VOLUME 17 NUMBER 2 JUNE 1994 An International Journal of Current Research and Theory with Open Peer Commentary

Behavioral and Brain Sciences

Appearing in this issue, with Commentary . . .

The representing brain: Neural correlates of motor intention and imagery M. Jeannerod

A theory of visual stability across saccadic eye movements Bruce Bridgeman, A. H. C. Van der Heijden & Boris M. Velichkovsky

Motion perception during self-motion: The direct versus inferential controversy revisited Alexander H. Wertheim

Also, Continuing Commentary on "Language, tools and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior" (Greenfield)

NEW EDITORIAL OFFICE: See Last Page for Details

Behavioral and Brain Sciences

Editor

Stevan Harnad

E-mail: harnad@clarity.princeton.edu or harnad@pucc.bitnet 20 Nassau St., Suite 240 Princeton, NJ 08542

Managing Editor Nancy Simon

Chief Copy Editor Avis Kniffin

Associate Editors

Behavioral Biology Jack P. Hailman/U. Wisconsin Hubert Markl/U. Konstanz

Biosocial Behavior Glendon Schubert/U. Hawaii, Manoa

Cognition and Artificial Intelligence Zenon Pylyshyn/U. Western Ontario

Cognitive Development Annette Karmiloff-Smith/MRC, London and MPI, Nijmegen

Evolutionary Biology Michael T. Ghiselin/California Academy of Sciences

Experimental Analysis of Behavior A. Charles Catania/U. Maryland, Baltimore County

History and Systems Julian Jaynes/Princeton

Language and Cognition Philip Johnson-Laird/Princeton

Editorial Policy Behavioral and Brain Sciences (BBS) is an international journal providing a special service called Open Peer Commentary* to researchers in any area of psychology, neuroscience, behavioral biology, or cognitive science who wish to solicit, from fellow specialists within and across these BBS disciplines, multiple responses to a particularly significant and controversial piece of work. (See *Instructions for Authors and Commentators,* inside back cover.) The purpose of this service is to contribute to the communication, criticism, stimulation, and particularly the unification of research in the behavioral and brain sciences, from molecular neurobiology to artificial intelligence and the philosophy of mind.

Papers judged by the editors and referees to be appropriate for Commentary are circulated to a large number of commentators selected by the editors, referees, and author to provide substantive criticism, interpretation, elaboration, and pertinent complementary and supplementary material from a full cross-disciplinary perspective. The article, accepted commentaries, and the author's response then appear simultaneously in BBS.

Commentary on BBS articles may be provided by any qualified professional in the behavioral and brain sciences, but much of it is drawn from a large body of BBS Associates who have become formally affiliated with the project.

Qualified professionals are eligible to become BBS Associates if they have (1) been nominated by a current BBS Associate, (2) refereed for BBS, or (3) had a commentary or article accepted for publication. A special subscription rate is available to Associates. Individuals interested in serving as BBS Associates are asked to write the editor.

This publication was supported in part by NIH Grant LM 03539 from the National Library of Medicine.

Copying This journal is registered with the Copyright Clearance Center (222 Rosewood Dr., Danvers, MA 01923). Orga-

*Modelled on the 'CA Comment' service of the journal *Current Anthropology.*

© 1994 Cambridge University Press

Language and Language Disorders Max Coltheart/Macquarie U.

Linguistics Robert Freidin/Princeton

Neurobiology Irving Kupfermann/Columbia

Neurobehavioral Genetics Wim E. Crusio/Centre National de la Recherche Scientífique

Neuropsychology Jeffrey A. Gray/Inst. Psychiatry, London John C. Marshall/Radcliffe Infirmary, Oxford

Neurophysiology Sten Grillner/Karolinska Institutet

Paleoneurology Stephen Jay Gould/Harvard

Perception Bruce Bridgeman/U. California Richard Gregory/U. Bristol

Philosophy Daniel C. Dennett/Tufts Gilbert Harman/Princeton

Philosophy of Science Adolf Grünbaum/U. Pittsburgh Massimo Piatelli-Palmarini/MIT

