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1. Introduction. The two ternary quadratic forms 

0 = x2 + y2 + z2 - yz - xy, tf>' = f x2 + 2y2 + %z2 + 2yz + zx + 2xy 

are said to be reciprocal (to each other) since their coefficients form inverse 
matrices : 

/ 1 - i o\ / f 1 \\ 
i - h 1 - i , 1 2 1 . 
\ 0 - i 1/ \ i 1 f/ 

The corresponding determinants A are \ and 2. These forms are positive 
definite, since their values are positive for all values of (x, y, z) except (0, 0, 0). 
Their minimum values M for integers x, y, z (not all zero) are 1 and 3/2. 
These minima are attained for the following sets of values of (x, y, z) : in the 
case of 0, 

(1,0,0), (0,1,0) , (0,0,1) , (1,1,0) , (1,1,1) , (0,1,1) 

and the same with signs reversed; and in the case of 4>\ 

(1,0,0) , ( 1 , - 1 , 0 ) , ( 0 , 1 , - 1 ) , (0,0,1) 

and the same with signs reversed. Accordingly we say that the number of 
representations for the minimum (not distinguishing opposites) is 5, where 
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392 H. S. M. COXETER 

s = 6 for 0 and 5 = 4 for <t>'. These representations are the coefficients of 
x, y, z in linear forms 

x, y, 2, x + y, x + y + z, y + z (for 0) 

and x, x — y, y — z, z (for 0') 

whose sums of squares are 

x2 + y2 + z2 + (x + y)2 + (x + y + z)2 + (y + z)2 = 20', 

x2 + (x- y)2 + (y - z)2 + z2 = 2<j>. 

Such a form, whose reciprocal is the sum of positive multiples of the squares 
of its ''minimal" linear forms, is said to be eutactic. 

The above form <t> is the only quadratic form 0(#, y, z) such that 

0(1,0,0) = 0 ( 0 , 1 , 0 ) = 0 ( 0 , 0 , 1 ) = 0 ( 1 , 1 , 0 ) = 0 ( 1 , 1 , 1 ) = 0 ( 0 , 1 , 1) = 1. 

To see this we write 

0(x, y> z) = aux
2 + a22y2 + azzz

2 + 2a2zyz + 2azlzx + 2auxy, 

and obtain for the six unknown coefficients the six equations 

an = #22 = #33 = #11 + «22 + 2ai2 = #11 + «22 + #33 + 2<223 + 2(23i + 2ai2 

= a22 + #33 + 2#23 = 1, 
which imply 

#11 = #22 = #33 = 1, 2&12 = 2#23 = — 1, #31 = 0. 

Thus 0 is determined by its minimum and all the representations of this 
minimum. Such a form is said to be perfect. The reciprocal form 0' is not 
perfect, since it provides only four equations for the six coefficients. In fact, 
a necessary condition for an w-ary form to be perfect is 

1.1 5 ^ \n{n + 1). 

It is interesting to see how a form is affected when the coefficients are in-
finitesimally changed. For instance, if ezx is added to 0, the minimum 
remains 1 (so long as e is small and positive), but A is increased by Je(l — e). 
In fact, this form has the property that any small change, not affecting M, 
will increase A. On the other hand, if ezx is added to 0', M remains 3/2 while 
A is decreased by \ê. We express this difference of behaviour by saying that 
0 is an extreme form, but 0' is not. 

We do not know whether every perfect form is extreme. But Korkine 
and Zolotareff [32, pp. 248-251] proved that every extreme form is perfect, 
and Voronoï [42, pp. 126-128] proved that every extreme form is eutactic. 
Conversely [42, pp. 128-130], every perfect eutactic form is extreme. (The 
form 0' is eutactic but not perfect, and therefore not extreme.) It seems to be 
a reasonable conjecture that every eutactic form with 5 ^ \n(n + 1) should 
be extreme; but this has not been proved. 
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The above properties of a form are not changed when we apply to the 
variables a linear transformation of determinant ± 1 with integral coefficients 
[1, pp. 270-273] so as to obtain an equivalent form; e.g., <t> is equivalent to both 

x2 _j_ ( — z)2 + y2 — (—z)y — x{ — z) = x2+ y2+ z2+ yz + zx 

and 

( —x)2+ (y + z)2+ z2— (y + z)z — (—x)(y + z) = x2+ y2+ z2+ yz + zx+xy 

[41, pp. 150-151]. It is sometimes convenient to extend the definition of 
equivalence so as to include the result of multiplying the given form by a con
stant c. Then M is multiplied by c, and A by cn, but the combination Mn/A 
remains invariant. In this sense, the reciprocal form is equivalent to the 
"adjoint" form (whose matrix is adjoint to that of the given form). 

Equivalent forms are said to belong to the same class. Gauss [23] observed 
that every binary extreme form is equivalent to x2 — xy + y2, and that every 
ternary extreme form is equivalent to <j>. Korkine and Zolotareff [30; 31 ; 32] 
proved that there are just two classes of quaternary extreme forms and three 
classes of quinary extreme forms. 

Gauss used a lattice in Euclidean w-space to represent any positive definite 
form, and showed that the corresponding point-lattice represents the class of 
equivalent forms. The case of 3-dimensional lattices and ternary forms has 
been very beautifully developed by Niggli [32a], who observed that reciprocal 
forms are represented by reciprocal lattices [20]. (A similar remark about 
"polar" forms had already been made by Bravais [4a].) In particular, the 
ternary forms # and $' yield the face-centred and body-centred cubic lattices, 
i.e., the ordinary cubic lattice plus the centres of its square faces or its cubic 
cells, respectively [5, p. 492]. 

Blichfeldt [2] observed that spheres of diameter M* centred at all the points of 
Gauss's lattice constitute a non-overlapping system or packing of spheres, and 
that extreme forms correspond to packings that are rigid in the sense that the 
"solid" spheres cannot be displaced without increasing the total content 
occupied by them. In fact, the elementary cell of the lattice has content A*, 
and therefore the requirement for a rigid packing is that any infinitesimal 
variation of the coefficients (leaving M unchanged) will increase A. 

A systematic notation for a large family of eutactic forms, mostly extreme, 
is suggested by the classification of compact simple Lie groups. Cartan [9, 
pp. 216-228] used a discrete group generated by reflections to represent the 
local structure of such a continuous group. Stiefel [40, p. 374] showed that 
the various locally isomorphic Lie groups can be distinguished by considering 
the point-lattices that are invariant under the discrete group. This classi
fication is worked out in detail in §10. Since one lattice may arise from several 
different discrete groups (see 10.6), the list of lattices is considerably shorter; 
in fact, these are the Gauss lattices for the following forms: 
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An= Xl2— XiX2 + X2
2 — X2X3 + . . . — Xn-\Xn + Xn

2, 

An
r = An-\ — XqXn + i<?(l — T~l)xn

2 (îl = QJ — 1 > 1, T > 1), 

Cn = 2i4n — Xn
2 = Xi2 + (Xi - X2)

2 + (X2 — X3)
2 + . . . + (xn-l ~ Xn)2, 

(•71 = = Xi %iXn ~j~ X2 X2Xn "T~ • • • X71—1X71 ~r~ ^tlXn , 

Dn = x±n—\ Xn—2Xn "T" Xw , 

^ n 2 = A i - 1 — Xn-\Xn + \tlXn
2 ( » é v e i l ) , 

E 6 = ^ 5 — X3X6 + X6
2, 

£ 6
3 = A, - fx5

2. 

