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Abstract

For an infinite cardinal R, an associative ring R is quotient 8<-dimensional if the generalized Goldie
dimension of all right quotient modules of Ry are strictly less than R. This latter quotient property of Ry
1s characterized in terms of certain essential submodules of cyclic modules being generated by less than
R elements, and also in terms of weak injectivity and tightness properties of certain subdirect products of
injective modules. The above is the higher cardinal analogue of the known theory in the finite 8 = R,
case.
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Introduction

A ring R is quotient finite dimensional (q.f.d.) if for all rightideals 0 < K < R, R/K
has finite Goldie dimension. In [I, page 38, Theorem], Al-Huzali, Jain, and Lopéz-
Permouth showed that the ring R as a right R-module is q.f.d. if and only if any direct
sum of injective modules is weakly injective (w.1.). Let R > 8, be an infinite regular
cardinal. A ring R viewed as a right R-module is quotient ¥ <-dimensional if for any
0<K < R,andany ®{V, | i e I} < R/K,|{i € I | V. # 0}] < R (abbreviation:
q.R<-d.). The absolute value of a set denotes its cardinality. Thus q.R;-d. is the
same as q.f.d. A ring Ry viewed as a right R-module satisfies the R<-A.C.C., or is
R<-Noetherian if any properly ascending well ordered chain of right ideals has strictly
less than R terms.

In Dauns [4, page 187, Theorem 4.1] it was shown that R; is ®<-Noetherian
if and only if every X=-product of any injective modules remains injective. The
concept ‘q.f.d.’ has the same kind of characterization in terms of direct sums of
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injectives as ‘Noetherian’. However, no one has been able to prove the natural
obvious generalization of this that Rg is q.R<-d. if and only if every ®<-product of
injectives is weakly injective. This note conjectures that the latter is not true. It gives
an alternate characterization for a ring R to be q.8<-d. in Theorem 2.5 where ‘weakly
injective’ is replaced by the slightly more stringent property of weakly very injective
(Definition 2.1). This note does not generalize any previous work, it is new even in the
finite & = Ry q.f.d. case. Furthermore, every ring R is q.R<-d. for a unique smallest
cardinal R. Also, a new characterization of the property that R is q.f.d. (and q.X<-d.)
is given in Theorem 1.5, which relates Goldie dimensions to the number of generators
of modules.

1. Finitely generated modules

In this section, some characterizations of quotient X “-dimensional rings are given.

NOTATION 1.1. For aright unital R-module M, for asubmodule K< M andm € M,
letm'K = (m+ K)* = {r € R | mr € K} < R. Large submodules are denoted
by ‘«’. Thus M « M, where the latter denotes the injective hull of M.

For any cardinals ® and |X|, 8" or |X|* denote successor cardinals, and cof R is
the cofinality of R.

DEFINITION 1.2. For any module M, its Goldie dimension Gd M is the cardinal
GdM = sup{|l| | @,, Vi < M,all V, # 0}. A nontrivial direct sum @, V; will
be one with all V; # 0 (see [6]). Its Goldie plus dimension Gd* M is the unique
smallest infinite cardinal 8 > R, such that for any nontrivial ®{V, | i € I} < M, it
follows that [I| < R. If Gd M is not inaccessible, then Gd* M = (Gd M)*. Always
Gd* M < (Gd M)* (see [7] and [5, page 2880, 1.2]). We say R is q.R<-d. if R is.

For any module M, and any X € M, (X) < M denotes the submodule generated
by X; gen M is the minimum cardinality of a generating set of M; gen M is called the
generating dimension of M.

For later use, the next lemma combines [5, page 2882, Lemma 2.2] with [5,
page 2884, Lemma 2.7 and Theorem 2.8].

LEMMA 1.3. For any cardinal R > Ry, the following are all equivalent:
(i) R is q.X<-d. (that is, for any cyclic M,Gd* M < ).
(ii) For any finitely generated M, Gd* M < R.
(ili) Forany M, ifgen M < cof X, then Gd* M < R.
(iv) There exists g < A < cof R such that for any M, if gen M < A, then
Gd* M <.
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The following quotient module operation on pairs of modules will be used later
twice.

CONSTRUCTION 1.4. Suppose that we are given 0 < J < R and any direct sum
of cyclies @{(y, + J)R |y € T} < R/J withy, € R, y € T'. Then there exists
J € I < R such that

i) Z{y, + DRy eTl}=B{(y, + HR |y e} <R/I;

(i) S, =, R+ 1)/I is simple forall y € I'; and

(i) IS, 1y eT) < R/L.

