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SUMMARY

We used a mathematical model to describe a regional outbreak and extrapolate the underlying

health-service resource needs. This model was designed to (i) estimate resource gaps and

quantities of resources needed, (ii) show the effect of resource gaps, and (iii) highlight which

particular resources should be improved. We ran the model, parameterized with data from the

2009 H1N1v pandemic, for two provinces in Thailand. The predicted number of preventable

deaths due to resource shortcomings and the actual resource needs are presented for two

provinces and for Thailand as a whole. The model highlights the potentially huge impact of

health-system resource availability and of resource gaps on health outcomes during a pandemic

and provides a means to indicate where efforts should be concentrated to effectively improve

pandemic response programmes.

Key words : Health policy, health-service resources, influenza A, pandemic preparedness,

theoretical model.

INTRODUCTION

In recent years substantial progress has been made by

many countries to improve their pandemic influenza

response plans [1–3]. However, with the current

H1N1v pandemic, and sporadic human cases of

H5N1 cases still occurring in South East Asia, pan-

demic preparedness has become an issue of daily

public-health policy, testing the operability of

strategic response plans. The level of pandemic pre-

paredness has direct impact on the effectiveness of

local as well as global disease control. Furthermore,

local health services are challenged since they have

to provide appropriate treatment, especially to an in-

creasing number of severe influenza cases needing

intensive care [4–6]. Developing countries may be

particularly taxed by scarce resources in the event of a

pandemic since they are often confronted with limited

healthcare capacities [7]. Thus, data about resource

needs, resource gaps and the best way to improve

outbreak response are important to practically sup-

port local policy-makers in pandemic planning.

In support of preparedness, simulation exercises

have been applied to test operational pandemic
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response and to evaluate whether resources are suf-

ficient to control disease spread [8–13]. In addition,

computer programs exist to estimate the dynamics of

a potential pandemic outbreak and to analyse the

impact of intervention measures to guide response

planning [14, 15]. However, many of these simulation

exercises and programs do not explicitly address

resource availability or determine the public-health

impact of resource gaps. Important questions thus re-

main as to whether strategic planning is adequate for

potential outbreak mitigation or control and about

effective options to improve pandemic response, es-

pecially in resource-poor settings.

The aim of this study was to develop a simulation

model designed for local policy-makers in low- and

middle-income countries to estimate the characteristic

of a possible pandemic influenza outbreak within a

defined population. These results build the basis for

calculating the health-system resource needs, for

identifying potential resource gaps and for pointing

out effective options for improving resource ca-

pacities.

METHODS

We developed a mathematical model to describe a

pandemic influenza outbreak under different assump-

tions about resource availability. Feedback loops

within the model account for the effect of resource

depletion on the expected disease burden and on

the expected mortality rate, and to consequently cal-

culate the actual quantities of resources needed. The

impacts of the available quantities of antiviral drugs

(AVs), vaccines, hospital beds and medical ventilators

are considered in the model. To subsequently estimate

the quantities of personal protective equipment (PPE)

and number of health personnel needed, the model

output is linked to per capita resource needs.

For demonstration purpose the model was applied

to two provinces in Thailand to answer the following

questions: (i) how would a pandemic influenza out-

break progress given the available resources?, (ii) what

would be the actual resource required for treating

cases according to their disease status?, and (iii) what

magnitude of disease burden could be prevented by

improving the availability of different resources?

The mathematical model

We used a deterministic SEIR model (Susceptible–

Exposed–Infectious–Removed) without age structure

assuming a homogeneously mixing population [16].

We extended this baseline model by subdividing

the infected population into groups representing dif-

ferences in clinical severity. We distinguished between

asymptomatic cases which are infectious without

showing significant symptoms, mild outpatients

seeking medical care that can be treated at home, and

critical cases in need of hospitalization.

