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and Rasila recently proved that for all quasiconformal homeomorphisms ψ : G → G with identity value
on the Gromov boundary, the quasihyperbolic displacement kG(x, ψ(x)) for all x ∈ G is bounded
above. In this paper, we generalize this result and establish Teichmüller displacement theorem for quasi-
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to bilipschitz extensions of certain Gromov hyperbolic spaces.
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1. Introduction and main results

1.1. Background

Let G ( Rn (n ≥ 2) be a domain, where the closure G and the boundary ∂G of G are
taken in the topology of the Riemann sphere Rn = Rn ∪ {∞}. We define

TH(G) :=
{
ψ : G→ G

∣∣ ψ is a homeomorphism such that

the restriction ψ|G is H-QC and ψ|∂G = id∂G
}
,

where the abbreviation H -QC is used for H -quasiconformal and id∂G denotes the identity
map on ∂G.
Originally, Teichmüller displacement problem is to determine how far a given point

x ∈ G can be mapped under a map ψ ∈ TH(G). For the domain G = R2 \ {(0, 0), (1, 0)},

© The Author(s), 2024. Published by Cambridge University Press on Behalf
of The Edinburgh Mathematical Society.

1

https://doi.org/10.1017/S0013091524000580 Published online by Cambridge University Press

https://orcid.org/0000-0003-3225-3777
https://orcid.org/0000-0002-3699-2713
https://orcid.org/0000-0002-8164-4873
mailto:luo.qh@fosu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091524000580&domain=pdf
https://doi.org/10.1017/S0013091524000580


2 Q. Zhou, S. Ponnusamy and Q. Luo

it was shown by Teichmüller [19] that the displacement with respect to the hyperbolic
distance hG of G satisfies inequality

hG(x, ψ(x)) ≤ logH for all x ∈ G.

From then onwards, many researchers considered the same problem in several different
settings and applied Teichmüller type results in the study of quasiconformal homogeneity
of domains, see [11, 12, 14, 23, 30] and the references therein. The recent monograph by
Hariri et al. [8] provides a chapter which systematically introduces many results and
background information about Teichmüller displacement problem.
For example, Manojlović and Vuorinen [14] investigated spatial quasiconformal

homeomorphisms of the unit balls onto itself with identity boundary value and
obtained an analogue of Teichmüller’s result. In [23], Vuorinen and Zhang stud-
ied the Teichmüller displacement problem with respect to the quasihyperbolic metric
on uniform and convex domains with uniformly perfect boundaries. It was proved
by Bonfert–Taylor et al. [1] that all quasiconformal homeomorphisms of hyper-
bolic manifolds onto itself with identity boundary value are uniformly close to
isometries.
Inspired by these investigations, Zhou and Rasila [30] recently studied the Teichmüller

displacement problem from the point of view of Gromov hyperbolic geometry [4, 5].
On the one hand, it was shown in [30, Theorem 1.1] that both the displacements with

respect to the distance ratio metric jG and its modification j̃G are bounded above for all
quasiconformal homeomorphisms ψ ∈ TH(G) provided ∂G is uniformly perfect. For the
Gromov hyperbolicity of these two metrics, we refer to [7, 28].
On the other hand, the authors [30] investigated Teichmüller displacement problem

for the class of Gromov hyperbolic domains which was introduced by Bonk et al. [2].
Recall that G ( Rn is said to be a Gromov hyperbolic domain if the domain G
equipped with its quasihyperbolic metric kG is δ-hyperbolic for some δ ≥ 0. For a given
Gromov hyperbolic domain G ( Rn with uniformly perfect Gromov boundary ∂∞G,
it was proved in [30, Theorem 1.2] that for all quasiconformal mappings ψ : G → G
with ψ|∂∞G = id∂∞G, the quasihyperbolic displacement kG(x, ψ(x)) is bounded above
for all x ∈ G.
It follows from [2, Proposition 2.8] that (G, kG) is a proper geodesic metric space.

By [6, Theorem 3], we know that each quasiconformal homeomorphism ψ : G → G is a
quasi-isometry with respect to the quasihyperbolic metric. Motivated by this study, we
consider here the Teichmüller displacement problem on Gromov hyperbolic spaces when
quasiconformal maps are replaced by quasi-isometries.

1.2. Main results

Throughout this paper, we assume that (X, d) is a proper geodesic Gromov hyperbolic
space with X∗ = X ∪ ∂∞X its Gromov closure, and that f : X → X is a (λ, µ)-quasi-
isometry. The displacement of x ∈ X under f is denoted by d(x, f(x)). The number
sup{d(x, f(x))|x ∈ X} is called the displacement of f on X. It is not difficult to see from
[3, Proposition 6.3] that f has a natural bijective extension from X to ∂∞X, denoted by
f |∂∞X . This means that the image of any Gromov sequence under f is also Gromov. Set
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Tλ,µ(X∗) =
{
f : X∗ → X∗ ∣∣ f |X is a (λ, µ)-quasi-isometry, f |∂∞X = id∂∞X

}
.

Our main result is the following:

Theorem 1.1. Let δ,K, µ ≥ 0 and C, λ ≥ 1. If (X, d) is a proper geodesic space that is
δ-hyperbolic and K-roughly starlike with respect to ξ ∈ ∂∞X, and ∂∞X is a C-uniformly
perfect set, then there is a number Λ = Λ(δ,K,C, λ, µ) such that d(x, f(x)) ≤ Λ for every
f ∈ Tλ,µ(X∗) and for all x ∈ X.

