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Abstract

In practice, nondestructive testing (NDT) procedures tend to consider experiments (and their respective models) as
distinct, conducted in isolation, and associated with independent data. In contrast, this work looks to capture the
interdependencies between acoustic emission (AE) experiments (asmeta-models) and then use the resulting functions
to predict the model hyperparameters for previously unobserved systems. We utilize a Bayesian multilevel approach
(similar to deep Gaussian Processes) where a higher-level meta-model captures the inter-task relationships. Our key
contribution is how knowledge of the experimental campaign can be encoded between tasks as well as within tasks.
We present an example of AE time-of-arrival mapping for source localization, to illustrate how multilevel models
naturally lend themselves to representing aggregate systems in engineering. We constrain the meta-model based on
domain knowledge, then use the inter-task functions for transfer learning, predicting hyperparameters for models of
previously unobserved experiments (for a specific design).

Impact Statement

Data-centric engineering considers telemetry data from populations of systems with increasingly complex
interdependencies. This work introduces a Bayesian approach to represent the relationships between aggregate
systems, via multilevel models, similar to deep Gaussian processes. Considering the population as a whole, the
value of data is extended and knowledge of underlying physics can be incorporated within models and between
models. By leveraging information between domains, the combined model is used for transfer learning and
predicts the characteristics (hyperparameters) of systems that were previously unobserved.

1. Introduction: Multilevel models for meta-modelling

Increasingly, engineering systems are equipped with sensors, often providing streams of telemetry data.
As the number of instrumented systems grows, population data become available [1]. While machine
populations clearly differ from the natural examples in ecology, epidemiology, and behavioural science,
the same statistical methods can be used to represent artificial systems [2].
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In this article, we considermultilevel (or hierarchical)models [3]which are particularly suited to population
data, as they naturally exhibit a hierarchical structure. As an engineering example, consider turbines of the
same specification in awind farm.Each individual is unique,with its ownwind-power relationship, depending
on the local environment. On the other hand, some parameters are shared between operating subgroups (e.g.
maximum power) while others are global (e.g. the minimum rpm to generate power).

A multilevel model can represent interdependent population data via partial pooling [3] where
parameter hierarchies are learnt with machine-specific and shared parameters (or functions). As such,
models share (i.e. pool) information, to extend the value of data. Multilevel models are often termed
multitask learners, as multiple related tasks f k are learnt simultaneously to improve inference [4]. Figure 1
visualises how multilevel models can learn multiple tasks.

With interpretable models, one can inspect how parameters θk vary between tasks. These variations are
termed intertask relationships, and each function that approximates them (shown as g in Figure 1) can be
considered as a meta-model (a model of models). If desired, these intertask functions can be built to vary
with respect to higher-level (macro) explanatory variables. A simple example is the varying coefficients
model, typically demonstrated with the 8-schools data [5]. Intertask relationships are useful in engineer-
ing practice, as they allow alternative insights to be extracted from collected population data.

1.1. Source localisation

This work considers a population where members are represented by a sequence of 28 Acoustic Emission
(AE) experiments, originally from [6]. In each experiment, the arrival time of waves propagating through a
complex plate geometry is recorded. For each dataset, a 2D map of the arrival times is learnt through
regression. Despite distinct experiment designs, the metal plate remains consistent (the medium through
which waves propagate) suggesting that their models share certain parameters. By analysing these datasets
collectively, as a population, additional insights are extracted from the test campaign. We capture how
characteristics of the 2D map vary, allowing predictions of hyperparameters for the response surface of
experimental designs that were absent from the training data. In other words, one can extrapolate or
interpolate in themodel space by using the intertask functions as meta-models, to predict hyperparameters.
Because of the plate’s complexity, we encode weak constraints on the model given domain expertise of the
experimental campaign, rather than specific physics-based laws (e.g. via differential equations).

These insights have significant implications since the meta-models can be used to predict the
characteristics of the response (hyperparameters) for new, previously unobserved experimental designs.
Such model predictions alleviate the requirement of extensive training data in new tasks, by sharing
information from similar experiments. The result is an interpretable and explainable approach to transfer
learning for engineering experiments.

Figure 1. A visual example of multilevel models for multitask learning: predictive tasks f k are para-
metrised by θk = θ0k,θ

00
k

� �
or θk = θ0k,θ

000
k

� �
; in turn, θk is generated by shared intertask functions g0,g00f g

or g0,g000f g. The notation g! θ shows a function g that predicts a parameter θ.
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1.2. Layout

Section 2 introduces the AE data, the experimental campaign, and their multilevel interpretation. Section
3 uses Gaussian Process regression for a single AE experiment. Section 4 extends the model to represent
data from the full test campaign in a joint inference, investigating different model assumptions and the
associated intertask relationships. Section 5 assesses the predictive performance and utilises themodel for
transfer learning. Section 6 offers concluding remarks.