We shall find that the reciprocals of these forms are equivalent to An
n+l, 

An
q, Cn, Dm Cn

2, Dn
2, £6

3, ^6, respectively. All of them are eutactic; all 
except An

n+l (n > 2), As2, Ah
2

y Cn, Cn
2 (» s* 4), £>4

2, D£ are perfect, and there
fore extreme. 

In particular, Ani Dn, Dn
2, EQ, Af, A^ are equivalent to the 

Un, Vn, Wn, X, F, Z 

of Korkine and Zolotareff. On the other hand, their Tn is of an entirely 
different nature; in fact, many extreme forms with n > 7 are beyond the 
scope of the present treatment. 

The new senary form £ 6
3 is interesting for two reasons. First, its 27 pairs 

of minimal vectors correspond to the 27 lines on the general cubic surface 
(see §14). Second, it corroborates the number of extreme senary forms as 
computed by Hofreiter [28], but reveals a serious mistake in his work. Con
cerning his fourth form "/%" for which M = 2 and A = 3 3 53/28, the late 
Professor Blichfeldt wrote (in a letter dated May 18, 1944): 

I am certain that he made an error in §4, pp. 136-9, where he attempts to extend to 6 
variables the form Z given by Korkine and Zolotareff. 

We now see that Blichfeldt's skepticism was justified: 3E63 (with M = 2) 
has A = 35/26, so Hofreiter's incredible factor 53 is replaced by 36. (In fact, 
"Ft" is neither perfect nor eutactic.) 

Chaundy [10] reserves the title ''extreme' ' for those forms which give 
Mn/A its greatest possible value for each n: an absolute maximum instead of a 
relative maximum. When n ^ 6, so that the extreme forms are all known, 
these absolutely extreme forms can be picked out at once. Blichfeldt [2] and 
Chaundy carried the work farther, so we know now that the absolutely ex
treme forms for n ^ 9 are Korkine and Zolotareff's 

Uu U2, UZy 74l Vi, X, F, Ws, T9 

(with a modicum of doubt in the last case^ because Chaundy's argument is 
not quite valid). When these are adjusted so that M = 2, their determinants 
are 

2, 3, 4, 4, 4, 3, 2, 1, 1. 
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O'Connor and Pall [33, p. 329] have observed that the absolutely extreme 
forms for n ^ 8 (adjusted so that M — 1) are integral positive forms of least 
possible determinant for each n. Such integral forms for n > 8 are no longer 
necessarily extreme; but we shall find some extreme ones in §12. 

The absolutely extreme forms provide the densest packings of equal spheres 
whose centres form a lattice [2]. But the densest packings without this 
restriction on the centres present a far more difficult problem, which has only 
been solved in two dimensions [41a; 39a]. Already in three dimensions [la] 
there is a non-lattice packing just as dense as the cubic close-packing which 
represents the form <j>. It is therefore conceivable that some irregular packing 
might be still denser. 

2. Perfect and eutactic forms. Let ££a t fx ;V be a positive definite quad
ratic form in n variables; let M be the smallest value taken by the form for 
integers x%, not all zero; and let A be the determinant of the coefficients a»/ 
( = dji). The form is said to be extreme if the ratio Mn/A decreases (or remains 
constant1) for every small change in the coefficients [31, p. 368]; that is, if 
M is maximum for a variation keeping A constant, or A is minimum for a 
variation keeping M constant. 

Suppose the form attains its minimum M for the 2s sets of values 

(x1, . . . , xn) = db (rnlk, . . . , mnk) (k = 1, . . . , s). 

Waiving the distinction between opposites, we call these 5 representations of 
the minimum. The form is said to be perfect if it is uniquely determined by 
the value of its minimum and all the representations [42, p. 100]. If another 
form ]CXX^y + bij)xxxj had the same minimum and representations, we would 
find 

ÇZX^u + bij)mikmjk = Y^aijm^m^. 
i J i j 

Hence, a necessary and sufficient condition for a perfect form is that the s 
linear equations 

2.1 ZZm^mHij = 0 (k = 1, . . . , s) 

(for the \n{n + 1) unknowns ba = bjx) imply 

bn = 0 (i,j = 1, . . . , n), 

i.e., that the matrix of coefficients mxkmjk, having \n{n + 1) rows and 5 columns, 
is of rank \n{n + 1). Another way of putting it is that there is no quadratic 
equation 

satisfied by all the s sets of values (x1, . . . , xn) = (tnlk, . . . , mnk). 

^ h i s alternative is introduced because Theorem 2.9 makes it desirable to include the unary 
form anCx1)2 among the extreme forms. 
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Thus 1.1 is a necessary condition for perfection. 

Along with S ^ a ^ x V we consider the reciprocal form £]£a i ;x»#j, whose 
matrix is inverse to that of the original form, so that the cofactor of a# in A 
is Aaij. The form E E a ^ x V is said to be eutactic if there exists 5 positive 
numbers pi, . . . , ps such that 

2.2 L P * ( I > ^ ) 2 = E E f l ^ y . 

In other words, a necessary and sufficient condition for a eutactic form is that 
5 positive p's can be found to satisfy the \n{n + 1) linear equations 

2.3 E mikmjk
Pk = a*. 

The above condition for a perfect form implies that the equations 2.3 can 
be solved. But this does not suffice for a proof that every perfect form is 
eutactic, since we have no guarantee that a positive solution exists. Actually, 
for every known perfect form in less than nine variables there is a solution 
with the p's all equal (and therefore certainly all positive). Nor can we con
clude that every eutactic form satisfying 1.1 is perfect: we would be assuming 
that the equations 2.3 are independent. 

The above condition for a eutactic form is not very convenient in practice, 
as it demands knowledge of the reciprocal form. This disadvantage can be 
overcome by expressing the given form as a sum of squares, say 

2.4 a1)2 + a2)2 + . . . + m\ 
where 

2.5 £* = X>>'' (* = 1, . . . , n). 

Then the reciprocal form is simply £i2 + £2
2 + . . . + £n2, where £* is related to 

X{ by the equations 

Xj = Hfyi U = 1» . . • i n). 

Considering integral values of x%, we may suppose that the form attains its 
minimum M for the values 

a1, . . . , r ) = ± oA...,Mn*) (* = i 5). 
Since fxik — X c)mik, we have 

Hence, a necessary and sufficient condition for the form E ( D 2 to be eutactic 
is 

2.6 ZPkŒ^iY = L ^ 2 , P* > 0. 

In other words, the \n{n + 1) equations 
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2.7 E M W = ** 

must have a positive solution pi, . . . , p8. 
For instance, to verify that the form 0' of §1 is eutactic, we observe that 

the expressions 

e = xl + x3, £2 = x1 + 2x2 + x3, £3 = x1 - x3 

yield integral x's whenever the £'s are integers of like parity. Thus the 
ternary form (f1)2 + (£2)2 + (£3)2 attains its minimum M = 3 for the values 

(É1,?,*1) = ( ± 1 , ± 1 , ± 1 ) (5 = 4); 
and 2.6 becomes 

1£«1 ± fc ± £s)2 = £i2 + tf + £3
2. 

Voronoï [42, pp. 126-130] proved an important theorem which can now be 
expressed as follows: 

2.8 A form is extreme if and only if it is both perfect and eutactic. 

Here is a somewhat simpler proof [cf. 32, p. 244] of one half of this theorem, 
namely : 

2.9 Every perfect eutactic form is extreme. 

Let the coefficients of the form E £ a ^ V be slightly varied, say from a^ 
to aij + ebij (e > 0), in such a way that their determinant A remains constant 
while the b's do not all vanish. The constancy of A implies 

det (aij) = det (a{j + Aij) = det (a{j) + ££eAa*>&ff + 0(€
2), 

whence ^ E ^ % = 0(e). Since we are interested in arbitrarily small vari
ations, we make e tend to zero and conclude that 

EE«% = o. 
Since the form is eutactic, we can use the expression 2.3 for aij\ so that 

£ ( £ £ mikmHij)Pk = 0, 

where the p's are all positive. Since the form is perfect, the equations 2.1 have 
no non-trivial solution ; hence there must be at least one value of k for which 

YtHrn^mHij < 0. 