Primatology Horst D. Steklis/Rutgers

Psychobiology Victor H. Denenberg/U. Connecticut

Vision and Artificial Intelligence Stuart Sutherland/U. Sussex

nizations in the U.S.A. who are also registered with the CCC may therefore copy material (beyond the limits permitted by sections 107 and 108 of U.S. Copyright Law) subject to payment to the CCC of the per-copy fee indicated in the code on the first page of the article. This consent does not extend to multiple copying for promotional or commercial purposes.

ISI Tear Sheet Service, 3501 Market Street, Philadelphia, PA 19104, is authorized to supply single copies of separate articles for private use only.

For all other use, permission should be sought from the Cambridge or New York offices of the Press.

Subscriptions Behavioral and Brain Sciences (ISSN 0140-525X) is published quarterly in March, June, September, and December. Four parts form a volume. The subscription price for *institutions* of Volume 17 (1994) is US \$210.00 net in the U.S.A., Canada, and Mexico; UK £141.00 in the rest of the world; for *individuals* US \$85.00 net (£57.00); for BBS Associates and for students (in the U.S.A., Canada, and Mexico only) with proof of eligibility with order US \$49.00 net (£36.00); for APA, APS, and ASA members US \$68.00 net (£36.00) with proof of eligibility with order. Subscription price includes postage.

Single parts cost US \$54.00 net (£36.00) plus postage. Institutional orders may be sent to a bookseller, or, in the U.S.A., Canada, and Mexico direct to: Cambridge University Press, 40 West 20 Street, New York, NY 10011-4211; in the U.K. and rest of the world to: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU, England. Individuals must order direct from the Press. Second class postage paid at New York, N.Y., and at additional mailing offices. Postmaster: Send address changes in the U.S.A., Canada, and Mexico to Behavioral and Brain Sciences, Cambridge University Press, 40 West 20 Street, New York, NY 10011-4211.

Advertising Inquiries about advertising should be sent to the Journals Promotion Department of the Cambridge or New York Office of Cambridge University Press.

Contents Volume 17:2 June 1994

Jeannerod, M. The representing brain: Neural correlates of motor intention and imagery

Open Peer Commentary

Bajcsy, R. Do object affordances represent the	
functionality of an object?	202
Buneo, C. A. & Flanders, M. On the limitations	
of imaging imagining	202
Chua, R. & Weeks, D. J. Cognitive and motor	
implications of mental imagery	203
Contreras-Vidal, J. L., Banquet, J. P., Brebion, J.	
& Smith, M. J. The creative brain: Symmetry	
breaking in motor imagery	204
Corcos, D. M. Temporal representation in the control	
of movement	206
Dufour, R., Fischer, M. H. & Rosenbaum, D. A.	
Moving beyond imagination	206
Elliott, D. & Maraj, B. K. V. Visual-spatial movement	
goals	207
Fuster, J. M. Call it what it is: Motor memory	208
Gandevia, S. C. Peripheral and central correlates	
of attempted voluntary movements	208
Grush, R. Motor models as steps to higher cognition	209
Hallett, M., Fieldman, J., Cohen, L. G., Sadato, N.	
& Pascual-Leone, A. Involvement of primary motor	
cortex in motor imagery and mental practice	210
Ingvar, D. H. Motor memory – a memory	
of the future	210
Jackendoff, R. & Landau, B. What is coded	
in parietal representations?	211
Kainen, P. C. Synergy versus schema	212
Klatzky, R. L. On the relation between motor imagery	
and visual imagery	212
Milner, A. D., Carey, D. P. & Harvey, M. Visually	٠
guided action and the "need to know"	213