For the model it is assumed that the available

quantities of AV treatment courses, hospital beds and

medical ventilators have an impact on the number of

deaths and the speed of recovery and hence the num-

ber of new cases generated during the outbreak. To

calculate the effect of AV treatment the two sympto-

matically infected groups are further subdivided into

those receiving AVs and those who do not. Treatment

with AVs is assumed to reduce the infectious period

and the probability of death. To describe the effects of

hospital resource shortcomings the group of critically

ill cases is stratified into hospitalized cases (critical

cases are assumed to be treated in hospital as long as

hospital beds are available, otherwise they become

critical outpatients), ventilated cases (critical cases

needing mechanical ventilation receive ventilation as

long as ventilators are available; cases needing venti-

lation who do not receiving it will die) and critical

outpatients treated at home with and without AV.

For these groups different death rates and different

infectious periods apply according to their level of

disease severity and according to the quality of treat-

ment they receive.

The model allows the effect of additional influenza-

relevant intervention measures to be estimated, in

particular, hospital interventions (e.g. infection con-

trol measures) which reduce transmission within the

hospital setting; reduction of contact rates in the

community for a defined period of time; and vacci-

nation campaigns that move a proportion of suscep-

tible individuals who are effectively vaccinated to the

recovered compartment.

The flow of cases throughout the calculated out-

break is defined by 17 differential equations linking

the different model compartments. A simplified com-

partment flowchart illustrating the overall model

structure is given in Figure 1.

The underlying disease-specific parameters used are

based on literature published on pandemic influenza

H1N1v. In the model the individual infectivity is set

to a fixed parameter. Thus, all cases, regardless of the

severity group they belong to, are equally infectious

throughout their period of infectivity. However, the
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duration of infectivity is assumed to vary between

different severity groups. These parameters are ad-

justed according to the model’s basic reproduction

number (R0) (the average number of new cases gen-

erated by one infected case, during the time of infec-

tivity in a totally susceptible population, when no

intervention measures are in place [17]) in order to be

consistent with estimations for the current H1N1

pandemic. Under the parameter values chosen, R0 of

the simulated outbreak was 1.32 which is in line with

currently published values [18, 19].

The model and the linked resource calculator

were programmed in MS Excel (Microsoft, USA).

A detailed description of the model structure, the

model formulae, and the parameter settings used are

given in the online Supplementary material.

Health-service resource calculation

Further hospital resource needs are calculated from

the model output by linking per capita resource de-

mands with the observed number of cases within the

underlying case severity groups. Thus, numbers of

hospital personnel needed are calculated from the

peak number of observed hospitalized cases in order

to estimate the human capacity needed to maintain

services during the outbreak peak. For this study it is

assumed that the total number of clinical personnel is

divided into two day shifts and one night shift. During

the day and night shifts on an infectious disease ward,

one nurse can care for five and ten cases, and one

physician can care for 10 and 40 cases, respectively.

For the treatment of ventilated cases it is assumed

that during day and night shifts, one nurse can care

for one and two patients, respectively, while one

physician can care for four cases in either shift. The

need for PPE is calculated from the total number of

hospitalized cases which occurred throughout the

outbreak period in order to estimate the absolute re-

source quantities needed. Resource depletion per

hospital case throughout the hospital stay for surgical

masks, N95 respirators and surgical gloves are 30, 10

and 40 per common hospital case and 80, 20 and 100

per ventilated case, respectively. The parameters ap-

plied for these depletion rates were based on a review

of influenza case records and on interviews with pub-

lic health professionals in Thailand carried out for a

previous resource characterization study [20].

Health-service resource survey

The data used for running the model for the Thai

provinces was gathered for a resource characteriz-

ation survey conducted in summer 2009. For this

study questionnaires were sent out to local hospitals,

health service providers and local public health auth-

orities at district level to assess the available resource

quantities relevant for surveillance, case investigation,

case treatment and community containment. Missing

data were extrapolated via a two-stage regression

model based on population size, provider type, and

size of facilities. This analysis was part of a larger

study applied across six Asian countries within the

AsiaFluCap project (www.asiaflucap.org).