For such a k, since e > 0, 

E E f e + ebij)mikmjJc < J2^2aipnikm3'k. 

Thus the modified form £ £ ( # # + Aij)x%x3' attains a value less than M. Since 
the variation was arbitrary, this shows that the given form E X X / x V has a 
greater minimum than any neighbouring form, i.e., it is extreme. 
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3. The point-lattice representing a class of forms. The expression 2.4 may 
be interpreted, in Euclidean w-space, as the square of the distance from the 
origin to the point with rectangular Cartesian coordinates (£\ . . . , £n), or 
as the squared magnitude of the vector 

where pi, . . . , pn are unit vectors along the Cartesian axes. The equations 
2.5 enable us to express the same vector as J^xjtj> where 

3.1 ty = L^Pi . 

Thus the numbers xj are the contravariant components of this vector, referred 
to the n vectors ty as a covariant basis [17, pp. 178-180]. In other words, 
the point having Cartesian coordinates (£\ . . . , £n) has affine coordinates 
(x1, . . . , xn). Since 

LE^xV = L(r')2= (£rp*-)2= d>'t;-)
2= E£*vt, • tif 

the coefficients of our original form are the inner products of pairs of basic 
vectors: 

O.^ &ij = = *»i " »y« 

The set of vectors X xlU, where the x's take all integral values, has the 
property that the difference of any two of its members is a member. In other 
words, the vectors U generate a lattice [26, p. 26]. Thus any positive definite 
quadratic form determines a lattice. Conversely, any lattice (with a given 
basis) determines a positive definite form £ £ ( * * • tj)xlxJ\ and different bases 
determine equivalent forms [6, p. 30]. For instance, the lattice of unit squares 
may be generated by perpendicular unit vectors pi and p2, or equally well by 
pi — p2 and p2. The corresponding forms are 

(x1pi + x2p2)2 = ( x 0 2 + (x2)2 

and 

{xKVi - P2) + *2P2}2 = {^pi - (x1 - x2)p2}2 

= (x1)2 + (x1 - x2)2. 

In other words, there is a point-lattice for each class of equivalent forms. 

Along with the covariant basis ti, . . . , tn, we shall find it desirable to use 
the contravariant basis t1, . . . , tn, where 

V • ty = Sj 

(which means that t* is perpendicular to every tj except tt-, and V • t» = 1 ; 
see [27a] or [17, p. 180]). The vector £ x%U may now be expressed as £x»t% 
and its squared magnitude is the reciprocal form 

( L oCiV)2 = £ L aijXiXj, 
where 
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aij = t1 • V. 

The corresponding lattice, based on the vectors t*, is reciprocal to the lattice 
based on the vectors U [17, p. 181]. Hence 

3.3 Reciprocal forms are represented by reciprocal lattices. 

All bases for a given point-lattice provide elementary cells (or period 
parallelotopes) of the same content. This is the geometrical counterpart of 
the fact that equivalent forms have the same determinant. For, the parallelo-
tope spanned by the vectors tit . . . , tn has content A*. This can be proved by 
induction over n, as follows. (It is obvious when n = 1 and À = an.) Assum
ing the same result in n — 1 dimensions, where A is replaced by the cofactor 
of anny which is Aann, we have (Aann)% for the content of the parallelotope 
spanned by ti, . . . , tn_i. To obtain the content of the w-dimensional parallelo
tope we must multiply this by the "altitude," which is the projection of tn on 
the direction perpendicular to all of ti, . . . , tn_i. Since the unit vector in that 
direction is (an n)_ 5 tn , the projection is 

(ann)-*tn • tn = (ann)-*f 

and the desired content is (Aawn)^(ann)~* = A*. (For a direct proof, using 
2.5, 3.1, 3.2 and a Jacobian, see Bachmann [1, pp. 273-275].) 

A fundamental region for the translation group T, generated by the vectors 
ti, . . . , tn, may be chosen in various ways; e.g., it may be the parallelotope 
spanned by these n vectors or by the basic vectors of any equivalent lattice 
(determining the same point-lattice). Fricke and Klein [22, pp. 108, 216] con
structed a unique "standard" fundamental region, symmetrical about the 
origin. This is a poly tope consisting of all points that are at least as near to 
the origin as to any other lattice point (yl, . . . , yn). Clearly, the aggregate 
of such polytopes surrounding all the lattice points is a honeycomb filling the 
whole space without interstices. Since the distance between points (x\ . . . , xn) 
and (yl, . . . , yn) is 

where Xi = E# i ; x J a n d y% — Y*any^ this class of points is given by 

EC** - ?»)(**' - y*) ^ E *t*\ 

i.e., since ]£?*** = £ £ a^y* = S y**». 

E E «i&y ~ 2E y'xi Ï 0. 
The polytope is given (in covariant coordinates x*) by such inequalities for 
all sets of integers y{\ but of this infinite set of inequalities only a finite subset 
is effective. We see in this manner that Fricke and Klein's standard funda
mental region is the same as the "parallelonedron" a s c r i b e d by Voronoï 
[43, p. 278; 1, pp. 145,334]. 
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The lattice points nearest to the origin represent those integral values of 
(x1, . . . , xn) for which ]£ £ aijxW attains its minimum value M. The 
geometrical figure formed by these 25 points 

(ra1*, . . . , mnk)y (-mlk
y . . . , -mnk)f 

or by the 2s minimal vectors 

db Y,mikU (jfe = 1, . . . , * ) , 

is the same for the whole class of equivalent forms. Let us call it the vertex 
figure of the point-lattice. For instance, the body-centred and face-centred 
cubic lattices, representing the forms (pf and p of §1, have for respective vertex 
figures a cube and a cuboctahedron. 

A point-lattice has an infinite group of symmetry operations, in which the 
translation group T occurs as a self-conjugate abelian subgroup whose quotient 
group is finite. In fact, the quotient group is isomorphic to the subgroup that 
leaves the origin invariant [6, p. 103]. In terms of the corresponding form, the 
operations of this finite subgroup are those linear transformations of xl, . . . , xn 

which leave ^2^aijXlxj invariant, i.e., they are the automorphs of the form. 
Thus every automorph is represented by a symmetry operation of the vertex 
figure. 

If the point-lattice can be generated by n of its minimal vectors, it is de
termined by its vertex figure, and therefore every symmetry operation of the 
vertex figure is a symmetry operation of the whole point-lattice. But if the 
point-lattice cannot be so generated, its vertex figure may possibly have 
"accidental" symmetry operations which give new positions to some more 
distant points. Hence, 

3.4 If some n of the minimal vectors are independent (so that the vertex figure is 
properly n-dimensional), the group of automorphs of the form is a subgroup of 
the symmetry group of the vertex figure. It is the whole symmetry group if these 
n minimal vectors generate the point-lattice. 

These geometrical considerations make it evident that equivalent forms 
(represented by equivalent lattices) and their reciprocals (represented by the 
reciprocal lattices) have isomorphic groups of automorphs. 

We saw in §2 that a positive definite form is perfect if and only if there is no 
quadratic equation satisfied by all the representations of its minimum. In 
terms of the point-lattice, 

3.5 A necessary and sufficient condition for a form to be perfect is that there be 
no quadric cone (degenerate or non-degenerate) whose generators include all the 
minimal vectors. 