Remark 1.2. We say that ∂∞X is a uniformly perfect set if it is C -uniformly perfect
with respect to a certain visual metric. This makes sense because ∂∞X equipped with
any two visual metrics are quasimöbius to each other by [5, Corollary 5.2.9], and uniform
perfectness is preserved under quasimöbius maps due to [24, Lemma C]. Also, we note
that the uniform perfectness for ∂∞X cannot be removed, see [30, Remark 1.1]. All
connected metric spaces are uniformly perfect. For more background and applications
of uniformly perfect sets in geometric function theory and analysis on metric spaces, we
refer to [5, 9, 15, 17, 18, 24].

Remark 1.3. Note that Theorem 1.1 is a generalization of [30, Theorem 1.2]. The
strategy for proving Theorem 1.1 is different from that of [30, Theorem 1.2], where they
applied the bounded uniformization of Gromov hyperbolic spaces due to Bonk et al. [2].
In this paper, our main tool is the unbounded uniformization theory, developed recently
in [29].

For the definition of rough starlikeness, we refer the reader to § 2.5. We remark that if X
is roughly starlike with respect to ξ ∈ ∂∞X, then ∂∞X contains at least two points. The
class of Gromov hyperbolic spaces that are roughly starlike is very large. For example, it
includes metric trees, Gromov hyperbolic domains in Rn or annular quasiconvex spaces
[10, 22], Gromov hyperbolic manifolds [25], negatively curved solvable Lie groups [16, 26]
and hyperbolic fillings [3, 5]. Hence, Theorem 1.1 is valid for these Gromov hyperbolic
spaces.
The notion of rough starlikeness with respect to a distinguished point within the space

was introduced by Bonk et al. [2]. This concept is equivalent to the visual property defined
by Bonk and Schramm [3], where they demonstrated that Gromov hyperbolic spaces
with locally bounded geometry can be quasi-isometrically embedded into the classical
hyperbolic spaces Hn. This property has served as an important tool in [10, 27, 30].
In this paper, we establish the following relationships between these two concepts in a

quantitative way.

Theorem 1.4. Let X be a proper geodesic δ-hyperbolic space, where ∂∞X contains at
least two points. Then the following conditions are equivalent:

(1) X is K1-roughly starlike with respect to ξ ∈ ∂∞X,
(2) X is K2-roughly starlike with respect to each point of X,
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(3) X is K3-roughly starlike with respect to w ∈ X and

diam(∂∞X, dw,ε) ≥ τ0 > 0,

where dw,ε is a visual metric on ∂∞X with parameter ε and base point w.

The constants Ki, for i = 1, 2, 3, depend only on each other, τ0, and δ.

In view of the above considerations, we establish the Teichmüller displacement theorem
on Gromov hyperbolic spaces that is roughly starlike with respect to an interior point.
Employing Theorem 1.4, we obtain the following consequence of Theorem 1.1.

Corollary 1.5. Let δ,K, µ ≥ 0, C, λ ≥ 1 and ϑ> 0. Suppose (X, d) is a proper
geodesic δ-hyperbolic space and K-roughly starlike with respect to w ∈ X. If ∂∞X
is a C-uniformly perfect set with ϑ = diam(∂∞X, dw,ε) > 0, then there is a num-
ber Λ1 = Λ1(δ,K,C, λ, µ, ϑ) such that d(x, f(x)) ≤ Λ1 for all x ∈ X and for every
f ∈ Tλ,µ(X∗).

This paper is organized as follows. In § 2, we focus on Gromov hyperbolic geometry and
properties of quasi-isometries, and then we prove Theorem 1.4. The proof of Theorem 1.1
is given in § 3. In § 4, we provide two examples and some applications of our main results.

2. Gromov hyperbolic spaces and quasi-isometric maps

2.1. Metric geometry

Let (Z, d) be a metric space. The open ball and the closed ball of radius r centred at
x ∈ Z are denoted by B(x, r) and B(x, r), respectively. The space Z is called proper if
its closed balls are compact. We use diam(W ) to denote the diameter of a set W ⊂ Z.
For C ≥ 1, a metric space Z is called C-uniformly perfect, if for each x ∈ Z and every
r > 0, B(x, r) \B(x, r/C) 6= ∅ provided Z \B(x, r) 6= ∅.
A geodesic arc α between x and y in Z is a map α : I = [0, l] → Z from an interval I to

Z such that α(0) = x, α(l) = y, and d(α(t), α(t′)) = |t− t′| for all t, t′ ∈ I. If I = [0,∞),
then α is called a geodesic ray. If I = R, then α is called a geodesic line. The space Z is
said to be geodesic if every pair of points can be connected with a geodesic arc. Let [x, y]
denote the geodesic between x and y in Z.

2.2. Maps

The identity map of a set W is denoted by idW . Let f : (Z, d) → (Z ′, d′) be a map
(not necessarily continuous) between metric spaces Z and Z ′, and let λ ≥ 1 and µ ≥ 0
be constants. We say that f is a (λ, µ)-quasi-isometric map if for all x, y ∈ Z,

λ−1d(x, y)− µ ≤ d′(f(x), f(y)) ≤ λd(x, y) + µ.

If in addition, every point y ∈ Z ′ has the distance at most µ from the set f (Z ), then f
is called a (λ, µ)-quasi-isometry. Moreover, if f is a homeomorphism and µ=0, then it

https://doi.org/10.1017/S0013091524000580 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000580


Teichmüller displacement theorem on gromov hyperbolic spaces 5

is called a λ-bilipschitz map. A curve γ : I → Z is called a (λ, µ)-quasigeodesic if γ is a
(λ, µ)-quasi-isometric map.

2.3. Gromov hyperbolicity

Let (X, d) be a metric space. Fix a base point w ∈ X. For x, y ∈ X, we define

(x|y)w =
1

2

(
d(x,w) + d(y, w)− d(x, y)

)
.