Mitchell, R. W. Are motor images based	
on kinesthetic-visual matching?	214
Morton, A. Motor simulation	215
Pailhous, J. & Bonnard, M. Jeannerod's representing	
brain: Image or illusion?	215
Pellizzer, G. & Georgopoulos, A. P. Representations	
of movement and representations in movement	216
Prinz, W. Motor images are action plans	218
Requin, J. To dream is not to (intend to) do	218
Rizzolatti, G. Nonconscious motor images	220
Roll, J. P., Gilhodes, J. C. & Roll, R. Kinaesthetic	
illusions as tools in understanding motor imagery	220
Sanes, J. N. Neurophysiology of preparation,	
movement and imagery	221
Sinha, C. Canonical representations and constructive	
praxis: Some developmental and linguistic	
considerations	223
Skokowski, P. G. How do we satisfy our goals?	224
Strong, G. W. Separability of reference frame	
distinctions from motor and visual images	224
Van der Heijden, A. H. C. & Bridgeman, B. Action	
and attention	225
Vogt, S. Imagery needs preparation too	226
Walter, C. B. & Swinnen, S. P. Potential disparities	
between imagining and preparing motor skills	227
Whiting, H. T. A. & Ingvaldsen, R. P. The mystery-	
mastery-imagery complex	228
Author's Response	
Jeannerod, M. Motor representations and reality	229
Jeannerou, Mr. Motor representations and reality	

Bridgeman, I	B., Van	der Heijden,	A. H. C.	& Velichkovsky,	B. M.
A theory of	visual	stability acros	s saccadic	eye movements	

Open Peer Commentary

Chekaluk, E. Is there a role for extraretinal factors	
in the maintenance of stability in a structured	
environment?	258
Dassonville, P., Schlag, J. & Schlag-Rey, M. Just how	
different are perceptual and visuomotor localization	
abilities?	258
Deubel, H. & Schneider, W. X. Perceptual stability	
and postsaccadic visual information: Can man bridge	
a gap?	259
Enright, J. T. Voluntary oscillopsia: Watching the	
world go round	260
Grüsser, OJ. Early concepts on efference copy	
and reafference	262
Harris, L. R. Keeping track of visual codes that move	
from cell to cell during eye movements	265
Irwin, D. E., McConkie, G. W., Carlson-Radvansky, L. A.	200
& Currie, C. A localist evaluation solution for visual	
	065
stability across saccades	265
Jüttner, M. Visual stability and transsaccadic	
information processing	266
Karn, K. S., Lachter, J., Møller, P. & Hayhoe, M.	
Task dependent spatial memory across saccades	267
Mateeff, S. & Hohnsbein, J. Is there any essential	
difference between the "calibration" and	
"elimination" solutions?	268

Mittelstaedt, H. Theory of coordinate transformation	269
by efference copy survives another attack O'Regan, J. K. The world as an outside iconic memory	209
 no strong internal metric means no problem 	270
of visual stability	270
Owens, D. A. & Reed, E. S. Seeing where we look:	
Fixation as extraretinal information	271
Paillard, J., Fleury, M., Teasdale, N., Bard, C. &	
Nougier, V. The perceptual stability of the visual	
field: What is calibration for?	272
Petrov, A. P. The "calibration" solution still leaves	
much work to be done	273
Pouget, A. & Sejnowski, T. J. Is perception	
isomorphic with neural activity?	274
Prablanc, C. Neuronal death of the cancellation theory?	274
Robinson, D. N. On the locus of visual stability	275
Shebilske, W. L. Calibration models and ecological	
efference mediation theory: Toward a synthesis	
of indirect and direct perception theories	276
Smeets, J. B. J. & Brenner, E. Stability relative	
to what?	277
Sokolov, E. N. Vector code in space constancy	278
Stoper, A. E. The translation solution plus motion	
suppression account for perceived stability	278
	279
Strong, G. W. There is no "point" to space	219

Trehub, A. What does calibration solve?	279	Authors' Response	
van Donkelaar, P. & Windhorst, U. Visual stability: What is new? Wertheim, A. H. Fixations or smooth eye movements?	280 281	Bridgeman, B., Van der Heijden, A. H. C. & Velichkovsky, B. M. How our world remains stable despite disturbing influences	282