In our chosen system of affine coordinates, X I S Û ^ V = 1 is the equation 
of a sphere of unit radius. If M ^ 1, the point-lattice given by integral values 
of the x3 includes no interior point of the sphere except its centre (the origin). 
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Accordingly, we say that such a lattice is admissible for the unit sphere, 
(Clearly, a lattice having M < 1 is not admissible.) An admissible lattice 
whose elementary cell has the smallest possible content occurs when both 
M and A/M71 are as small as possible, viz, when M = 1 and the form is abso
lutely extreme. In other words, 

The critical lattices of the unit sphere are the lattices representing absolutely 
extreme forms with M — 1. 

This remark, kindly contributed by K. Mahler, supersedes the detailed 
argument of Mrs. Ollerenshaw [34 and 35]. 

4. Eutactic stars of vectors. Let us define a star to be a set of 2s vectors 
db a1, . . . , ± a s , issuing from a fixed origin in Euclidean w-space. Following 
Schlâfli [36, p. 298] we call this a eutactic star if the sum of the squares of the 
orthogonal projections of a1, . . . , a s on a line is the same in all directions, i.e., 
if there is a constant X such that 

4.1 Z ( a * - x ) 2 = Xx2. 

The simplest instance is when s = n and the ak are mutually orthogonal unit 
vectors; then afc • x is the magnitude of the projection of x on afc, and X = 1. 
In the general case 

X = L (a*)2/n 

[17, p. 261, with s and n interchanged]. The connection between eutactic 
stars and eutactic forms is supplied by the following theorem: 

4.2 A form is eutactic if and only if its minimal vectors are parallel to the 
vectors of a eutactic star. 

Proof. Let the form YLH^ij^V have minimal vectors ± m1, . . . , ± ms, 
where mk = Y,mJktj (& = 1> • • • > s)- Then 

mk • V = 2>>*ty • t* = £w'"*ôj = mik. 

First, let the form be eutactic, so that, for certain positive numbers pk, 

Then the vectors ak = p^m* satisfy the condition 

£ ( a * . x)2 = X > ; ( m * . ZxiVy = E ^ ( L w ^ ) 2 

^HHa^XiXj = (£*»t*)2 = x2, 

which is 4.1 with X = 1. 
Conversely, if the minimal vectors mfc are parallel to the vectors a.k = crk m

k 

of a eutactic star, we have 

T,<n?Œ,i*ikXiY = L ( ^ m * • ZxiV)2 = £ ( a * • x)2 = Xx2 

= X E E a ^ - x y , 

which is the condition for a eutactic form (with pk = crk
2/\). 
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Schlàfli [36, p. 302] deduced from 4.1 

£ ( a * - x ) (a*-y) = Xx • y, 

whence X &k&k • x = Xx. In the notation of Hadwiger [25], this is simply 

Tx = Xx. 

Hadwiger proved that the vectors afc of any eutactic star can be derived by 
orthogonal projection from 5 mutually perpendicular vectors of magnitude 
X* in Euclidean s-space. 

Schlàfli proved that the vectors from the centre of any regular polytope 
to its vertices constitute a eutactic star. This was generalized by Brauer and 
Coxeter [4, Theorem 1 with h = 1] as follows: 

A star is eutactic if there is an irreducible group of orthogonal transformations 
which is transitive on the pairs of opposite vectors. 

Since any two eutactic stars with the same origin form together a eutactic 
star [17, p. 253], we can deduce the following still more general result: 

A star is eutactic if it is transformed into itself by an irreducible group of 
orthogonal transformations. 

Hence, by 4.2, 

4.3 A form is eutactic if its vertex figure is invariant under an irreducible 
group of orthogonal transformations. 

This may be proved more directly, as follows. Since the hyperplanes 
through the origin perpendicular to the minimal vectors are 

YLmikXi = 0 ( i = l 5), 

and this set of hyperplanes is invariant under an irreducible group, the ex
pression X ( Z w ' ^ i ) 2 must be proportional to the unique quadratic invariant 
£ £ a % i X y . Thus 2.2 is satisfied with the p's all equal. 

It should be remembered that the above conditions are sufficient but not 
necessary. Korkine and ZolotarefFs nonary form T$ [31, p. 367] is extreme, 
and therefore eutactic, although its group of automorphs is reducible. In 
such cases the appropriate criterion is 2.3 or 2.7. 

5. Reflexible forms. A form is said to be disconnected if it is a sum of two 
or more forms involving separate sets of variables [17, p. 175]. A form that 
is not disconnected is connected. If a definite form is disconnected, we can 
name its variables in such an order that x1 is in one set and xn in another. 
Then every representation of the minimum has either its first or its last 
coordinate zero, i.e., the minimal vectors all satisfy the quadratic equation 
xlxn = 0. But a form cannot be perfect if its minimal vectors all satisfy a 
quadratic equation. Hence a disconnected form is not perfect. In other 
words, 
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5.1 Every perfect form is connected. 

Let a definite form be called a reflexible form if its point-lattice A is sym
metrical by the reflections that reverse the n basic vectors in turn. The 
reflecting hyperplane for a basic vector OP may be taken either through the 
origin 0 or through the midpoint of OP\ for, if either of these reflections is a 
symmetry operation of the point-lattice, so also is the other. The reflections 
in the n hyperplanes through 0 generate a finite group S. By adjoining the 
reflections in the parallel hyperplanes through the midpoints, or the trans
lations along the basic vectors, we obtain an infinite discrete group G. The 
hyperplanes and their transforms decompose the Euclidean space into an 
infinity of congruent (or symmetric) polytopes, any one of which may be used 
as a fundamental region for G. G is generated by the reflections in the bounding 
hyperplanes of this region, which is either a simplex or a "simplicial prism" 
—the rectangular product of several simplexes [13, p. 599]. In other words, 
G is either the group generated by reflections in the bounding hyperplanes of a 
simplex (whose dihedral angles are submultiples of TT) or the direct product of 
several such groups. 

Of course, the same point-lattice A represents not only the given reflexible 
form but also all equivalent forms, some of which may not be reflexible. A is 
derived from the origin 0 by applying either the whole group G or (equally 
well) its translation subgroup T, whose quotient group G/T is isomorphic to 
S. We shall choose the fundamental region for G in such a position that 0 is 
one of its vertices. (See [17, pp. 191, 205], where this is called a special vertex.) 

If the finite group S is reducible, it leaves a certain subspace invariant. 
Each basic vector t* lies either in this subspace or in the completely orthogonal 
subspace, and the n basic vectors fall into two sets, all of the one set being 
perpendicular to all of the other, so that the form is disconnected. Hence, if 
the form is connected the group must be irreducible. Combining this result 
with 4.3, we see that 

5.2 Every connected reflexible form is eutactic. 

We proceed to investigate the possible coefficients of such a form. 
The projection of any vector x in the direction of the basic vector tk, or of 

the unit vector akk~Hk} is akk~Hk • x = akk~^xk. Hence the reflection in the 
perpendicular hyperplane through the origin changes x into 

5.3 x — 2akk~~1xktk. 

Since x = £x*t», this reflection leaves invariant every contra variant com
ponent xi except xk, which is changed into 

k 2xk k " 2aik { 

dkk i = 1 0>kk 

Since the point-lattice A is given by integral values of the x\ a necessary and 
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sufficient condition for the form to be reflexible [44, p. 369] is that 2aik/akk be 
integral for all i and k. Hence, if such a form is connected, its coefficients 
an and 2anc(i?