This number is called the Gromov product of x and y with respect to w. We say that X
is Gromov hyperbolic, if there is a constant δ ≥ 0 such that

(x|y)w ≥ min{(x|z)w, (z|y)w} − δ for all x, y, z, w ∈ X.

In this paper, we assume that Gromov hyperbolic spaces are unbounded.
Suppose X is a Gromov hyperbolic space. A sequence {xi} in X is called a Gromov

sequence if (xi|xj)w → ∞ as i, j → ∞. Two such sequences {xi} and {yj} are said to
be equivalent if (xi|yi)w → ∞ as i→ ∞. The Gromov boundary ∂∞X of X is defined to
be the set of all equivalence classes of Gromov sequences, and X∗ = X ∪ ∂∞X is called
the Gromov closure of X. If (X, d) is proper geodesic, then the Gromov boundary is also
equivalent to the geodesic boundary, which is defined as the set of equivalence classes
of geodesic rays, where two geodesic rays are equivalent if they have finite Hausdorff
distance.

Lemma 2.1. ([4, Chapter III.H. Lemmas 3.1 and 3.2]) Suppose that X is a proper
geodesic space that is δ-hyperbolic. Then for each x ∈ X and ξ ∈ ∂∞X, there exists a
geodesic ray γ : [0,∞) → X with γ(0) = x and γ(∞) = ξ. Similarly, for each pair of
distinct points ξ, η ∈ ∂∞X, there exists a geodesic line γ : R → X with γ(−∞) = ξ and
γ(∞) = η.

For all x ∈ X and ξ ∈ ∂∞X, the Gromov product (x|ξ)w of x and ξ is defined by
(x|ξ)w = inf{lim infi→∞(x|yi)w | {yi} ∈ ξ}. For all ξ, ζ ∈ ∂∞X, the Gromov product
(ξ|ζ)w of ξ and ζ is defined by (ξ|ζ)w = inf{lim infi→∞(xi|yi)w | {xi} ∈ ξ and {yi} ∈ ζ}.
Next, we recall the following results about the Gromov product.

Lemma 2.2. ([21, Lemma 5.11]) Let X be a δ-hyperbolic space with o, z ∈ X, and let
ξ, ξ′ ∈ ∂∞X. Then for any sequences {yi} ∈ ξ, {y′i} ∈ ξ′, we have

(1) (z|ξ)o ≤ lim inf
i→∞

(z|yi)o ≤ lim sup
i→∞

(z|yi)o ≤ (z|ξ)o + δ;

(2) (ξ|ξ′)o ≤ lim inf
i→∞

(yi|y′i)o ≤ lim sup
i→∞

(yi|y′i)o ≤ (ξ|ξ′)o + 2δ.

Let (X, d) be a δ-hyperbolic space and w ∈ X be given. For 0 < ε < min{1, 1/(5δ)},
we define

ρw,ε(ξ, ζ) = e−ε(ξ|ζ)w
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for all ξ and ζ in the Gromov boundary ∂∞X of X with the convention that e−∞ = 0.
We now define

dw,ε(ξ, ζ) := inf

{
n∑

i=1

ρw,ε(ξi−1, ξi)
∣∣ n ≥ 1, ξ = ξ0, ξ1, . . . , ξn = ζ ∈ ∂∞X

}
.

Then (∂∞X, dw,ε) is a metric space with

1

2
ρw,ε ≤ dw,ε ≤ ρw,ε, (2.3)

and we call dw,ε the visual metric of ∂∞X with base point w ∈ X and parameter ε.

2.4. Busemann functions

Let (X, d) be a Gromov δ-hyperbolic space with o ∈ X and ξ ∈ ∂∞X. Let B(ξ) be
the class of Busemann functions based at ξ; see [5, Section 3.1] for more background
information. Let b ∈ B(ξ) be a Busemann function. For all x ∈ X,

b(x) = bξ,o(x) = bξ(x, o) = (ξ|o)x − (ξ|x)o.

We define the Gromov product of x, y ∈ X with respect to the Busemann function
b ∈ B(ξ) as

(x|y)b =
1

2
(b(x) + b(y)− d(x, y)).

Similarly, for x ∈ X and ζ ∈ ∂∞X \ {ξ}, the Gromov product (x|ζ)b of x and ζ
based at b is defined by (x|ζ)b = inf{lim infi→∞(x|zi)b | {zi} ∈ ζ}. For points ξ1 and
ξ2 belonging to ∂∞X \ {ξ}, we define their Gromov product based at b by (ξ1|ξ2)b =
inf{lim infi→∞(xi|yi)b | {xi} ∈ ξ1, {yi} ∈ ξ2}.
For ε> 0 with e22εδ ≤ 2, we define

ρb,ε(ξ1, ξ2) = e−ε(ξ1|ξ2)b for all ξ1, ξ2 ∈ ∂∞X \ {ξ}.

Then for i = 1, 2, 3 with ξi ∈ ∂∞X \ {ξ}, we have

ρb,ε(ξ1, ξ2) ≤ e22εδ max{ρb,ε(ξ1, ξ3), ρb,ε(ξ3, ξ2)}.

We now define

db,ε(ω, ζ) := inf

{
m∑
i=1

ρb,ε(ζi−1, ζi) | m ≥ 1, ζ = ζ0, ζ1, . . . , ζm = ω ∈ ∂∞X \ {ξ}

}
.

By [5, Lemma 3.3.3], it follows that (∂∞X \{ξ}, db,ε) is a metric space such that ρb,ε/2 ≤
db,ε ≤ ρb,ε. We call db,ε a Hamenstädt metric on the punctured space ∂∞X \ {ξ} based
at ξ with parameter ε.
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2.5. Rough starlikeness

We first recall the definition of rough starlikeness of Gromov hyperbolic spaces. See
[2, 10, 22, 27, 30] for more information and backgrounds on this topic.
Let X be a proper geodesic δ-hyperbolic space, w ∈ X, ξ ∈ ∂∞X and K ≥ 0.

