ Z)| ≤ |W′ ∩ X| + |W′ ∩ Y| + |W′ ∩ Z| ≤ 2t(x)+ 2t(z)+ 1.

Finally, we get

n≥ |X ∪ Y ∪ Z ∪W′| = |X ∪ Y ∪ Z| + |W′| − |W′ ∩ (X ∪ Y ∪ Z)|
≥ (d(x)+ d(y)+ d(z)− t(x)− t(z)− |W|)+ |W| − (2t(x)+ 2t(z)+ 1)
= d(x)+ d(y)+ d(z)− 3t(x)− 3t(z)− 1,

completing the proof of this lemma. �
Now we can finish the proof of this subsection.

Proof of Theorem 4.1. Let G be an n-vertex 4-critical graph. It is easy to see that the minimum
degree ofG is at least 3. By (3),G contains at most n copies of triangles, so we can apply Lemma 4.2
to G and get a 2-path xyz with

d(x)+ d(y)+ d(z)− 3t(x)− 3t(z)≥ 6e(G)
n

− 9n2

e(G)
.
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Together with Lemma 4.3, we have

6e(G)
n

− 9n2

e(G)
≤ n+ 1.

This implies that e(G)< n2/6+ 10n. �

4.2 The proof of Theorem 1.2
To show Theorem 1.2, we need some new lemmas. The coming lemma can be easily obtained by
averaging, which says that every graph contains an edge such that the sum of the degrees of its two
endpoints is at least twice the average degree of the graph.

Lemma 4.4. Any graph G contains an edge xy such that
d(x)+ d(y)≥ 2d(G).

Proof. By Jensen’s inequality, we can get∑
xy∈E

(
d(x)+ d(y)

)=
∑
v∈V

d(v)2 ≥ nd(G)2.

Note that |E| = (
nd(G)

)
/2. Thus there exists an edge xy ∈ E such that

d(x)+ d(y)≥ nd(G)2(
nd(G)

)
/2

= 2d(G),

proving the lemma. �
We now give the following lemma about 4-cycles, which can be viewed as a generalisation of

the previous lemma. Recall the well-known result of Reiman [9] that any n-vertex graph without
containing 4-cycles has at most n

4 (1+ √
4n− 3)< n

3
2 edges.

Lemma 4.5. Any n-vertex graph G with e(G)> n
4 (1+ √

4n− 3) contains a 4-cycle v1v2v3v4 such
that

d(v1)+ d(v2)+ d(v3)+ d(v4)≥ 4d(G)−O(n
3
4 ).

Proof. Fix ε := 9n− 1
4 . Note that Gmust contain 4-cycles by the result of Reiman [9]. Suppose to

the contrary that any 4-cycle v1v2v3v4 in G satisfies d(v1)+ d(v2)+ d(v3)+ d(v4)< 4d(G)− 4εn.
Let A := {v ∈V : d(v)< d(G)} and B := {v ∈V : d(v)≥ d(G)}. Then A∪ B forms a partition of
V(G) such that G[B] does not contain any 4-cycle.

For each 1≤ i≤ d(G)/εn, let Ai := {v ∈V : d(G)− iεn≤ d(v)< d(G)− (i− 1)εn}. Then these
Ai’s form a partition of A. For each 1≤ i≤ (n− d(G)

)
/εn, let Bi := {v ∈V : d(G)+ (i− 1)εn≤

d(v)< d(G)+ iεn}. Then these Bi’s form a partition of B. It is not hard to check that G[A1] does
not contain any 4-cycle, and for each 1≤ i≤ (n− d(G)

)
/εn, G

[⊔i+1
j=1 Aj, Bi

]
does not contain

any 4-cycle.
We delete all edges in G[B], G[A1] and G

[⊔i+1
j=1 Aj, Bi

]
for each 1≤ i≤ (n− d(G)

)
/εn to get

a spanning subgraph G′ of G. By the result of Reiman [9], we can obtain

e(G′)≥ e(G)− (
2+ (

n− d(G)
)
/εn

)
n

3
2 ≥ e(G)− 2n

3
2 − 1

9
n

7
4 ≥ e(G)− 19

9
n

7
4 .

Thus we have

d(G′)≥ d(G)− 38
9
n

3
4 .
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Figure 3. Note that V1 ∪ V3 and V2 ∪ V4 may intersect in Lemma 4.6. However, in the proof of Theorem 1.2, we only consider
the case where they are disjoint. Additionally, it is important to note that X′′ and Y ′′ may also intersect.

Note that any edge of G′ is either contained in A, or between Aj and Bi for some j≥ i+ 2; more-
over, e(G′[A1])= 0. Let xy be an edge in G′. If x, y ∈A, as e(G′[A1])= 0, we can assume that
y ∈A\A1, which tells us dG′(y)≤ d(G)− εn, so we have dG′(x)+ dG′(y)≤ d(G)+ d(G)− εn=
2d(G)− εn. If x ∈Aj, y ∈ Bi for some j≥ i+ 2, then we have dG′(x)+ dG′(y)≤ d(G)− (j− 1)εn+
d(G)+ iεn≤ 2d(G)− εn. Thus, as n is large enough, for any edge xy in G′,

dG′(x)+ dG′(y)< 2d(G)− εn= 2d(G)− 9n
3
4 < 2d(G′).