£k) must be all commensurable, and we can suppose them to be 
integers with no common divisor greater than 1. Since the form must remain 
positive definite when all but two of the x's vanish, we have ana^k > Q>ik2, 
whence 

2a>ik 2dik 

&kk 
< 4 (iy£ k). 

Thus, whenever a ^ ^ O , \2aik/au\ and \2aik/akk\ must be two positive integers 
whose product is less than 4: one of them is 1 and the other 1 or 2 or 3. 

The ternary forms admitted by this restriction (with x, y, z instead of 
xl, x2, x3, for simplicity) are: 

x2 + pxy^ + py2 + pyz + s2, A = M2-P); 
px2 + pxy + y2 + qyz + qz2, A = iM4 - P -- 2 ) ; 

x2 + pxy + py2 + pqyz + pqz2, A = \P2q{± - P -- 2 ) ; 
x2 + xy + y2 + pyz + pz2 + pzxf A = ÏP$-p); 
x2 + pxy + py2 + pyz + pz2 + pzx, A = IP2(3-P); 

and the same with minus signs in any of the product terms. In the first three 
cases such changes of sign merely yield equivalent forms; thus the condition 
A > 0 implies p = 1 in the first case, and in the next two cases p + q < 4: 
one of p and q is 1 and the other 1 or 2. In the last two cases one or three 
changes of sign would replace the factor 3 — p by 3 (1— p), which cannot be 
positive; so we may keep the positive signs and conclude that p = 1 or 2. 

Thus coefficients 3 cannot occur in ternary or higher forms, but only in 
binary forms such as 

3x2 ± 3x;y + y2 = x2 + x(x ± y) + (x ± y)2, 

which are equivalent to x2 + xy + y2. Apart from this simple case, we can 
assume every an to be 1 or 2, and every 2an(i ^ j) to be 0 or ± 1 or ± 2, 
namely 0 or ± 1 whenever an = ajj = 1, and 0 or i t 2 otherwise. 

Instead of enumerating all the possible arrangements of l 's and 2's that will 
make the form definite, let us simplify the discussion by taking the basic 
vectors U to be perpendicular to those bounding hyperplanes of the funda
mental region which meet at the special vertex 0. The angle between any two 
of these n vectors, being the supplement of a dihedral angle of the fundamental 
region, is greater than or equal to a right angle [17, p. 189]. Hence 

dij = U ' ty ^ 0 (i 5* j). 

This means that any connected reflexible form is equivalent to one in which 
every non-vanishing an is negative, namely 

5.4 2aij = — max (a»», a/y) (i ^ j). 
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To determine which such forms are definite we may modify them by taking 
new variables 

o.o x — da x j 

so that YtJ^ciijxW becomes ][]£aiyxlx;' with 

aZÎ- = 1, 2aij = — v* (i ^ j ; v = 0, 1, 2 or 3). 

These modified forms have been enumerated elsewhere [45, p. 301; 17, p. 195]. 
The corresponding list of connected reflexible forms, with M = 1, is as follows: 

An = (x1)2 ~ XW + (x2)2 ~ . . . + (Xn_1)2 - ^~^n + (X")2 

(n = 1, 2, . . .), 
Cn = 20c1)2 - 2xW + 2(x2)2 - . . . + 2(x*~1)2 - 2xn~1xn + (xn)2 

(n = 2 , 3 , . . . ) , 
Bn = (x1)2 - x'x2 + (x2)2 - . . . + (x*-1)2 - 2xw~1xn + 2(xn)2 

(n = 3 , 4 , . . . ) , 
Dn = (x1)2 - xxx2 + (x2)2 - . . . + (x71'1)2 - xn~2xn + (xw)2 

(n = 4 , 5 , . . . ) , 
En = (x1)2 - x ¥ + (x2)2 - . . . + (xn~lY - xn'V + (xw)2 

(n = 6,7,8) , 
/?4 = (*i)2 - X ¥ + (x2)2 - 2x2x3 + 2(x3)2 - 2x3x4 + 2(x4)2, 
G2 = (x1)2 - 3xV + 3(x2)2. 

It is often convenient to denote these forms by graphs whose nodes and 
branches represent the square terms and product terms, as follows: 

/j<§) •— ••• —# • (§) TJ« (§h 

* < § > • -

^ 2 2 

sr 

2 2 

ET 
-<§> 

— < g « • • 

K 2 2 

D; 

r « H 

'5 

G? 

-@H- • • • — • • 

The values of an, other than 1, are marked under the nodes ; 2a»y can then be 
deduced from 5.4. The rings that have been drawn round one or two nodes 
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are to be ignored for the moment, but will be found useful in §7. The letters 
A, B, etc. have been rearranged [cf. 17, p. 297] to agree with the notation of 
Cartan [9, pp. 218-225]. 

If we are interested in finding the simplest representative of each different 
class of reflexible forms, we can eliminate all the coefficients 2 and 3 by observ
ing that Bn is equivalent to Dni F4 to D^ G2 to A2, and Cn to the disconnected 
form £(x*)2. In fact, 

Cn = (x1)2 + (x1 - x2)2 + (x2 - x3)2 + . . . + (x""1 - xw)2, 
Bn = (X1)2 - XlX2 + (X2)2 - . . . + (X n ~ 2 ) 2 - X n - 2 ( x n ~ 1 - Xn) 

+ (xn_1 - xn)2 - xn~2xn + (xn)2, 
F, = (x1)2 - xl{x2 - x3) + (x2 - x3)2 - x\xz - x4) 

+ (x3 - x4)2 - xW + (x4)2, 
G2 = (x1 - x2)2 - (x1 - x2)x2 + (x2)2. 

Hence 

5.6 Any connected reflexible form is equivalent to one having every an = 1. 

This means that the lattice A is generated by minimal vectors. By 5.4, each 
of the remaining coefficients 2a»y is either 0 or — 1. (By reversing the signs 
of alternate x's we could arrange to have + 1 instead of — 1 , but the negative 
sign is really preferable, as we shall see in the proof of 5.7.) 

We shall call the forms Any Bn, Dn, Eni F± and G2 properly connected because 
they remain connected after the above reduction. But Cn, being equivalent to 
XXx1)2, is not properly connected, and therefore (by 5.1) not perfect. We 
proceed to prove that 

5.7 Every properly connected reflexible form is perfect. 

Since equivalent forms are perfect or imperfect together, we may restrict 
consideration to the forms An, Dn, En, whose graphs are trees without any 
marks 2 or 3. The minimal vectors m = J ] mxU include the n basic vectors 
U themselves (since an = 1) and also any "connected series" 

t» + ty + U + . . . + tlt 

where 2aî;- = 2ay* = . . . = — 1; for when the only non-vanishing x's are 
xl — x3 = xk = . . . = xl = 1, the form becomes 

(x*)2 - x V + {xj)2 - xjxk + (xfc)2 - . . . + (xO2 

= 1 - 1 + 1 - 1 + 1 - . . . + 1 = 1. 

As a test for perfection (cf. 2.1), consider the 5 equations 

J2lLW>imjbij = 0, 

one for each minimal vector m. Setting m = t; (so that mJ = ôj), we obtain 

bn = 0. 
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Setting m = t» + ty (where 2a*y = — 1) we obtain 

bu = 0. 

Similarly, a connected series m = t» + ty + t* yields 

6i* = 0; 

and the number of terms in the series can be gradually increased. Since every 
pair of t's make the beginning and end of a connected series, all the b's must 
vanish. Therefore the form is perfect. 