PROOF. We will first produce an I satisfying only (i) and (ii), but call it K. (i) Take
any maximal submodule K, < y,R + J with J € K,. Then (y,R + J)/K, =
(yyR+K,)/K, is simple. Hence the right ideals I, = (y, + K, )* < R are maximal.
Observe that I, < R is the unique maximal right ideal such that K, = y, [, + J =
v,I, + K,. Define K = > {v,I, + J | y € T'}. Tedious elementwise arguments
(using direct sums in R/J) prove thatin R/K, the sum > {(y, R+ K)/K |y €T} =
PD{(y,R+ K)/K | y € T} < R/K remains direct, and also that y, ¢ K for all
y erl.

Note that 3~ (y,R +J) = }_ (v, R + K). But then the natural isomorphism
(R/J)Y/(K/J) — R/K maps the quotient of the above two direct sums as follows

B,y R+ D/ _ X, (3 R+K)
D, oy I, + )T~ K

=Pl R+ K)/K]

yell

Since (y, + K)I, € K, + K C K with y, ¢ K, it follows that (y, + Kyt =1,. (ii)
Hence (v, R + K)/K is simple.

(iii) Let I/K < R/K be a complement submodule such that [@Ver(yy + K)R) &
I/K <« R/K. Set S, = (v,R+1)/I. Then S, = (y,R+ K)/K and P{S, | y €
't < R/I. O

The next theorem characterizes ‘q.8<-d.” in terms of ‘gen’ alone. It is new even in
the finite & = R, ordinary q.f.d. case. In specific concrete examples, the most natural
easiest choice of A below to use is A = 2, in which case we only need to consider
cyclics N in (ii).

THEOREM 1.5. Forany ® > Ry and ring R, let A be any fixed cardinal either A = 2,
or 8y < A < cof ¥, Then the following are equivalent:

(i) RisgN"-d

(i) Foranv N (oranv N < R)withgen N < A, for every L << N, it follows that
there exists D < L withgen D < X,
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PROOF. (i) implies (ii). Use Lemma 1.3 (i) if A = 2, or Lemma 1.3 (iv) otherwise
to conclude that for any essential direct sum of cyclics D = @{x;R | i < 1} K L
with 7 a cardinal, necessarily 7 < R. Butthengen D <1 < R.

(ii) implies (i). For any 0 < J < R, and any direct sum @{(y, + )R | y €
'} < R/J,y, € R, it suffices to show that |I'| < R. As in Construction 1.4, there
existsan J € I < Rwith L = @S, | y € T} « R/I. By (ii), with A = 2, or
Ro <A <cofR thereisaD « L « R/I withgenD < R. Sinceall DN S, # O,
D=@(S, | y eT} « L. Since R > Ry, if || < Ry, thengenD < |I'| < R. If
Ry < ||, then D cannot be finitely generated, and hence [5, page 2881, Lemma 2.1]
shows that |I'| = gen D < N. O

2. Weak injectivity

Special kinds of weakly injective and tight modules will be used here.

DEFINITION 2.1. For amodule M, selectand fixacopyof M in M « M, and below
M always refers to this copy. Then M is weakly very injective (w.v.i.) if for any finitely
generated submodule N < M, there exists a triple X, D, ¢, where D K M NN K
N € X < M, and where X = M under an isomorphism ¢ : X — M « M with

¥ID = 1p:
D « MNN « NCX < M
1p zlw
D < M <« M.

If in the above definition all reference to D is omitted, the result is the usual
definition of M is weakly injective (w.1.).

Imprecisely and incompletely speaking, if in the above definition X is omitted, the
result is the next definition.

DEFINITION 2.2. Again fix M « M. The module M is very tight (v.t.) if for any
finitely generated N < M, there exist D, f with D « M NN <« N and a monic map
S:N—>M&KLMwith f|D = 1,:

D €« MNN « N

Ip lf

D < M <« M.

And again, deletion of all reference to D defines the usual concept of M is tight.
Thus we have the following implications:

injective = w.v.i. = v.t. and w.v.i. => w.i. = tight.
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EXAMPLE 2.3. For R = Z, M = Zis w.i. and tight, but not w.v.i., and hence not v.t.

In [1, page 38, Theorem] it was proved that (1) is equivalent to (2) in the next
theorem with 8 = 8, and with ‘w.v.i.’ replaced by ‘v.i.’. Later, for R = R, and
with ‘v.t.” replaced by ‘tight’, Jain and Lopéz showed that (1), (2), (3), and (4) are all
equivalent ({9, page 9, Theorem 2.6]).