1.3. Related Work & Contribution

To improve interpretability and ensure meaningful outputs from data-driven models, the inclusion of
physical insight within machine learning methods is becoming increasingly popular, with overviews
found in [7, 8]. These approaches are often referred to as physics-informed machine learning, since they
utilise both data and explanatory physics to improve modelling when compared to either approach
independently. Some examples include physics-guided loss functions [9], vector field constraints [10],
and the inclusion of governing differential equations [11]. Given the complexity of the plate geometry in
this work, the physics-based constraints are soft, since any predictive functions can deviate from the
suggested structure. To achieve this, a Bayesian approach is used, where the constraints are placed on a
(hierarchical) prior distribution [3], which offers a natural trade-off between prior knowledge and data.
While this trade-off is possible with a (weighted) physics-guided loss function, we favour a hierarchical
statistical approach for uncertainty quantification and interpretability when multitask learning.

Contribution In the context of AE (time of arrival) mapping, previous work of (coauthors) Jones et al.
[12] considered how domain knowledge can be encoded in Gaussian Process (GP) models via boundary
condition constraints, applied to the kernel function for a single experiment. Here, we extend the work to
represent multiple experiments, allowing us to encode domain expertise at the systems level and infer
intertask relationships for a series of tests1. Our key contribution is the ability to encode physics-based
knowledge between tasks, as well as within tasks. Rather than a single experiment, the resultant model
represents variations over collected tests in an experimental campaign: this allows for simulation and (hyper)
parameter prediction at previously unobserved experimental designs (in this case, sensor separation).

Amultilevel modeling approach is adopted, which is increasingly utilized in the engineering literature.
An early monitoring example is presented by Huang et al. [13] and Huang and Beck [14], where multiple
correlated regression tasks are utilized for modal analysis. A shared sparsity profile is inferred for tasks
relating to measurement channels to improve damage detection by considering the correlation between
damage scenarios or adjacent sensors. More recent applications include Di Francesco et al. [15] who use
multilevel models to represent corrosion progression given evidence from multiple locations, and
Papadimas andDodwell [16], where the results frommaterials tests (that is coupon samples) are combined
to inform the estimation of material properties. Similar to Papadimas and Dodwell [16] our work
considers an experimental campaign, but rather than infer the higher-level representation as a global
estimate of a single experiment, we introduce inter-task explanatory variables. In turn, the model
represents task variations as functions, rather than uni-modal sampling distributions.

On a related theme, Hughes et al. [17] recognize structures and their populations as nested hierarchies,
proposing a convenient formulation for decision analyses. Sedehi et al. [18] also present work to encode
physics into hierarchical GPs, where time-history measurements are partitioned into multiple segments to
create longitudinal data, accounting for temporal variability and addressing the non-stationarity of the
measured responses for a single structure.

2. The AE experiments

AE are ultrasonic signals released within a material as its internal structure undergoes some irreversible
change. The driving mechanisms often relate to the initiation and growth of damage, so monitoring AE

1 In this work, we use the term systems level to refer to the combined tasks, which allow parameters or functions to be learnt
between multiple experiments; that is the inter-task functions.
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signals can serve to assess the condition of materials and structures [19]. As emissions propagate through
material from the point of origin, differences in the time of arrival at separate sensors (in an array) can be
used for triangulation (or trilateration) to enable source localization [20]. From a damage monitoring
perspective, source localization provides an operator with more insight to make better maintenance and
planning decisions.

One strategy for localizing AE signals involves learning the map of the arrival times across the surface
of interest [21]. That is, the forward mapping fromAE source localization xi to the measured difference in
time-of-arrival (ΔToA) for a given sensor pair,

yi = f xið Þþ ϵi (2.1)

where yi is some noisy observation of ΔToAwith additive observation noise ϵi. In this paper, we consider
data from experiments by Hensman et al. [6] concerning an aluminum plate-like structure shown in
Figure 2.

Artificial AEswere excited by thermoelastic expansion generated with an incident laser pulse, with the
signals captured at eight piezoceramic (Sonox P5) sensors mounted to the surface of the plate, visible in
Figure 2 and shown by the black markers in Figure 3, numbered 1–8 (left). The sensors operate by
converting surface displacements resulting from the AE stress waves into electrical energy, allowing the
ultrasonic signals to be captured digitally. There are a total ofN= 2,227 possible source locations, shown
by blue markers in Figure 3 (left). The time of arrival for each of the eight sensors was extracted following
standard practice, using an autoregressive form of the Akaike Information Criterion (AIC) [6].

Figure 2. Image of plate used in the AE experiments.

Figure 3. Left: all source locations (blue • ) and sensor locations (black • ). Right: heatmap of the ΔToA

(response yi) given locations (inputs xi = x 1ð Þ
i ,x 2ð Þ

i

n o
) for the experiment k = 15, sensor pair (3, 5).
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2.1. Difference in time-of-arrival (ΔToA)

Let the arrival time of AE i at sensor j be denoted Aij ∀j∈ 1,2,…,8f g. The difference in time-of-arrival
(ΔToA) is then the difference between any two sensors. Since there are eight sensors, there are 28 pairwise
combinations and associated maps (8C2). Each pair generates a different f (distinguished with notation
later). For example, the pair (3, 5) would present the scalar output yi ∈ℝ, yi =Ai3�Ai5. The input vectors

xi ∈ℝ2 are the locations (length versus width), xi = x 1ð Þ
i ,x 2ð Þ

i

n o
where {0, 0} is the bottom left corner of the

plate. Figure 3 (right) shows the data associated with the sensor pair (3, 5) while Figure 4 shows all pairs.
Each combination is labelled with an experiment index k∈ 1,2…,28f g listed in Table 2 Appendix B.

