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The present work focuses on a specific bouncing behaviour as a spherical particle settles
through a density interface in the absence of a neutral buoyant position. This behaviour was
initially discovered by Abaid et al. (Phys. Fluids, vol. 16, issue 5, 2004, pp. 1567–1580)
in salinity-induced stratification. Both experimental and numerical investigations are
conducted to understand this phenomenon. In our experiments, we employ particle image
velocimetry (PIV) to measure the velocity distribution around the particle and to capture
the transient wake structure. Our findings reveal that the bouncing process begins after
the wake detaches from the particle. The PIV results indicate that an upward jet forms
at the central axis behind the particle following wake detachment. By performing a force
decomposition procedure, we quantify the contributions from the buoyancy of the wake
(Fsb) and the flow structure (Fsj) to the enhanced drag. It is observed that Fsb contributes
primarily to the enhanced drag at the early stage, whereas Fsj plays a critical role in
reversing the particle’s motion. Furthermore, our results indicate that the jet is a necessary
condition for the occurrence of the bouncing motion. We also explore the minimum
velocities (where negative values denote the occurrence of bouncing) of the particle, while
varying the lower Reynolds number Rel, the Froude number Fr, and the upper Reynolds
number Reu, within the ranges 1 � Rel � 125, 115 � Reu � 356 and 2 � Fr � 7. Our
findings suggest that the bouncing behaviour is influenced primarily by Rel. Specifically,
we observe that the bouncing motion occurs below a critical lower Reynolds number
Re∗

l = 30 in our experiments. In the numerical simulations, the highest value for this
critical number is Re∗

l = 46.2, which is limited to the parametric ranges studied in this
work.

Key words: stratified flows, particle/fluid flow

† Email address for correspondence: zjudengjian@zju.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 997 A49-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

66
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:zjudengjian@zju.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.663&domain=pdf
https://doi.org/10.1017/jfm.2024.663


S. Wang, P. Kandel, J. Deng, C.P. Caulfield and S.B. Dalziel

1. Introduction

Density stratification resulting from non-uniform temperature or salinity distributions
is prevalent in oceans and lakes. Such stratification affects the settling or rising of
submerging particles, and has significant impacts on environmental issues such as marine
snow aggregation, thin layer formation, oil spill dispersion and sediment deposition
(Prairie & White 2017; Diercks et al. 2019). Therefore, comprehending the fluid dynamics
of particle settling (or rising) in a stratified ambient fluid is crucial for accurate predictions
of such actions.

In a homogeneous fluid, the hydrodynamic force acting on a particle accelerating
under gravity can be decomposed into buoyancy force, steady drag, added mass and
history (Basset) force. The steady drag increases with velocity and ultimately balances
the reduced gravity, resulting in a steady particle velocity. However, in a stratified fluid,
the particle experiences an additional drag force caused by the stratification, referred to
as ‘stratification drag’. As a result, the settling velocity of particles in a stratified fluid
is significantly reduced (Srdić-Mitrović, Mohamed & Fernando 1999; Abaid et al. 2004;
Camassa et al. 2009; Yick et al. 2009; Camassa et al. 2010; Doostmohammadi, Dabiri
& Ardekani 2014b; Verso, van Reeuwijk & Liberzon 2019; Magnaudet & Mercier 2020;
Mandel et al. 2020).

There exist various explanations for the origin of stratification drag. Among these, the
widely accepted one is that it arises due to the buoyancy of the associated lighter upper
fluid, as the settling particle distorts the isopycnals, leading to the dragging of some upper
fluid to a lower position. This phenomenon is commonly referred to as the entrainment of
the lighter fluid, and the volume of fluid carried along is termed drift or partial drift volume
(Magnaudet & Mercier 2020; More & Ardekani 2023). In an attempt to understand this
phenomenon, Srdić-Mitrović et al. (1999) carried out experiments in which particles were
made to settle in a three-layer stratified fluid consisting of two homogeneous layers and
a density transition layer (interface) in between, at Reynolds numbers 1.5 � Re � 15 and
Froude numbers 3 � Fr � 10. They observed that the total drag enhancement could be
estimated by considering the total buoyancy of the upper fluid dragged below the upper
bound of the interface, before the maximum drag was reached. They also noted that the
contribution of internal waves was negligible before the wake breaks, as these waves were
generated only after the rupture of the wake. Verso et al. (2019) conducted experiments
with four different particles, settling in the same type of stratification, but in a wider
parameter range (2 � Re � 106 and 0.5 � Fr � 28). They developed a time-dependent
stratification force model for these particles, which assumed that the stratification force was
entirely contributed by the buoyancy of an effective wake. The wake volume was assumed
to be constant within the interface and decrease exponentially until a new terminal velocity
was reached.

In the study by Yick et al. (2009), a combined experimental and numerical investigation
study focused on settling particles in a linearly stratified fluid at small Reynolds numbers
(Re ∼ O(1)). They found that the buoyancy of a shell of fluid around the particle, rather
than the entire distorted region, is responsible for the drag enhancement. Moreover, they
proposed that the total drag increment can be scaled by a dimensionless parameter, the
Richardson number, which delineates the relative significance of buoyancy and viscous
shear forces. A similar mechanism was found for the stratification drag experienced by a
rising grid of bars by Higginson, Dalziel & Linden (2003), albeit at significantly higher
Reynolds numbers (Re ∼ O(103)). They approximated the volume of dragged fluid using
the drift volume in inviscid fluid, showcasing a comparable trend.

While buoyancy explains the stratification drag in numerous instances, Torres et al.
(2000) was the first to propose that the augmented drag arises from the specific
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flow structure. They found that the drag enhancement remains minimal until a vertical
upward jet forms at the rear of the particle, particularly under strong stratification
conditions (Fr � 20). Utilising Bernoulli’s theorem, they elucidated the generation of this
‘jet’, and suggested that the associated low-pressure zone behind the particle is responsible
for the enhanced drag. More recently, Zhang, Mercier & Magnaudet (2019) employed a
force decomposition technique to quantify the drag force arising from various mechanisms.
Their findings indicated that the vorticity field induced by buoyancy effects contributes
predominantly to the stratification drag, with buoyancy itself playing a secondary role.
They also proposed scaling laws for different stratification drag components based on
theoretical analysis. Several of their predictions have since been confirmed in subsequent
experiments and numerical simulations (Mandel et al. 2020; Ahmerkamp et al. 2022).

The flow structure exhibited by the vertical motion of a particle in a stratified fluid is
significantly different to that in a homogeneous fluid. In a stratified fluid, the baroclinic
torque (∇ρ × ∇p) results in vorticity generation whenever there is a misalignment
between density and pressure gradient (Magnaudet & Mercier 2020). For low Reynolds
numbers (Re � 1), top-down symmetrical toroidal eddies are induced by a vertical,
downward point force (Stokeslet) under linear stratification, which is similar to the eddy
formed under the restriction of two horizontal walls, indicating the suppression of vertical
flow by stratification (Ardekani & Stocker 2010). For higher Reynolds numbers (0.05 �
Re ≤ 100), toroidal eddies still exist but lose the top-down symmetry, and a vertical
upward jet is simultaneously generated at the centreline downstream of the particle (Zhang
et al. 2019). This jet was observed experimentally over a wide range of Froude numbers
(0.1 � Fr � 35) and Reynolds numbers (30 � Re � 4000), with its shape and strength
varying with Re and Fr (Hanazaki, Kashimoto & Okamura 2009).

The intricate fluid dynamics that arises from particle interactions in stratified fluids
results in several counter-intuitive behaviours. For instance, the settling velocity of a
particle varies non-monotonically as it passes through a density interface or settles in linear
stratification (Srdić-Mitrović et al. 1999; Doostmohammadi et al. 2014b; Verso et al. 2019).
Remarkably, a particle can sometimes experience a negative velocity during sedimentation
as it traverses an interface with a large density gradient, despite having a density that is
always higher than the fluid, and no neutral position exists (Abaid et al. 2004). In this
scenario, the particle experiences substantial stratification drag, exceeding the reduced
gravity and leading to a reversal in particle motion. Yet while steady or quasi-steady drag
has been examined extensively, only a limited number of studies have delved into the
transient stratification drag accompanying this bouncing behaviour.

The discoverers of this phenomenon, Abaid et al. (2004), observed in their experiments
that a plume forms in the near-wake of the particle and ascends to the top layer before the
particle reverses its motion. They proposed that the ascending plume is responsible for the
bouncing motion. More recently, Camassa et al. (2008) and Verso et al. (2019) suggested
that the bouncing motion occurs only when the combined buoyancy of the drift fluid and
particle exceeds the gravitational force acting on the particle, assuming that the enhanced
drag is entirely due to the enhanced buoyancy of the drift fluid. These studies propose
different drag enhancement mechanisms, and no consensus has been reached yet.

This study aims to offer more in-depth insights into the phenomena of stratification
drag and the mechanisms governing bouncing motion. To our knowledge, Abaid et al.
(2004) is the sole experimental investigation that has captured bouncing behaviour
using shadowgraph techniques. With the advancement of experimental equipment and
techniques, it has become feasible to conduct comprehensive whole-field density and
velocity measurements in stratified fluids. For instance, in studies involving a particle
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moving stably in linearly stratified fluid, researchers such as Hanazaki et al. (2009) and
Okino, Akiyama & Hanazaki (2017) employed particle image velocimetry (PIV) to assess
the velocity distribution around the particle and within the jet. Additionally, Okino et al.
(2021) utilised laser-induced fluorescence to measure the density distribution surrounding
the particle, including within the thin density boundary layer and the jet. However,
experimental measurements of the velocity and density distribution during the transient
process of freely settling particles have yet to be conducted. Such measurements are crucial
for gaining a comprehensive understanding of the bouncing mechanism. For simplification
purposes, this study focuses solely on spherical particles and disregards particle rotation.
Investigations involving non-spherical particles settling through a density interface can be
found in Doostmohammadi & Ardekani (2014a), Mrokowska (2018, 2020) and More et al.
(2021).