Combining 5.7 with 5.2, we deduce from 2.9, 

5.8 Every properly connected reflexible form is extreme. 

It is easily proved by induction that the extreme forms 2A n, 2Dn, 2En have 
respective determinants n + 1, 4, 9 — n. This explains why En is definite 
only when n ^ 8. The three types overlap as follows: 

Dz = Az (with xl and x2 interchanged), 
Ei = A4 (with xl and x3 interchanged), 
£5 = £>5 (with the order x*x2x3x4 reversed). 

We might even go one stage farther back and say 

£3 = (x1)2 - xlx2 + (x2)2 + (x3)2 =A2 + Ai. 

O'Connor and Pall's integral positive forms of least determinant for n ^ 8 
[33, p. 329] are (apart from trivial changes of sign) 

Ax, A2,AZ, £4, £5 

and three equivalent to En (n = 6, 7, 8), namely 

fn = Xi2 + X1X2 + X2
2 + X2X3 + . . . + Xn_32 + Xn_3 (* n - 2 "" Xn) 

+ (X n _ 2 - Xn)
2 + (Xn_2 — Xn) ( x n _ ! + 2xn) + ( * n - l + 2 x n ) 2 

1 Xn—3^n 1" Xn . 

6. The minimal vectors. In the present section we shall see how the mini
mal vectors can be computed for each of the forms represented by trees on 
page 405. We shall also see how a certain one of the minimal vectors provides 
formulae for the number s and for the order of the group S. We again use m 
to denote a typical minimal vector J^mlt{ — YLmitl* a n d w e use z to denote 
the particular minimal vector whose contra variant components z% are as large 
as possible. Thus, if the given form is 

EI>»7*f*y = f(xl, . . . , xn), 
we have 

f(ml, . . . , mn) = f(z\ . . . , zn) = M = 1. 

The components w1, . . . , mn are conveniently associated with the nodes 
of the tree. (We may write them above the nodes, as an has already been 
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written below some of them.) Some of these contravariant components may 
vanish, but the nodes that represent non-vanishing mijs must be the nodes of a 
connected part of the tree. For otherwise each separate set of such nodes would 
represent a positive definite form; and the number f(ml

t . . . , mn), being a 
sum of several positive integers, could not be equal to 1. 

The expressions /(m1, . . . , mn) and /(Ira1], . . . ,\mn\) differ only in those 
terms (if any) for which tnlm' < 0 while aij < 0. Since these are positive 
terms of the former and negative terms of the latter, 

f(\m1\,...,\tnn\) ^f(m\...,mn) = 1. 

But since 1 is the minimum value, /(Ira1!, . . . , \mn\) ^ 1. Hence 

/dm 1 ! , . . . , !™»!) = / (w 1 , . . . , r o w ) , 

and in fact there are no such terms: mlmj ^ 0 whenever aij < 0. Thus, in the 
connected part of the tree where non-vanishing ml,s occur, any two adjacent 
m l 's have the same sign ; consequently all non-vanishing m^s have the same sign. 
Since 

/ ( — ra1, . . . , — mn) = /(ra1, . . . , ran), 

we may restrict attention to positive values and suppose that every 

ra* ^ 0. 

For instance, the values of (ra1, m2) for G2 = (x1)2 — 3x*x2 + 3(x2)2 are 
(1, 0), (1, 1), (2, 1) and their opposites; i.e., the "positive" minimal vectors 
in this case are 

ti, ti + t2, 2ti + t2. 

Given the contravariant components w l of a minimal vector m, we can 
easily compute the covariant components 

mk = H akim\ 

For, if the &th node of the tree is joined to the ith, j 'th, etc., we see from 5.4 
that 

^ -, o / akk(2mk — mi — mj — . . .) if akk > 1, 
( 2mK — aunt1 — ajjtn3 — . . . it akk = 1. 

Thus every 2mk is an integer, in fact, a multiple of akk. 

We proceed to prove that the only possible values for the integer 2mk are 
0 and zt akkl except that when akk = 1 we may have m = tk, in which case 
mk = mk = 1. 

The increment of f(ml, . . . , mn) when one mk is replaced by mk ± 1 is 

(m ± tjb) • (m ± tfc) — m • m = t* • t* ± 2 m • t* = akk db 2WA;. 

Since M = 1, the increment cannot be negative, save in the case when m = t* 
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is reduced to the zero vector. Hence, except in this trivial case, we have 
\2mj\ ^ ajck- Since 2mk is a multiple of a^, it must be either 0 or ± auu-
But if m = tfc, so that every m% vanishes except wfc = 1, we have 2m & = 2 
(by 6.1 with auk = 1). 

Moreover, since £ w*m» = m • m = 1 and m1 ^ 0, at least one of the 
integers 2mz- must be positive (namely 2m& = akk for some k, unless m is 
basic). 

Since the increment of m • m is akk ± 2m& when m is replaced by m ± t&, 
a given minimal vector yields a new one when we make this change for a value 
of k such that 2mk = F̂ a,kk- Given any minimal vector that is not basic, we 
can carry out this procedure with the lower sign, subtracting 1 from mk for a 
value of k that makes 2m& = a**, thereby changing 2nik from akk to — akk 
(by 6.1). If the new m is still not basic we can repeat the procedure; but since 
the sum £ m% 1S diminished, this can only be done a finite number of times, 
and eventually we must be left with m = t*. (In this final stage, 2mi = 2 but, 
by 6.1 again, every other 2mk ^ 0.) It follows, by reversing the process (and 
using the upper sign), that the whole family of "positive" minimal vectors 
can be built up by starting with those basic vectors U for which an = 1 and 
successively adding some t& (i.e., increasing mk by 1) whenever 2nik < 0. 
This will continue until 2mk ^ 0 for every k. 

For instance, in the case of G2, where an = 1 and #23 = 3, we have 

2m 1 = 2m1 — 3m2, 2m2 = 3 (2m2 — m1), 

and the minimal vectors can be written down successively as in the following 
table : 

(m1, m2) (2m 1, 2m2) 

(1, 0) 
(1- 1) 
(2, 1) 

( 2, - 3 ) 
( - 1 , 3) 
( 1 , 0) 

In the case of Bz, where an = a22 = 1 and a33 = 2, we have 

2m 1 = 2m1 — m2, 2m2 = 2m2 — m1 — 2m3, 2mz = 2(2m3 — m2), 

and the first two basic vectors yield other minimal vectors as follows: 

(m1, m2, m3) (2»wi, 2ni2, 2mz) 

(1, 0, 0) (0, 1, 0) 
(1 ,1 ,0) (0 ,1 ,1) 

(1, 1. 1) 
(1. 2, 1) 

(2, - 1 , 0 ) ( - 1 , 2 , - 2 ) 
(1 ,1 , - 2 ) ( - 1 , 0 , 2 ) 

( 1 . - 1 , 2 ) 
(0, 1, 0) 
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As a third example consider Az, where an = a22 — a33 = 1 so that 

2mi = 2ml — m2, 2m2 = 2w2 — m1 — mz
} 2mz = 2mz — m2 

and all the basic vectors are minimal : 

(m1, ni1, m3) (2wi, 2m2, 2m3) 

(1, 0, 0) (0, 1, 0) (0, 0, 1) 
(1, 1, 0) (0, 1, 1) 

(1, 1. 1) 

( 2 , - 1 , 0 ) ( - 1 , 2 , - 1 ) ( 0 , - 1 , 2 ) 
(1 ,1 , - 1 ) ( - 1 , 1, 1) 

(1 ,0 ,1 ) 

The final vector m (where £ mk is maximum and every 2mk is 0 or dkk) is 
of such special importance that we shall use a different letter and call it z. 
Since / ( l , 1, . . . , 1) = 1, every zk ^ 1. Moreover, since 

£ 2**2* = 2z • z = 2, 

only one or two of the 2zk's can take the value akk: all the rest must be zero. This 
means that the vector 2z is 

6.2 akkt
k or tfc + tl 

for one or two particular numbers k, I (with akk —an = 1 in the latter case). 
(Thus 2z = t1 for G2, t2 for Bz, and t1 + t3 for Az. A complete list can be 
read off from the ringed nodes on page 405.) 