2.2. A note on normalization

Figure 4 plots N = 100 training data for each sensor pair combination, sampled uniformly from each task.
We then normalize inputs with respect to the longest edge, such that the plate’s length is unity. This scaling
maintains approximately the same relative smoothness of the map in each direction, that is one length
scale for both dimensions. Rather than normalize the response for each plate independently, it is z-score
normalized with respect to all 28 sensor pairings. This maintains the relative structure between experi-
ments (sensor pairs) in the combined data. More specifically, a global normalization of the outputs is
essential to prevent meaningful differences (between tests) from being scaled out of the data.

2.3. Why multilevel?

In the context of this work, each map and sensor pair corresponds to a distinct but related environment:
each referred to as an experiment, with an associated predictive task learned as a regression. These
collected environments are visualized in Figure 4. If one learns these maps collectively, in a combined
inference, the model should capture variations between each sensor pair. These relationships capture
further insights from the experimental campaign, which emerge at the systems level.

3. Representing AE maps with Gaussian Processes Regression

GPs are used to represent each of these experiments since they offer a flexible tool for regression with
natural mechanisms to encode engineering knowledge and domain expertise. First, we consider one task
at a time (Section 4 extends the model to consider all experiments in a combined inference). The additive
noise ϵi is assumed to be normally distributed,

yi = f xið Þþ ϵi, ϵi �N 0,σið Þ (3.1)

Figure 4.Heatmaps of the measured ΔToA (yi) with respect to locations (xi) for all sensor combinations.
Large black markers plot sensor pairs, while small black markers plot training observations. The
remaining data are used to test out-of-sample performance. The number in the bottom right is the

experiment index k∈ 1,2,…28f g.
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in practice, ϵi will represent more than observation noise, since it captures the combined uncertainty of the
ΔToA extraction, from the raw time series data. Still, as with previous work [21, 22, 12, 6], we found this
representation works well in practice. Rather than suggest a parametrization of f we assume that it has a
nonparametric GP prior distribution2,

θ� p ϕð Þ (3.2)

f �GP mf �;θð Þ,kf �ð , � ;θÞ� �
(3.3)

The prior over f is specified by its meanmf and covariance kf functions, where θ is the set of collected
hyperparameters. These hyperparameters are sampled from the higher level distribution p θkjϕð Þ whose
prior is parametrised by constants in ϕ. The mean and covariance of the prior offer natural mechanisms to
encode knowledge of the expected functions given domain expertise, before any data are observed. The
covariance determines the expected correlation between outputs—influencing process variance, and
smoothness—while the mean represents the prior expectation of the structure of the functions. A function
sample from the GP, denoted f , is multivariate normal for any finite set of N observations,

f �N mf ,Kfð Þ (3.4)

y�N f ,σð Þ (3.5)

Kf i, j½ �≜ kf xi,xj;θ
� �

(3.6)

mf i½ �≜ mf xið Þ (3.7)

Since the observationmodel is assumed Gaussian, we can avoid sampling f entirely by combining the
GP kernel Kf with the additive noise vector σ, to describe the likelihood function,

y�N mf ,Kf þdiag σ2
� �� �

(3.8)

Following [21] we use a zero-mean and Matérn 3=2 kernel function kf for the covariance function,

mf i½ �= 0 (3.9)

Kf i, j½ �= α2 1þ
ffiffiffi
3

p
xi�xj
�� ��
l

 !
exp �

ffiffiffi
3

p
xi�xj
�� ��
l

 !
(3.10)

The zero-mean function is justified since the complex plate geometry prevents the specification of a
parametrized mean. In the absence of this information, a zero mean is usually sufficient practice, since the
GP alone is flexible enough to model arbitrary trends, given enough training data. Two hyperparameters
are introduced via the kernel kf (3.10) such that θ = α, lf g. The process variance α encodes the magnitude
of function variations around the expected mean. The length scale l encodes how much influence a
training observation has on its neighboring inputs, it represents the smoothness of the approximating
family of functions.

3.1. Heteroscedastic noise

In the experiments, the scale of the additive noise σi is expected to increase at the extremities of the plate
[22]. As such, the magnitude of the noise is input-dependent, and it is not statistically identical over the

2Note, we use p ajbð Þ and a� p bð Þ to denote the same probability distribution.
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whole input (that is it is not homoscedastic). Such input-dependent noise can be represented with a
heteroscedastic regression. Heteroscedasticity is implemented with another GP in a combined model,
mapping the inputs xi to the scale of the additive noise σi. This introduces the noise process r, where the
prior utilizes a constant mean function3mr xið Þ=mr and another Matérn 3=2 kernel function (with its own
hyperparameters). Therefore, a finite sample from the noise process is distributed as follows,

r�N mr,Krð Þ (3.11)

σ = exp rð Þ (3.12)

mr i½ � =mr

Kr i, j½ � = α2r 1þ
ffiffiffi
3

p
xi�xj
�� ��
lr

 !
exp �

ffiffiffi
3

p
xi�xj
�� ��
lr

 !
(3.13)