Definition 2.4. We say that X is K-roughly starlike with respect to ξ if for each
x ∈ X, there is a point ζ ∈ ∂∞X and a geodesic line γ = [ξ, ζ] connecting ξ and ζ such
that dist(x, γ) ≤ K.

Definition 2.5. We say that X is K-roughly starlike with respect to w if for each
x ∈ X, there is a point ζ ∈ ∂∞X and a geodesic ray γ = [w, ζ] emanating from w to ζ
such that dist(x, γ) ≤ K.

Next, we show that the rough starlikeness of Gromov hyperbolic spaces is preserved
under quasi-isometries. Although this result is well-known, we have failed to find a
reference containing its proof. For completeness, we give a proof here.

Lemma 2.6. Let δ,K, µ ≥ 0, λ ≥ 1 and let f : (X, d) → (X ′, d′) be a (λ, µ)-quasi-
isometry between proper geodesic δ-hyperbolic spaces. We have the following:

(1) If X is K-roughly starlike with respect to ξ ∈ ∂∞X, then X′ is K′-roughly starlike
with respect to a point ξ′ ∈ ∂∞X

′, where K ′ = K ′(δ,K, µ, λ);
(2) If X is K-roughly starlike with respect to w ∈ X, then X′ is K′-roughly starlike with

respect to a point w′ ∈ X ′, where K ′ = K ′(δ,K, µ, λ).

Proof. We only prove (1), because the proof of (2) is similar. It follows from
[3, Proposition 6.3] that f induces a bijective map f : ∂∞X → ∂∞X

′. Let ξ′ = f(ξ).
Then we check that X ′ is K ′-roughly starlike with respect to the point ξ′ ∈ ∂∞X

′, where
K ′ = K ′(δ,K, µ, λ).
On the one hand, for a given x′ ∈ X ′, there is an x ∈ X such that

d′(f(x), x′) ≤ µ. (2.7)

As X is K -roughly starlike with respect to ξ ∈ ∂∞X, there is a ζ ∈ ∂∞X and a geodesic
line γ = [ξ, ζ] joining ξ and ζ such that

dist(x, γ) ≤ K. (2.8)

On the other hand, because f : X → X ′ is a (λ, µ)-quasi-isometry, we see that f(γ) is
a (λ, µ)-quasigeodesic line with endpoints ξ′ = f(ξ) and ζ ′ = f(ζ). Furthermore, because
X ′ is a proper geodesic δ-hyperbolic space, by [10, Lemma 3.5], it follows that there is a
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geodesic line α = [ξ′, ζ ′] joining ξ′ and ζ ′ such that the Hausdorff distance satisfies the
inequality

d′H(α, f(γ)) ≤M (2.9)

for some constant M = M(λ, µ, δ). Therefore, we obtain from Equations (2.7), (2.8)
and (2.4) that

dist(x′, α) ≤ µ+ λK + µ+M =: K ′.

The lemma follows. �

Finally, we are ready to supply the proof of Theorem 1.4 which connects the above
two notions of rough starlikeness.

2.6. Proof of Theorem 1.4

Suppose that X is a proper geodesic δ-hyperbolic space, and ∂∞X contains at least
two points.
(1) ⇒ (2) : Let w ∈ X. For each x ∈ X, there is a point ξx ∈ ∂∞X and a geodesic line

[ξ, ξx] connecting ξ and ξx such that

dist(x, [ξ, ξx]) ≤ K1, (2.10)

because X is K 1-roughly starlike with respect to ξ. By Lemma 2.1, it follows that there
are two geodesic rays [w, ξ] and [w, ξx] joining w to ξ and ξx, respectively. Considering
the extended geodesic triangle ∆ = [w, ξx] ∪ [ξx, ξ] ∪ [ξ, w] and then applying [21,
Theorem 6.24], we see that there is a positive integer N such that

dist(y, [w, ξx] ∪ [ξ, w]) ≤ Nδ for all y ∈ [ξ, ξx].

This inequality, together with Equation (2.10), shows that

dist(x, [w, ξx] ∪ [ξ, w]) ≤ K1 +Nδ =: K2,

as desired.
(2) ⇒ (3) : Because ∂∞X contains at least two points, we may choose two distinct

points ξ and ζ from ∂∞X. By Lemma 2.1, it follows that there is a geodesic line [ξ, ζ]
connecting ξ to ζ. Now, fix a point w ∈ X in the line [ξ, ζ]. By Lemma 2.2, we find that
(ξ|ζ)w ≤ 2δ. Therefore, by Equation (2.3), we obtain that

diam(∂∞X, dw,ε) ≥ dw,ε(ξ, ζ) ≥
1

2
e−ε(ξ|ζ)w ≥ 1

2
e−2εδ =: τ0,

as required.
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(3) ⇒ (1) : Because diam(∂∞X, dw,ε) ≥ τ0 > 0, we see from Equation (2.3) that there
are two points ξ and ζ in ∂∞X such that

τ0 ≤ dw,ε(ξ, ζ) ≤ e−ε(ξ|ζ)w ,

which implies that

(ξ|ζ)w ≤ 1

ε
log

1

τ0
.

Again, by Lemma 2.1, there is a geodesic line [ξ, ζ] connecting ξ to ζ. Moreover, by
the extended standard estimate (cf. [21, 6.20]), it follows that there is a positive integer
N1 ≥ 0 such that

dist(w, [ξ, ζ]) ≤ (ξ|ζ)w +N1δ ≤
1

ε
log

1

τ0
+N1δ =: C2.

Thus there is a point w0 ∈ [ξ, ζ] such that

d(w,w0) ≤ C2.

