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The concept of superdiagonal forms for nX-n matrices T with complex entries has
been extended by J. R. Ringrose [4] to the setting of compact linear operators T: X —> X
acting on a complex Banach space X. In a recent paper D. Koros [2] generalized
Ringrose's approach to the case of compact linear operators T:X —»X on a complex
locally convex space X. The reason why both authors confine their attention to the class of
compact linear operators is that the existence of proper closed invariant subspaces is,
aside from Riesz-Schauder theory, the main tool in their construction. In the present
paper it is shown that the existence of superdiagonal forms possesses a certain perma-
nence property in the following sense.

Let X and Y denote two locally convex spaces, let P: X —* Y and Q:Y —>X denote
two continuous linear operators. Then according to A. Pietsch [3] the operators
T: = QP: X -» X and S: = PQ: Y -> Y are said to be related. Roughly speaking we shall
prove that T has a superdiagonal form in the sense of Ringrose if and only if S has a
superdiagonal form. Since every compact linear operator T:X—*X on a complex locally
convex space X is related to a compact linear operator S: Y —> Y on a complex Banach
space Y, we especially obtain an independent approach to Koros's result without using
any locally convex arguments concerning Riesz-Schauder theory and invariant subspaces.

1. Notation. Throughout this paper X and Y denote locally convex spaces over the
complex numbers, L(X, Y) denotes the space of all continuous linear operators from X to
Y, writing L(X) for L(X, X). The term subspace will always mean closed linear subspace,
and a proper subspace will be a subspace different from {0} and the whole space. A
subspace M of X is said to be invariant under T: X -» X if Tx e M for all x e M. A nest &
of subspaces of X will be a family of subspaces which is totally ordered by inclusion. If in
addition every M e ^ is invariant under T, & will be said to be an invariant nest. The
symbol " <= " will be reserved for proper inclusion. If S <= X is a subset, let cl S denote the
closure of S with respect to the topology of X.

Given a nest $P of subspaces of X containing {0} and X, for Me ^ define

M+ =

Obviously M_ and M+ are subspaces of X, and it may happen that M_ = {0} while M+ = X.
M_ and M+ are invariant under T provided 9 is an invariant nest.

DEFINITION 1.1. A nest SF of subspaces of X is said to be simple if
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(ii) if &0 is any subfamily of ZF, then the subspaces f]{L: L e 2F0} and
cl\J{L:L<=&0} are in &;

(iii) if Me&, then dimM/M_=£l.
Condition (iii) can be replaced by the equivalent condition

(iii)' if M e * , then dimM + /M«l .
In order to see this, assume M<=M+. Then Mc.M+_. On the other hand, if L € 2F is such
that L<=M+, then L^M, for otherwise L2M+. Hence M+- = M and (iii) implies (iii)'.
Conversely assume that (iii)' holds. Thus let M_ <= M. By definition we have M_+ £ M. On
the other hand, if L e ^ and L =>M_, then L 2 M , for otherwise L<=M and hence
L c M_. This gives M_+ = M.

A linear operator T: X —> X is said to be compact if there exists a neighbourhood U
of zero in X such that T(U) is relatively compact. Letting Y denote the linear span of
cl T(U) provided with the Minkowski-norm

mY(y): = inf{c>O:c~1yeclT(U)},

it is easily seen that T factors compactly through V. Indeed T = QP, where P: X —> Y is
given by Px = Tx for x e X, and Q denotes the embedding of Y into X, this map also
being compact. Therefore T is related to the compact operator S defined to be PQ acting
on the Banach space Y.

2. Simple invariant nests for related linear operators. Given an arbitrary operator
TGL(X) and an invariant nest 2F we can always find a maximal invariant nest ^max

containing 9* by an argument based on Zorn's lemma, but in general a maximal invariant
nest will not be simple. Indeed by Enflo's counterexample to the invariant subspace
problem [1] there exists a Banach space X and TeL(X) such that {0}, X is a maximal
invariant nest for T. Since superdiagonal forms are given for simple nest only, we confine
our attention to those operators for which a maximal invariant nest is automatically simple
and related operators.

THEOREM 2.1. Let TeL(X) and SeL(Y) denote two related linear operators. If every
maximal invariant nest for T is simple, then the same is true for S.