Before delving into the mechanisms of bouncing, a parametric study is conducted
to identify the parameter regime in which bouncing occurs. Previous research has
demonstrated that the bouncing behaviour is influenced by various parameters. For
instance, Camassa et al. (2022) discovered that the critical particle density ρp for bouncing
can be expressed as a linear combination of the densities of the upper and lower fluid
layers. Moreover, Doostmohammadi & Ardekani (2014a) observed that at a relatively
higher density ratio (ρl − ρu)/ρu, an ellipsoid could bounce briefly as it traverses a density
interface. Additionally, Blanchette & Shapiro (2012) discovered that a high ratio (ρp −
ρu)/(ρp − ρl) could cause a drop to undergo temporary reverse motion as it descends
through a density transition layer with the same surface tension. Furthermore, the Froude
number is a crucial parameter affecting the oscillation of a particle or droplet near its
neutral buoyancy point in a linearly stratified fluid (Bayareh et al. 2013; Doostmohammadi
et al. 2014b). In the experiments conducted by Abaid et al. (2004), the transient levitation
of particles was discovered by decreasing the lower terminal velocities, indicating that the
lower Reynolds number should be considered.

The aforementioned studies suggest that the bouncing behaviour is influenced by various
parameters, including the ratio of densities, the ratio of density differences, Froude number
and Reynolds number. However, some of these parameters are correlated, necessitating the
selection of the smallest set of parameters controlling the bouncing motion.

For a particle in a three-layer stratified fluid, the terminal velocities in the upper and
lower layers are determined by the force balance

Fd = G − Fb, (1.1)

where Fd is the steady drag, G is gravity, and Fb is the buoyancy force. Here, Fd is defined
as

Fd = 1
2 Cd(Re)ρf U2

f Sp, (1.2)

where Cd is the drag coefficient depending solely on Re, Sp is the cross-sectional area of
the particle, ρf and Uf refer to the density and terminal velocity in the upper or lower fluid.
Equation (1.1) leads to a relation between the terminal velocity and the densities:

1
2 Cd(Re) ρf U2

f Sp = (ρp − ρf )gVp, (1.3)

where ρp is the particle density, and Vp is the particle volume. Then the terminal velocity
is determined by

Uf =
√

ρp − ρf

ρf

4gD
3Cd(Re)

. (1.4)
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Parameter Symbol Definition Range of values

Particle density ρp — 1121.58–1125.26 kg m−3

Particle diameter D — 10.055–10.128 mm
Particle velocity U — −0.559–4.908 cm s−1

Jet velocity uj — —
Upper fluid density ρu — 1113.92–1118.63 kg m−3

Lower fluid density ρl — 1121.45–1123.66 kg m−3

Interface thickness L — 2.52–13.06 cm
Upper Reynolds number Reu ρuUuD/μu 115–356
Lower Reynolds number Rel ρlUlD/μl 1–125
Froude number Fr Uu/ND 2–7
Brunt–Väisälä frequency N

√
(g(ρl − ρu)/Lρref ) 0.62–1.88

Reference density ρref (ρu + ρl)/2 1118.08–1120.09 kg m−3

Prandtl number Pr ν/κ ∼ 700
Density ratio �ρl (ρp − ρl)/ρl (0.03–2.54) × 10−3

Table 1. Definitions and ranges of parameters covered in the present work.

Therefore, the influences of the upper and lower density ratios, �ρu = (ρp − ρu)/ρu and
�ρl = (ρp − ρl)/ρl, are included in the upper and lower Reynolds numbers (defined as
Reu = UuD/νu and Reu = UuD/νu, respectively) through the terminal velocities Uu and
Ul.

Another feature of stratified fluid is the density gradient, which can be characterised
by the Froude number, defined as Fr = Uu/ND, where N is the Brunt–Väisälä frequency,
representing the natural oscillation frequency of a vertically displaced parcel in a stratified
fluid, calculated as

N =
√

g
ρref

ρl − ρu

L
, (1.5)

where L is the thickness of the density transition layer.
In the current study, the problem is characterised using Reu, Rel and Fr. A systematic

study is conducted over parameter ranges 1 � Rel � 125, 115 � Reu � 356 and
2 � Fr � 7. All relevant parameters are listed in table 1.

The paper is structured as follows. Section 2 introduces the experimental methodology,
comprising the experimental set-up and measurement techniques. The numerical
methodology and validation process are presented in § 3. Section 4 discusses the results,
starting with the transient flow structure and force analysis during the settling process to
gain insights into the bouncing mechanisms. Next, the effects of the Reynolds number of
the lower layer, Froude number, and Reynolds number of the upper layer on the minimal
velocity of the particle are examined to identify the primary controlling parameter. Finally,
§ 5 presents the conclusions of the study.

2. Experimental approach

2.1. Experimental set-up
The experiments were conducted in an experimental tank made of glass, with total depth
60 cm to ensure that terminal velocity was achieved. To avoid interaction between the
particle and the tank walls, the tank has a large base area, 30 cm × 30 cm. The working
fluids are prepared by dissolving salt in fresh water, with different concentration ratios in
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(a)

z

LED

Camera 1 Camera 1

Camera 2

Laser sheet

(b)

Figure 1. Experimental set-ups: (a) set-up 1 for recording particle trajectories; (b) set-up 2 for simultaneous
wake visualisation and PIV measurement.

separate buckets. The solution is kept at room temperature for at least 24 h before filling the
tank, to eliminate resolved gas and achieve a uniformly stable concentration distribution.

Initially, the tank is half-filled with heavy fluid. Then the light fluid is pumped slowly
and horizontally to the top of the heavy fluid using a micro pump, at a low flow rate
100 ml min−1, to minimise mixing of the two fluids. This filling method results in an
error-function-type density profile. The tank is allowed to stand for at least half an hour
after filling, and before the experiments, to reduce disturbances caused by the pumping.
The standing time varies with cases to achieve different thicknesses of the transition layer;
a thicker transition layer requires longer time for the interdiffusion of two fluids.

Spherical non-porous and reusable nylon particles with diameter D ∼ 10 mm and
densities ranging from 1120 to 1130 kg cm−3 are used in the experiments. Before each
experiment, the particles are fixed at the centre of the experimental tank cross-section,
15 cm from the side walls, 2 cm below the free surface, and approximately 25 cm above the
density transition layer. Subsequently, the clamp is opened cautiously to release the particle
without disturbing the fluid. The time interval between each release is approximately
10 min, ensuring that the fluid is relaxed to its quiescent state. The settling process of
the particles is captured by a high-speed camera at frame rate 100 fps.

Two distinct experimental set-ups are employed, as depicted in figure 1, to meet the
requirements for capturing particle trajectories and measuring surrounding flow fields,
respectively. To record the particle trajectories, a single camera is positioned on one side
of the tank, with bottom illumination provided by a panel of light-emitting diodes (LEDs)
(see figure 1a). The opposite sidewall of the tank is coated with black paint to prevent light
reflection. Except for PIV measurements, the camera captures a window approximately
20 × 20 cm2 in size, with 1024 × 1024 pixels, yielding resolution 0.2 mmpixel−1. The
PIV experiments utilise a closer view of 9.4 × 7.3 cm2, with higher image resolution
2048 × 1600 pixels, resulting in a finer resolution 4.6 × 10−5 mm pixel−1.

In the second experimental set-up, Rhodamine B dye is used to visualise the upper
fluid, while seeding particles are added to both the upper- and lower-layer fluids for PIV
measurements. To simultaneously capture the visualised wake structure and measure the
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velocity fields, two cameras are positioned at opposite sides of the tank and carefully
aligned to ensure that their optical axes are parallel (as illustrated in figure 1b). The centre
plane of the tank perpendicular to the camera optical axis is illuminated by a 2 mm thick
laser sheet from the side. The two cameras are synchronised to obtain simultaneous image
pairs, with one camera equipped with a long-pass filter to capture the dyed wake, and the
other with a short-pass filter to obtain images of seeding particles. To capture the flow
structure of the entire settling process, it is crucial that the particle remains within the
illuminated laser sheet plane. Therefore, the densities of the particle and fluid must be
selected carefully to prevent any out-of-plane motion, and the particle must be released
with great care to minimise disturbances. It is worth mentioning that the laser sheet heats
the fluid near the particle surface, which has a negligible effect in the upper layer, as the
vicinity fluid circulates with the surrounding fluid and transfers the heat away quickly.
However, as the particle bounces and is retained at the interface, the heated fluid at
the particle surface becomes lighter and rises, which increases the drag acting on the
particle and prolongs the particle’s suspending time at the interface. Nevertheless, for flow
visualisation and PIV measurements, where the focus is on the flow structure and velocity
distribution, the laser sheet is still an effective illumination approach.