Now, we check that X is K 1-roughly starlike with respect to ξ with a constant K1 ≥ 0
depending only on δ that will be decided below.
Fix x ∈ X. Because X is K 3-roughly starlike with respect to w, there is a point

ξx ∈ ∂∞X and a geodesic ray [w, ξx] connecting w and ξx such that

dist(x, [w, ξx]) ≤ K3. (2.11)

Lemma 2.1 ensures that there is a geodesic ray [w0, ξx] joining w0 to ξx. Because
d(w,w0) ≤ C2, by the Closeness Lemma (cf. [21, 6.9]), we have the following Hausdorff
distance:

dH([w0, ξx], [w, ξx]) ≤ C2 +N2δ, (2.12)

for some positive integer N 2.
Pick a geodesic line [ξ, ξx] connecting ξ to ξx and consider the extended geodesic

triangle ∆ = [w0, ξx]∪ [ξx, ξ]∪ [ξ, w0]. Now it follows from [21, Theorem 6.24] that there
is a positive integer N 3 such that for all z ∈ [w0, ξx],

dist(z, [w0, ξ] ∪ [ξ, ξx]) ≤ N3δ. (2.13)

Hence we obtain from Equations (2.11), (2.12) and (2.13) that

dist(x, [w0, ξ] ∪ [ξ, ξx]) ≤ K3 + C2 +N2δ +N3δ =: K1.

https://doi.org/10.1017/S0013091524000580 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000580


10 Q. Zhou, S. Ponnusamy and Q. Luo

This implies that

dist(x, [ζ, ξ] ∪ [ξ, ξx]) ≤ K1,

completing the proof.

3. Teichmüller displacement theorem

In this section, we study Teichmüller displacement problem on Gromov hyperbolic spaces
in a quantitative way and prove Theorem 1.1. For the proof of Theorem 1.1, we use the
unbounded uniformization procedure that was developed recently in [29]. We begin with
some definitions.

3.1. Quasihyperbolic metric and uniform spaces

Let (Ω, d) be a metric space. The metric completion and metric boundary of Ω are
denoted by Ω and ∂Ω = Ω \ Ω, respectively. The space Ω is incomplete if ∂Ω 6= ∅. For
z ∈ Ω, the distance between z and ∂Ω is denoted by d(z) = dist(z, ∂Ω).
In this subsection, we assume that (Ω, d) is an incomplete, locally compact and recti-

fiably connected metric space, and that the identity map (Ω, d) → (Ω, `) is continuous,
where ` is the length metric of Ω induced by d. See [2, Appendix] for more discussions.

Definition 3.1. As in [2], the quasihyperbolic metric k in (Ω, d) is defined by

k(x, y) = inf
α

∫
α

ds

d(z)
,

where the infimum is taken over all rectifiable curves α in Ω connecting x and y and ds
denotes the arc length element with respect to the metric d.

It follows from [2, Proposition 2.8] that (Ω, k) is a proper geodesic space. Next we
recall the definition of uniform spaces from the work of Bonk et al. [2] and use this to
establish their bounded uniformization theory of Gromov hyperbolic spaces. For more
backgrounds, we refer to [10, 23, 27] and the references therein.

Definition 3.2. Let A ≥ 1. The space (Ω, d) is called A-uniform if each pair of points
x and y in Ω can be connected with a rectifiable arc α in Ω satisfying:

(1) `(α) ≤ Ad(x, y), and
(2) min{`(α[x, z]), `(α[z, y])} ≤ Ad(z) for all z ∈ α,

where `(α) is the length of α and α[x, z] is the part of α between x and z.

3.2. Unbounded uniformization of Gromov hyperbolic spaces

In this subsection, we assume that (X, d) is a proper geodesic space that is δ-hyperbolic,
and ∂∞X contains at least two points. Let o ∈ X, ξ ∈ ∂∞X and b = bξ,o : X → R a
Busemann function based at ξ.
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Following the notation of [29], consider the family of conformal deformations of X
induced by the densities

ρε(x) = e−εb(x) for ε > 0.

The resulting spaces are denoted by Xε = (X, dε). One observes that dε is a metric on
X defined by

dε(x, y) = inf
α

∫
α

ρε ds, (3.3)

where the infimum is taken over all rectifiable curves α in (X, d) joining the points x and
y. The metric completion and the boundary of Xε are denoted by Xε and ∂εX := ∂Xε =
Xε \Xε, respectively. Let kε be the quasihyperbolic metric of (X, dε).
Now, we recall certain auxiliary results from [29] for later use.

Lemma 3.4. ([29, Theorem 1.2]) For all 0 < ε ≤ ε0(δ), the conformal deformations
Xε = (X, dε) of X are unbounded A-uniform spaces with a constant A = A(δ).

Lemma 3.5. ([29, Lemma 5.1]) There is a constant A1 = A1(δ) ≥ 1 such that

1

A1
dε(x, y) ≤

1

ε
e−ε(x|y)b

(
min{1, εd(x, y)}

)
≤ A1dε(x, y),

for all x, y ∈ X.

Lemma 3.6. ([29, Lemma 5.5]) There is a natural bijective map φ : ∂∞X → ∂εX ∪
{∞} with φ(ξ) = ∞.

Lemma 3.7. ([29, Lemma 5.24]) If X is K-roughly starlike with respect to ξ ∈ ∂∞X,
then for 0 < ε ≤ ε0(δ), the identity map (X, d) → (Xε, kε) is M-bilipschitz with M =
M(δ,K, ε).