Proof. Let SF be a maximal invariant nest for S, let Me2F and assume that
dimM/M_>l. Obviously P~1{M) and P'1(MJ) are invariant subspaces for T, and since
QM^P^iM) (M is invariant under S), the restriction of T to P'^iM) is related to the
restriction of S to M. We shall prove that dim M/M_> 1 is impossible. For that purpose
we may assume that X = P~\M) and Y = M. On the other hand f:XIP~\YJ)->
X/P-\Y_) given by f([x]) = [Tx] and S:YIY_^> YIY. given by S«y» = <Sy> are related,
[.] and <.) denoting the cosets in X/P^iYJ) and YIY_ respectively. Indeed f=QP,
S = PQ with P([X]) = <PJC> and Q«y» = [Qy]. Thus, if d i m X / p - ^ Y J ^ l , then S has at
most rank one. Consequently, we find a proper invariant subspace N of S and
N: = {y :<y)eN} is an invariant subspace of S such that Y_<= N<= Y. it is easily checked
that {N} U & is an invariant nest containing ^ properly, contradicting the maximality of &>.
Therefore let us assume that dimXIP~\Y_)> 1. Since X and P^iYJ) are members of a
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suitable simple invariant nest CS, there exists Ne^ such that P~l(Y_)czN<=X. Then
Q~*(N) is an invariant subspace for S. We shall show that N can be chosen in such a way
that Y_ c Q~1(N) a Y. This again will contradict the maximality of 3> and hence finish the
proof. First of all we remark that for Le% Q~\L) = Y_ implies L<= T~\L) = P~\YJ).
Consider

If we had Q~\K) = Y for all such K, then Q'^p-^YJjJ^Y (otherwise we are done!).
We distinguish two cases.

(i) If P-1(Y_)+ = P-1(Y_), then S-\YJ) = Q-\p-\YJ)+)=Y. Thus S:Y/Y_-*
Y/Y- is identically zero.

(ii) If P-\Y_)+J=P-\Y_), then p-1(Y_)+ = p-1(Y_)eCx0 with a suitable xoeX,
because 'S was a simple nest. Therefore

= PQ(Q-1(P-1(Y_)0 Cxo))£

and hence S:Y/Y_~* Y/Y_ is at most of rank one. In both cases S has a proper invariant
subspace. By the argument used at the beginning of the proof we obtain a contradiction to
& being maximal. Thus dim M/M_ is at most one and <§ is simple.

Throughout the remainder of this section, let T=QPeL(X) and S = PQeL(Y)
denote two related linear operators such that every maximal invariant nest of subspaces
is simple. Let ^(T) denote a simple invariant nest for T; then ^(S) and ^_x(T)
denote simple invariant nests for S and T containing {Q~\M):Me^(T)} and
{P-\K):K<=&(S)}, respectively.

If MeSF(T), we have M = M_ or dimM/M_ = l. Let us assume MfM-, zMe
M\M_. Then TzMeM can be expressed uniquely in the form

where aM(T) e C and yM e M_. The scalar aM(T) does not depend on the choice of zM. In
this way we can associate to each Me.S'iT) a complex number aM(T) called the diagonal
coefficient of T at JVf. Let a be a scalar. We define the diagonal multiplicity of a to be the
(possibly infinite) number of distinct subspaces Me&(T) for which aM(T) = a.

THEOREM 2.2. Let TeL(X) and SeL(Y) denote two related linear operators. Then
there is a one-to-one correspondence between the diagonal coefficient of T with respect to
2F(T) and those of S with respect to ^(S). More precisely: given a eC\{0} , the diagonal
multiplicity of a is the same with respect to both 2F{T) and %F(S).

Proof. Let Me&(T) and assume that aM(T)^0. Then M = M_©CzM with a
suitable zMeM\M_. Then TzMiM-, and hence PzM£Q~x{M_). On the other hand
M = M_©CTzM) and therefore

Q~\M) = Q-\M@CQPzM) = Q-'iMJ) ©CPzM.