This contradicts Lemma 4.4, thus proving Lemma 4.5. �
The following lemma is derived from Lemma 2.1, which provides an essential structure to the

proof of Theorem 1.2. To enhance comprehension of the lemma, referencing Figure 3 can be
particularly helpful in gaining a better understanding of the concepts involved.

Lemma 4.6. Let G be a 4-critical graph. Suppose v1v2v3v4 is a 4-cycle in G, and V1,V2,V3,V4
are four sets such that {v2, v4} ⊆V1 ⊆N(v1), {v1, v3} ⊆V2 ⊆N(v2), {v2, v4} ⊆V3 ⊆N(v3), and
{v1, v3} ⊆V4 ⊆N(v4). Let X =V1 ∩V3 and Y =V2 ∩V4. Then there exist sets X′′ and Y ′′ such
that

• X′′ ∩ (V1 ∪V2 ∪V3 ∪V4) = ∅ = Y ′′ ∩ (V1 ∪V2 ∪V3 ∪V4),
• e(G[X′′, X])≤ |X| and e(G[Y ′′, Y])≤ |Y|, and
• |X′′| ≥ |X| − 2tG(v1)− 2tG(v3)− 2 and |Y ′′| ≥ |Y| − 2tG(v2)− 2tG(v4)− 2.

Proof. As X ⊆N(v1)∩N(v3), by Lemma 2.1 for k= 4, there exists a set X′ ⊆V(G) and a bijec-
tion ϕ : X → X′ such that X′ = {ϕ(x) : x ∈ X}, and for each x ∈ X, we have both N(ϕ(x))∩ X =
{x} and N(x)∩ X′ = {ϕ(x)}. We define X′′ := X′\ (V1 ∪V2 ∪V3 ∪V4), then obviously X′′ ∩
(V1 ∪V2 ∪V3 ∪V4) = ∅ and e(G[X′′, X])≤ |X|.

As Y ⊆N(v2)∩N(v4), by Lemma 2.1 for k= 4, there exists a set Y ′ ⊆V(G) and a bijec-
tion φ : Y → Y ′ such that Y ′ = {φ(y) : y ∈ Y}, and for each y ∈ Y , we have both N(φ(y))∩ Y =
{y} and N(y)∩ Y ′ = {φ(y)}. We define Y ′′ := Y ′\ (V1 ∪V2 ∪V3 ∪V4), then obviously Y ′′ ∩
(V1 ∪V2 ∪V3 ∪V4) = ∅ and e(G[Y ′′, Y])≤ |Y|.

Then we want to show the last property.
All vertices in V2 are adjacent to the vertex v2 ∈ X. Then we have |X′ ∩V2| ≤ 1 since |N(x)∩

X′| = 1 for each x ∈ X. Similarly, we have |X′ ∩V4| ≤ 1, |Y ′ ∩V1| ≤ 1, and |Y ′ ∩V3| ≤ 1.
All vertices in V1 are adjacent to the vertex v1. Since each vertex in X′ has a neighbour in

X ⊆N(v1), we can check that |X′ ∩V1| ≤ 2t(v1). Similarly, we have |X′ ∩V3| ≤ 2t(v3), |Y ′ ∩V2| ≤
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2t(v2), |Y ′ ∩V4| ≤ 2t(v4). Therefore,

|X′′| = |X′| − |X′ ∩ (V1 ∪V2 ∪V3 ∪V4) | ≥ |X| − 2t(v1)− 2t(v3)− 2,

and

|Y ′′| = |Y ′| − |Y ′ ∩ (V1 ∪V2 ∪V3 ∪V4) | ≥ |Y| − 2t(v2)− 2t(v4)− 2,

completing the proof. �
Now we are ready to prove Theorem 1.2. It said that f4(n)< 0.164n2 for n≥ n4, where n4 is a

constant.

Proof of Theorem 1.2. Throughout this proof, we assume that n is sufficiently large, and the
subscripts of the notation such as vi’s and Vi’s are under module 4. Suppose for a contradic-
tion that there exists an n-vertex 4-critical graph G with e(G)≥ 0.164n2. By (3), t(G)≤ n. Let
V0 := {v ∈V(G) : tG(v)≥ √

n}. Then clearly we have |V0| < 3
√
n. Let G′ := G[V(G)−V0]. It is

not hard to see e(G′)≥ e(G)− n|V0| > e(G)− 3n
3
2 ≥ 0.164n2 − o(n2). Note that t(G′)≤ t(G)≤ n.