Wertheim, A. H. Motion perception during self-motion: The direct versus inferential controversy revisited

Open Peer Commentary

- F - · · · · · · · · · · · · · · · · ·	
Andersen, G. J. Analysis of information for 3-D	
motion perception: The role of eye movements	311
Becker, W. & Mergner, T. A theory of the perceptual	
stability of the visual world rather than of motion	
perception	312
Belopolsky, V. I. Frame and metrics for the reference	
signal	313
Boothe, R. G. Biological perception of self-motion	314
Bridgeman, B. & Blouin, J. Extending reference	
signal theory to rapid movements	315
Büttner, U. & Straube, A. Ego- and object-motion	
perception: Where does it take place?	316
Coombs, D. Sensor fusion in motion perception	317
da Vitoria Lobo, N. Direct perception theory needs to	
include computational reasoning, not extraretinal	
information	318
Gregson, R. A. M. Ambiguities in mathematically	
modelling the dynamics of motion perception	318
Hadani, I. & Julesz, B. Computational aspects of	
motion perception during self-motion	319
Held, R. The inferential model of motion perception	
during self-motion cannot apply at constant velocity	320
Honda, H. Some problems with the gain of the	
reference signal	321
Kim, NG. & Turvey, M. T. Optical foundations	
of perceived ego motion	322
Mateeff, S. & Hohnsbein, J. Wertheim's "reference"	
signal: Successful in explaining perception of	
absolute motion, but how about relative motion?	323
Previc, F. H. Inferring the visual reference	324
Probst , T . Why another alternative optokinetic model?	325
Riccio, G. E. Perception of motion with respect to	
multiple criteria	326
	5-5

Rieser, J. J. Ego-centered and environment-centered	
perceptions of self-movement	328
Ross, H. E. Active and passive head and body	
movements	329
Sauvan, X. M. What does linear vection tell us about	
the optokinetic pathway?	330
	000
Shebilske, W. L. Ecological efference mediation	000
theory and motion perception during self-motion	330
Skavenski, A. A. The idea that space perception	
involves more than eye movement signals and the	
position of the retinal image has come up before	331
Stroffregen, T. A. "Sensory" reference frames and the	
information for self-motion versus object motion	332
Stoper, A. E. Does the reference signal cancel visual	
field motion?	333
Swanston, M. Spatial motion perception requires the	
perception of distance	334
Thier, P., Erickson, R. G. & Dichgans, J. A cortical	
substrate for motion perception during self-motion	335
Tresilian, J. R. Two straw men stay silent when asked	000
about the "direct" versus "inferential" controversy	335
	335
Velichkovsky, B. M. & Van der Heijden, A. H. C.	0.05
Space as reference signal? Elaborate it in depth!	337
Wann, J. & Rushton, S. The illusion of self-motion	
in virtual reality environments	338
Yardley, L. The significance of the active pick-up	
of information in ecological theories of motion	
perception	340
• •	
Author's Response	

293

357

Wertheim, A. H. Motion perception: Rights, wrongs	
and further speculations	340

Continuing Commentary

On Greenfield, P. M. (1991) Language, tools and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. BBS 14:531-595.

Andreae, J. H. & Ryan, S. W. Associative learning		Authors' Response	
and task complexity	357	Piñon, D. & Greenfield, P. M. Does everybody do it?	
Pepperberg, I. M. Language and cognition:		Hierarchically organized sequential activity in robots,	
The interesting case of subjects "P"	359	birds and monkeys	361
Westergaard, G. C. Language, tools and			
neurobehavioral laterality	360		

David S. Olton (1943-1994)

We must sadly announce the death of David S. Olton, Professor of Psychology at Johns Hopkins University and BBS Associate Editor for Psychobiology. Our deepest sympathies to his family and friends.