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Focal quality metrics for the objective
evaluation of confocal microwave images

declan o’loughlin, finn krewer, martin glavin, edward jones and martin o’halloran

Confocal microwave imaging for breast cancer detection relies on accurate knowledge of the average dielectric properties of the
patient-specific breast. When accurately estimated, coherent addition will occur at the tumor site, producing a clear and sharp
image thereof. Conversely, if the average dielectric properties are poorly estimated, a blurred, unfocused image will be recon-
structed, potentially obscuring cancerous lesions. Several methods have been proposed to estimate the patient-specific average
dielectric properties, for example, time-of-flight estimation. However, such methods are specific to the individual imaging
hardware, can be susceptible to multipath propagation and assume the chosen paths are representative of the whole
volume. In this paper, a novel method to estimate the patient-specific average dielectric properties is presented, based on
focal quality metrics (FQMs); used historically to measure the clarity and focus of microscopic or digital photographic
images. These FQMs are applied to confocal microwave breast images to assess their focus, and hence estimate the patient-
specific average dielectric properties. In this way, FQMs can be used to generate the optimum microwave image of the breast.
The performance and robustness of these FQMs for microwave breast imaging applications is examined in this paper and
preliminary results are presented and discussed.
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I . I N T R O D U C T I O N

Over the last 15 years, confocal microwave imaging (CMI) has
emerged as a promising diagnostic method for breast cancer
detection. CMI has the potential to provide a safe, non-
ionizing, and comfortable method for breast cancer screening
[1–3]. An early-stage study looked at the variability in mea-
surements with repeated scans of healthy volunteers over a
2–8 month period, confirming that the scan was comfortable
and identifying some areas of variability between scans [2].
Another study considered nine patients, with breasts both
with and without disease, with many of the reconstructed
images being consistent with the clinical history of the
patient [1]. A larger, more recent study with 86 patients has
shown a sensitivity of 74% comparing well with radiological
results on the same sample. Considering only the dense
breasts, sensitivity was 86%, which is better than the radio-
logical results for the same subset of patients [3]. These
studies have also highlighted the requirement for good esti-
mates of the patient-specific dielectric properties in order to
create a sharp and focused image of the breast. Consequently,
a number of these groups have begun to examine new
methods to estimate the patient-specific average dielectric prop-
erties, as part of the breast imaging process [4–9]. In this paper,

a new method to estimate the average dielectric properties is
presented and evaluated.

The physical basis for CMI is the dielectric contrast
between healthy and cancerous breast tissue [6] and the
ability to identify the source of reflected microwave energy
from within the breast. The source of the reflected energy is
a significant dielectric scatterer, and its precise location can
be established using an estimate of the average dielectric prop-
erties of the breast. The average dielectric properties of the
breast are used by the CMI beamformer to calculate the
speed of propagation within the breast, and ultimately recon-
struct an image of the breast [10]. An incorrect estimate of the
average dielectric properties reduces coherent addition at
dielectric scatterer locations, which in turn reduces the magni-
tude of the image at these locations and increases the clutter in
the image. This can make tumor detection more difficult or in
some cases impossible.

In light of the importance of the average dielectric proper-
ties as an imaging parameter, several methods to estimate the
patient-specific average dielectric properties have been devel-
oped. These include methods to estimate the average dielectric
properties from time-of-flight signals in the original patient
scan [8, 9] as well as average dielectric properties estimation
from a separate scan with additional hardware [4, 5, 11, 12].
A simplified inverse scattering problem was used in [9] to esti-
mate the average dielectric properties from the original back-
scattered signals. Time-of-flight measurements were used to
estimate interior properties in numerical studies [8], while
promising multipath propagation measurements were used
in some experimental studies [4, 5, 11, 12].
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In summary, these methods are reliant on transmitted
signals through the breast.

Although most prototype microwave breast imaging proto-
types do collect multistatic signals, these methods are still sus-
ceptible to interference from multipath propagation, which
can distort the properties estimate. Furthermore, the effective
average dielectric properties of any given propagation path are
not necessarily the same as the effective average dielectric
properties of the imaging volume.

An ideal method is independent of acquisition hardware
(monostatic or multistatic) and can estimate the effective
dielectric properties of the imaging volume. Parameter
search methods measure properties of the image to determine
the effective dielectric properties. By measuring features of the
reconstructed images and not the backscattered signals, par-
ameter search methods are independent of the acquisition
hardware and imaging algorithm.