S
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Asymptomatic

infection

Im
Mild

infection
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with AV
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Fig. 1. Schematic compartment flowchart of the SEIR
model for pandemic influenza transmission. Compartment
definition : S, susceptible to influenza infection; E, infected

yet not infectious ; A, infectious yet not symptomatic ; Ia,
asymptomatically infectious cases ; Im, mild symptomatic
outpatients who seek medical care [not treated with antiviral

drugs (AVs)] ; Ima, mild symptomatic outpatients under AV
treatment ; Ic, critical outpatients not receiving AVs; Ica,
critical outpatients receiving AVs; Ih, critically ill cases

treated in hospital, under AV treatment as long as stockpile
is sufficient ; V, critically ill patients receiving ventilation
if available ; D, deaths due to influenza complications ;
R, recovered and immune against infection.
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Provinces identified for this analysis

We ran the model for Phichit and Nakhon Si

Thammarat provinces in Thailand (Fig. 2) represent-

ing two deliberately identified provinces with different

demographic and socioeconomic contextual settings

and also different levels of health-service resources

available to respond to pandemic influenza. Phichit

province in lower north Thailand covers an area of

about 4500 km2 with a population of 554 112 in-

habitants. Agriculture is the province’s most import-

ant economic resource. The gross provincial product

(GPP) in 2004 was 2.2 billion Thai Baht (THB)

or 45 330 THB (yUS$1300) per capita. Nakhon

Si Thammarat province in south Thailand has a

population of 1 513 163 inhabitants and an area size

of about 10 000 km2. The province’s economy is tra-

ditionally based on fishing; however, in recent years

the tourism industry has become more important. The

province’s GPP in 2004 was 9.8 billion THB or 61000

THB (yUS$1800) per capita [21], somewhat higher

than that of Phichit province.

Finally, calculations were performed for all Thai

provinces and the results summarized for Thailand as

a whole. For these calculations, assumptions based on

Thailand’s national strategic response plan were made

as follows [22] : it was assumed that AVs are used to

solely treat critical cases, 20% of hospital beds and

ventilators are available for influenza cases, measures

for contact reduction decrease the number of daily

contacts by 10%, and contact reduction is applied as

long as a minimum of 0.5% of the population is

symptomatically infected. The latter is based on the

assumption that, during periods of high pandemic

activity, individuals will change their behaviour to

reduce contacts, and/or social distancing measures

such as school closure will be implemented. All

simulations start with one mild case entering a com-

pletely susceptible population.

RESULTS

Running the model in a hypothetical population

without any interventions and assuming sufficient

hospital resources showed that 31.33% of the popu-

lation became symptomatically infected over the

course of the outbreak. The peak of the outbreak oc-

curred at day 112, when 1.72% of the population

were symptomatically infected and 0.026% were

hospitalized due to infection. During the course of the

outbreak, 0.012% of the population died. Adding

contact reduction and AV treatment for critical cases

to the described scenario changed the figures as fol-

lows: 25.08% of the population became infected over

the course of the pandemic, while 0.92% were symp-

tomatically ill and 0.015% were hospitalised at the

outbreak peak. In total, 0.006% of the population

died due to influenza-related complications, which is a

50% reduction compared to the non-intervention

scenario.

Phichit province has an overall stockpile of 422

antiviral treatment courses, 237 medical ventilators

(both adult and paediatric) and 985 available hospital

beds. Running the model with these data assuming

contact reduction is applied showed that 25.076% of

the population were symptomatically infected. The

Phichit

Nakhon Si Thammarat 

N

0 75 150 300
km

Fig. 2. Map showing Phichit and Nakon Si Thammarat
provinces in Thailand.

62 R. Krumkamp and others

https://doi.org/10.1017/S0950268810002220 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268810002220


maximum number of observed symptomatic cases at

any given time-point was 5096 cases (0.919% of

population). During the outbreak period 36 cases died

from influenza-related complications. The total out-

break lasted for 188 days. The hospital capacity, in-

cluding the number of ventilators, as well as the AV

stockpile was sufficient to treat all admitted critical

cases. However, the remaining amount of 25 AV

treatment courses is not sufficient to offer treatment to

additional mild cases during the outbreak (Table 1).

