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A Hopf Type Lemma and a CR Type
Inversion for the Generalized
Greiner Operator

Niu Pengcheng, Han Yanwu and Han Jungiang

Abstract. In this paper we establish a Hopf type lemma and a CR type inversion for the generalized
Greiner operator. Some nonlinear Liouville type results are given.

1 Introduction

Our aim in this paper is to consider some properties associated with generalized
Greiner operators

(1.1) A= (X]+77),
j=1

where

0 0 0 0
X: = — +2kv: 2k—2 Y. = — 2kx: 2k—2
J axj + ky] |Z‘ at’ J a)/j kx] |Z‘ atv

j=1,...,m,x,y ER" tER z=x+/—1y, |z = [E;’zl(x?+y§)] 1/2, k> 1.
When k = 1, (1.1) becomes the Heisenberg Laplacian (see Folland [7]); when k =
2,3,...,(1.1) is the Greiner operator (see [10]). As is well known, if k > 1, then the
vector fields X;,Y;(j = 1,...,n) do not satisfy the left translation invariance and, if
k#1,2,3,...,they do not meet the Hormander condition (see [11]).

Beals, Gaveau and Greiner [1] constructed an explicit fundamental solution for
a class of subelliptic operators containing the operators (1.1) as a particular case.
Recently, Zhang, Niu and Luo in [14] obtained the Hardy type inequality and the
Pohozaev type identity of AL.

For any second order partial differential operator

n 62
Z %j (x) 836,‘336]'

ij=1
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with (a;;(x)) a positive semi-definite matrix, the weak Maximum Principle is true
(see [13]). If the operator is in divergence form and is generated by vector fields satis-
fying the Hormander condition, then the Strong Maximum Principle holds (see [6]).
In [4], a Hopf type lemma for the Heisenberg Laplacian was proved. We will establish
a similar result for the operator (1.1).

The CR inversion associated with the Heisenberg Laplacian was introduced by
Jerison and Lee; see [12, 5]. We will develop the analogue for the operator (1.1).

Let us now describe the contents of the paper. In Section 2 we collect various facts
that are used subsequently. In Section 3 we establish the Hopf type lemma for the
operator Ar. The key ingredient in the proof of the result is the quasi distance defined
in Section 2. It allows us to take an effective auxiliary function. Section 4 contains
the CR type transform for the operator (1.1). Clearly it plays the role of the “Kelvin
transform” In Section 5 we consider some Liouville type results for nonnegative
solutions of semilinear equations of the form

AL“'*'f(fa”) S 0.

These results generalize those of [2, 3] in the Heisenberg Laplacian setting.

2 Preliminary Facts

This section is devoted to giving some known facts (see [14]) about the operator Ap
and the family of vector fields {X, ..., Xy, Y1,...,Y,} which will be useful later on.

Denote the generalized gradientby V; = {Xj,...,X,,Y},...,Y,}. Let us denote
by &, the natural dilations in R*"*!, i.e.,

(2.1) Ox (&) = (Ax, Ay, A¥6), A > 0.
Let A = (a;;) be a symmetrical matrix, where
aij:&-j, i,j:l,...,n;
Arni1,j = 2ky; lz[*72, j=1,...,n
Dp+int+j = _ka] |Z‘2k_27 ]: L...,n
Aapi1 onr = 4K |2| 72,
Then it is easy to observe that
(2.2) Ap =div(AV),
where div and V are the usual divergence and gradient in R*"*! respectively.
Let
I, 0 2ky|z[*?
0= %-2 |>
0 I, —2kx|z|
where I, is the identity matrix in R". Obviously one has A = o7 and then

(2.3) A = div(eToV).

https://doi.org/10.4153/CMB-2004-041-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-041-4

A Hopf Type Lemma and a CR Type Inversion 419
The homogeneous dimension with respect to the dilations (2.1) is
Q =2n+2k.