DEFINITION 2.4. For a cardinal X > R,, and a family F,, y € I' of modules, their
R=-product is r[::r F, = {x = (x,)yer € [, Fy @ Isuppx| < R}, where suppx =
{y €T | x, # 0}. For any subset X of the R-product, Supp X = | {suppx | x € X}.

THEOREM 2.5 (Main Theorem). Let 8 > 8y be regular. Then for any ring R the
Sollowing are all equivalent:
(1) RpisqgR=-d
(2) ForanyT and injective modules F,,y €T, ﬂyer F, is weakly very injective.
(3) Forany " and injective modules Fy, yerl, nyer F, is very tight.
(4) Forany ' and indecomposable injectives F,,yerl, H<R

yer Iy is very tight.
(5) ForanyT andsimple S,.y €T, 1_[

Jer Sy is very tight.

PROOF. (1) implies (2). Set M = H:Zr F,,andlet N < M be finitely generated.
First, take an essential direct sum of cyclicsin D = @P{x;R | i < 1} K MNN K N,
where 1 is a cardinal. In view of (1), Lemma 1.3 (ii) now guarantees that D = ({x; |
i < t})withgenD < t < R. Alternatively, Theorem 1.5 (ii) could be used here to
guarantee the existence of such D. Set 2 = | J{suppx; | i < 7}. Since R is regular,
2] < R, Then D < ﬂyeQ F, < M, where the product is a direct summand of M.
Now let D be any (not necessarily unique) injective hull of D inside the product,
thatis, D < D < ﬂyeQF < M. Butsince D < N, D = N is isomorphic to
any anCCthC hull N of N. Next, let N be defined as that injective hull of N with
N«N<M. In general, D need not contain N, but note that D < N.

Since D < M,write M = D @ K forsome K < M. Itis asserted that K NN =0.
If not, then K N N # 0, and since D K ﬁ also DNK NN # 0. But then
DNK C DN K = 0is a contradiction. Note that D ® K = M < M is the
fixed copy of M inside M. Since D <« N as well as D < D, the identity map of
D extends to an isomorphism ¢ : N — D, and hence to a further isomorphism
Y=p®lg: X = ﬁéBK — 5631( =M<« M. Furthermore, Y |D = ¢|D = 1,
is the identity on D as required. (Note that since D « N, D® K <« M as well as
D& K « X. Hence X « A7!.)

(2) implies (3) implies (4) implies (5). These are all trivial.

(5) implies (1). In the last three implications as well as the present one, the fact
that R is regular is not used. It suffices to show that for any 0 < J < R and any
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nontrivial direct sum @f{(y,R + J)/J | y € T} < R/J, we have |[I'| < R. Let
0<JCI<Rand@®{S, |y €T} <R/IwithS, =(y,R+1)/Isimple,y €T,
satisfy Construction 1.4 (i) and (ii).

Let j be the natural inclusion map j : P, S, — ]_[:Zr S, =M & M. Let
i: EByer S, — R/I be the natural inclusion. There exists amap ¢ : R/ — M
with gi = j. In particular, pi D, .+ Sy =j D, cr Sy = B, Sy < ]_[::r S, is the
natural inclusion of the sum into the ®-product. The module N = ¢(R/I) < M is
cyclic, and hence by (5), there existsa D « M NN <« N = ¢(R/I) < M, and a
monomorphism ¢ : N — M « M such that ¥|D = 1, is the identity on D.

Since D « N, and since 0 # ¢iS, = jS§, € N, necessarily also0 # DN j§,.
Since 0 # DNjS, € jS, and jS, is simple, jS, = DNjS, € D. But then
i@, S8)SDCM.

At this point, the elements y, € R with S, = (y,R+1)/I =[(1+1)y,]R will be
needed. Next, definem = yo(1 + 1) € M. Since ¥|D = 1p,andjS, € D, jS, =
1pj Sy = ¥j S, = ¥@iS, = Yei((1 + Dy, IR} = {[¥9i(1 + DIy, IR = (my,)R.
Now m, my, € M, and Suppj S, = {y}. Since j S, = my, R, also suppmy, = {y}.
Thusforany y € I, (y} = suppmy, < suppm. Hence I' C suppm. Finally, m ¢ M
with |I"| < |suppm| < R shows that R is q.8<-d. O

COROLLARY 2.6. Theorem 2.5 remains valid if in the quantifications (2)—(5), only
index sets " with |I'| < R are admitted.