3.3. Proof of Theorem 1.1

Let δ,K, µ ≥ 0 and C, λ ≥ 1. Suppose that (X, d) is a proper geodesic space that is δ-
hyperbolic and K -roughly starlike with respect to ξ ∈ ∂∞X. Let ∂∞X be a C -uniformly
perfect set. Recall that

Tλ,µ(X∗) =
{
f : X∗ → X∗ ∣∣ f |X is a (λ, µ)-quasi-isometry and f |∂∞X = id∂∞X

}
.

The issue is to find a constant Λ such that

d(x, f(x)) ≤ Λ

for each f ∈ Tλ,µ(X∗) and for all x ∈ X.
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Let b = bξ,o : X → R be a Busemann function based at ξ with o ∈ X. Fix a constant
ε = ε(δ,K). Let Xε := (X, dε) be the uniformization of (X, d) induced by the conformal
deformation as in Equation (3.3).
One observes from Lemma 3.4 that Xε is unbounded and A-uniform with A = A(δ).

According to Lemma 3.5, we know that

φ : (∂∞X \ {ξ}, db,ε) → (∂εX, dε)

is actually a bilipschitz map, where db,ε is a Hamenstädt metric based at ξ with param-
eter ε. Because (X, d) is K -roughly starlike with respect to ξ ∈ ∂∞X, it follows from
Lemma 3.7 that the identity map

ϕ : (X, d) → (Xε, kε)

is M -bilipschitz with M =M(δ,K, ε).
Thanks to [24, Theorem C], we see that the uniform perfectness is preserved under

quasimöbius maps; for the definition of quasimöbius maps, see [20]. It follows from [5,
Theorem 5.2.17] that ∂∞X equipped with any two visual metrics or Hamenstädt metrics
are quasimöbius equivalent to each other with the control function depending only on δ.
As ∂∞X is C -uniformly perfect with respect to a certain visual metric, one thus finds
that ∂εX is C 0-uniformly perfect with C0 = C0(C, δ).
Fix f ∈ Tλ,µ(X∗). We observe that f induces a map g : Xε ∪ {∞} → Xε ∪ {∞} with

g|X := ϕ ◦ f |X ◦ ϕ−1 : (Xε, kε) → (Xε, kε)

and

g|∂εX := φ ◦ f |∂∞X ◦ φ−1, g(∞) = ∞.

Next, we show that the following three items:

(1) g|∂εX = id∂εX ;
(2) The continuous extension of g from Xε to the one-point extended boundary ∂εX ∪

{∞} is exactly g|∂εX∪{∞};
(3) There is a homeomorphism η0 : [0,∞) → [0,∞) such that

dε(g(x), g(a))

dε(g(y), g(a))
≤ η0

(
dε(x, a)

dε(y, a)

)
, (3.8)

for all three distinct points x, y ∈ Xε and a ∈ ∂εX.

Because f ∈ Tλ,µ(X∗), we have f |∂∞X = id∂∞X and this proves (1).
To prove (2), for each sequence {xn} which is dε-convergent to a ∈ ∂εX ∪ {∞}, we

check that the sequence {g(xn)} = {f(xn)} is dε-convergent to g(a) = a. By Lemma 3.6,
one observes that {xn} is a Gromov sequence of X such that {xn} ∈ φ−1(a) ∈ ∂∞X.
As f : X → X is a quasi-isometry which has a continuous extension to ∂∞X such that
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f |∂∞X = id∂∞X , we see from [3, Proposition 6.3] that {f(xn)} is also a Gromov sequence
of X satisfying

{f(xn)} ∈ f |∂∞X ◦ φ−1(a) = φ−1(a) ∈ ∂∞X.

Then Lemma 3.6 guarantees that {f(xn)} is dε-convergent to φ[φ−1(a)] = a = g(a) ∈
∂εX ∪ {∞}, as desired.
It remains to show the last item (3). For any given three distinct points x, y ∈ Xε and

a ∈ ∂εX, we let

dε(x, a) = t dε(y, a) and dε(g(x), g(a)) = T dε(g(y), g(a)).

Choose sequences {xn}, {yn} and {an} in X so that they are dε-convergent to x, y and
a, respectively. From the statement (2), it follows that {g(xn)}, {g(yn)} and {g(an)} are
dε-convergent to g(x ), g(y) and g(a), respectively. Moreover, by Lemma 3.6, we have
{an} ∈ φ−1(a) ∈ ∂∞X and φ−1(x) 6= φ−1(a) 6= φ−1(y), because x 6= a 6= y. Without loss
of generality, we may assume that for all n,

min
{
d(xn, an), d(yn, an), d(f(xn), f(an)), d(f(yn), f(an))

}
≥ 1.

By Lemma 3.5, there is a constant A1 = A1(δ) ≥ 1 such that

tn =
dε(xn, an)

dε(yn, an)
≥ 1

A2
1

eε(yn|an)b−ε(xn|an)b
min{1, [εd(xn, an)]}
min{1, [εd(yn, an)]}

=
1

A2
1

eε(yn|an)b−ε(xn|an)b .

This ensures that

(yn|an)b − (xn|an)b ≤ A2 +
1

ε
log tn (3.9)

with A2 = 2(logA1)/ε.
By a similar argument as above, we see from Lemma 3.5 that

Tn =
dε(g(xn), g(an))

dε(g(yn), g(an))
=
dε(f(xn), f(an))

dε(f(yn), f(an))
(3.10)

≤ A2
1e

ε(f(yn)|f(an))b−ε(f(xn)|f(an))b .

On the other hand, we note that b ∈ B(ξ) and f(ξ) = ξ. As f : (X, d) → (X, d) is a
(λ, µ)-quasi-isometry, it follows from [29, Lemma 3.7] that there exists a control function
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θ : R → R depending only on λ, µ and δ with

θ(t) = max{λ1t, t/λ1}+ µ1

such that

(f(yn)|f(an))b − (f(xn)|f(an))b ≤ θ
(
(yn|an)b − (xn|an)b

)
.