Define a quasi distance between two points £, 77 in R>**! by setting

(2.4) deE,m) = [J2f + |2/ [% + (£ — /2] %,

where € = (z,t), n = (z/,t') € R*"*!. Clearly in this definition the quasi ball cen-
tered at £ with radius R is denoted by

(2.5) Bi(&,R) = {n e R :d(&,n) <R}.

Note that for R > 0 sufficiently large, if B(0, R) is the Euclidean ball of radius R
centered at the origin, then

(2.6) B(0,R) C B.(0,R) C B(0, R?).

We can now state some useful properties concerning the operator A;. One verifies
directly that

n 2 2

(2 7) A = Z (— + a_ + 4k)/‘|2|2k72 82 _ 4kX‘|Z|2k72 82 )
. ' 0 8)’? ! 8xj6t ] 8)/]-81‘

j=1 i

A routine calculation shows that the operator A} is homogeneous of degree 2 with
respect to the dilations §, defined in (2.1), namely A;(5)) = A20,\(AL). For u, a
smooth function depending only on p = |£|; = d(§, 0), one obtains

0*u Q—l@)

Ayutp) = Wt o

where 1) = |z[*2/p*%=2. Clearly 0 < 1 < 1. If u is a smooth function of d =
d(&,n), then we have

(2.8) Apu(d) = u' () Ard + u” (d)| V1.

The following is an important Gauss-Green formula:

(2.9) ANpu-vdé = — VLu~VLvd§+/ vAVu-vdo
Q Q Gl9)

:—/VLu~VLvd§+/ vWiu - vy d€,
Q 0

where 7 is the exterior normal to 0S2 and v (§) = o(&)v ().
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3 A Hopf Type Lemma

In this section we want to examine a version of Hopf lemma for the operator AL.
Let us start with the following definition which is a natural generalization of inte-
rior sphere condition concepts in the Euclidean space and in the Heisenberg group,
respectively.

Definition 3.1  Let Q C R*"*! be a connected open set. Then () satisfies the interior
Greiner’s sphere condition at & € OS) if there exist a constant R > 0 and n € ) such
that the quasi-ball Bp(n, R) C Q and & € OBL(&, R).

Lemma 3.1 Let Q be a bounded smooth domain of R*"*! possessing the interior
Greiner’s sphere condition at §, € 0€). If

(1) ueC*(Q) ﬂC(Q) and is continuous in &,
(2) —=Aru+cu > 0in ), where c is bounded in (),
(3) u(&) > u(&) = 0for& € Br(&, R) [ for some R > 0,

then, for any i exterior direction to OS2 at &y, we have

i sup 160~ (& — hi)

0
h—0* h

and if it exists, it holds

3”(50)
“on 0

Moreover AVu(&y) - (&) < 0 where U, the exterior normal to OS2 at &, is not in the
direction of the t-axis.

Proof Letf = (Zat) = (xvyvt) = (xla"'vxna)/lv"'ayn;t), n = (zlvt/) =
(x',y'st") = (x{,.... %, ¥1,...,yh,t') and R > 0 as in the Definition 3.1. Let

d=d&,n) = [|z|4k + |2/ |+ (t — t')?]  Itis clear that

(3.1) Vid* =Y (1X;d + [Y,d])

j=1

_ d278k‘z|4k72 [|Z|4k +(t— t/)l} ,

(32) Apd = (1—4k)d =¥ 2* 2 [|2[* + (t — /)*] + 2(n + 3k — 1)d" ~*|z|* 2.
We set

(3.3) v(d) = e ® — ¢ for0< p<d<R,

and claim the existence of m > 0 such that

(3.4) —Av —4m(x; —x))Xiv >0
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for a sufficiently large. Indeed, in view of
v'(d) = 2ade™ ",
v''(d) = (2a — dad®)e
we have from (3.1) and (3.2),
(3.5) —Apv—am(x; — x))X;v = —v"(d)|Vd]* —v'(d)Ard — 4m(x, — x])) X v
= 2ae™ " [2ad?|Vd|? — |Vid]? — dApd — 4m(x, — x])X,d]
= 2ae~" { 2ad?| V1 + (4k — D222 + (¢ — 1)?]
— &2 %2 20 + 6k — 2 + 4m(x; — x])x;]
— 4md* 2| P2 (x — x]) (£ — t')yl} .