Samples from r are exponentiated to define σ since the noise variance must be strictly positive (note
that, untransformed, a GP will map to any real number). The exponential transformation requires a
constant mean function, otherwise, the prior of the expected noise variance is too large, as a zero mean
function would lead to exp 0ð Þ= 1. The additional hyperparameters from the noise process are now
included in the total set θ,

mr,αr, lrf g∈ θ

3.2. Prior formulations

One should encode prior knowledge of the AE maps as prior distributions over the higher-level variables
θ� p ϕð Þ. The hyperparameters of the GP are sampled from these distributions, which characterize the
expected variation, smoothness, and noise of the response. The following p θkjϕð Þ structure is adopted,

θ = l,α,mr,αr, lrf g, θ� p ϕð Þ

l�Gamma shape = 2, rate = 1ð Þ (3.14)

α�Half ‐Normalþ scale = 1ð Þ (3.15)

mr �N mean = �0:9,scale = 1ð Þ (3.16)

lr �Gamma shape = 2, rate = 1ð Þ (3.17)

αr �Half ‐Normalþ scale = 1ð Þ (3.18)

where Gamma and Half ‐Normalþ are the Gamma and positive Half-Normal probability distribution
functions respectively. The Half-Normal distribution is centered at zero, with support for positive values
only. The constants in (3.14)–(3.18) correspond to ϕ, and they are specified given the combined
normalized space as weakly informative prior distributions, explained below.

Recall that the inputs are normalized between [0, 1] with respect to the longest side. We expect a
smooth ΔToAmap fð Þ and noise process rð Þ, so the Gamma distributed length scales l (3.14) and lr (3.17)
have their mode at 1= shape�1ð Þ=rate [3]. The output is z-score normalized, so we expect the

3A constant GP mean function does not imply the posterior (predictive) distribution of r is constant, only the mean of its prior
distribution.
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process variance α should be less than unity (shrunk further by outliers). This is reflected by a half-normal
distribution with a unit scale, with an expected value E α½ �= 1

ffiffi
2

pffiffi
π

p = 0:8.
The expectation of the noise process r is set to 0:08, to encode prior belief of a signal-to-noise ratio of

10, in terms of expected scale,

expected process noise
expected additive noise

=
E α½ �
E σ½ � =

E α½ �
E exp rð Þ½ � =

E α½ �
exp E mr½ �ð Þ (3.19)

=
1
ffiffiffi
2

p
× π�0:5

exp �2:5ð Þ =
0:8
0:08

(3.20)

Avague prior is defined as αr, which indicates high variance in the noise process r, to reflect weak a
priori knowledge,

E αr½ �= 2
ffiffiffi
2

pffiffiffi
π

p = 1:6 (3.21)

A high scale for the noise process is assumed, since it is known that measurement noise increases
dramatically at the extremities of the plate, far from the centroid of sensor pairs [22].

3.3. Inference and prediction

To identify the model and make predictions, one can infer the posterior distribution for latent variables
p Θjyð Þ by conditioning the joint distribution (which encodes domain expertise via themodel and the prior
specification) on the training data y. We use Θ to generically collect all (unobservable) latent variables,
including functions, parameters, and hyperparameters. The joint distribution is written as the product of
two densities, referred to as the likelihood p yjΘð Þ (or the data distribution) and the prior p Θð Þ,

p y,Θð Þ= p yjΘð Þp Θ;ϕð Þ (3.22)

During model design, we have specified the likelihood with (3.8) and the prior throughout (3.14)–(3.18).
Applying the property of conditional probability to (3.22) we arrive at Baye’s rule and an expression for
the posterior distribution,

p Θjyð Þ= p yjΘð Þp Θð Þ
p yð Þ (3.23)

While (3.23) is a straightforward application of conditioning [4], in practice, the evaluation of the
denominator (that is the marginal likelihood or evidence) is nontrivial. It is specified by the following
integral, which is intractable for most prior-likelihood combinations,

evidence : p yð Þ=
Z

p y,Θð ÞdΘ=

Z
p yjΘð Þp Θð ÞdΘ (3.24)

The integral (3.24) is feasible for a subset of likelihood-prior distributions, known as conjugate pairs
[3]. In many practical applications, however, it becomes increasingly hard to justify the model and prior
choices that lead to conjugacy. In our case, the prior formulation p θjϕð Þ required for a multilevel
representation leads to an intractable eq. (3.24).

A number of approximate Bayesian methods are used with non-conjugate models. Here, we utilize a
sampling-based solution, inferring the parameters using MCMC and the no U-turn implementation of
Hamiltonian Monte Carlo [23]. The models are implemented in the probabilistic programming language
Stan [24].

When predicting new (previously unobserved) data ~y one (empirically) integrates out Θ from the
following product,
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p ~yjyð Þ=
Z

p ~yjΘð Þp Θjyð ÞdΘ

For GP variables f ,rf g, the distribution used to predict new inputs has an analytical solution when the
hyperparameters θ are fixed. For the f -process, this would be p ~yjy,θsð Þwhere θs represents samples from
the approximated posterior distribution. The analytical solution is then defined by conditioning a joint
Gaussian, e.g. p ~y,yjθsð Þ, on the training variables for all samples from the approximated posterior
distribution. The relevant identity is provided in Appendix A.