A graphical representation of the outbreak scenario is

given in Figure 3a.

Assuming sufficient hospital resources, 24 phys-

icians and 64 nurses would be needed per day during

the outbreak peak to treat the estimated number of

influenza in-patients. The total amount of PPE

needed to treat hospitalized cases was estimated to be:

3000 surgical masks, 900 N95 respirators and 3800

surgical gloves for Phichit province.

Nakhon Si Thammarat has an AV stockpile of 518

treatment courses. Furthermore, 99 medical venti-

lators (both adult and paediatric) and 2642 hospital

beds are available in total. Running the model for

the province showed that 25.079% of the population

became symptomatically infected, with a maximum

number of 13 887 cases (0.917% of population) dur-

ing the outbreak peak. Overall, 183 cases died from

influenza-related complications. Although the total

outbreak lasted for about 190 days, the model pre-

dicted that the AV stockpile would be depleted by day

Table 1. Modelled pandemic outbreak progression in two Thai provinces

taking into account available health-service resources

Phichit
Province

Nakhom Si

Thammarat
Province

Total population 554 112 1 513 163
Number of symptomatic cases (%) 138 948 (25.08) 379 484 (25.07)

Hospitalized cases (%) 397 (0.07) 1009 (0.07)
Ventilated cases (%) 79 (0.01) 142 (0.01)
Number of deaths (%) 36 (0.01) 183 (0.01)

Deaths due to lack of ventilators (%) 0 (0.0) 75 (0.01)
Antiviral drug treatment courses remaining 25 0
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Fig. 3. Outbreak curve of the calculated pandemic influenza outbreak in (a) Phichit province (n=554 112) and (b) Nakhon Si
Thammarat province (n=1 513 163) in Thailand, assuming available resources. The upper graphs show the total number of
symptomatic cases stratified by disease subgroups, the lower graphs show the hospitalized subgroups and the cumulative

number of deaths, respectively.
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116. The hospital capacity in terms of beds was suf-

ficient to treat all admitted critical cases. However,

there was a shortage of medical ventilators which is

associated with 56 excess deaths (excluding those

who would die on ventilation anyway). The analysis

showed that 27 additional ventilators would be re-

quired to offer ventilation to all cases in need. To treat

all critically ill patients with AVs, an extra stockpile

of 570 courses would be needed. Assuming that re-

sources could be increased to meet these needs, the

model predicted that the number of influenza-related

deaths could be reduced from 183 to 98; a 54% re-

duction (Table 1). A graphical representation of the

outbreak scenario is given in Figure 3b.

For the latter outbreak calculation, assuming suf-

ficient resources, 66 physicians and 174 nurses would

be needed per day during the outbreak peak to treat

all hospitalized influenza cases. The estimated re-

source needs for hospital PPE would be about 8000

surgical masks, 2400 N95 respirators, and 10300 sur-

gical gloves.

Running the model for all provinces of Thailand

showed that the number of hospital beds was suf-

ficient throughout the country. However, there was a

shortage of ventilators and AVs stockpiled for 35 and

40 provinces, respectively, with an associated excess

mortality of 579 and 583 deaths resulting from these,

respectively. Fifty-one provinces (67.1%) experienced

resource gaps in at least one resource and 24 prov-

inces (31.6%) experienced resource gaps in both

medical ventilators as well as AVs. The total shortfall

in number of ventilators was 318 (range 1–27, mean 9)

across the provinces. There was a shortage of 10 744

treatment courses with an average gap of 269 courses

(minimum 13, maximum 808) for each province with

an AV gap.

DISCUSSION

In order to support policy-making for pandemic pre-

paredness, information about effective and economic

ways to improve health-service response is needed.