First case: |Vd|* > 0. Clearly (3.4) follows from (3.5) for a sufficiently large.

Second case: |Vd|> = 0. We get that |z| = 0 from (3.1) and the right hand side of
(3.5) becomes zero. Consequently the claim (3.4) is concluded.

Let & € OBr(n, R) and 7 be an exterior direction to 02 at &. Define an auxiliary
function

(3.6) w= e_m("l_xl,)zu, form > 0.
Then the following inequality holds:
(3.7) —Apw — 4m(x; — x))X;w > 0.

In fact, it is easy to check that

O*w s —x 2 ou  u
W —mx—xy) 2 N2, _ WA hiiied
=e 4m”(x; — x;)u — 2mu — 4dm(x; — x ,
8x% ( 1 1) ( 1 1)ax1 8x%
2 2
OW _ =20
ax? ax§7 J ) ) )
2 2
_8 w_ —m(xl—xf)zg 1.2
ayz e ayz? ] ) b )n7
j j
O*w m ou  O™u
_ —mx—xy) /
=e Vil =2m(x; —x) =+ ——% | »
dx,0t G =x) 5, dx,0t
2 2
0w _ e—m(x1—x1/)2 Ou L ji= 2,...,n,
(9)6]‘81‘ 8Xj8t
82W _ e*m(xl 7x’)2 8211 i— 1.2 n
dy ot ay.o0 ) T oo
Vi Vi
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Then one infers that
(3.8)  Apw+4dm(x; —x))Xgw = g ma—x])* [—4m2(x1 —x))u+ Apu — 2mul
< g 7"1/)2(AL14 — 2mu).

The claim (3.7) is proved from the condition (2).
If we show that

ow(&o)
on

(3.9) <0,

2
then % = e_m( (ol =) % gives the first statement of the Lemma.
In light of (3.4) and (3.8), we have
(3.10) —Arp(w+ev) — 4m(x; — x)X;(w+ ev) > 0, in B.(n,R) \ Br(n, p)

and w + ev > 0, on 0B.(n,R). Furthermore, for € sufficiently small, w + ev >
0, on OB (n, p). Thus, from the weak maximum principle (see[10]), we deduce that

(3.11) w+ev >0, in Br(n,R) \ BL(7, p).
Now note that w(&,) = —ev(§y) = 0. Furthermore, for any # - 7 > 0 and for

small h > 0, w(&§ — hi) > —ev(& — hii). Using the fact that v} is strictly positive,
(3.9) is concluded. If ¥ is not in the t-axis direction, then

AT -7 = 0(&) 0(&)P - T = 0(£)P - a(&)P > 0.
This implies that AV is an exterior direction at £, and then
A(&)Vu(&o) - P(&) < 0.

The proof of the lemma is completed. ]

Based on Lemma 3.1, we give the following Strong Maximum Principle, whose
proof is similar to one in elliptic context (see Gilbang-Trudinger [9] or Garofalo-
Vassilev [8]).
Theorem 3.1 Letu € C*(Q2)NC(Q) satisfying Apu < 0(Aru > 0). If u is not a con-
stant identically, then u can not have a nonpositive minimum (nonnegative maximum,)

at a point in Q.