For the (3,5) sensor pair, a random sample of N = 100 observations is used for training, and the rest are
set aside as test data. Following inference and prediction, Figure 5 plots the mean of the posterior
predictive distribution for the two-dimensional map over the plate. To visualize the predictive variance
and its heteroscedastic nature, a random slice is taken along the length of the map and also plotted in
Figure 5.

4. Multilevel representations

To conceptualize the hierarchical structure of the experimental data, independent GPs are learned for all
28 tests (rather than sensor pair (3, 5) only). Recall that each pairwise map is distinguished with an index
k∈ 1,2,…,28f g listed in Table 2, Appendix B. The set of all maps is given by,

f kf gKk = 1
Throughout, we use the same test-train split of N = 100 random samples from each task, visualized in

Figure 4. Figure 6 shows samples from the posterior distributions p θjykð Þ∀k. Since the data are not shared
between the experiments, each task is learned independently, and these models are considered single-task
learners (STL) [4]. Figure 6 is typical longitudinal or panel data [3] where the task-specific θ are similar,
with random variations. The experiment-specific models can be viewed as perturbations around an
average (higher-level model). An intuitive concept, since all experiments concern the same plate, despite
the varying experimental design (sensor placement).

To summarize, each task represents a distinct but related environment. In turn, MTL is used to learn
predictive maps in a combined inference, to capture the inter-task functions (with quantified uncertainty)
relating to differences between tests in the experimental campaign.

4.1. (Method A) K GPs, one prior

In a combined inference, one simpleway to share information between tests assumes that the smoothness l
and process variance α2 of allΔToAmaps f kf g are consistent. In other words, theGPs for each experiment
are sampled from a shared prior,

Figure 5. The inferred sensor pair (3,5) for the experiment k =15 (left) and a length-wise slice to visualize
the heteroscedastic noise (right).
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f kf gKk = 1 �N mf ,Kfð Þ
Same for the noise process rk,

rkf gKk = 1 �N mr,Krð Þ
Shared hyperparameters across all K GPs is one form of partial pooling [3] and it will likely improve

inference compared to independent learners. However, Figure 6 suggests the assumption of tied
hyperparameters is too simple. Furthermore, process understanding supports this concern: it is unlikely
that the independent posterior samples correspond to the same hyperparameter since there are differences
in the design of each experiment. The question is whether the assumption provides a sufficient model.
Considering the above, distinct maps for each experiment f kf g are sampled from GP priors with shared
hyperparameters distributed by p θð Þ. This approach is presented as a benchmark—multitask learning
methodA (MTL-A). The resultant hyperparameter posterior distributions are shown by orangemarkers in
Figure 6. Their reduced variance is typical for pooled estimates because a single distribution is inferred
from all K datasets (rather than one for each task). Caution is required, this assumption misrepresents the
population variance if the model form is misspecified.

4.2. (Method B) Hyperparameter modelling

A more intuitive generating process considers that certain hyperparameters are conditioned on the
experimental setup, rather consistent, to better represent the differences between each test. We extend
the notation of (3.2) with a k-index to reflect this,

θk � p ϕð Þ
θk ≜ αk, lkf g (4.1)

Distinct variables are considered for the Kf kernel only (αk and lk) since these are easier to interpret and
relate to domain knowledge, especially if the plate had represented a simple geometry—this choice also
helps to constrain the model design. Having a distinct set θk allows the characteristics of the map to vary
between each experiment: this should be expected since they are different experimental designs. The
higher-level sampling distribution p θkjϕð Þ remains shared between all experiments (and learned from

Figure 6. Posterior distribution of hyperparameters for independent GPs of each experiment (STL,
green), compared to sharing hyperparameters (the prior) between all experiments (MTL-A, orange). Top
row: f -process hyperparameters (AE map). Bottom row: r-process hyperparameters (heteroscedastic

noise).

e48-10 Lawrence A. Bull et al.

https://doi.org/10.1017/dce.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.43


pooled data to share information). We now consider modifications to the prior model p θkjϕð Þ to encode
knowledge and domain expertise of the intertask relationships, that is between the experiments.

4.2.1. Beyond exchangeable experiments
When specifying a new prior model p θkjϕð Þ it is important to consider whether the experiments are
exchangeable [3]. Here, they would be considered exchangeable if no information is available to
distinguish the θk‘s from one another. In other words, the set θkf gkk = 1 (presented in Figure 6) cannot
be reordered such that patterns are revealed in the latent variables.

However, since we know about the design of the AE experiments, there are a few possibilities. One
simple description is sensor separation, to order the models and reveal structure (that is patterns) in the
hyperparameter estimates. Once structure appears, the experiments are no longer exchangeable. Sensor

separation δSk is defined as the Euclidean distance between any two of the eight
8

2

� 	
possible sensor

locations bS= bs1,bs2,…bs8f g,
δSk = ∣bsg�bsh∣ ∀ pairs frombS (4.2)

where the vector δSwill be length K =
8

2

� 	
= 28. The values for sensor separation from each experiment

are also presented in Table 2, Appendix B. The simple pattern we expect is that process variance αk will be
greater for sensors that are further apart; that is the variation in the ΔToA signal will be greater since the
AE signals have the potential to travel further.