This, together with Equations (3.10) and (3.9), implies that

Tn ≤ A2
1e

εθ
(
1
ε log tn

)
. (3.11)

Again by Lemma 3.6, we see that Tn → T and tn → t as n → ∞. Therefore, we
obtain Equation (3.8) from Equation (3.11) by letting n→ ∞. This ensures (3).
We continue the proof of this theorem. Fix x ∈ X, and choose a point x0 ∈ ∂εX

such that dε(x, x0) = dε(x) = distε(x, ∂εX). We wish to obtain an upper bound for the
quasihyperbolic distance kε between x and g(x) = f(x). To this end, we first show the
following:
Claim. There is a constant M1 ≥ 1 such that

dε(x)

M1
≤ dε(g(x)) ≤ dε(g(x), g(x0)) ≤M1dε(x).

We first check that dε(g(x), g(x0)) ≤M0dε(x) for someM0 ≥ 1. As ∂εX is unbounded,
it is clear that ∂εX \Bε(x0, dε(x)) 6= ∅. Thus there is a point x1 ∈ ∂εX such that

dε(x)

C0
≤ dε(x0, x1) ≤ dε(x), (3.12)

because ∂εX is C 0-uniformly perfect. Note that g|∂εX = id∂εX . Now, by Equations (3.8)
and (3.12), we obtain

dε(g(x), g(x0)) ≤ η0

(
dε(x, x0)

dε(x1, x0)

)
dε(g(x1), g(x0))

≤ η0(C0)dε(x1, x0)

≤ η0(C0)dε(x) =M0dε(x).

For the other direction, by an elementary computation, we see from Equation (3.8)
that for any three distinct points x, y ∈ Xε and a ∈ ∂εX,

dε(x, a)

dε(y, a)
≤ η1

(
dε(g(x), g(a))

dε(g(y), g(a))

)
, (3.13)

where η1 = [η−1
0 (t−1)]−1 for all t > 0.

https://doi.org/10.1017/S0013091524000580 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000580


Teichmüller displacement theorem on gromov hyperbolic spaces 15

Thus by Equation (3.13), a similar argument as above guarantees that

dε(x) ≤M1dε(g(x))

for some constant M1 (≥ M0) depending only on η0 and C 0. Therefore, the claim is
proved.
Finally, we are ready to complete the proof of Theorem 1.1. Because g|∂εX = id∂εX ,

we see from the claim that

dε(g(x), x) ≤ dε(x0, x) + dε(g(x), g(x0))

≤ dε(x) +M1dε(x)

≤M1(M1 + 1)min{dε(x), dε(g(x))}.
(3.14)

Moreover, because (X, dε) is A-uniform, it follows from Equation (3.14) and [2,
Lemma 2.13] that

kε(x, g(x)) ≤ 4A2 log

(
1 +

dε(g(x), x)

min{dε(x), dε(g(x))}

)
≤ 4A2 log

(
1 +M1(M1 + 1)

)
.

Because the identity map ϕ : (X, d) → (Xε, kε) is M -bilipschitz, we obtain

d(x, f(x)) = d(x, g(x)) ≤Mkε(x, g(x)) ≤ 4MA2 log[1 +M1(M1 + 1)] =: Λ

finishing the proof.

4. Examples and applications

4.1. Examples

While studying the Teichmüller displacement problem on Gromov hyperbolic spaces
X that is roughly starlike with respect to an interior point w ∈ X, one observes from
Corollary 1.5 that the upper bound for the displacement depends on the diameter of
(∂∞X, dw,ε). In the following, we provide two examples to explain this phenomenon.

Example 4.1. Let H2 be the Poincaré hyperbolic disk with the original point o ∈ H2.
For a given integer m ≥ 1, we attach H2 at the point o with a line segment Im =
{o× [0,m]}. We define the space Y = H2 t Im equipped with the induced length metric
d. Then we have the following:

(1) Clearly, (Y, d) is a Gromov hyperbolic metric space that is 0-roughly starlike with
respect to w = (o,m). The Gromov boundary ∂∞Y is the same as ∂∞H2 = S1,
which is connected and therefore uniformly perfect.

(2) One easily finds that the diameter of (∂∞Y, dw,ε) is comparable with e−mε.
(3) We define a mapping f : Y → Y such that f |H2 = idH2 and f |Im is a linear function

with f(u) = (o,m/4), where u = (o,m/2) ∈ Y . It is not hard to see that f is
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a (4, 0)-quasi-isometry which induces a boundary map f |∂∞Y = id∂∞Y . However,
d(u, f(u)) = m/4.

The second example tells us that the Teichmüller displacement theorem for quasi-
conformal mappings, namely [23, Theorem 1.9] and [30, Theorem 1.2], is not valid for
domains G in the Riemann spheres, where the displacement depends also on the diameter
of ∂G with respect to the spherical metric.

Example 4.2. Let R2 = R2 ∪ {∞} be the Riemann 2-sphere, and | · | the Euclidean
metric on R2. Let 0 < ε ≤ 1/4, B(0, ε) = {z ∈ R2| |z| ≤ ε}, and Dε = R2 \B(0, ε). Define
g : Dε → Dε with g(∞) = ∞ and

g(z) =
1

ε
|z|z for all z ∈ Dε \ {∞}.

Let σ be the spherical metric on R2 defined as in [8, (3.6)]. Then we have the following:

(1) (Dε, σ) is a bounded locally compact uniform metric space with

diamσ(∂Dε) =
2ε

1 + ε2
.