Corollary 3.1 Ifu € C*(2) N C(SY) satisfying Apu = 0 and u is not a constant
identically , then throughout 2,

minu < u(§) < maxu orany £ € .
ninu < u(©) < maxu, forany¢
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4 A CR Type Inversion

A function u is said to be cylindrical in R>**! with respect to the operator AL, if for
any (x, y,t) € R" X R" X R,ithas u(x, y,t) = u(r,t) with r = /%2 + y2.
We define the CR type inversion of a regular function u(x, y, t) in R*"*! to be

1 ~
(4.1) v(x, y,t) = pres u(x, y,t)

with X = (£1,...,%,) and y = (51, ..., ¥u), where

o oxt+ 2y it — |2 t
% = _

i ok k2 P= =%

Note that v is a regular function in R***!\ {0}. Denote Z = (%, ) in the sequel.
Theorem 4.1  Let u(x, y,t) be a solution of
(42) ALM(}C, yu t) = f(x7 yu t)

Then v defined by (4.1) satisfies
1 ~
(43) ALV(X; Vs t) = Wf(xa )7; t)'

Proof Since 1
F= VR4 =—, p= (2% + )% = -,
p p

we know that if u is cylindrical, then so is v. For the sake of simplicity we will prove
(4.3) only for cylindrical functions.
A short computation gives the following equalities

@ - r4k71 ‘ @ B t ‘
or p4k—1’ or 2kp4k—1’
oF 2 —r* or _ —tr
or P2 or — kptke2’
OF  aker'*1 o _ -t
o ptk Ot psk

) 1 (2 — Q)r#—1 o9 1 \_ (2-Qr
or \pQ2) = T o2 ; ot \ pQ2) T 2kpQrak—2

Therefore v(r, t) = po—l,zu(f, f) satisfies

d o (2- Q)rik—1 1 [Ou (2 —r* Ou [ Aktrk—1
(44) or pQrk—2 ut pQ2 OF phr2 + oF T
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and hence
v 9 [(2— Q!
(4.5) W = E <—pQ+4k_2 > u
22 = Q)1 [ou [t2 — r* 814 akirk—1
T pQ+4k 2 OF 4k+2 E psk
— P — O*u [ Akertk!
t g pQ+4k 81‘2 4k+2 8r8t pSk
4ktr¥—1 4ktr4k 1 Ou (12 — r¥k
+ pQH8k—2 8t2 6t6r k2

1 [0ud t—rk +%2 4ktr*k=1
pR=2 | OF Or \ p%+2 Of Or P8k ’

One easily infers

v 2-Qt 1 [Ou [ —tr Ou (12 — ¥k
a kaQ+4k—2u+ 222 | 97 \ kpthe2 o7 ook

and then
v 0 [/ (2-Q)¢
(46) ﬁ = a <42ka+4k—2> u
Q—Qt [0u [ —tr Ou (1> —r*
+ kpQr4k—2 oF kpk+2 + OfF P8k
—tr [O%u [ —tr Pu (12 — %
+ kpQrék o kp*h+2 + OFOF P
12— 4k T2y (12 — 0*u —tr
+ pQr8k—2 72 psk t otor \ kp 4k+2
1 [0ud [ —tr 8u 0 ik
pQ=2 | OF Ot \ kp+2 T oior pSk '
It is evident to see that

_O)k—1 _O)pk—2
% ((2 Q)r ) _QC-Qr [(4k — 1)p* — (Q + 4k — 2)r*]

pQ+4k—2 pQ+8k—2

o0 (2-Qt\ 2-Q 1 (Q + 4k — 2)t?
O \ 2kpQrik=2 ) ok \ pQrak=2 ok pQisk—2 ’
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0 (t2 — r4k) B _4kr4k—1  (4k+ 2)rtk—1(12 — 4Ky

or pk+2 o2 pBk+2 )
O ((4ker N e e O 8krt 7
or P ook pi2k

0 [ —tr r [ (2k+ 1)t 1

ot \ kpH+2 “k kpSkr2 k2 )
o [t?—rt 2t 4t(t? — 1)
ot P = o P

By (2.7), we obtain readily

2 . 2
Apv(rt) = % + -1 % + 4k2r4k_2%.