Figure 7 plots the posterior distributions θk (STL) with respect to δSk for the independent models from
Figure 6. These samples indicate parameter relationships that we hope to learnwith the higher-levelmodel
p θkjϕð Þ. (Note that in Figure 7, samples correspond to latent variables and not observations.)

As expected, the process variance αk increases with sensor separation. The length scale lk presents a
similar trend: we believe the increasing length scale appears for smaller sensor spacing as the noise floor
(observation noise as well as parameter uncertainty) is larger compared to the magnitude of the response
variations (αk). In turn, the influence of each training observation on its neighbors is reduced.

Figure 7 also highlights the hold-out experiments k∈ 4,7,16,22f g represented by blackmarkers (rather
than green). Herein, hold-out experiments are not used when training (as with held-out data) to test
interpolation and extrapolation in the hyperparameter space for the multilevel models.

Figure 7.Ordering the hyperparameters (conditional posterior distribution) from the STL experiments θk
with respect to sensor separation δSk. Black markers correspond to models of the hold-out tests

k∈ 4,7,16,22f g which do not contribute training data for MTL.
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4.2.2. Intertask GPs
Like the input-dependent noise process (r) the variation of the hyperparameters (ofKf ) can be represented
with another function. The output of these functions is task-dependent (that is experiment-dependent).
That is, the hyperparameters of the AE map f are sampled from higher-level functions, denoted g,hf g,

θ� p ϕð Þ (4.3)

αð Þ g‐process : g�GP mg �;θð Þ,kg �ð , � ;θÞ� �
(4.4)

lð Þ h‐process : h�GP mh �;θð Þ,kh �ð , � ;θÞð Þ (4.5)

where hyperparameter functions vary (between tasks) with respect to sensor separation δSk for the
24 training experiments,

g�N mg,Kg

� �
(4.6)

αk = softplus gkð Þ ∀k∈ train (4.7)

h�N mh,Khð Þ (4.8)

lk = softplus hkð Þ ∀k∈ train (4.9)

θk ≜ αk, lkf g
Each GP is transformed to be strictly positive, as the hyperparameters they predict must be greater than
zero. While the exponential function was used for this purpose with the noise process r (3.12) here
softplus transformation [25] is used since it can be specified to approximate the identity function
(f að Þ= a) over the inputs of interest, aiding the interpretability of the hyperparameter models g,hf g.
The exponentiated transformation is maintained for the lower-level GPs f k since it prevented divergences
during inference via HMC, and aided convergence of the MCMC chains.

4.2.3. Priors
The noise process prior distributions are set as before (3.16)–(3.18) while the AE map priors are sampled
from GPs (4.7)–(4.9) whose hyperparameters are added to θ. We use the same Matérn 3/2 kernel for the
higher-level GPs (kg and kh); however, we use a linear mean function (with slope β and gradient γ),

Kg k, l½ �≜ kg δSk ,δSl;θð Þ
Kh k, l½ �≜ kh δSk,δSl;θð Þ
mg k½ �≜ βgδSkþ γg

mh k½ �≜ βhδSkþ γh

The linear mean allows us to encode domain knowledge of a positive gradient (as a soft constraint) for the
expected intertask functions via the GP prior. The conditional posterior predictive distributions of g,hf g
then provide intertask relationships learned from the collected data (while only observing data as inputs on
the lowest level f ). The additional hyperparameters for the shared (global) sampling distributions are,
αg, lg,αh, lh,βg,γg,βh,γh
� �

∈ θwhere β and γ are the slope and intercepts of the linear mean function for the
intertask relationships. The priors for each of these should reflect the difficulty in making specific
statements around hyperparameter values, due to their limited interpretability,

αg, lg,αh, lh
� � �i:i:d:Gamma 2,1ð Þ (4.10)
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βg,βh
� � �i:i:d:Uniform 0,10ð Þ, γg,γh

� � �i:i:d:Uniform �1,1ð Þ (4.11)

Given the normalized space, these priors encode weak knowledge and constrain the mean function to
positive gradients. The upper bound (10) of the uniform distribution was set to avoid divergences of the
HMC samples and ensure convergence of MCMC. The descriptive multilevel model, with GPs repre-
senting hyperparameter variations, is referred to as multitask learning method B (MTL-B).

4.3. MTL comparison

Table 1 is provided to compare the parameter hierarchies between each method:

• Independent learners (STL)
• Shared GP prior (MTL-A)
• Hyperparameter modeling (MTL-B)

STL has distinct GPs f ,rf g and associated hyperparameters α, l,mr,αr, lrf g for each task. MTL-A has
distinct task GPs f ,rf g but shares hyperparameters α, l,mr ,αr, lrf g between all tasks. Lastly, MTL-B has
distinct GPs f ,rf g and hyperparameters of the response α, lf gwhich are themselves predicted by intertask
GPs g,hf g, with (shared) hyperparameters αg, lg,αh, lh

� �
.

For visual comparison, Figure 8 plots the resultant hyperparameter posterior distributions for STL
(green), MTL-A (orange), and MTL-B (purple). The (purple) functions g,hf g appear to capture the
hyperparameter relationships, compared to the trends presented by the posterior distributions of the STL
models. The variance of the functions is also reduced, compared to independent models (green), without
the assumption of one consistent hyperparameter (orange). Critically, while each hyperparameter model
makes sense given their respective assumptions, the GP model (purple) is more expressive: it represents
the variations of themap between experiments with respect to an explanatory variable (sensor separation).