This is especially true for developing countries which

are often facing both limited outbreak response

capacities as well as limited financial resources to im-

prove pandemic planning. Thus, recommendations

about where to invest financial resources for optimum

public-health benefits should guide pandemic policy-

making. The presented mathematical model provides

a means for identifying potential resource gaps as well

as high- and low-priority areas for resource allocation

and investment based on the disease burden which

can be prevented by improving features in health-

service response.

The analysis highlights the differences in health

outcomes between a province with adequate resources

and a province with potential resource gaps. For

Phichit province in Thailand, the analysis suggests

that the available hospital beds and the number of

medical ventilators are adequate for the outbreak

scenario simulated by the model. Also the AV stock-

pile is sufficient to treat all critical cases. However, the

surplus does not allow for changing treatment strat-

egies, e.g. by providing AVs to mild outpatients as

well. This would reduce both influenza-related com-

plications in cases as well as the total number of cases

generated throughout the outbreak. For Nakhon Si

Thammarat province the model showed that 56 excess

deaths can be prevented by increasing the number of

ventilators by 27, which is 27.3% of the number cur-

rently available. The AV stockpile must be more than

doubled in order to treat all hospitalized influenza

cases, which ultimately is predicted to prevent another

29 deaths. Running the model for all provinces in

Thailand showed that increasing the number of ven-

tilators and AV treatment courses to sufficient quan-

tities would reduce the number of deaths by 579 and

583, respectively. In both scenarios resources were

available to treat critical cases solely, which has

almost no effect on preventing the amount of new

cases generated throughout the epidemic.

An earlier study on the Thai health system’s re-

sponse to contain a potential H5N1 influenza (bird

flu) outbreak indicated that resource gaps already

existed during the early phases of a pandemic [20].

However, H5N1 is assumed to be more severe than

the currently spreading H1N1 virus causing a higher

disease burden and demanding greater health-service

capacity. In addition, the earlier study focuses on the

ability to contain H5N1 while we study the health-

service response to a milder H1N1 scenario.

Our model does not take into account options

for modifying or increasing health-service response

during the simulated outbreaks since the aim of our

study was to identify potential gaps on the basis of the

actual resources currently available. However, dif-

ferent options exist to modify responses during an

emerging health threat which should be considered in

pandemic response planning. In our study only the

use of spare capacity of the baseline capacity available

for case treatment was analysed. However, improving

surge capacity by re-allocating resources from elective
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non-essential functions or by applying clinical triage

guidelines, especially during outbreak peaks, would

improve outbreak response capacity during periods

of intense resource demand for the large number of

patients. Our study highlights the serious effect of

shortages in ventilators on the expected number

of excess deaths. However, the use of medical venti-

lators is rarely an elective function, unless it is as-

sociated with post-operative recovery, and it can

seldom be postponed. One alternative option might be

to discontinue medical ventilation for those patients

not responding to treatment, in order to provide res-

piratory support to those who would benefit most

[23]. However, such decisions have to follow clear tri-

age guidelines based on bioethical principles to secure

equitable and efficient use of scarce resources and to

support clinical personnel in decision-making [24, 25].

A further option to improve outbreak response

would be the mobilization of resources. The current

analysis showed that resources are distributed differ-

ently throughout Thailand. In total, 67% of the Thai

provinces are facing gaps in availability of medical

ventilators or AVs, while others are estimated to have

sufficient or even excess health-service resources to

deal with the pandemic scenario modelled in our

study. This diversity raises important implications

in terms of sharing resources for outbreak response

across geographical regions. To potentially draw

upon capacities from neighbouring regions, the re-

source availability throughout the country should be

analysed to identify geographic clusters of resource

gaps and surpluses. Including resource mobilization

strategies in national pandemic planning allows the

possibility of improving outbreak response without

necessarily increasing the quantities of health-service

resources.

Since the current model shows resource gaps and

the associated excess disease burden, further import-

ant questions remain about cost-effective ways to in-

vest in improvement of health-service resources.