Consequently, from (4.4), (4.5) and (4.6), we have

O*u O*u O%u ou ou
(4.7) Apv(r,t) :aou+alw +a28f—8f+a38_f +b;—

where ay, a1, ay, a3, by and b, are the coefficients to be determined. Using the previ-
ous computations, we deduce that the coefficients satisfy the following:

O (Q=—Qr* '\ 2n—1 Q-Qr* 2 4,0 [ (2-Qr
do = 5 ( e ) T T T e UrT o 2kpQrik—2

:0,

_ 2 — ¥k - rk P e N 1
pQ+4k p4k+2 k pQ+4k k p4k+2 pQ+2 ’

(tz — r4k> Afrrtk—1 N Akrrth—1 (t2 — r4k)
a; = —
pQ+4k p8k pQ+8k 2 p4k+2

—tr 12 — pik 12—yt —tr
2 4k—2 2 4k—2
i () (£ e (22) ()

:0,

Akt gt 2 (t2 — r4k> <t2 — r‘”‘) 1 4k3r%2
7

a;

as =

Q=2 : o5k Q=2 o5k = Q2 ' ookt
22—t 22 1 o [t —r* m—1 12—
by = Q=2 ’ k2 + pQ-2 " or k2 P pQ-2 ’ k2
+ 4k k2 Q-Q¢ ([ —tr N 1 0 ([ —tr 1 2n—-1)p?
r fpQr k=2 \ fpike2 20291 \ ko2 ) | T pen2 ; ’
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b2:2

Q-Qr* dker*™t 1 9 [ Aker!
pQrik—2 ’ P t pQ—2 " or Sk

.\ 2n—1 1 4ker*!

r pQ—Z p8k

4 42 2—-Q) t*—r¥ . 1 9 [t2—r*
r kpQrak—2 " sk pQ29: \ pk

=0.

Applying these to (4.7) gives

1 d%u 1 (@n—-1p* Ou 1 4k 92y
Avint)= o5 omton 5 it en i om
p o p r oF  p p Of
:_1 @4_—2”_1 .%+4k2f4k_2.@
AN FoooOF or

1 L
= WALM(K £)
so the result is proved. ]

Remark 4.1 1f a cylindrical function u satisfies the equation
Apu+uP = 0in R,

then v, the CR inversion of u, which is given by
1 r t
o= s (i)

P : 2n+1
7{)@271)@72)1/ = 0in R*"\{0}.

satisfies the equation

ALV'F

5 Liouville Type Theorems

In this section we study the Liouville type behaviors of the operator (1.1) which
were considered for positive solutions of superlinear equations associated to the sub-
Laplacian on the Heisenberg group in [2, 3]. The following Theorem 5.1 is an appli-
cation of Theorem 3.1.

Theorem 5.1 Let u € C*(R**!) be a nonnegative solution of
(5.1) Apu+h(€)uP < 0in R

where h(£) € C(R*1) and h(€) > Ku|&|Y with K > 0, €], = d(£,0) and v > —2.

Ifl<p< 8i’;, then u = 0 in R>"1,
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Proof We take a cut-off function ¢r(p) = ¢ (%), where p = [¢[;, R > 0 and ¢
satisfies:

* ¢ € C>[0,+00), 0<¢p<1;
* ¢=1on[0,1]and ¢ =0on [1,+00);

_C < O Pop
. Rgapgo:md’apz

< % for some constant C > 0.

Denote
. 11
(5.2) Iy = h(&)uf oy dE, with — + — = 1.
R2n+1 p q
Observe that Iz > 0. Moreover, by using (5.1) and the assumptions on ¢g,

IR S —/ ALMQZ/)?Q dﬁ
B1(0,R)
Hence an integration by parts yields
(5.3)
I < —/ d)vau‘Vl dE'F/ VLMVLQSEdf
OBL(0,R) B.(0,R)

= —/ d)vau‘VL dE'F/ M'VLQquQ . I/Ldz—/ MALgﬁ%df
OBL(0,R) OBL(0,R)

BL(0,R)

= / quot oRVp - vy dS — / ulN L de
OBL(0,R) B (0,R)