2.2. Experimental measurements
To measure the density distribution of the transition layer, 12 thin needles are inserted
horizontally into the tank from punched holes at the sidewall, with 4 mm vertical intervals,
and connected to 12 syringes for taking samples. Each sample takes 2.5 ml fluid, and a
total of 30 ml fluid is taken for each measurement, leading to a variation in height of
less than 0.4 mm. Thus the modification to the density distribution is negligible. These
samples are then measured using a density meter (Anton-Parr DMA 4500) with accuracy
0.01 kg m−3. Density distribution measurements are performed twice for each test, before
and after dropping the particles. The measured density of the 12 samples is fitted to an
error-function-shaped function, given by

ρ = ρu + ρl

2
+ ρu − ρl

2
erf(α(z − zref )), (2.1)

which satisfies the density distribution in the transition layer. The parameters ρu and ρl are
the upper- and lower-layer fluid densities, zref is the reference height, corresponding to the
centre of the density transition layer, α is a scaling factor determining the thickness of the
density transition layer, and erf(x) is the error function, which is written as

erf(x) = 2
π

∫ x

0
e−t2 dt. (2.2)

The measured density profiles for one of the experiments are presented in figure 2(a).
The density profile becomes smoother after the experiment. We take the region covering
98 % of the density variation as the density interface thickness. The average of these two
measurements is used as the final interface thickness, represented by the shaded area in
figure 2(a).

It is crucial to monitor and control the temperature during experiments due to its impact
on fluid and particle densities. For instance, with salinity 16 % and temperature 18 ◦C (for
the current working fluid), a temperature variation 1 ◦C can lead to a density variation
0.41 kg m−3 for the fluid. Likewise, due to manufacturing discrepancies, particles respond

997 A49-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

66
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.663


S. Wang, P. Kandel, J. Deng, C.P. Caulfield and S.B. Dalziel

1123
Sample before exp.

Fitting before exp.

Sample after exp.

Fitting after exp.

1122

1121

1120

ρ
(k

g
 m

–
3
)

1119

1118
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(b)

0.03 0.06 0.09

Figure 2. (a) Density distribution before and after the experiments. The grey area represents the density
interface, which covers 98 % of density variation between the upper and lower layers. (b) Velocity profiles
of five repeated droppings of the same particle.

differently to temperature changes. In our experiments, a temperature fluctuation 1 ◦C
results in a density variation ranging from 0.35 to 0.45 kg m−3 for the particles.

Given the sensitivity of the bouncing motion to density differences between the
lower-layer fluid and the particle, even a slight increase in density difference of 0.1 kg m−3

can significantly alter settling behaviour, potentially transitioning from bouncing to
unidirectional settling. It is worth noting that reproducing the bouncing behaviour is
challenging, even with the same particle and the same upper and lower fluids, without
accounting for temperature effects.

To mitigate temperature variations in the working fluid, experiments are conducted
in an enclosed room with the temperature controlled by an air conditioner. Real-time
temperature monitoring ensures that temperature variations remain below 1 ◦C for all tests.
To minimise the temperature influences on particle densities, particles are stored in a water
tank (storing tank) where temperature fluctuations are less pronounced compared to the
air. The storing tank, with dimensions 50 cm height and 10 cm × 10 cm cross-section,
is filled with continuous stratified salty water prepared using the double-bucket method
(Economidou & Hunt 2009). The stratified fluid in the storing tank allows for accurate
measurement of particle densities. Particle density is determined by measuring the fluid
density at the height of the particle centre, ensuring comparable accuracy with the fluid
density.

Individual density measurements for particles are conducted before release. For each
particle, three syringes of fluid samples (2.5 ml each) are taken at the height of the
particle centre, and the average density of these samples is recorded as the particle
density. After measurements, particles are taken out from the storing tank and clamped
in the experimental tank, and their diameter is measured post-experimentation using a
micrometer with accuracy 0.001 mm.

The viscosity of the fluid is calculated using an empirical formula with accuracy
±1.5 %, described in (22) of Sharqawy, Lienhard & Zubair (2010):⎧⎪⎪⎨

⎪⎪⎩
μ = μw(1 + a1Sa + a2S2

a),

μw = 4.2844 × 10−5 + (0.157(Te + 64.993)2 − 91.296)−1,

a1 = 1.541 + 1.998 × 10−2Te − 9.52 × 10−5T2
e ,

a2 = 7.974 − 7.561 × 10−2Te + 4.724 × 10−4T2
e .

(2.3)
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The formula consists of two equations. The first equation calculates the viscosity μ as a
function of the salinity Sa and two constants, a1 and a2. The second equation calculates
μw, a constant used in the first equation. The values of a1, a2 and μw are determined based
on the temperature Te.

Instantaneous particle displacements are obtained by fitting the discrete time-dependent
position points with a quantic smoothing spline, following the methods of Truscott, Epps
& Techet (2012) and Epps (2010). A fitting error tolerance E = 1 × 10−7 m2 s−1 is used
for all experimental position data, which provides accurate fitting data and smooth fitting
derivatives. The velocity and acceleration of the particles are then calculated based on the
time histories of the fitted particle displacements.

Because the passing of particles introduces disturbances to the density transition layer
and expedites the diffusion, no more than five particles are dropped in each fluid tank.
Before the experiment, repeatability validation is conducted separately. The settling
velocities are almost unchanged for the repeated releases, as shown in figure 2(b).

3. Numerical method

3.1. Numerical model
We solve the time-dependent incompressible Navier–Stokes equations with the finite
volume method (Ferziger & Perić 2002). The momentum equation is solved on a moving
grid domain using the arbitrary Lagrangian Eulerian formulation (Jasak 2009). The
same framework of dynamic mesh has also been adopted in our previous study in a
homogeneous flow (Deng & Caulfield 2016).

The integral form of the governing (conservation) equation in an arbitrary moving
volume V bounded by a closed surface S is

∂

∂t

∫
V

ρu dV +
∮

S
ds · ρ(u − ub)u =

∮
S

ds · (−pI + μ ∇u) +
∫

V
ρg dV, (3.1)

where ρ is the fluid density, u is the fluid velocity, ub is the boundary velocity of a control
volume, and p is the pressure. The Boussinesq approximation is applied to account for
the stratification effect, where the density variation enters the momentum equation only
through the buoyancy term. Division by the reference density in (3.1) yields

∂

∂t

∫
V

u dV +
∮

S
ds · (u − ub)u =

∮
S

ds ·
(

− p
ρref

I + ν ∇u
)

+
∫

V

ρ

ρref
g dV, (3.2)

with kinematic viscosity ν = μ/ρref . The transport equation for density is given as

∂

∂t

∫
V

ρ dV +
∮

S
ds · ρ(u − ub) =

∮
S

ds · (κ∇ρ), (3.3)

where κ is the scalar diffusivity, defined as κ = ν/Pr. In our simulations, we choose
Prandtl number Pr = 700, corresponding to the salinity-induced stratification in water.

The present study focuses on moderate Reynolds numbers (Re ≤ 356), where
the axisymmetric assumption can be applied. Previous numerical investigations by
Doostmohammadi et al. (2014b) observed that the flow remains axisymmetric up to
Reynolds number 353 without vortex shedding when a particle settles in a linearly
stratified fluid. Additionally, Torres et al. (2000) demonstrated the maintenance of a nearly
axisymmetric structure at Re ∼ 800 for a uniformly moving particle (Torres et al. 2000;
Doostmohammadi et al. 2014b).
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Top

Bottom

Refined

region
Axis

Sphere
Far field wall20D

10D

Figure 3. Illustration of the computational domain. The blue dashed lines show the boundaries of blocks for
mesh generation.

For spatial discretisation, second-order upwind schemes are employed for the convection
terms, and central differences are used for the Laplacian terms. The time discretisation
follows a second-order implicit Euler method. The PISO (pressure-implicit with splitting
of operators) scheme is employed for the pressure–velocity coupling. The computational
domain is illustrated in figure 3.

The domain size is 25D × 90D. For mesh generation, the whole domain is divided into
8 blocks (as depicted by the blue dashed lines in figure 3). An O-grid is used around the
sphere within a region of size 10D × 20D, which is denoted as the refined region. In this
region, the grid size increases exponentially with a fixed rate from the particle surface
(0.0014D) to its boundary (0.0975D). Rectangular cells with constant spacing are used
outside the refined region.

The motion of the sphere is achieved using a whole domain moving strategy. For each
time step, the total hydro-force Fhydro acting on the particle is calculated as

Fhydro = −
∫

S
pn dS −

∫
S
μ(∇u + ∇uT) · n dS, (3.4)

where n represents the unit normal to the surface pointing outside. The total force is then
calculated as Ft = G + Fhydro. The motion of the particle is governed by the equation

ρp
1
6

πD3 d2z
dt2

= Ft. (3.5)

The boundary conditions are set as follows. For velocity, a no-slip boundary condition
for moving mesh (u = ub) is imposed on the sphere surface, while a zero-gradient (normal
gradient at the patch is zero) condition is applied to all other boundaries. For pressure
(prgh = p − ρg · h), a fixed value of zero is imposed on the top boundary, and a fixed-flux
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Particle settling through a density transition layer

Mesh no. First-layer thickness Maximum grid size Total cell number

1 0.0056D 0.3847D 23 425
2 0.0037D 0.2566D 52 539
3 0.0028D 0.1943D 93 050
4 0.0019D 0.1296D 209 850
5 0.0014D 0.0975D 348 000

Table 2. Detailed information for five different mesh resolutions used for the resolution tests.

condition is adopted for the pressure at all other boundaries, which sets the pressure
gradient to the provided value such that the flux on the boundary is that specified by
the velocity boundary condition. For density, fixed values are imposed on the top and
bottom boundaries (ρu and ρl, respectively), while a zero-gradient condition (n · ∇ρ = 0)
is applied to other boundaries.

In each simulation, the particle is allowed to settle for 10 s in the upper-layer fluid to
ensure that it has reached a steady velocity. The simulation ends 80 s after the particle
enters the interface. Each case takes 2 days to complete, running on 16 AMD cores.