Recently, parameter searches have been applied to beam-
forming, both for stroke and breast cancer detection [6, 7,
13, 14]. The metrics developed for stroke detection, [13, 14],
require estimating the effective dielectric properties for mul-
tiple entry points to the imaging domain. This method is dif-
ficult for breast cancer detection due to the number of antenna
positions required, so many more variables would be needed.
A custom metric was developed in [6, 7] to reward images
containing one bright response with fewer other large
responses in the image (a high signal-to-clutter ratio). It also
weights responses by their distance from the skin, taking into
account that artifacts from skin removal are likely to occur
there. When applied to simulated, experimental and clinical
data in [6], this has shown promising preliminary results.

This paper proposes focal quality metrics (FQMs) as suit-
able fitness functions in a parameter search. FQMs are algo-
rithms that estimate the degree of focus of a whole image,
or locally in the neighborhood of a given pixel of the image.
Many families of FQMs have been developed and both theor-
etically and experimentally verified for over forty years [15,
16]. The wide variety of algorithms that have been developed
provides opportunities to use multiple FQMs measuring dif-
ferent aspects of the image together to increase the robustness
of the parameter search. Previous work has indicated that the
properties of a good CMI image are similar to those of a clear
and focused image [17, 18]. This paper investigates this correl-
ation in more detail and proposes FQMs as a suitable fitness
function for a parameter search to estimate the effective
average dielectric properties of the breast.

The FQMs presented in this paper (summarized in Section
II) are analyzed to see if image quality is correlated with a well-
focused image. If good correlation is established, then there is
potential to use the FQM as a method to fine-tune the average
dielectric properties estimate, and consequently to optimize a
microwave breast image.

The remainder of the paper is structured as follows: Section
III describes how the chosen FQMs are evaluated in terms of
fitness and the images on which they are analyzed; Section IV
describes the results and Section V concludes the paper.

I I . F O C A L Q U A L I T Y M E T R I C S

This paper analyses FQMs to investigate they correlate with
the qualities of a good image. In an optical system, a defocused
image is blurred in comparison to a focused image, which is

commonly modeled as convolution with a point-spread func-
tion [19–21]. Similarly, an incorrect estimate of the effective
average dielectric properties means that the backscattered
signals are out of phase after synthetic focusing. This means
that rather than coherent addition at the locations of dielectric
scatterers, this energy is instead spread around the site of the
dielectric scatterer, an effect similar to convolution with a
point spread function. This indicates that FQMs may be suit-
able for assessing image quality without a priori knowledge of
the imaging domain.

A well-focused image contains a large number of sharp
edges and thus a lot of high-frequency spatial content. A
defocused image or blurred image, on the other hand, contains
less high-frequency spatial content. Therefore, the majority of
FQMs estimate the frequency content of images and can be
broadly classified based on their method of action for fre-
quency content estimation. In this paper, five FQMs were
described and compared. One metric from each of the families
of algorithms identified in a recent review of FQMs were
chosen in this paper [16].

FQMs are often used for auto-focus, which is where the
FQMs are used in a parameter search to find the optimal
focal length, such as in microscopy [15, 22, 23] and telescopy
[24, 25] where the properties of the optimal image are well
defined and the type of image does not vary. Additionally,
FQMs have been used in more challenging situations such
as digital still cameras [21, 26, 27]; and digital video [28]
where the types of images vary from case to case (landscape,
interior, portraits) and there are strict performance criteria
in video in particular.

As well as auto-focus, FQMs have been used in:

† shape from focus (also known as depth from focus or range
from focus), which is where depth information about a
scene is inferred from the focal quality of various regions
of the image [29–31];

† multi-focus, an application where multiple images of a
scene taken at different focal lengths are fused to form
one image with all objects in focus [32].

This paper analyzes FQMs for the novel application of
effective average dielectric property estimation for CMI.

A) Gradient-based FQM (FG)
High-pass filtering is analogous to differentiation. Thus, the
spatial derivative of the image can be used as a FQM, as this
rewards the higher frequency content in the image and is cor-
related with quality. Approximations to the first derivative or
gradient of the image have been widely used as FQMs [15, 16,
21, 32–35]. The first-order difference is a computationally effi-
cient method to estimate the spatial derivative and is used in
this work. In this case, a FQM based on the maximum value of
the absolute value of the gradient for each dimension of the
image is considered.