(2) Let kDε(σ) be the quasihyperbolic metric of (Dε, σ), see Definition 3.1. It follows
from [2, Theorem 3.6] that (Dε, kDε(σ)) is a proper geodesic Gromov hyperbolic
space that is roughly starlike with respect to a point w ∈ Dε. Moreover, there is
a natural quasisymmetric homeomorphism between the metric boundary (∂Dε, σ)
and the Gromov boundary ∂∞Dε of (Dε, kDε(σ)) endowed with a visual metric.

(3) The mapping g : (Dε, σ) → (Dε, σ) is quasiconformal and has a continuous extension
to ∂Dε with g|∂Dε = id∂Dε . Hence g : (Dε, kDε(σ)) → (Dε, kDε(σ)) is a quasi-
isometry and has a continuous extension to ∂∞Dε which is the identity map on
∂∞Dε.

(4) Clearly, ∂Dε is connected and so is ∂∞Dε. In particular, ∂∞Dε is uniformly perfect.
Therefore, we know from Corollary 1.5 that the displacement kDε(σ)(z, g(z)) is
bounded above for all z ∈ Dε. Note that the upper bound depends on ε.

(5) As ε→ 0, one finds that diamσ(∂Dε) → 0 and

kDε(σ)
(
(
√
ε, 0), g((

√
ε, 0))

)
≥ log

(
1 +

√
1 + ε2√
2ε

)
→ ∞.

4.2. Applications

This subsection focuses on some applications of Theorem 1.1. Let δ,K ≥ 0, C ≥ 1 and
η : [0,∞) → [0,∞) be a homeomorphism. Suppose that (X, d) and (X ′, d′) are proper
geodesic δ-hyperbolic spaces, and ∂∞X is C -uniformly perfect which contains at least
two points, and F : ∂∞X → ∂∞X

′ is η-quasisymmetric with respect to visual metrics.
For the definition and properties of quasisymmetric maps, we refer to [9, 20, 24].
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It is known that if the Gromov boundaries of two roughly starlike hyperbolic geodesic
spaces are powerly quasisymmetrically equivalent, then they are quasi-isometrically
equivalent (cf. [3, 5]). As a consequence of Theorem 1.1, we thus obtain that any such
two quasi-isometries are bounded above up to a finite distance.

Corollary 4.3. Suppose that X and X′ are K-roughly starlike with respect to points on
Gromov boundaries, respectively. Then there is a number Λ2 = Λ2(K, δ, C, η, λ, µ) such
that, for (λ, µ)-quasi-isometries f1, f2 : X → X ′ induced by F with f1|∂∞X = f2|∂∞X =
F ,

d′(f1(x), f2(x)) ≤ Λ2 for all x ∈ X.

Proof. By [9, Exercise 11.2 and Theorem 11.3], we observe that ∂∞X
′ is C ′-uniformly

perfect and the inverse of F, F−1 : ∂∞X
′ → ∂∞X, is a powerly η1-quasisymmetric map

with C ′ and η1 depending only on C and η. Note that the visual property and rough
starlikeness of a proper geodesic hyperbolic space are equivalent. It follows from [5,
Corollary 7.2.3] that there is a (λ1, µ1)-quasi-isometry g : X ′ → X whose natural exten-
sion g|∂∞X′ = F−1, where λ1 and µ1 depend only on δ, K and η1. As the composition
of quasi-isometries is also a quasi-isometry, we immediately find that

g ◦ f1, g ◦ f2 ∈ Tλ′,µ′(X∗),

for some positive constants λ′ and µ′ which depend only on λ, λ1, µ, µ1 and δ.
Now by Theorem 1.1, we see that there is a constant Λ = Λ(λ′, µ′, C ′, δ,K) such that

for all x ∈ X,

d(g ◦ f1(x), x) ≤ Λ and d(g ◦ f2(x), x) ≤ Λ.

As g : X ′ → X is a (λ1, µ1)-quasi-isometry, the above two inequalities ensure that

d′(f1(x), f2(x)) ≤ λ1d(g ◦ f1(x), g ◦ f2(x)) + µ1 ≤ 2λ1Λ + µ1 =: Λ2

and the proof of the corollary is complete. �

Performing a similar argument as in the proof of Corollary 4.3, we obtain the following
result as a consequence of Corollary 1.5.

Corollary 4.4. Suppose that X and X′ are K-roughly starlike with respect to w ∈ X
and w′ ∈ X ′ respectively, and ϑ = diam(∂∞X, dw,ε) > 0. Then there is a number Λ3 =
Λ3(K, δ, C, η, λ, µ, ϑ) such that, for (λ, µ)-quasi-isometries f1, f2 : X → X ′ induced by F
with f1|∂∞X = f2|∂∞X = F ,

d′(f1(x), f2(x)) ≤ Λ3 for all x ∈ X.

4.3. Concluding remarks

Now, we consider the connection between Theorem 1.1 and the following question
proposed by Xie:
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Question 4.5. ([25, Question 7.1]) Let Y 1 and Y 2 be two Hadamard n-manifolds
(whose sectional curvatures are bounded from below) with n 6=4, and g : Y1 → Y2 a
quasi-isometry. Is g always a finite distance from a bilipschitz homeomorphism?

Because the boundary of a Hadamard manifold is homeomorphic to a sphere, it is not
hard to see from Corollary 4.3 that whenever one finds a bilipschitz map g̃ : Y1 → Y2
with g̃|∂∞Y1

= g|∂∞Y1
, then the answer to Question 4.5 is positive.

Finally, we remark that Theorem 1.1 is useful in understanding the arguments in [13,
16] concerning the bilipschitz extension of mappings from Gromov boundaries to the
interiors of certain Gromov hyperbolic spaces. Indeed, we may obtain [16, Corollaries 1.2
and 1.4] by combining [16, Theorem 1.1] and the earlier mentioned results, particularly
Corollary 4.3. Note that [13, Lemma 3.23] is a quantitative consequence of Theorem 1.1.
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