Therefore, by deleting at most n edges from G′, we can get a subgraph G′′ ⊆G′ such that
t(G′′)= 0, e(G′′)≥ e(G′)− n≥ 0.164n2 − o(n2), and tG(v)<

√
n for each v ∈V(G′′)=V(G)−V0.

By applying Lemma 4.5 to G′′, we can get a 4-cycle v1v2v3v4 in G′′ such that

|V1| + |V2| + |V3| + |V4| ≥ 8e(G′′)/n− o(n)≥ 1.312n− o(n), (4)

where Vi := NG′′(vi) for each 1≤ i≤ 4. Note that for each 1≤ i≤ 4, every vertex in Vi ∩Vi+1
must form a triangle with the vertices vi, vi+1 in G′′, which contradicts the fact t(G′′)= 0. So it is
clear that

Vi ∩Vi+1 = ∅ for each 1≤ i≤ 4.

Also it is easy to check that {vi−1, vi+1} ⊆Vi ⊆NG(vi) for each 1≤ i≤ 4. Define X =V1 ∩V3 and
Y =V2 ∩V4. Applying Lemma 4.6, we can get two sets X′′, Y ′′ satisfying the three properties of
Lemma 4.6. Note that X′′ and Y ′′ are disjoint fromV1 ∪V2 ∪V3 ∪V4,V1 ∩V3 = X,V2 ∩V4 = Y ,
and Vi ∩Vi+1 = ∅ for each 1≤ i≤ 4. So we can see that

|V1| + |V2| + |V3| + |V4| − |X| − |Y| + |X′′ ∪ Y ′′| ≤ n. (5)

Besides, by using the last property in Lemma 4.6, we have

|X′′ ∪ Y ′′| ≥max{|X′′|, |Y ′′|} ≥ |X′′| + |Y ′′|
2

≥ |X| + |Y|
2

−O(
√
n). (6)

By substituting inequalities (4) and (6) into inequality (5), we get

|X| + |Y|
2

≥ |V1| + |V2| + |V3| + |V4| − n−O(
√
n)≥ 0.312n− o(n). (7)

Then we consider the non-edges of the graph G, i.e., the edges of the graph G. First, since
Vi =NG′′(vi)⊆NG(vi) and vi ∈V(G′′), we can see e(G[Vi])≤ tG(vi)≤ √

n for each 1≤ i≤ 4. So

e(G[Vi])≥
(|Vi|

2

)
− o(n2)= 1

2
|Vi|2 − o(n2) for each 1≤ i≤ 4.

Thus by noting V1 ∩V3 = X, V2 ∩V4 = Y , and Vi ∩Vi+1 = ∅ for each 1≤ i≤ 4, we can get∣∣∣∣∣
4⋃

i=1
E(G[Vi])

∣∣∣∣∣≥
4∑

i=1
e(G[Vi])−

(|X|
2

)
−
(|Y|

2

)
≥ 1

2

( 4∑
i=1

|Vi|2 − |X|2 − |Y|2
)

− o(n2). (8)
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Next, since any m-vertex triangle-free graph has at most 1
4m

2 edges, we can see e(G[X′′ ∪ Y ′′])≤
1
4 |X′′ ∪ Y ′′|2 + n by (3), and thus

e(G[X′′ ∪ Y ′′])≥ 1
4
|X′′ ∪ Y ′′|2 − o(n2). (9)

By properties of X′′, Y ′′ ensured by Lemma 4.6, we can obtain

e(G[X′′, X])≥ |X′′||X| − |X| ≥ |X|2 − o(n2), (10)

e(G[Y ′′, Y])≥ |Y ′′||Y| − |Y| ≥ |Y|2 − o(n2). (11)

So we can deduce that

e(G)=
(
n
2

)
− e(G)≤

(
n
2

)
− 1

2

( 4∑
i=1

|Vi|2 − |X|2 − |Y|2
)

− 1
4
|X′′ ∪ Y ′′|2 − |X|2 − |Y|2 + o(n2)

≤ 1
2
n2 − 1

8
(|V1| + |V2| + |V3| + |V4|)2 − 1

4

( |X| + |Y|
2

)2
−
( |X| + |Y|

2

)2
+ o(n2)

≤ 1
2
n2 − 1

8
(1.312n)2 − 5

4
(0.312n)2 + o(n2)< 0.1632n2 + o(n2).

The inequalities are derived as follows: the first inequality is obtained from inequalities (8) to
(11); the second inequality is derived from inequality (6) and the convexity of the square; and the
third inequality is based on inequalities (4) and (7). This contradicts the assumption that e(G)≥
0.164n2, completing the proof of Theorem 1.2. �

Our understanding of the functions fk(n) is generally poor, and it is not even known if

f4(n)< f5(n) holds for sufficiently large integers n. (12)

So it seems to be a natural next step to pursue the question of whether f4(n)≤ cn2 holds for some
constant c< 4

31 and sufficiently large n. Note that if this is true, then it would imply (12).
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