3.2. Numerical validation
Initially, we conduct a mesh resolution test to assess the performance of five different
meshes. The domain size is fixed at 25D × 90D, and a consistent refinement strategy is
applied across all testing meshes, as illustrated in figure 3. The five testing meshes differ in
their first-layer thickness (of the particle surface), each with a fixed growth rate, resulting
in varying maximum grid sizes and total cell numbers. These specifications are detailed in
table 2.

The settling velocities of the particle simulated on the testing meshes are depicted in
figure 4, considering a particle settling in a three-layer stratified fluid with Reu = 198,
Rel = 26 and Fr = 2.3. Notably, the results exhibit strong convergence for meshes 4 and 5.

Furthermore, we compare the density and velocity fields along the central axis near the
lower surface of the particle for different meshes in figure 5. The differences between
meshes 4 and 5 are found to be negligible, with mesh 5 ultimately selected for the
subsequent phases of our study.

According to Schlichting & Klaus (2003), the estimations of the momentum and density
boundary layers (lm and ld, respectively) are given by

lm ∼ O
(

D√
Re

)
(3.6)

and

ld ∼ O
(

D√
Re Pr

)
. (3.7)

For stratified flows with Pr > 1, the boundary layer thickness is smaller for density than
for velocity at a given Reynolds number. Thus a better-refined mesh is required for solving
the density field. Based on (3.6) and (3.7), at the highest Reynolds number considered
in our simulations (Reu = 356, Pr = 700), the momentum and density boundary layer
thicknesses are estimated to be lm ∼ 0.053D and ld ∼ 0.002D, respectively, though our
results indicate that the actual density boundary layer is thicker than this estimation. In
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Figure 4. Velocity profiles of a settling particle at Reu = 198, Rel = 26 and Fr = 2.3, using five different
meshes. The inset highlights the zone where bouncing occurs.
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Figure 5. Variations of the dimensionless (a) density and (b) vertical velocity at the central axis near the lower
particle surface when it reaches the lower bound of the density interface, considering Reu = 198, Rel = 26 and
Fr = 2.3, using five different meshes. The distance from the particle surface is denoted by ds, and D is the
particle diameter.

figure 6, we present the density field solved by mesh 5 at Reu = 356, as the particle
just passes the interface, and the density transition layer is compressed to be very thin.
It is clear that the density boundary layer contains 5–7 cells. The density field within the
boundary layer is well resolved using mesh 5. The mismatch of our numerical result and
the estimation of (3.6) can be explained as follows. First, some previous studies pointed
out that the actual thickness of the density boundary layer can be larger than the predicted
value of (3.7) at moderate Reynolds numbers (Torres et al. 2000; Doostmohammadi et al.
2014b). Second, for a particle settling through a density interface, its velocity drops rapidly
once it enters the density interface. The instant Reynolds number is smaller than Reu, and
the deceleration process also leads to a thicker boundary layer than that at a steady settling
state.
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Particle settling through a density transition layer

(a) (b)

Figure 6. Density distribution surrounding the settling particle, along with a detailed view near the lower
surface. The simulation is conducted using mesh 5 (refer to table 2) at Reynolds number Reu = 356.

To test the influence of the domain size, we increase it to 35D × 110D while keeping
the grid distribution within the refined region unchanged. Compared to domain size 25D ×
90D (mesh 5), the velocity variations are respectively +0.03 %, −0.59 % and +1.09 % for
Uu, Ul and Umin, supporting that the domain size of mesh 5 is acceptable for our numerical
model.

We further compare our numerical results with experiments. Since the settling velocity
is of primary importance in the current study and is determined by the physical properties
of the system, we maintain the physical properties the same as in the experiments,
and compare the variation of settling velocity. In a homogeneous fluid, we test the
accelerating process of a particle settling from rest. The particle has diameter D = 0.5 mm
and density ρp = 2560 kg m−3, settling in fresh water (with kinematic viscosity ν =
8.9 × 10−7 m2s−1, density 998 kg m−3), corresponding to experiment 1 in Mordant &
Pinton (2000). As shown in figure 7(a), the numerical and experimental velocities agree
very well at the initial stage, and a terminal velocity 0.0773 m s−1 is reached, which has a
discrepancy less than 4 % compared to the experimental value 0.0741 m s−1.

In a homogeneous fluid, the steady drag coefficient Cd can be estimated by the empirical
formula

Cd = 24
Re

+ 6

1 + √
Re

+ 0.4, (3.8)

with error less than 10 % for 0 < Re < 2 × 105 (White & Majdalani 2006). The terminal
velocity predicted using (1.4) and (3.8) is 0.0765 m s−1, which is also plotted in figure 7(a)
(the horizontal green dashed line). Our simulation shows good agreement with this
prediction, with discrepancy 1.03 %. In figure 7(b), the simulated drag coefficients Cd
are presented, which agree with those predicted by (3.8).

Finally, we test our numerical model for a particle settling in a three-layer stratified fluid,
and compare the results with our experiment. The physical parameters in the experiment
are particle diameter D = 1.0 cm, particle density ρp = 1126.36 kg m−3, upper-fluid
density ρu = 1119.42 kg m−3, lower-fluid density ρl = 1125.90 kg m−3, interface
thickness L = 2.78 cm, upper-fluid viscosity νu = 1.69 × 10−6 m2 s−1 and lower-fluid
viscosity νl = 1.71 × 10−6 m2s−1. These physical parameters result in non-dimensional
parameters Reu = 198, Rel = 20 and Fr = 2.3. Limited by our numerical method, the
kinematic viscosity is uniform in the simulation. In figure 8, we present the settling
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Figure 7. Validation of numerical simulations for homogeneous fluid. (a) Temporal variation of velocity for
a settling particle (density 2560 kg m−3, diameter 0.5 mm) in fresh water (density 998 kg m−3, kinematic
viscosity 8.9 × 10−7 m2 s−1). The blue solid line represents simulation results, the black dash-dotted line
represents experimental data from Mordant & Pinton (2000), and the green dashed line represents the terminal
velocity predicted using the drag law proposed by White & Majdalani (2006). (b) Variation of steady drag
coefficients with Reynolds number. Blue triangles denote simulation data, and the black solid line represents
the drag law proposed by White & Majdalani (2006).
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Figure 8. Velocity profiles of a particle settling in a stratified fluid with two different numerical set-ups – a
comparison to our experiment.

velocities of the experiment compared with two simulation cases. Simulation 1 has
the same physical parameters as the experiment, except that the uniform upper-layer
viscosity is set to the whole domain, resulting in a higher Reynolds number, Rel = 26.
In simulation 2, the lower-layer density is adjusted slightly to match Rel to the experiment.
Both simulation cases successively predict the bouncing behaviour. Simulation 2 aligns
better with the experiment when all the non-dimensional parameters (Reu, Rel, Fr) match
the experiment.
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Figure 9. Settling velocity and acceleration of the particle with Reu = 347, Rel = 20 and Fr = 2.5 as
functions of (a) vertical position and (b) settling time. The left- and right-hand vertical axes correspond
respectively to the settling velocity and acceleration. In (a), the vertical position z = 0 refers to the middle
plane of the transition layer, and the time t = 0 in (b) refers to the instant when the particle’s centre reaches
the upper boundary of the transition layer. In (a), the shaded region represents the transition layer, and in (b),
the two shaded regions denote when the particle’s centre is within the transition layer. Note that the right-hand
shaded region in (b) denotes when the particle re-enters the transition layer after bouncing. In (b), four stages
are divided by blue dashed lines.

4. Results and discussion

4.1. Bouncing process
First, we choose a typical set of parameters, to demonstrate the bouncing process of a
particle settling through a density transition layer. This bouncing phenomenon, also known
as levitation (Abaid et al. 2004), is detailed through the particle’s velocity, acceleration
and visualised flow patterns. In this subsection, the non-dimensional parameters are
Reu = 347, Rel = 20 and Fr = 2.5. Under these Reynolds numbers, the flow is nearly
axisymmetric, allowing the particle to remain within the laser-sheet-illuminated plane
throughout the settling process and to be captured for observation.

The velocity and acceleration of the bouncing particle are depicted in figure 9. As
illustrated in figure 9(a), the deceleration of the particle begins before it enters the density
interface. This is due to the interface’s presence, which limits the vertical displacement of
the fluid (Ardekani & Stocker 2010). As the particle penetrates the interface, its velocity
decreases more rapidly, with the maximum deceleration occurring at approximately the
lower bound of the interface. The particle then reaches a zero velocity in the lower layer
and bounces up, re-entering the interface. The bouncing is akin to the beginning of a
damped oscillation, which is more obvious in figure 9(b). Note that this oscillation is not a
common feature of a bouncing particle. It occurs only in strong bouncing scenarios where
the particle can re-enter the interface. Finally, the particle accelerates again and gradually
approaches its new terminal velocity.

A series of images, corresponding to figure 9, showing the wake development during the
entire settling process, are presented in figure 10. The settling process is divided into four
stages, as indicated by vertical dashed lines in figure 9(b), and the corresponding wake
behaviour is observed in each stage. The four stages are as follows.

(1) Wake attachment (figures 10a–e). As the particle enters the interface, a large amount
of upper fluid is dragged by the particle, creating an attached wake. The velocity of
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Figure 10. A sequence of images showing the bouncing process of a particle settling through a density
transition layer, corresponding to figure 9. The two red dashed lines in each image represent the bounds of
the interface. The non-dimensional parameters are Reu = 347, Rel = 20 and Fr = 2.5.
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t = 8.5 s

Figure 11. Full image of the internal wave at t = 8.5 s between figures 10(o) and 10(p).

the particle decreases rapidly, and the deceleration reaches its maximum at the end
of this stage (figure 9b).