This implies Q-\M)^ = Q-\MJ). Since SPzM = PTzM = P(aM(T)zM

+ PyM(PyMeQ-1(M_))) we have aM(T) = ao-HM)(S). If M1<^M2(Mi
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then aM.(T)T^O implies CT^M^c Q~1(M2), for otherwise TM2^MU which gives
«M2(T) = 0, a contradiction. Therefore the diagonal multiplicity of a^O with respect to
&(S) exceeds that of a with respect to &{T).

Conversely let Ke&(S) and aK(S)^0. Define

M_ = n {M:Me ^(T), Q~l(M) =>K}.

Of course M_e^(T) . On the other hand we prove that L=M_nP" 1 (K')e^(T) . So let
NeSF(T). If Q- '(N)cK, then Q~\N)c Q-^MJ), and N^M^, T-\N)^P~\K). This
gives N g M . n P " ' ( K ) . M Q~l(N)^K, then Q 'HN)^ Q - ^ M j and N^M^, which
implies N s M . n r 1 ^ ) . By the maximality of ^(T), Le&(T). Moreover
M_nP~lCK)_ has at most codimension one in L. Note that P~\K)_ (with respect to
^_t(T) of course!) equals P"1^..) by the same argument as in the first step of this proof.
If we had L = M^nP"1(K_), then Q~l(L) = S-\KJ)nQ-\Mj), and hence
KnS- 1 (K)nQ- 1 (M.) = KnS~ 1 (K- )nQ- 1 (Mj ; i.e. K = K_, contradicting aK(S)^0.
Thus L = p- ' (K-)nM_. If we had TL^L_, then S2(K) = S2(KnQ~l(M_))c

n SCQ-^AO) e s<X n PQ(Q~\M^)) <= S(K n PM_) = S(P(P~\K) n P M J =
-\K)nMJ) = PT(L)cPL_ = P(p-\K_)nMS)^K_; i.e. S2 maps K into K_ con-

tradicting aK(S)^0. Thus aL(T)^o. Let y 0 e K \ J ( . . Then QyoeP-^K^p-'iKJ) as
in the first step and L = L_©CQy0. Hence TQyo= QSyo= Q(aK(S)y0+yM) =
aK(S)Oy0+Qyk(ylt£K_, O y K e P - ^ K J n M j . On the other hand TQyo = aL(T)Qyo+
ZL(zLeL_), a nd t n u s « L ( T ) = «K(S). This proves that the diagonal multiplicity of a=£0
with respect to SF(T) exceeds that of a with respect to S'iS). This proves the theorem.

3. Superdiagonal forms for compact linear operators. If TeL(X) is a compact
linear operator acting on a complex locally convex space X, then (cf. section 1) T is
related to a compact linear operator SeL(Y) acting on a complex Banach space Y. J. R.
Ringrose [4, cf. proof of Theorem 1] implicitly proved that every maximal invariant nest
SF(S) is simple. Hence Theorem 2.1 implies that there exists a simple invariant nest ^(T).

For Banach spaces X the following result is due to Ringrose.

THEOREM 3.1 (D. Koros [2, Theorem 2]). Let TeL(X) be a compact linear operator
acting in a complex locally convex space X, and let 8F{T) be a simple nest of subspaces of X,
each of which is invariant under T. Then

(i) a non-zero scalar a is an eigenvalue of T if and only if a is a diagonal coefficient
ofT-

(ii) the diagonal multiplicity of a is equal to its algebraic multiplicity as an eigenvalue
ofT;

(iii) the operator T is quasi-nilpotent if and only if aM(T) = 0 (Me ^(T)); or equival-
ently if and only if T(M)cM_ (Me^(T)).

Proof. Since T and S are related, a ^ 0 is an eigenvalue of T if and only if a is an
eigenvalue of S with the same algebraic multiplicity d(a). This is an easy consequence of
the definition of related operators (cf. Wrobel [5]). By Theorem 2 of Ringrose [4], d(a) is
equal to the diagonal multiplicity of a with respect to ^(S), and hence d(a) is equal to
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the diagonal multiplicity of a with respect to 3F(T) by Theorem 2.2. Since T is
quasi-nilpotent if and only if S is quasi-nilpotent, (iii) follows from Ringrose's result and
Theorem 2.2 as well.
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