PROOF. In (5)implies (1), P{S, |y €'} < R/l implies that |'| <|R/I|<|R|. O

Not only the previous corollary, but the previous theorem as well is even new in the
ordinary ®& = R finite q.f.d. case. Note that in the Corollary 2.7 below, the quantifier
‘for every’ may not be removed.

COROLLARY 2.7. Let F,,, y € I" be any modules. Then

) forevery IF,,yel,® I”; is w.i. ifand only if for everyT, F,, y €T,
D, er Fy is wvii.

(ii) For every T, F, vy eTl, @, F is tight if and only if for every ', F,,
y el @, F isvt.

yel

3. Conjectures and examples

The only way to validate the three conjectures in Conjecture 3.1 below would be
to construct appropriate examples, or counterexamples.

CONIJECTURE 3.1. For every (regular) 8 > R, the following hold:
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[7] Goldie dimensions of quotient modules 17

(1) R isq.X=-d. does not imply that for any w.v.i. F,,,y € T, n::r F, is w.v.i.

(2) If R has the property that for any injective modules F,, y € T, H::r F, is w.i,,
then that does not imply that R is q.R<-d.

(3) Definition 2.1 and Definition 2.2 cannot be simplified by taking D <« M N N
always to be D = M N N. That is, the latter would define different concepts.

QUESTION 3.2. (4) Forevery (regular) R > R, does there exist a q.R<-d. ring R,
and a family of weakly injective modules F,, y € I' such that ﬂ;:r F, is not weakly
injective?

(5) Is there a very tight module that is not w.v.i.? There is an example in [11,
page 352, Example 3.3] and [11, page 219, Example 2.11] of a tight not weakly
injective, and not very tight module.

In the following examples Z and Q are the integers and rationals.
Any R is q.|R|"=-d., and in the next example, R is not q.|R|=-d. Let R(R) denote
the unique smallest cardinal such that R is q.R(R)<-d.

EXAMPLE 3.3. Consider the following ring R, right ideal L, and quotient mod-
ule R/L:

_(Z Q (0 7 ~ (L ©,Z(p™)
R_<OZ),L_(OZ)<K RM-(O !
Since Gd R/L = R and |R| = R, R is q.8-d. Note that Gd R = 2 but R(R) = R,.
EXAMPLE 3.4. For V a Q-vector space, let
zZ v
R__<0 Q).
Any right ideal of R is of one of the following forms:

In V In V 0 W 0w ]
NG N N e

W C V, WaQ-subspace. If dimg V > 2, R(R) =dimg V+ 2. If V = Q or (0),
R(R) = 3.

Anexample from [8, page 71] is used to show how the criterion in Theorem 1.5 may
be used, and that it cannot be simplified by combining D = L « N in Theorem 1.5.

EXAMPLE 3.5. For a fixed prime p, let R be the following commutative ring
R:{C ﬂ OZ@>)<R
0 «a

ael, E€l(p>);, L=
0 0
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Take . = 2 in Theorem 1.5, N = R, sothat L « N = R. Then genL = R;. For
0 # ¢, € Z(p™) with pc, = 0, the right ideal D < R below

_ 0 ZCl
D—(O 0)<<L

is essential in L and cyclic.

Here R is uniform, and every ideal of R is of one of the following two forms I, or
I, where 0 < VC_.Z(p®) is any subgroup

0 Z(p~>
(0 %) cn= (2 £)oct tezom),

0 Vv
12—-(0 O>’ n=2012,....

Then R/1, = Z/Zn;and R/, = Z x Z(p™)/V = L x Z(p*>°), where (b,q+ V)-r =
(ba,bt + qa+ V), b e Z, q € Z(p™). In Theorem 1.5 (ii), N is of one of the
above types R/I|,or R/I;. Then L is of the form I, /1], I,/1,, 1,/1,, or R/I; where
I; = V'ey, for a subgroup 0 < V' C V C Z(p*™), where ey, is a matrix unit. Now
Theorem 1.5 (ii) can be verified; L = I;/I] = Z or is finite. In the other cases,
L =5L/I,, 1,/I,,or R/L}; forany 0 # v € V\V' = Ve ,\I, CL, 0 # D =
(ver, + )R « L with gen D = 1. Thus R is q.f.d. It has Krull dimension one, is
not Noetherian, but is X -Noetherian.
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