To summarize, both the process variance αk and length scale lk increase with sensor separation δS. For
process variance αk , this is because variation in the difference in time of arrival will be greater for sensors
that are further apart. For the length scale lk , we believe lower amplitude signals have a lower signal-to-
noise ratio, therefore the inferred functions are less smooth (that is lower length scale).

4.3.1. Modelling hyperparameters, not parameters
Whynot include δSk as an explanatory variable on the lower level—within a product kernel, for example?This
is because changes in the response are not smooth with respect to δSk . Instead, the response surface switches
discontinuously between experiments, see Figure 4. However, the response characteristics (smoothness,
process variance) show smooth relationshipswith respect to δSk (observed in Figures 7 and 8). For this reason,
it is more appropriate to model variations at the hyperparameter level, rather than the map itself. The expected
smoothness of intertask functions should be a primary consideration when building multilevel models.

4.3.2. Post-selection inference
By investigating (independent) model behavior with plots of the posterior distributions, we use the
training data twice: (i) for inference and (ii) to inform model design. Specifically, Figure 7 was used to

Table 1. Comparison of methods based on the hierarchy of latent variables

Method STL MTL-A MTL-B

Task-specific f ,rf g α, lf g mr,αr, lrf g f ,rf g f ,rf g α, lf g
Shared N/A α, lf g mr,αr, lrf g g,hf g αg, lg

� �
αh, lhf g mr,αr, lrf g
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inform the structure of the multilevel model, so we are guilty of post-selection inference [26]. With
reference to Gelman et al. [3], when the number of candidate models is small, the bias resulting from data
reuse is also small. In this case study, the plots informed only certain aspects of the higher-level GP design.
Post-selection inference should be treated cautiously, however, as when the number of candidate models
grows, the risk of overfitting the data increases.

5. Results and discussion

To test each method of representing the experimental data, the ground truth (or target) out-of-sample data
ykf gkk = 1 are compared to the posterior predictive distribution. The predictive log-likelihood is used as a

probabilistic assessment of performance,

lpY k =
XN
i = 1

log
1
S

XS
s= 1

p yik jΘsð Þ
 !

(5.1)

where Θsf gSs= 1 are the S samples from the full approximated posterior distribution and the combined
likelihood of all models is lpY =

PK
k = 1lpY k. In other words, (5.1) quantifies the (log) likelihood that test

data were generated by the model inferred from the training data. A higher value indicates that the model
has a better approximation of the underlying data-generating process and indicates good generalization.

Figure 9 presents lpY for all benchmarks. There is a small improvement in the combined predictive
likelihood for both MTL methods. Rather than motivate MTL, the predictive likelihoods show that
hierarchical GPsmaintain the predictive performance of the STLmodels. Insights are enabled in Figure 8,
where the inferred intertask functions are presented with uncertainty quantification—e.g. these are used
later for transfer learning in Section 5.1. For task-specific performance (lpY k) independent STL performs
better for a subset of tasks k∈ 3,8,10,11,13f g. This is typical, however, since MTL considers the joint
distribution of the whole data. If some experiments have data with fewer outliers and less noise, these
might be negatively impacted by experiments with higher noise and sparse data. For example, in tasks
with low sensor separation, the signal-to-noise ratio is lower, which might represent weak data.

BothMTL-A and B extend data for training by partial pooling, but B has a more descriptive multilevel
structure, allowing us to encode domain expertise for intertask (between experiment) learning. In turn,
hyperparameter relationships are captured over the experimental campaign (rather than their marginal
distribution). Modeling prior variations in MTL-B represents changes in the tasks with respect to
experimental design parameters (in this case δSk). To summarise:

Figure 8. Posterior distributions p θkjyð Þ following each method of learning from the series of AE
experiments. Independent learners (STL, green); Shared GP prior (MTL-A, orange); Hyperparameter
modeling (MTL-B, purple). Blackmarkers correspond to STLmodels of the hold-out tests k∈ 4,7,16,22f g

which do not contribute training data for MTL.
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• (A & B) can simulate the hyperparameters for hypothetical/unobserved experimental setups
• (B) has the potential to encode physics/domain expertise of behavior between sensor pairs (mean
functions, constraints)

• (A & B) can use the intertask relationships, learned from similar experiments, to predict hyperpara-
meters for tasks with sparse data (this can be viewed as a form of transfer learning)

5.1. Using the multilevel model for transfer learning

To demonstrate transfer learning, the intertask functions are used for meta-modeling, to interpolate and
extrapolate in themodel space. The results intend to show howmultilevel models can capture overarching
insights from the experimental campaign (at the systems level) as well as task-specific insights. The
expected hyperparameter values E θk½ � from MTL-A and B can be visualized in Figure 8 with the solid
lines. These point estimates are used when conditioning on data from the hold-out tests4. In turn,
hyperparameter inference can be avoided for new (previously unobserved) experiments. Instead, we
predict their value given the other, similar experiments: where MTL-A assumes one hyperparameter set
for all tests, and MTL-B learns how these vary with respect to sensor separation. By predicting
hyperparameters, informed by data-rich tasks, the predictive performance should be improved for new
experiments with sparse data.