(2) Wake detachment (figures 10f –j). At this stage, most of the attached wake detaches
from the particle and returns to its neutral position. A long, thin column of lighter
fluid remains attached to the centre axis above the particle. As the volume of attached
lighter fluid decreases due to the wake detachment, the extra buoyancy diminishes,
resulting in a reduced contribution to the stratification drag (refer to the variation of
Fsb in figure 17). Concurrently, the particle’s velocity continues to decline, and the
acceleration diminishes compared to the first stage (figure 9b). By the end of this
stage, the particle loses over 90 % of its initial entering velocity Uu.

(3) Transient bouncing (figures 10k–q). The particle comes to a halt (at t = 2.61 s) and
rebounds upwards. As the bouncing event approaches, the particle’s instantaneous
vertical velocity U(t) decreases to near zero, resulting in a small Froude number
Fr(t) = U(t)/ND � 1. This situation could lead to the formation of a thin jet, akin
to type A reported by Hanazaki et al. (2009), as depicted in figure 5(k) (t = 2.4 s).
Furthermore, a strong internal wave emerges at the interface, triggered by the rupture
of the wake (figure 11). Nearly all the lighter fluid has detached from the particle by
this stage, evidencing a minimal contribution of the extra buoyancy from the dragged
light fluid to the drag during the bouncing event. This observation aligns with the
force decomposition findings detailed in § 4.3.3.

(4) Final sedimentation (figures 10r–t). Following the bouncing and subsequent
oscillation, the particle gradually descends to the bottom of the tank. Although it
is challenging to discern in figures 10(n–q) before detachment from the particle
surface, a small amount of light fluid persists at the particle surface. Note the
extended time interval between images. During this phase, the particle settles
extremely slowly after traversing the density interface. At t = 50 s, its velocity
restores to approximately 30 % of the terminal velocity in the homogeneous lower
layer.

These four stages are representative of the typical settling process experienced by a
bouncing particle. It is important to note that the actual bouncing process begins only at
the third stage, after the wake has detached from the particle. This is consistent with the
observations made by Abaid et al. (2004) that the particle changes its direction of motion
after the rising of the ‘plume’, which in our experiment corresponds to the detached wake.
For a monotonically settling particle, the first two stages are identical to those experienced
by the bouncing particle, but are followed by a final sedimentation without any bouncing
motion.
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4.2. Flow structure
To investigate the transient flow structure around the particle, PIV measurement and flow
visualisation are conducted simultaneously, using experimental set-up 2 (see figure 1b). In
figure 12, we present the results of a particle with ρp = 1126.06 kg m−3, bouncing in a
stratified fluid with densities ρu = 1119.37 kg m−3 and ρl = 1125.77 kg m−3, and interface
thickness L = 3.47 cm. These correspond to non-dimensional parameters Reu = 248 and
Fr = 2.49. As the particle exits the camera’s field of view, we estimate Rel = 15, although
this is likely an underestimate due to the limited view size (9.4 × 7.3 cm2) utilised in this
experiment.

Initially, the flow around the particle is similar to that in a homogeneous fluid. However,
after the particle enters the interface, accompanying the rupture of the wake, a vortex
with direction opposite to that in the homogeneous fluid is formed at the rear of the
particle. This vortex grows quickly and detaches from the particle, becoming a vortex ring
that remains at the interface (figures 12d,e). As previous research has explained (Zhang
et al. 2019; Magnaudet & Mercier 2020), this vortex is sourced from the baroclinic torque
caused by the misalignment between the density and pressure gradients.

Figure 13 presents a close-up view of the vertical velocity distribution around the
particle, clearly showing a strong upward flow, referred to as a jet hereafter, formed behind
the particle before bouncing occurs (figures 13c–i). The formation of the jet is a transient
process. Initially, the jet forms in a U-shaped region (13c) and then develops towards the
central axis. It reaches maximum strength at approximately 1.5D above the particle, when
the main part of the wake detaches (figure 13d). Subsequently, it transforms into a long,
thin jet at the rear of the particle, and a bell-shaped structure (yellow region in figure 13i),
similar to type A of Hanazaki et al. (2009), is observed at the end of the jet. It is worth
noting that there is a time lag from the formation of the jet to the bouncing of the particle.
It is evident in figure 13 that when the maximum jet is formed at 2.4 s, there is a region
of downward fluid surrounding the particle. The jet touches the upper particle surface at
t = 3.6 s in figure 13( f ); until then, it could affect the particle motion directly.

4.3. Force analysis
In this subsection, we analyse the forces acting on a bouncing particle to gain a more
in-depth understanding of the bouncing behaviour. The non-monotonic motion of a
particle settling in a stratified fluid is known to be caused by the so-called ‘stratification
drag’ (denoted Fs). Previous studies have shown that in steady or quasi-steady states, Fs
is contributed to mainly by two mechanisms: the buoyancy of the dragged upper fluid
(Fsb), and the force caused by a specific flow structure (Fsf ) (Srdić-Mitrović et al. 1999;
Higginson et al. 2003; Yick et al. 2009; Zhang et al. 2019). Here, we decompose the
total force and quantify the contributions of Fsb and Fsf , using a combined numerical and
empirical force decomposition method based on the strategy used by Srdić-Mitrović et al.
(1999) and Zhang et al. (2019).

Our force analysis consists of three steps. First, we describe how we decompose
the force. Second, we explain how we calculate the force components. Finally, we
present the transient forces acting on a bouncing particle, and analyse the bouncing
mechanism.

4.3.1. Force decomposition
To understand the underlying physics of particle bouncing behaviour, we aim to
decompose its hydrodynamic force into different components. We begin with the motion
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Figure 12. Illuminated wake (left-hand part of each image) and PIV field (right-hand part) of a particle settling
through a density transition layer at Reu = 248, Fr = 2.49 and Rel = 15. The horizontal red dashed lines mark
the bounds of the interface. The arrow at the particle centre indicates the direction of its motion.
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Figure 13. A close-up view of the flow field around the particle, corresponding to figure 12. An upward jet
is observed at the centre axis behind the particle just before it changes its direction of motion. The isolines of
uz = 0 are depicted as red solid lines, which separate the region with positive and negative vertical velocities.
The horizontal red dashed line in (a) indicates the upper boundary of the interface, while in (b–i) it denotes the
lower boundary of the interface. The arrow at the particle centre indicates the direction of its motion.
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Particle settling through a density transition layer

equation of a particle settling from rest in a quiescent, homogeneous fluid, which can be
written as

mp
dU
dt

= G + Fb + Fd + Fa + Fh. (4.1)

The left-hand side represents the total inertia force acting upon the particle, where mp is
the particle mass. This arises due to the imbalance of forces. On the right-hand side, G and
Fb are respectively the gravity and buoyancy forces of the particle, and the sum G + Fb
is the reduced gravity of the particle; Fd is the steady drag force at the considered time
instant, Fa is the inertia force of added mass, and Fh is the history (Basset) force. Here,
Fd can be evaluated according to (1.2) and (3.8). In the limit of potential flow, Fa can be
calculated as

Fa = −1
2

ρf Vp
dU
dt

. (4.2)

At the Stokes regime, Fh has an analytic solution:

Fh = −3
2

D2√πρf μ

∫ t

−∞
U̇(τ )√
t − τ

dτ. (4.3)

Although (4.2) and (4.3) do not fit the current parameter range, they demonstrate that the
directions of Fa and Fh are opposite to the acceleration. For a decelerating particle, they
behave as thrust rather than drag. For a particle settling in a stratified fluid, we follow the
same method of drag force decomposition as in (4.1), while introducing an extra term Fs
to account for the stratification effects. The motion equation becomes

mp
dU
dt

= G + Fb + Fd + Fa + Fh + Fs. (4.4)

It is reasonable to further decompose Fs into two components,

Fs = Fsb + Fsj, (4.5)

where Fsb represents the enhanced buoyancy caused by dragging the upper fluid to the
lower layer, thus modifying the density distributions, while Fsj is the force caused by the
induced flow structure due to the stratification, typically represented by the upward jet flow
at the rear of the particle, as observed in figure 13. This upward jet is conjectured to be
the dominant flow structure as the particle bounces. Therefore, the equation of motion for
a particle settling in a stratified fluid can be written as

mp
dU
dt

= G + Fb + Fd + Fa + Fh + Fsb + Fsj. (4.6)

4.3.2. Force calculation
In this subsubsection, we introduce how we calculate the force components. First, we
rearrange (4.6) as

mp
dU
dt

= G + (Fb + Fsb)︸ ︷︷ ︸
Fstatic

+ (Fd + Fa + Fh + Fsj)︸ ︷︷ ︸
Fdynamic

. (4.7)

Here, the total hydro-force Fhydro is split into two parts: Fstatic and Fdynamic, where
Fstatic refers to the hydrostatic force arising from the non-uniform density distribution
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with zero velocity, whereas Fdynamic pertains to the force resulting from the non-zero
velocity field at a uniform density distribution. Excluding the steady drag Fd, we note that
Fsf = Fa + Fh + Fsj represents the force caused by unsteady flow, i.e. the flow induced by
the stratification effect.