FG = 1
XY

∑X

x

∑Y

y

max
D[{X,Y}

ID(x, y)
∣∣ ∣∣, (1)

where X and Y are the dimensions of the image and IX and IY

are the first-order differences along the X and Y dimensions,
respectively.
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B) Laplacian-based FQMs (FL)
Although FG uses first-order differentiation to estimate image
quality, second order differentiation has also been applied in
the Laplacian-based methods. The energy of the Laplacian is
a commonly used FQM [16, 20, 25, 36] and can be approxi-
mated as:

FL = 1
XY

∑X

x

∑Y

y

(L∗I) (2)

using the discrete approximation of the Laplacian, L, defined as:

L = 1
6

1 4 1
4 −20 4
1 4 1

⎛
⎝

⎞
⎠. (3)

C) Wavelet-based FQM (FW)
The discrete wavelet transform (DWT) measures the frequency
content of an image and hence the image quality. The high-
frequency sub-bands of the DWT have been used as FQMs
[16, 37–39]. Using a first-level DWT and a db6 filter
(Daubechies filter with six vanishing moments), the absolute
sum of the resulting three detail sub-bands is used in this work:

FW = 1
XY

∑X

x

∑Y

y

ILH(x, y)
∣∣ ∣∣+ IHL(x, y)

∣∣ ∣∣+∣∣IHH(x, y)
∣∣, (4)

where the first-level detail sub-bands are given as ILH, IHL, and
IHH.

D) Fourier-based FQM (FD)
The discrete cosine transform is a Fourier-based transform
that directly measures the frequency content of an image to
infer the image quality, which has been used in FQMs [16,
28, 40, 41]. In particular, comparing the ratio of the AC and
DC energy has been used:

FD = 1
XY

∑X

x

∑Y

y

∑
(n,m)=(0,0) Fx,y(n,m)2

Fx,y(0, 0)2 , (5)

where Fx, y is the DCT of the N × M sub-block centered at
(x, y). M ¼ N ¼ 8 is used in this work.

E) Statistics-based FQM (FS)
FQMs have also been constructed by analyzing the grey-level
luminance of the image. The variance of the gray-level lumi-
nance is a commonly used statistic and is analyzed in this
paper [16, 21, 26, 32–35]:

FS =
1

XY

∑X

x

∑Y

y

(I(x, y) − �I)2, (6)

where �I is the mean of the image.

I I I . E V A L U A T I O N O F F Q M S

Traditionally, CMI systems are evaluated using signal-to-mean
and signal-to-clutter metrics [42]. These metrics compare the
energy of the tumor to the background energy in the image,
however, do not provide much information about how the
quality changes as the effective average dielectric properties
used in image reconstruction change. Section IIIA considers the
metrics that are traditionally used to evaluate FQMs, and how
these can be used in the context of CMI to evaluate the suitability
of the FQMs for estimating the average dielectric properties.

A) Characteristics of an effective FQM
Commonly identified characteristics currently used to evalu-
ate FQMs in other applications are:

† Accuracy: that the extremum of the curve lies at the correct
value [19, 33, 35];

† Reproducibility: that the extremum lies at the top of a
narrow peak [19, 32, 33, 35];

† Broad range: that the extremum lies at the top of a peak
with broad tails in either direction [19];

† Generalizability: that the FQM is appropriate for many dif-
ferent types of images, objects and textures and can be used
with different imaging settings [19, 32];

† Monotonicity with respect to blur [32].

These characteristics have been evaluated in different ways
in different contexts. Some commonly evaluated qualities of
the FQM curve are: range of peak [33–35, 40]; width of
peak [33–35, 40]; number of false extrema [33–35, 40]; accur-
acy of peak [33–35]; and noise level [35].

Not all evaluation criteria are directly applicable to CMI as
it is assumed by these metrics that the FQM should decay
monotonically in either direction from a single global
extremum. Instead, the FQM curve is compared to the simi-
larity of the images to the best-case image. The best-case
image is formed at the true average value of dielectric proper-
ties measured at the center frequency of the excitation pulse.