The expected hyperparameter values are used to condition new GPs for an increasing training budget
(N= 5� 100) for the hold-out experiments. Figure 10 shows that both forms ofMTL consistently improve
the predictive performance, especially when extrapolating in the model space (δS = 0:54). These
improvements are intuitive since the extrapolated parameters are associated with higher uncertainty for
conventional STL (refer to Figure 8). Another (more natural) way to share information would be to retrain

Figure 9. Predictive log-likelihood for the out-of-sample test data. Excluding hold-out experiments
k∈ 4,7,16,22f gwhich are modeled using transfer learning in s:transfer. Lines plot the average across all
tasks, the combined log-likelihood (summed) for each method is: (STL, 84217), (MTL A, 85149), and

(MTL B, 85204).

4 Ideally, the full predictive distribution should be used, rather than the expectation alone. A point estimate is used here, however,
for computational reasons—there are 100 repeats of these experiments.
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the MTL models and include held-out experiments while increasing the training data. We favor the
method presented here for computational reasons, referring again to the footnote4.

These results demonstrate transfer learning since the information from the training experiments
(source tasks) is used to improve prediction for held-out experiments (target tasks). However, both
MTL-A and B provide (effectively) the same performance increase. This raises the question: is the more
descriptive model for p θjϕð Þ worth it, given that A provides the same predictive performance? We argue
that this depends on the purpose of themodel. If the purpose is purely prediction, the assumptions ofAwill
likely be sufficient (in engineering, however, prediction is rarely the only motivation). On the other hand,
B more closely resembles our understanding and domain expertise of the experimental campaign: it
provides more insights regarding variations of the AE map between each experiment. In future work,
stronger constraints could be applied to the parameters of the model directly (rather than hyperpara-
meters). This structure would allow the meta-model to simulate the response yk of unobserved experi-
ments directly, and the inter-task functions would have more influence on predictive performance.
However, these constraints would be more restrictive and require more specific domain knowledge,
which was not available for these experiments.

6. Concluding remarks

In this work, we demonstrated how multilevel Gaussian Processes (GPs) can be used as meta-models to
represent an experimental campaign for nondestructive testing (NDT). Two model formulations were
used to represent a series of experiments concerning source localization with AE data for a complex plate
geometry. While the same plate was used throughout the test campaign, the experimental design was
varied (re. sensor placement). By learning all tasks in a joint inference, the representation captures how
characteristics of the AEmap (that is hyperparameters) vary between the experiments. Themodel can also
share information between tasks, to extend the (effective) number of training data and their value. We
presented the intertask relations and explained how they inform insights into systems-level behavior,
allowing domain expertise to be encoded between experiments, relating to the effects of design variables
on the outcome of each test. The intertask functions were used as meta-models to predict hyperparameter
values of similar (previously unobserved) experiments and enhance inference in new tasks by transfer
learning. Looking forward, more specific physics-based constraints could be encoded into multilevel
representations (via the kernel function) to describe intertask variations with physics-basedmodels, that is
differential equations. Instead, this article encoded general domain expertise of the underlying process
(via the GP mean function) such that data simulated from the model reflected our understanding of the
environment and experiments.

Data availability statement. While the experimental data in this work are not currently available to share, the stan code is hosted on
https://github.com/labull/EngineeringPatternRecognition.

Figure 10. Predictive log-likelihood for an increasing training budget for the hold-out experiments
k∈ 4,7,16,22f g. Conventional single-task learning (STL) compared to multitask learning (MTL) which

predicts hyperparameter values from similar experiments. Averaged for 100 repeats.
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Appendix

A. A Gaussian identity for GP prediction
Let x and y be jointly distributed Gaussian random vectors [27],
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The conditional distribution of x given y is

x∣y�N μxþCB�1 y�μy
� �

,A�CB�1C⊤� �
This conditional is used in GP predictive equations, for a given/fixed set (that is sample) of hyperparameters. For further details,

refer to Rasmussen et al. [27].

B. Pair label indices

Table 2. Experiment indices k, sensor pairs, and their separation δS (Euclidean distance in
normalized space)

experiment index (k) sensor pair sensor separation (δS)

1 (1, 2) 0.18
2 (1, 3) 0.38
3 (1, 4) 0.21
4 (1, 5) 0.33
5 (1, 6) 0.39
6 (1, 7) 0.44
7 (1, 8) 0.54
8 (2, 3) 0.2
9 (2, 4) 0.16
10 (2, 5) 0.24
11 (2, 6) 0.43
12 (2, 7) 0.39
13 (2, 8) 0.44
14 (3, 4) 0.28
15 (3, 5) 0.28
16 (3, 6) 0.54

Continued
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experiment index (k) sensor pair sensor separation (δS)

17 (3, 7) 0.42
18 (3, 8) 0.39
19 (4, 5) 0.12
20 (4, 6) 0.27
21 (4, 7) 0.24
22 (4, 8) 0.33
23 (5, 6) 0.27
24 (5, 7) 0.15
25 (5, 8) 0.22
26 (6, 7) 0.2
27 (6, 8) 0.39
28 (7, 8) 0.18
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