In numerical simulation, the velocity, pressure and density fields are obtained by solving
(3.1), (3.2), and (3.3). The total hydro-force Fhydro acting on the particle can be calculated
using (3.4). The pressure can be divided into two components, p = ps + pd, where ps
denotes the hydrostatic pressure caused by the non-uniform density distribution, and pd
represents the pressure caused by flow. As the density field is known, ps can be obtained
by solving the equation

∇ps = ρg. (4.8)

Then Fstatic is calculated as the integration of ps over the particle surface:

Fstatic = −
∫

S
psn dS, (4.9)

and Fdynamic is obtained using

Fdynamic = Fhydro − Fstatic (4.10)

= −
∫

S
pdn dS −

∫
S
μ(∇u + ∇uT) · n dS. (4.11)

With the density distribution following (2.1), the undisturbed hydrostatic pressure is given
by

pb =
∫

ρg dz = 1
2

g(ρu + ρl)(z − zref )

+ 1
2

g(ρu − ρl)

[
(z − zref ) erf(α(z − zref )) + 1

α
√

π
exp(−(α(z − zref ))

2)

]
. (4.12)

We can obtain Fb, denoting the buoyancy of the particle in the undisturbed density field,
by integrating pb over the particle surface. Then the contribution of Fsb is quantified using

Fsb = Fstatic − Fb. (4.13)

Upon evaluating the steady drag Fd through (1.2) and (3.8), the drag component arising
from unsteady flow can be expressed as

Fsf = Fsj + Fa + Fh = Fdynamic − Fd. (4.14)

Force calculation can also be conducted using the experimental data, with only two steps
different from the simulation, as follows.

(1) The hydro-force is calculated using

Fhydro = G − mpA, (4.15)

where A is the acceleration of the particle, obtained by taking the second derivative
of the particle position.

(2) The density field is reconstructed using the flow visualisation images (left-hand of
each image in figure 12), similar to the laser-induced fluorescence method used by
Okino et al. (2021). The grey value in these images, representing the concentration
of the Rhodamine B dye, is linearly transformed to density. The hydrostatic pressure
ps is then calculated using these reconstructed density fields. The other steps are the
same as those for dealing with the simulation data.
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(a) (b) (c) (d) (e)

( f ) (g) (h) (i) ( j)

ρu ρl

t = 0.6 s t = 1.2 s t = 1.8 s t = 2.4 s t = 3.0 s

t = 3.6 s t = 4.2 s t = 4.8 s t = 5.4 s t = 6.0 s

Figure 14. Reconstructed density field using flow visualisation images from the corresponding experiments
shown in figure 12.

4.3.3. Forces of a bouncing particle
In this subsubsection, we analyse the forces observed in the experiments presented in
figure 12, with the reconstructed density fields presented in figure 14. A comparison
is made to the simulated results as shown in figure 15. Overall, the evolution of flow
structures is consistent between the two methods. The simulation reveals that a small
amount of lighter fluid detaches and ascends from the particle surface to the upper layer
as bouncing occurs (figures 15h–j). This phenomenon, termed ‘secondary detachment’
and discussed in Wang, Wang & Deng (2023), occurs at thin interfaces and high Reu.
Although not captured in the current experiment (figure 14), it was observed in our recent
experiments for larger particles with diameters exceeding 2 cm (not presented here).

Figure 16 compares velocity profiles between the experiment and simulation. Limited
by the camera view, the particle has not reached its terminal velocity by the end of the
experiment, resulting in Rel = 15 as it exits the view. In contrast, in the simulation, the
particle reaches a higher velocity, resulting in Rel = 28.

The decomposed forces are depicted in figure 17, showing simulation (figures 17a,b)
and experiment (figures 17c,d) results. The variation of force components shows good
agreement. Before entering the transition layer, the particle settles at a constant velocity
due to the balance between reduced gravity (G + Fb) and the drag force Fd. As the particle
enters the transition layer, the force components mp dU/dt, Fsb and Fsf gradually increase
from nearly zero values (figures 17a,c). In figure 17(d), Fsf initially shows a negative value,
inconsistent with the simulation (figure 17b). This discrepancy may be attributed to the
error in calculating the acceleration during the experiment, as the acceleration magnitude
observed in the experiment (see the black line in figure 17d) is slightly larger than in the
simulation at the beginning.
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(a) (b) (c) (d) (e)

( f ) (g) (h) (i) ( j)

ρu ρl

t = 0.6 s t = 1.2 s t = 1.8 s t = 2.4 s t = 3.0 s

t = 3.6 s t = 4.2 s t = 4.8 s t = 5.4 s t = 6.0 s

Figure 15. Simulated density field, using the same physical parameters as the experiment depicted in
figure 12, presented for comparison with figure 14.

Different stages are separated by vertical blue dashed lines in figures 17(b) and 17(d).
The wake buoyancy force Fsb correlates with the volume of attached upper light fluid.
It reaches a maximum at the end of the first stage, after the dragging of the wake (see
figures 14(b) and 15(b) at t = 1.2 s), just before the wake detaches from the particle. The
sudden deceleration of the particle causes the sharp rise in Fsf due to the inertia, acting as
a thrust (positive value) in the first stage. As the particle approaches the third stage, Fsb
decreases as only a thin layer of light fluid remains in the attached wake (see figures 14( f )
and 15( f ) at t = 3.6 s). Meanwhile, Fsf becomes the dominant drag force, balancing the
reduced gravity (G + Fb) and preventing further settling of the particle.

When a particle settles through a density interface and Umin � 0 (with the positive
direction of the z-axis pointing downwards), the particle bounces up. At the instant of
bouncing (the first time U = 0, indicated by the arrow in figure 16), the particle satisfies
the conditions

U = 0,
dU
dt

< 0. (4.16a,b)

Therefore, we have

mp
dU
dt

= G + Fb︸ ︷︷ ︸
+

+ Fd︸︷︷︸
0

+ Fa︸︷︷︸
+

+ Fh︸︷︷︸
+

+ Fsb︸︷︷︸
−

+ Fsj︸︷︷︸
−

< 0. (4.17)

The necessary condition for (4.17) to hold is given by

|Fsb| + |Fsj| > |G + Fb|. (4.18)
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Figure 16. Comparison between the simulated and experimental velocity profiles of a particle with density
ρp = 1126.06 kg m−3 and diameter D = 1 cm, bouncing in stratified fluid with upper and lower densities
ρu = 1119.37 kg m3 and ρl = 1125.77 kg m−3, respectively, over an interface of thickness L = 3.47 cm. The
resulting non-dimensional parameters are Reu = 248 and Fr = 2.49. The lower Reynolds numbers using the
end velocities of the experiment and simulation are respectively Rel = 15 and Rel = 28.

Whether the jet is necessary for the occurrence of bouncing depends on the magnitude
of Fsb. When |Fsb| � |G + Fb|, the contribution of the jet is necessary for the bouncing
behaviour.

In figures 17(b) and 17(d), at the instant of bouncing occurrence (marked by the black
dashed line), Fsf plays a dominant role in balancing the reduced gravity. Excluding
the positive contribution from (Fa + Fh), Fsj becomes the primary component of the
drag force. It is important to note that in the current study, Fsj refers to the force
generated by the relative upward flow around the particle, encompassing both pressure
and viscosity contributions. This differs from the approach taken by Zhang et al. (2019),
who decomposed the stratification force into three parts: (1) Archimedes drag arising
from the entrainment of the lighter fluid, equivalent to Fsb in our study; (2) inertial force
due to the momentum force induced by density disturbances (pressure contribution); and
(3) shear force acting on the particle surface induced due to baroclinic vorticity (viscosity
contribution). In our scenario, the particle’s velocity undergoes rapid fluctuations, leading
to swift alterations in the steady drag Fd. This makes it challenging to accurately quantify
the transient effects of pressure and viscosity on Fd, thus precluding further decomposition
of Fsj into inertia-induced and viscosity-induced stratification forces.

In summary, the mechanism of the bouncing phenomenon is understood as follows. At
the early stage, Fsb dominates the drag force due to the large amount of attached light
fluid, causing the particle to lose most of its initial velocity. After the particle enters the
lower layer, the light fluid detaches and produces an upward jet. Then Fsb decreases, and
the contribution of Fsj to the drag increases and becomes dominant, causing the particle
to continue to decelerate until it bounces up.

4.4. Influence of different parameters
To investigate the impact of various parameters, we conducted three experimental series,
each consisting of five tests, as outlined in table 3. By adjusting the densities of the
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Figure 17. Decomposed forces acting on a bouncing particle corresponding to the experiment depicted in
figure 12, as well as that from the simulation using the same set of parameters: (a,b) forces computed from
numerical simulation data; (c,d) forces derived from experimental data. The shaded areas in (a,c) indicate the
interface region, with the black dashed lines denoting the initiation of bouncing behaviour. In (b,d), different
stages of the particle’s motion are delineated by blue dashed lines: wake attachment (from t = 0 to the first
blue dashed line), wake detachment (from the first to the second blue dashed lines), transient bouncing (from
the second blue dashed line to the end). The final sedimentation stage is not depicted in these plots.

lower (ρl) and upper (ρu) fluids, and the thickness of the interface layer (L), we varied
the lower-layer Reynolds number (Rel), upper-layer Reynolds number (Reu) and Froude
number (Fr). For each test, we released five particles with slightly different properties,
as detailed in table 4. The minimum velocity (Umin) attained by each particle during
its sedimentation is presented in table 3. A negative Umin indicates that the particle
experienced a bouncing motion. Prior to each test, we accurately measured the density
of the particle to within 0.01 kg m−3, as the density of the particle varies with ambient
temperature.

Figure 18 displays the non-dimensional minimal velocity (Umin/Uu) as a function of Rel,
Reu, and Fr, using all the experimental data collected. It is evident that Umin/Uu exhibits
a stronger correlation with Rel (1 � Rel � 109) compared to Reu (152 � Reu � 322) and
Fr (2.3 � Fr � 5.6). Notably, bouncing is observed when Rel is less than approximately
30.
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Particle number Diameter (mm) Density (kg m−3)

P1 10.075 1121.58–1123.74
P2 10.128 1121.86–1124.00
P3 10.083 1122.28–1124.60
P4 10.075 1122.73–1124.79
P5 10.055 1123.18–1125.26

Table 4. Particle properties.
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Figure 18. The minimal velocity of all the particles in experiments versus lower and upper Reynolds
numbers, and Froude number. Here, Umin/Uu < 0 represents the occurrence of a bouncing motion.