Geometrically, the operation of adding 1 to mk (when 2nik = — akk) is the 
reflection Rk that reverses t&; for, by 5.3, this reflection changes m into 

m - 2akk~1mktk = m + tk. 

Thus every minimal vector can be derived from a basic vector U (with an — 1) 
by applying some operation of the group S generated by Ri, R2, . . . , Rn. 
It follows that every minimal vector is reversed by a reflection belonging to 
S (viz, by one conjugate to R,-). In particular, S contains a reflection that 
reverses z. Here the reflecting hyperplane is perpendicular to z through O. 
Let R0 denote the reflection in the parallel hyperplane through the midpoint 
of the segment defining z. This hyperplane cuts off from the angular funda
mental region for S a simplex all of whose dihedral angles are submultiples 
of 7r. For, the corresponding unit vector 

6.3 to = - z 

makes with the basic vectors tk (k — 1, . . . , n) the inner products 

to • tfc = — zk = 0 or — %akk; 

and since aoo = 1, the cosine of the corresponding dihedral angle is 

— to • tk/akk* = 0 or iak$f 
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where akk = 1 or 2 or 3. Since the infinite group G can be derived from S by 
adjoining R0, this simplex serves as a fundamental region. The n + 1 vectors 
to, ti, . . . , tn, perpendicular to the bounding hyperplanes of the simplex, 
yield the semidefinite form 

(x°to + xlU + . . . + xntn)
2 = (x°to)2 - 2x°(x1z1 + . . . + xnzn) 

= (x0)2 - x° £ 2zkx
k +f(x\ . . . , xn), 

which is never negative but vanishes when xk = zk and x° = 1. It is therefore 
natural to define 

6.4 z° = 1, 

so that z°to + zHi + . . . + zntn = to + z = 0 [17, p. 183 (10-72)]. 

FIG. 1 FIG. 2 

Figs. 1 and 2 illustrate the two equivalent forms A 2 and G2, whose "positive" 
minimal vectors are respectively 

ti, t2, U + t2 = z = §(* + t2) 
and ti, ti + t2, 2ti + t2 = z = Jt1. 

Returning to the general discussion, we see that the semidefinite form is 
represented by a graph which is derived from the tree by adding an {n + l ) th 
node, joined to the one or two nodes for which 2z& 9e 0. The actual cases, in 
the same order as in §5, are exhibited on page 412. 

In each case the nodes have been marked with the numbers a^k below and 
zk above, whenever these numbers are greater than 1. (The marks akk are an 
essential part of the symbol, but the values of zk can be derived from them, 
as we shall soon see.) It is to be understood that 5.4 holds whenever the ith 
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* 2 3 , 
-• ® »-|® • • •-

'5 

Gr^ 
and j t h nodes are joined by a branch,2 even if i = 0. The node representing 
to has been ringed. 

ii 

Given the semidefinite form (£]x*t;)2, we can write down the 2*'s, beginning 
o 

with z° = 1, by the following simple rule: If the node representing tk is joined 
to those representing t», ty, etc., we have 

6.5 
{ duZ1 + djj Z° + . 

if akk > 1, 
if akk = 1 

( akk(2zk - 2>") 
ZZk - \ 2 z k - Z asp* 

This rule follows at once from 6.1 (with mk — zk = 0) except when z° is 
involved. It remains to be verified when i or k is zero. If i = 0, so that the 
&-node is joined to the 0-node and also to one or more j-nodes, 6.1 gives 

- I>") (ahh > 1), 
(akk = 1). 

But, by 6.2, 2zk = akk. Hence 

J l + E ^ (akk > 1), 
I 1 + E ^ / ; * ' (akk = 1). 

This is 6.5 with i = 0, z° = 1 and aoo = 1- Finally, to verify 6.5 with k = 0, 
we observe that 6.2 gives either 

2zk 

or z = §(t* + t0-
2The unary form A i has been omitted from the above list, because the corresponding semi-

definite form (x0)2 — 2x°xï + (x1)2 violates this rule. 
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In the former case every covariant component vanishes except Zi = \aa, and 
therefore 

2» = : : 1 == Z{Z == ~2&nZ , 

as desired. In the latter case z» = 2/ = J, and therefore 

2° = 1 = ZiZ1" + ZjZj = |(2* + 2;') = K^"2* + &jjZJ'). 

It is interesting to compare these results with [17, pp. 176-194], where the 
vectors e^ have the same directions as the present vectors t&, but different 
magnitudes: |e^| is the reciprocal of the distance between two parallel hyper-
planes, whereas 11&| is twice this distance (so that the translation along t* is 
the product of two parallel reflections). Moreover, we now have a different 
unit of measurement: not just the distance between closest parallel hyper-
planes but twice this distance. Taking these two changes into consideration, 
we can reconcile the expression 11.93 [17, p. 207] with our present notation by 
defining 

yk = akkz
k. 

Then the order of the group S is 

6.6 ffyl...ynn\, 

where / (called h in [9]) is the number of yk,s that are equal to 1 (including 
y° = 2°, which is always 1), i.e., / is the number of "special" vertices of the 
simplex. (The "paramètre dominant" of Borel and De Siebenthal [3a, p. 219] 
is L yk<Pk.) 

The expression 6.6, involving the product of the y's, has an interesting 
companion involving their sum : The number of minimal vectors is 

2s = c(y° + y1 + . . . + yn), 

where c is the number of a&fc's that are equal to 1 {excluding a0o), i.e., c is the 
number of minimal basic vectors. This empirical formula can be verified 
in each case from the table on page 414; but no explanation for it has so 
far been found. 

The groups S are listed in the notation of [14]. The last two columns will 
be explained in §§7 and 8. 

7. The point-lattices and their vertex figures. In §5 we saw that the 
translations and reflections associated with the lattice for a reflexible form 
generate an infinite discrete group G which contains a finite subgroup S 
generated by reflections in hyperplanes through the original lattice point 0, 
and we found it desirable to restrict consideration to forms for which these 
hyperplanes are perpendicular to the n basic vectors. In §6 we saw that, in 
the case of a connected form, the fundamental region for G is a simplex bounded 
by these n hyperplanes and one more, perpendicular to the vector z (see 6.3). 
It follows that the lattice points are the vertices of a honeycomb whose 
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graphical symbol (in the notation of [17, p. 196]) is essentially one of those 
listed on page 412. For this purpose the marks zk (above the nodes) are to be 
disregarded, and the marks auk are to be modified in accordance with the 
transformation 5.5. By 5.4, the cosine of the dihedral angle between the 
hyperplanes perpendicular to U and t, is 

- aijiauajj)-^ = \ maxj (au/ajj)*, ( ayy /a^} . 

Since cos 7r/4 = §2* and cos 7r/6 = §3*, the proper way to mark the branches 
of the graph is as follows: When an = djj we make no mark (and the angle 
TT/3 is understood) ; but when an and ajj are different the appropriate mark is 
twice the quotient of the larger by the smaller; e.g., the symbol 

(§) • « , meaning © • • , becomes © • • . 
^ 1 1 3 6 

The particular cases are given in the final column of the above table. No 
confusion need be caused by adopting the same symbol A for the honeycomb 
and for the point-lattice of its vertices. (Cf. [14, p. 468], where A was called 

n+.) 
The honeycomb anh [11, p. 366], whose graphical symbol consists of an 

(n + l)-gon with one vertex ringed, has been described by Schoute [37] as 
an oblique section of the (n + l)-dimensional cubic honeycomb; e.g., 

a2h = {3,6}, a3h = | 3, * } 

in the notation of [17, pp. 59, 69, 87-88]. The different cells of anh are the 
regular simplex an and all its simple truncations t\an. 