The similarity of the images is calculated using Structural
Similarity (SSIM) index [43]. The two curves (the FQM
curve and the similarity curve) are then compared using the
Spearman Rank Correlation coefficient, r, which measures
how well the correlation between two variables can be
approximated by a monotonic function. This addresses the
characteristics of reproducibility, range and monotonicity.

The accuracy is evaluated by comparing the average dielec-
tric properties predicted by the FQM to the best-case average
dielectric properties measured at the center frequency of the
excitation pulse.

The generalizability of each FQM is estimated by testing in
a variety of scenarios: in numerical models and experimental
phantoms, with tumors of different shapes and sizes in differ-
ent locations.

The FQMs are then ranked according to each evaluation cri-
terion (correlation and accuracy), first within each FQM family
and then globally. A global rank for each FQM is then com-
puted by adding the ranks of the individual criteria [33].

B) Experimental evaluation
The finite-difference time-domain simulations of the breast
used for the evaluation of the FQMs are described in this
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section. Homogeneous and heterogeneous breast models were
used to evaluate the FQMs.

The homogeneous breast interior has dielectric properties
of 1r ¼ 3.74 which is the same as the matching medium in
which the breast is immersed which is in the range of
adipose tissues identified in [44, 45]. A realistically-shaped
skin layer with dielectric properties 1r ¼ 35.14 was used while
tumors have dielectric properties of 1r ¼ 60.33. Spherical
tumors with various radii ranging from 3 mm to 5 mm were
randomly placed within the breast, resulting in twenty differ-
ent models. One sample model is illustrated in Fig. 1(a).

The heterogeneous breast interior was taken from the
MRI-derived three-dimensional breast models from the
University of Wisconsin–Madison (ID: 071904) [46]. Eight dif-
ferent heterogeneous models were simulated, consisting of a
realistic tumor generated as described in [47] with an approxi-
mate radius of 12 mm. The tumors were positioned in one of
eight positions within the breast, where positions were chosen
in accordance with locations with high tumor incidence [47].
Dielectric properties for fibroglandular tissues were also
chosen in accordance with [44, 45], ranging from 32.7 to
46.8. A sample tumor position and heterogeneous model is
shown in Fig. 1(b). All relative permittivity values are reported
for the center frequency of the excitation pulse.

A single-cycle sine wave modulated by a Gaussian pulse
with a center frequency of 6 GHz and bandwidth of 6 GHz
was used to excite the breast model. A cylindrical array of
equally-spaced antennas was simulated, which illuminated
the breast model sequentially, as shown in Fig. 1. The tumor
response was isolated by using ideal skin subtraction, which
allows for the image quality to be assessed without artifacts
from skin subtraction algorithms.

Images were generated using a monostatic Delay-and-Sum
beamformer [10]:

I(r) =
∑T

0

∑Nc

c

Sc t − tc(r)( )
( )2

(7)

where Sc is the response of each multistatic channel in the
time-domain sampled at 80 GHz, Nc ¼ 190 is the number of
multistatic channels for twenty antennas. T, the window-
length, is 330 ps, the length of the excitation pulse in the
time-domain.

The propagation delay for each channel, tc(r), is estimated
based on the average dielectric properties, specifically the
average relative permittivity:

tc(r) =
d
c
= d

c0

���
1r

√
. (8)

Two hundred and one images, ranging from 1r ¼ 3 to 1r ¼

23 were reconstructed (I ) and the best-case image was
selected using the metrics described in Section II.

The proposed algorithms are independent of the type of
beamformer used as the algorithm analyses properties of the
generated images and not of the signals.

I V R E S U L T S

This section details the results of evaluating the FQMs listed in
Section II by the method explained in Section III.

The results are presented in three parts:

(1) Firstly, the effect of an incorrect estimate of the average
dielectric properties is demonstrated by examining the
images generated at varying values of assumed average
dielectric properties, as shown in Fig. 2. Figure 2(a) to
2(h) shows the coronal cross-section of the breast image
at the tumor location, generated using average dielectric
properties of 1r ¼ 3, 4, 5, 5.2, 6, 7, 8, 9 respectively;

(2) Secondly, the FQMs are evaluated quantitatively by meas-
uring the accuracy of the estimated average dielectric
properties and calculating the correlation of the FQM
curve to the ideal in Section IVA;

(3) Thirdly, the FQMs are evaluated qualitatively by compar-
ing the shapes of the ideal and FQM curves in Section
IVB.