Apart from the health benefit gained, information

about costs associated with resource improvement has

to be considered when making decisions about in-

vesting in health-service improvement. Hence, infor-

mation about the financial impact of acquisition,

maintenance, and delivery of resources need to be

balanced with the disease burden which can be pre-

vented [26].

Due to simplified assumptions of the model and

inherent uncertainty surrounding the underlying dis-

ease parameter values, the estimated number of cases

and deaths as well as the extrapolated resource needs

should be interpreted with caution. The model ap-

plied here is an extended version of a deterministic

SEIR model that assumes a homogeneous mixing

pattern within a closed population. Incorporating

heterogeneities into the model would allow simulation

of a pattern of geographical spread throughout a re-

gion or obtaining of age-dependent results to stratify

resource needs by age groups. However, the data

required for such an analysis would be enormous;

data on contact patterns, especially for developing

countries, are limited.

Another limitation of the present model is the as-

sumption that all cases are equally infectious regard-

less of the severity group to which they belong, and

that the level of infectivity is constant throughout

the infectious period (although duration of in-

fectiousness is assumed to differ between severity

classes). Epidemiological studies suggest that, in re-

ality, the degree of infectivity is associated with viral

load, which in turn varies with disease severity and

time post-infection [18].

The parameters used in our study are taken from

the literature. Different parameters for pandemic

influenza are published and some of them vary sub-

stantially. This is especially the case during early

pandemic phases, as with the current H1N1v pan-

demic, when epidemiological data are limited and

of questionable reliability [27]. It has been shown

that simple mathematical outbreak models can be

useful tools to derive information about outbreak

progression when only limited epidemiological

data are available [28]. These models rely on few

basic parameters which can be simply changed if more

recent data become available. Nevertheless, it has to

be considered that changes in parameter settings or

the accumulation of parameter uncertainties can have

a huge impact on the model output with a strong ef-

fect on the underlying resource calculations, ranging

from sufficient resources to an overwhelmed health

system [9].

For the current study, disease- and resource-

related parameters were taken from various countries,

although most of them were derived from analyses

conducted in industrialized societies. However, dif-

ferences among countries in terms of behavioural,

cultural and socioeconomic characteristics, the under-

lying health of the population, and the quality and

accessibility of healthcare services, could influence

disease parameter estimates. Furthermore, for some

calculations, such as the number of healthcare
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personnel needed for case treatment, no data were

available and the model parameters had to be as-

sumed. However, parameterizing health data for

developing countries is a trade-off between what is

available and what is needed to conduct a robust

analysis [29]. There are many reasons for the under-

representation of research in developing countries,

ranging from poor research capacity to publication

bias of journals against so called ‘diseases of poverty’

[30]. This highlights the need to address such im-

balances in the availability and quality of data for

public-health research and policy-making, and also to

find better ways to deal with scarce data in developing

countries.

Considering the simple nature of the model and

the uncertainty in the parameter settings, the aim of

the output is not to provide accurate information

on the exact quantities of resources needed. However,

the error introduced due to the simplicity of the

model acts similarly on all the resource calculations

and hence allows a comparative analysis of the effects

of resource availability and the consequence of dif-

ferent strategies of resource use. This mathematical

model thus represents a means of prioritizing where

and how investments should be concentrated in order

to improve pandemic response programmes effec-

tively.

CONCLUSION

The current mathematical model is a simple but

comprehensive and easy-to-use modelling tool for

calculating influenza outbreak progression and the

underlying health-service resource demands. It can be

applied for pandemic response planning to estimate

and compare health-system resource gaps across re-

source types and geographic areas, and to help prior-

itize where and which resources should be increased

or otherwise improved. This information is especially

useful for countries with limited capacity to improve

pandemic response as they rely on information to

focus efforts on the most relevant resource gaps. The

mathematical model can be downloaded from the

AsiaFluCap project website at : www.asiaflucap.org.

NOTE

Supplementary material accompanies this paper on

the Journal’s website (http://journals.cambridge.org/

hyg).
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