= —/ MALgﬁz df
Br(0,R)

where v (§) = o(§)v(§) and v(§) is the normal to 02, d3 denotes the 2n-dimen-
sional Hausdorff measure. On the other hand, in view of (2.7),

Tk, Q1 o)
p? p Op

(54) Ay =1 (
Q —

_ _ 1 _
= [qm — 1)L (R + gk op + g %] :

Thus, we get, using the assumptions on ¢ and denoting by Qx = Br(0, R)\B(0, %),

_ —1 _
(5.5) IRg—Luw(q¢%lé’+Qp -q;%‘qs;e)ds

<< / wpt de
R* Jo,

1
a

C v (a— ’ _4y
< [/QRqup e ”"df] [QRW ; df]
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where we have used the Holder inequality.
Picking R > 0 sufficiently large in Qg, and noting that h satisfy h > Ku|£|7, we

have
q % Q_v_o
(5.6) R<C huPgpfd§| Re ™ r 7
Qg
and this implies
(5.7) I, " <CRi F 2.

Hence, if 1 < p < 83, letting R — o0, we arrive at

(5.8) 1:/ huf dé = 0.
R2n+1

This yields u = 0 for p large, since h is strictly positive outside of a set of measure
zero and u is a prior nonnegative.

The claim follows now by the Strong Maximum Principle (see Theorem 3.1). In
fact, choose R > 0 in such a way that, for p > R, h > 0. Then u = 0 on the
complementary of Bz (0, R), as we proved. Hence, u satisfies

u>0,Aru<0,inBr(0,R+9),
u=0,forR<p<R+4,

for some 0 > 0. Therefore, by Theorem 3.1, since u is not strictly positive, # has to

be identically zero.
Ifp = 83, then (5.7) implies that I is finite and that the right hand side of (5.5)
tends to zero when R goes to infinity. This shows I = 0 and we conclude as above.
|

Our next Liouville-type results concern the case where D are half spaces. Let us
start with the following:

Lemma5.1 Let D C R*! be a domain with smooth boundary OD. Assume that
n € C¥(D) N C(D) satisfies

>0, A;n>0 inD
(5.9) =0 o=
n=0, on 0D

and let u € C*(D) (| C(D) be a solution of

(5.10) u>0, Apu+g&u* <0inD, o >1
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withg > 0inDand g € C(D). If Qr = (B.(0, R)\B(0, %)) N D # ¢ for some R > 0,
then

I = / qu? de, p > 1,
D

1 1
with 3 such that — + 3 = 1, satisfies the following estimate:
a

1f C Py T.c e g _—8 ’
(5.11) Ik <Igq = | [ n'g =ds| +— | [ 0’|V Vipl|"g™ = dS
R Qr R O

Theorem 5.2 LetD = {£ € R*"*' : x; > 0}. ForT >0, p(&) > C|¢]Y withv > —1
and ¢ € C(D). Assume one of the following conditions holds :

+v—1 tv—1
(1) Qtv=l ) and 1<a< VL
Q-2 Q-2
+v—1 trt+TH1
) Qtv=l y) and 1<a<PVFTHL
Q-2 Q-1

Then the only nonnegative solution u € C*(D) N C(D) of
(5.12) Apu+x1p)u* <0inD
isu=0.

Theorem 5.3 Let D = {£ € R™! : ¢t > 0}. Assume 1 < a < 8:22,53 and

0(&) > CIE|Y withv > —2 and ¢ € C(D). Then the only nonnegative solution
u € C*D)NC(D) of

(5.13) Apu+eEu* <0inD
isu=0.

Theorem 5.4 Let D = {& € R 1t > 0}. Assume one of the following hypotheses
holds:

(1) n>3 and 1<a<%;
Q-+ 4k
(2) n<3 and 1<a<m

Then the only nonnegative solution u € C*(D) [\ C(D) of
(5.14) ANpu+tu®* <0inD
isu=0.

The proofs of these results follow by arguments parallel to those used in [3].
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