4.4.1. Lower Reynolds number Rel
To investigate the correlation between the minimal velocity and the lower Reynolds
number further, we analyse the experimental data from series 1, where the upper Reynolds
number and Froude number are Reu = 252 ± 16 and Fr = 2.6 ± 0.2, respectively. In
figure 19(a), we plot these experimental results against the lower Reynolds number Rel.
We also include numerical results at fixed Froude number Fr = 2.6 and upper Reynolds
numbers Reu = 258 and Reu = 349 for comparison.

Both the experimental and numerical results demonstrate that Umin/Uu increases
linearly with Rel. We note that for Reu ∼ 252, the values of Umin/Uu in the experiments are
uniformly higher than those in the simulations at a similar Reu ∼ 258. This discrepancy is
possibly caused by the incomplete development of Ul in the experiments. The velocity
measured when the particle exits the viewing window may be smaller than the fully
developed Ul in the simulations, leading to a smaller Rel. To fit the data in figure 19(a), we
employ the linear expression

Umin

Uu
= c1 Rel + c2. (4.19)

Our linear regression analysis yields c1 = 0.0049 and c2 = −0.1181 for the experiments
(Reu = 252 ± 16), and c1 = 0.0046 and c2 = −0.1720 for the numerical results (Reu =
258). We identify critical lower Reynolds numbers Re∗

l = 23.9 and 37.5 for these two lines,
respectively. These critical Reynolds numbers correspond to the position where Umin =
0. The values of c1 and c2 are dependent on Reu and Fr. In figure 19(a), we observe
that a higher upper Reynolds number Reu = 349 leads to a smaller c1 compared to both
the experiments and simulations with smaller Reynolds numbers. However, we also note
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Figure 19. The variations of non-dimensional minimum velocity over (a) Rel and (b) �ρl. The Froude
numbers are Fr = 2.6 ± 0.2 for experiment, and Fr = 2.6 for simulation.

that the critical lower Reynolds numbers Re∗
l obtained from numerical simulations with

different Reu are very similar.
In our study, we adjust the fluid density to achieve various terminal Reynolds numbers,

which are not known a priori. These terminal Reynolds numbers are correlated with
density ratios through the velocity term, as we introduced at the end of § 1. Prior research
has shown that the bouncing behaviour of particles is linked to the fluid density and density
ratio (Doostmohammadi & Ardekani 2014a; Camassa et al. 2022). Thus it is necessary to
investigate the relationship between the minimal velocity and the density ratio. Here, we
define the density ratio as �ρl = (ρp − ρl)/ρl. Substituting Ul = νl Rel/D into (1.3), we
can obtain an expression between the density ratio and the Reynolds number:

�ρl = 3Cdlν
2
l Re2

l

4gD3 , (4.20)

where Cdl is the steady drag coefficient in the lower layer. Combining (4.19) and (4.20),
we can obtain the following expression for the dependence of Umin/Uu on �ρl:

Umin

Uu
= c1

√
4gD3

3ν2
l Cdl

�ρ
1/2
l + c2. (4.21)

We find that a power-law fitting in the form

Umin

Uu
= c3 �ρ

1/2
l + c4 (4.22)

is suitable for describing the dependence of Umin/Uu on �ρl, as shown in figure 19(b)
(recompiled data from figure 19a).

The trajectories and velocity profiles of particle P1 from experiment series 1 are
presented in figure 20. Figure 20(a) demonstrates clearly that the bouncing behaviour
substantially prolongs sedimentation time. While the particle enters the interface with
the same velocity, slight variations in Rel significantly affect its behaviour. For relatively
large lower-layer Reynolds numbers, such as Rel = 59, a minimum velocity is observed in
figure 20(b), yet the particle continues to descend unidirectionally after passing through
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Figure 20. (a) Time trajectories of particles at five different lower Reynolds numbers. The non-monotonic
trend indicates a bouncing behaviour. (b) The velocity profiles of particles at five different lower Reynolds
numbers. The grey region refers to the density transition layer. Here, Fr and Reu vary slightly, within Fr =
2.4–2.5 and Reu = 236–246.

the transition layer. We emphasise that all particles have a larger density than the fluid
in the tank at all depths. As Rel decreases and crosses a critical value, namely Re∗

l , as
we have discussed previously, the particle reverses its direction of motion and ascends
for a transient time scale (see figure 20(a) for Rel = 26 and Rel = 1). This bouncing
phenomenon is characterised by a much deeper and negative minimum velocity, as shown
in the depth versus velocity plot in figure 20(b). In this study, Rel = 1 refers to an extreme
case where the particle density (ρp = 1123.69 kg m−3) is near the density of the bottom
layer (ρl = 1123.66 kg m−3). In this scenario, the particle experiences an extraordinarily
long transient time scale to reach the terminal velocity of the bottom layer. As explained
previously by Abaid et al. (2004), this long transient is due to the presence of a small
boundary layer of upper fluid around the particle, which diffuses exceptionally slowly due
to the long diffusion time of salt in water and the absence of strong turbulence diffusion
in this low-speed flow state. This is further evidenced by our experimental results in
figures 10(p–t), which clearly show that some light fluid remains on the particle surface
after the bouncing.

It is worth noting that previous studies, such as Srdić-Mitrović et al. (1999), did not
observe bouncing behaviour. They presented the time trajectories of particles obtained
from a series of experiments (see their figure 9), reporting a noticeable decrease in velocity
within the transition layer, but without finding reverse motion of the particle. This can
possibly be explained by two factors. First, in their experiments, the upper fluid was a
mixture of ethyl alcohol and water, which has different diffusion properties compared with
our experiment. Thus the lighter upper fluid dragged by the particle could adjust to the
surrounding fluid immediately, and weaken the deceleration of the particle. Second, and
more importantly, their examined upper Reynolds numbers fall in the range 0.7 � Reu ≤
23, which is much lower than in the current study. As we will discuss later, the upper
Reynolds number is also one of the influencing factors for the occurrence of bouncing
behaviour. In fact, the second explanation can be related to a deeper physical mechanism,
namely the rear buoyant jet, which disappears when Reu is low. As evidenced by the work
of Yick et al. (2009), there was no sign of such a jet as Reu ∼ 1.
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Figure 21. (a) The non-dimensional minimum velocity versus Froude number for five particles. The lower and
upper Reynolds numbers are: P1, Rel = 12, Reu = 286; P2, Rel = 28, Reu = 295; P3, Rel = 44, Reu = 303;
P4, Rel = 59, Reu = 306; P5, Rel = 77, Reu = 317. (b) The velocity profiles of particle P2 versus the vertical
position at five Froude numbers. The vertical dashed lines indicate the bounds of the density transition layers.

4.4.2. Froude number Fr
We now examine the effects of Froude number. Specifically, we focus on experiment series
3 as presented in table 3. In this experiment, we keep the upper and lower layer fluid
densities constant, and vary only the transition layer thickness by releasing particles into
the same tank of fluid with a time interval of 24 h. This approach produces transition
layer thickness variations in the range L = 3.15–13.06 cm, resulting in different Froude
numbers.

Figure 21(a) shows the non-dimensional minimum velocities for different particles
plotted over the Froude number. Note that the particle density increases from P1 to P5,
which causes both the upper and lower Reynolds numbers to increase from P1 to P5.
Overall, there is a nearly monotonic increase in the non-dimensional minimal velocity with
increasing Froude number, i.e. as the transition layer becomes thicker. Furthermore, there
is a noticeable increase in the minimum velocity when the particle density, or equivalently
the Reynolds number, increases. However, for heavier particles such as P5, the role of
the Froude number in increasing the minimum velocity is less significant (see P5 in
figure 21a). In contrast, for lighter particles such as P1 and P2, the influence of the Froude
number is considerable. For example, the behaviour of particle P2 changes from bouncing
to unidirectional settling as the Froude number increases from Fr = 2.6 to Fr = 5.1. It is
worth noting that for P2, the lower Reynolds number (Rel = 28) is very close to the critical
Reynolds number Re∗

l . We did not observe any bouncing phenomenon for P3, P4 and P5
in figure 21.

In figure 21(b), we present the velocity profiles of particle P2 at different Froude
numbers. The Froude number significantly alters the evolving profile of particle settling
velocity. We observe that the bouncing motion occurs after the particle leaves the transition
layer (see Fr = 2.6 and 3.7 in figure 21b), while the minimum velocity is reached
within the transition layer for those tests without bouncing (see Fr = 4.5, 4.9 and 5.1 in
figure 21b). We also observed an interesting phenomenon: the particle restores to a higher
settling velocity for the lower Froude number tests than that with high Froude numbers.
This behaviour might be caused by the more pronounced diffusion induced by the jet flow.
The jet flow can enhance the turbulence diffusion and diffuse the remaining upper layer
fluid attached to the particle to its ambient lower layer fluid.
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Figure 22. (a) The non-dimensional minimal velocity versus the upper Reynolds number at five lower
Reynolds numbers, with Fr = 2.6. (b) The velocity versus vertical position corresponding to Rel = 37 in (a).