A) Quantitative evaluation
Using the homogeneous models described in Section III, the
accuracy and monotonicity of each of the five FQMs described
in Section II are listed in Table 1. The average, m, and the
standard deviation, s for each criterion is shown. For all
models, the best-case average dielectric properties is 1r ¼

5.2. FL, FS, FG and FW all accurately predict the best-case

Fig. 1. Cross-sections of a homogeneous (a) and a heterogeneous (b) breast model used in this study. Antenna positions are indicated in white.
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average relative permittivity to within D1r ¼ 0.2. FW is the
most accurate in these test cases on average. FG has the
highest value of r, with the smallest standard deviation. FD

does not estimate the average dielectric properties well in
these cases and is poorly correlated with the ideal curves.
FD estimates average dielectric properties of 1r ¼ 3 for
nearly every test-case, which is the lowest value in the ana-
lyzed range.

Similarly, the heterogeneous results are described in
Table 2. Four metrics perform similarly in the more realistic
scenarios, FG, FS, FW, and FL have similar values for accur-
acy. These four metrics estimate a value of 1r ≈ 5.7 which is

10% higher than the true value of 1r ¼ 5.2. However, as
shown in Figs 2(c) and 2(e), reconstructed images within
the range 1r ¼ [5, 6] do correctly identify the tumor location.
For all metrics, the correlations with the ideal curve are worse
than in the homogeneous case. This is due to the increased
number of scatterers in the models. Reconstruction at
certain values of average dielectric properties can cause coher-
ent addition at other points within the breast due to reflections
from fibroglandular tissues. These images can then be
rewarded resulting in the poorer correlation with expected
curve.

Images reconstructed with underestimated average dielec-
tric properties have a lot of clutter. Fourier-based metrics
(FD) directly measure the spatial frequency content of the

Fig. 2. Panels (a)–(h) show images reconstructed with permittivities, 1r [ {3, 4, 5, 5.2, 6, 7, 8, 9} respectively from the heterogeneous model in Fig. 1(b). Panels
(c)–(e) show the best localization and least clutter as it closest to the best average relative permittivity, while other images are successively poorer.

Table 1. Accuracy and correlation to the similarity curve results using
homogeneous models.

Metric Accuracy Correlation (r)

m s m s

FL 5.01 (4) 0.38 20.83 (4) 0.15
FG 5.05 (3) 0.27 20.93 (1) 0.07
FS 5.30 (2) 0.66 20.89 (2) 0.10
FW 5.20 (1) 0.49 20.88 (3) 0.14
FD 3.03 (5) 0.09 20.32 (5) 0.31

Best-case average relative permittivity, 1r ¼ 5.2.

Table 2. Accuracy and correlation to the similarity curve results using
heterogeneous models.

Metric Accuracy Correlation (r)

m s m s

FL 5.74 (1) 0.43 20.70 (2) 0.19
FG 5.76 (2) 0.45 20.69 (3) 0.18
FS 5.76 (2) 0.45 20.69 (3) 0.18
FW 5.79 (4) 0.45 20.69 (3) 0.18
FD 3.65 (5) 0.54 20.74 (1) 0.15

Best-case average relative permittivity, 1r ¼ 5.2.

Fig. 3. This figure compares the FQM curves. For the given model
(cross-section as shown in Fig. 1(b)), the normalized value of each FQM is
shown. For comparison, the similarity curve is also shown (denoted S). This
is calculated by comparing each image to the best-case image using SSIM.
The best-case image is chosen by using the exact average relative
permittivity of the imaging volume. All but FD follow the same trend as the
similarity curve. In this scenario, the curves overestimate as er ¼ 6.3, higher
than the average dielectric properties.
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image and can reward this structured clutter, resulting in the
consistent underestimation of the average dielectric properties
seen in both homogeneous and heterogeneous models as
shown in Fig. 4.