4.4.3. Upper Reynolds number Reu
We now investigate the effects of the upper Reynolds number (Reu) using numerical
simulations. In figure 22(a), we present the non-dimensional minimum velocity versus Reu
for five different values of Rel at a fixed Froude number (Fr = 2.6). The trend is clear: the
minimal velocity increases as the lower Reynolds number (Rel) increases, while at a fixed
Rel, the minimal velocity decreases with increasing Reu, except for Rel = 13, where all
minimal velocities are negative, indicating bouncing for all cases. We examine a special
case, Rel = 37, where the minimum velocity becomes negative as the upper Reynolds
number increases to Reu = 292. In figure 22(b), we plot the variations of settling velocity
with depth for this special case. Despite the distinct differences in entering velocities
of the particle among different tests, their minimal velocities are considerably similar.
Furthermore, they reach minimal velocities at nearly the same depth. From figure 18, we
understand that Rel = 37 is near the critical Reynolds number for bouncing occurrence,
making this special case highly sensitive to parameters such as the upper Reynolds number
Reu. As shown in figure 22(b), the particle moves unidirectionally for Reu = 127, 190 and
244, while reversing its motion direction for Reu = 292 and 337.

We stress that the upper Reynolds number Reu plays a non-negligible role only when
the bottom-layer Reynolds number Rel is close to its critical value for bouncing. However,
we note that the currently studied upper Reynolds numbers, in both experiments and
numerical simulations, are kept at a certain order, Reu ∼ O(100). A much lower Reu, such
as ∼O(1), would give no sign of bouncing, as discussed in § 4.4.1.

4.4.4. Identification of the bouncing regime in (Reu, Fr) space
Given that the bouncing behaviour is determined primarily by the lower Reynolds number
Rel, while the other two parameters, Reu and Fr, can also play a role, as discussed in
§§ 4.4.2 and 4.4.3, a better visualisation can be obtained by examining their combined
effects. To illustrate, we present two maps in the parametric space of Reu and Fr for two
selected lower Reynolds numbers, Rel = 13 and 37, with the contours representing the
minimal velocities, in figure 23. It is evident from the figure that the bouncing phenomenon
occurs in the higher Reu and lower Fr regime, i.e. the upper left regions of the maps.
A direct comparison between figures 23(a) and 23(b) indicates that the bouncing regime
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Figure 23. Maps of non-dimensional minimal velocities of the settling particle at (a) Rel = 13, and
(b) Rel = 37.

Fr = 2.6 Fr = 3.6 Fr = 4.6 Fr = 5.6 Fr = 6.6

Reu = 349 41.0 46.2 44.5 25.5 —
Reu = 305 39.6 43.7 39.4 14.4 —
Reu = 258 37.5 40.0 31.9 — —
Reu = 207 34.6 34.2 21.8 — —
Reu = 147 28.9 24.3 — — —

Table 5. Critical lower Reynolds number Re∗
l in the (Reu, Fr) space.

decreases for higher Rel, further demonstrating that Rel is the dominant parameter. When
Rel is low, the particles are more likely to bounce after passing through the transition layer.

By simulating in the same (Reu, Fr) parametric space for different values of Rel, we
summarise the critical lower Reynolds numbers Re∗

l in table 5. At high Fr and low Reu, the
particle velocity varies smoothly from top to bottom, as shown in figures 21(b) and 22(b).
In these cases, we cannot observe bouncing motion for the smallest density difference that
we tested (corresponding to Rel = 13). Therefore, we have not presented Re∗

l values for
these cases. It can be seen from table 5 that Re∗

l varies from 14.4 to 46.2, depending on
different combinations of Reu and Fr. We should point out that the variations of Re∗

l with
Fr at a fixed Reu are not always monotonic, particularly when Reu is high.

4.5. Discussion on the strength of the buoyant jet
To better understand the phenomenon of particle bouncing, it is important to examine
the strength of the jet flow induced by the fluid. This can be achieved by quantifying the
maximum jet velocity for each combination of Reu and Fr, as shown in figure 24. In this
figure, the lower Reynolds number is fixed at Rel = 37. The maximum magnitude of jet
velocity is identified at each test, which is scaled by the lower layer terminal velocity Ul.
This non-dimensional jet velocity uj/Ul is dependent primarily on Reu, and its magnitude
increases with increasing Reu.

The jet velocity also exhibits a small dependency on Fr, decreasing in magnitude as Fr
decreases. A higher magnitude of the jet leads to a greater drag force, resulting in a smaller
Umin for the particle. The variation in jet strength provides a reasonable explanation for the
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Figure 24. Jet velocities with maximum magnitudes in (Reu, Fr) space at Rel = 37. The negative value refers
to an upward jet.

observed trends in Umin with respect to changes in Reu and Fr (see figures 21(b) and 22(b)),
that the decreasing of Umin with increasing Reu or decreasing Fr is due to the increase in
the upward jet velocity.

In previous research, Camassa et al. (2008) proposed a critical criterion for bouncing
behaviour given by the equation

(ρp − ρl)Vp = (ρl − ρu)Vd, (4.23)

where Vp represents the volume of the particle, and Vd represents the volume of the drift,
which is the ‘wake’ formed at the rear of the particle as described in § 4.1. The satisfaction
of (4.23) is based on three assumptions: (1) the bouncing motion occurs in the lower layer;
(2) the unsteady forces Fa and Fh are negligible; (3) the stratification drag comes entirely
from the buoyancy of the drift. These assumptions lead to a linear relationship between
the densities of the fluid layers and the particle, as supported by experimental data and
potential energy analysis in Camassa et al. (2022).

Equation (4.23) yields a linear correlation between the density triplet (ρu, ρl, ρp) and
�ρl = (ρp − ρl)/ρl, given by

�ρl = −Vd

Vp

ρu

ρl
+ Vd

Vp
. (4.24)

Figure 25(a) shows the variation of the critical density ratio �ρ∗
l over ρu/ρl at Fr = 2.6

and Fr = 3.6, corresponding to the critical cases presented in the first two columns of
table 5. A quadratic fit is found to be more appropriate for the data than a linear regression.

We propose a possible explanation for the quadratic association between �ρ∗
l and ρu/ρl.

As demonstrated in §§ 4.1 and 4.3.3, the jet dominates the stratification drag as the particle
bounces. Assuming that the stratification drag is entirely due to the relative motion of the
surrounding fluid with respect to the particle, the force balance can be expressed as

(ρp − ρl)gVp = 1
2 CdρlU2

r Sp, (4.25)

where Ur is the fluid velocity relative to the particle, and Cd is the steady drag coefficient.
Equation (4.25) leads to a critical criterion for bouncing behaviour, given by Ur � Ul.
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Figure 25. (a) The variation of critical density ratio �ρ∗
l over the density ratio ρu/ρl. (b) The variation of jet

velocity over density ratio ρu/ρl at Rel = 13.

This criterion yields a quadratic relationship between �ρ∗
l /ρl and Ur, given by

�ρl = 3Cd

2gD
U2

r . (4.26)

The flow velocity Ur can be represented by the jet velocity uj when the particle approaches
zero velocity. In the studied parameter range, it was found that the jet velocity is linearly
related to ρu/ρl when Fr is fixed, as shown in figure 25(b).

Based on the findings presented in (4.25), it can be inferred that there exists a quadratic
correlation between �ρ∗

l and ρu/ρl. This observation highlights the significance of the
jet velocity in determining the critical regime for the bouncing motion at the current
parameter range.

5. Conclusions

In the present study, we conduct a comprehensive investigation into the physical
mechanisms behind the bouncing behaviour, or reverse motion, of a spherical particle
settling through a three-layer density-stratified fluid. Our research aims to reveal the forces
acting on the particle and their correlation with the flow structure. We cover a wide range
of parameters, including the lower-layer Reynolds number (1 � Rel � 125), upper-layer
Reynolds number (115 � Reu � 356), Froude number (2 � Fr � 7) and Prandtl number
(Pr ≈ 700) for a salinity-stratified fluid.

First, we decompose the forces acting on the particle into different components, and
correlate them with the flow structure. We observe four sequential stages of settling,
including wake attachment, wake detachment, transient bouncing and final sedimentation.
Two mechanisms are identified that contribute to drag enhancement, namely the buoyancy
of the attached upper fluid and the force induced by the buoyancy jet flow, which arises
from a specific flow structure. During the first two stages, the force component Fsb due
to the attached upper fluid in the wake contributes mostly to the drag enhancement.
However, at the third stage, most of the upper fluid has detached from the particle, and
Fsb becomes less significant. Instead, the force component Fsj induced by the jet flow
appears to be dominant. We confirm the existence of this jet flow through our experimental
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measurements, and we conclude that it is a necessary condition for the occurrence of
bouncing motion.

Next, we investigate the influence of Rel, Reu and Fr. We monitor the minimal settling
velocity of the particle, and a negative value indicates a bouncing motion. We find
that the lower Reynolds number Rel is the most significant determinant parameter. Our
experiments reveal that bouncing motion occurs below a critical lower Reynolds number
approximately Re∗

l = 30. In the numerical simulations, the highest value for this critical
number is Re∗

l = 46.2, which is limited to the currently studied parametric ranges.
Moreover, by quantifying the strength of the jet flow, we find a consistency between the
maximum magnitude of jet velocity in the flow fields and the minimal settling velocity for
the particle, plotted in the same (Reu, Fr) space. This demonstrates the significance of jet
flow on the particle’s bouncing motion.

Although our study provides valuable insights into the bouncing behaviour of particles
settling through a density-stratified fluid, it is clear that further research is needed. For
instance, it would be interesting to consider a cluster of particles, where interactions
between particles can lead to more complex and intriguing settling behaviours. Also,
particles with irregular shapes can be investigated, which would more closely resemble
real-world scenarios, such as the aggregation of marine snow.
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