B) FQM curves
The FQM curves for all five FQMs described in this paper over
the given average dielectric properties range are shown in
Fig. 3. Additionally, the ideal curve as described in Section
IVA is also shown. By comparing the curves visually, FL,
FS, FG, and FW all identify 1r ¼ 6.3 as the average in this
case. Although this is greater than the mean properties as
can be seen in Fig. 2, an image reconstructed with this estimate
does show the tumor in the correct location.

Matching the quantitative analysis, FD does not identify the
average dielectric properties and neither is the shape of the
curve correct as the value of FD is too large at the lower end
of the average dielectric properties range. Figure 4 shows the
values of FD for the images in Fig. 2. The images in Figs
2(a)–2(d) are of similar maximum magnitude; however, the
images further away from the correct average dielectric proper-
ties (Figs 2(a) and 2(b)) have more clutter in the image. This
clutter is rewarded by FD as seen in Figs 4(a) and 4(b). This
makes it difficult to distinguish images near the best-case
(Fig. 4(d)) from images with similar maximum magnitude
but lower signal-to-mean ratio (Fig. 4(a)).

V . C O N C L U S I O N S

Although preliminary, these data indicate that properties of
clear and focused images are similar to the properties of a
good CMI image. This correlation indicates that FQMs
could potentially be used in a parameter search algorithm to
estimate the average dielectric properties of the breast in
CMI. A correct estimate of the average dielectric properties
is important in realistic screening scenarios when this value
changes from patient-to-patient and is difficult to estimate
in advance. These FQMs could be used to help select the

appropriate average dielectric properties and reconstruct a
clear and focused image for the clinician.

Further work in this area will focus on considering the
optimal FQM or optimal combinations of FQM for CMI
applications in experimental and clinical scenarios.

A C K N O W L E D G E M E N T S

This work was supported by the Irish Research Council (Grant
no. RCS1326), Science Foundation Ireland (Grant no. 12/IP/
1523 and 1 l/SIRG/I2120), and the MiMED COST Action
(TD1301).

R E F E R E N C E S

[1] Fear, E.C.; Bourqui, J.; Curtis, C.; Mew, D.; Docktor, B.; Romano, C.:
Microwave breast imaging with a monostatic radar-based system: a
study of application to patients. IEEE Trans. Microw. Theory Tech.,
61 (5), (2013), 2119–2128. ISSN 0018-9480, 1557-9670. doi: 10.1109/
TMTT.2013.2255884.

[2] Porter, E.; Coates, M.; Popovic, M.: An early clinical study of time-
domain microwave radar for breast health monitoring. IEEE
Trans. Biomed. Eng., 63 (3), (2016), 530–539. ISSN 0018-9294,
1558–2531. doi: 10.1109/TBME.2015.2465867.

[3] Preece, A.W.; Craddock, I.; Shere, M.; Jones, L.; Winton, H.L.:
MARIA M4: clinical evaluation of a prototype ultrawideband radar
scanner for breast cancer detection. J. Med. Imag., 3 (3), (2016),
033502–033502. ISSN 2329-4302. doi: 10.1117/1.JMI.3.3.033502.

[4] Garrett, J.D.; Fear, E.C.: Average property estimation validation with
realistic breast models, in 2014 8th European Conf. on Antennas and
Propagation (EuCAP), The Hague, The Netherlands, 2014, 1279–
1280, IEEE.

[5] Garrett, J.; Fear, E.: Average dielectric property analysis of complex
breast tissue with microwave transmission measurements. Sensors,
15 (1) (2015), 1199–1216. ISSN 1424-8220. doi: 10.3390/s150101199.

[6] Lavoie, B.R.; Okoniewski, M.; Fear, E.C.: Estimating the effective per-
mittivity for reconstructing accurate microwave-radar images. PLoS
ONE, 11 (9) (2016), e0160849.

Fig. 4. Panels (a)–(h) show the metric FD for the images in Fig. 2. Images in (f)–(h) are of very low magnitude, due to the small magnitude of the original images;
however, images in (c)–(e) are of lower mean magnitude than (a) and (b); making it difficult to distinguish the best-case images from other images using this
metric.

1370 declan o’loughlin et al.

https://doi.org/10.1017/S1759078717000642 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078717000642


[7] Lavoie, B.R.; Okoniewski, M.; Fear, E.C.: Optimizing
microwave-radar imaging parameters, in 2016 17th Int. Symp. on
Antenna Technology and Applied Electromagnetics (ANTEM),
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