The w-dimensional cubic honeycomb is denoted (not too happily) by 
ôn+i. Its alternate vertices form Schoute's "half measure poly tope net" 
hdn+i [38, p. 90; 17, pp. 156, 201]; e.g., 

hd2 = <52, h<53 = <53, h<54 - a3h, h<55 = {3, 3, 4, 3}. 

The penultimate column of the table contains the polytope II which is the 
vertex figure of A. Its graphical symbol is derived by removing the ringed 
node and ringing the adjacent node or nodes [15, p. 336]. Its 2s vertices, being 
the extremities of the vectors =t m, are derived from the extremity of z by 
applying the operations of S. When z = la^t*, this point lies in the direction 
of tk, and the &th node of the tree is ringed; but when z = f(tfc + tO it lies 
on the bisector of the angle between t* and t*, so the &th and /th nodes are 
both ringed. The particular cases are the trees on page 405, with marks 
transferred from nodes to branches by the above rule; e.g., 

® • becomes ®——-• 

(and the remaining cases can be seen in [14, p. 472, the third column of Table 
I, omitting the last six entries]). 
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The "expanded simplex" to,n-idn [15, p. 331], sometimes called ean [11, p. 
366], has for its cells the rectangular products an-kXak-i or [an-fc, ajt-i] for 
all values of k from 1 to n; e.g., an- i X ao is just the regular simplex an—u a n d 
an-2 X ai is a right prism based on an_2. In particular, /0, ict2 is the regular 

hexagon {o}, /o,2a3 is the cuboctahedron < >, and /o,3a4 is a four-dimensional 

polytope whose cells consist of ten tetrahedra and ten triangular prisms (as 
we may see by analysing the tree in the manner of [15, pp. 329, 335]). 

The "cross polytope" fin is the ^-dimensional analogue of the square @2 and 
octahedron fiz [17, p. 121]. The midpoints of its edges are the vertices of the 
truncated cross polytope ti&n or 

( 3 , . . . , 3 , 4 / 

[17, pp. 147, 200]. In particular, /i/?4 is the regular 24-cell {3 ,4 ,3} , whose 
twelve diagonals meet a 3-space of general position in the vertices of three 
desmic tetrahedra [27, p. 170]. 

For the remaining polytopes and honeycombs (122, 231, 42i, and 222, 33i, 52i), 
see [11, pp. 414, 415] and the analytic treatment in §8. 

8. The use of an orthogonal basis. For further discussion of the extreme 
form An (which is absolutely extreme when n = 2 or 3) it is convenient to 
embed the w-space in an (n + l)-space spanned by n + 1 mutually orthogonal 
unit vectors pi, . . . , pn+i. In fact, 

2An = (x1)2 + (xl - x2)2 + (x2 - x3)2 + . . . + (xn~l - xn)2 + {xn)2 

= {*XPl — (^ l - ^ 2 )P2 — (X2 ~ X3)p3 - • • • — ( X n _ 1 - Xn) p n - X n p n + i } 2 

= {^(Pl - P2) + X2(P2 - p3) + • • • + Xn(pn - Pn + l)}2. 

Comparing this with An = (xJti + x2t2 + . . . + xntn)
2, we see that 

U = 2"-*(pi - pf-+i) (i = 1, . . . , »), 

whence z = ti + . . . + tn = 2 - 5 (p i — pn+i). (These vectors all lie in the 
w-space perpendicular to Pi + . . . + Pn+i.) The reflection Rt-, which re
verses U, now appears as the transposition (p;pi+i); so S is [3n-1], the sym
metric group of degree n + 1. Applying these operations to z, and changing 
the scale to get rid of the multiplier 2~% we see that II is the expanded simplex 
to,n-icin whose n{n + 1) vertices are obtained by permuting 

( 1 , 0 , . . . , 0 , - 1 ) 

(with n — 1 zeros) in the w-space £x + . . . + £n+1 = 0. In other words, 
k,?i-ian is the polytope determined by this equation along with the inequality 

\e\ + ... + lr+ll ^ 2. 
It follows that À is the simplicial honeycomb anh whose vertices are all the 
points having n + 1 integral coordinates with sum zero. For instance, the 
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permutations of (1, 0, —1) are the vertices of the hexagon 0̂,1̂ 2, and the 
lattice points (£\ £2, £3) with (-1 + £2 + £3 = 0 form the tessellation of triangles, 
d2h. 

By choosing a different basis we can obtain an equivalent form; e.g., the 
basis pi — pn+i (i = 1, . . . , n ) yields 

{IMP; - Pn+i)}2 = Œ>1'P; - SVPn+i)2 = E(*02 + (2>02, 
which is proportional to the Un of Korkine and Zolotareff [31, p. 367]. 

When n = 2, the basis pi — p2, P2 — P3 — (pi — P2) yields 

{^(Pi - Pt) + * 2 ( ~ Pi + 2p2 - ps)}2 

= {(x1 - x2)px - (x1 - 2x2) p2 - x2p3}2 

= (x1 - x2)2 + (x1 - 2x2)2 + (x2)2 

= 2G2. 

On the other hand, the pair of equivalent forms Bn and Dn (which are 
absolutely extreme when n = 3, 4 or 5) are more naturally treated with 
reference to an ^-dimensional orthogonal basis. So likewise is the imperfect 
form Cn. In fact, 

Cn = (x1)2 + (x1 - x2)2 + . . . + (x*-1 - xn)2 

= {x X pi - (X1 - X 2 )p 2 - . . . - (X n _ 1 ~ X n ) p n } 2 

= {xKPl - P2) + • • • + Xn-J(Pn-l ~ Pn) + X n
P n} 2 , 

whence 
U = Vi — Vi+i (i = 1, . . . , » — 1) and tn = Pn, 

so that 
Z = ti + . . . + tn = pi. 

The reflections Ri, . . . , R n - i are again transpositions, but Rn reverses the 
sign of p n ; so S is the "hyper-octahedral" group [3n~2, 4], of order 2nn\, which 
permutes the n vectors of the orthogonal basis and changes their signs. Thus 
the minimal vectors are simply db p„ and II is the cross polytope 0„ whose 2n 
vertices are obtained by permuting 

( ± 1 , 0 , . . . , 0 ) . 

In other words, /3n is the polytope determined by 

If1! + • • • + IH ^ 1. 
It follows that A is the cubic lattice 5„+1 whose vertices are all the points 
having n integral coordinates. 

Similarly 

2Bn = (x1)2 + (x1 ~ *2)2 + • • • + (*n~2 ~ * " - 1 ) 2 + (xn~l - 2xn)* 
= {Vpi - (x1 - x2)p2 - . . . - (x*-2 - «""Op»-! - (xn~l - 2x")pn}2 

= {«'(Pi - P») + • • • + * n - 1 ( p n - i ~ Pn) + 2xnpn}2 , 
whence 
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Xi = 2 * ( P i - Pi+i) (i = 1, . . . , » - 1) and tn = 2*pn, 

so that 

Z = ti + 2 ( t 2 + . . . + t n - l ) + t» = 2 - * ( p i + p2). 

Since the reflections Ri, . . . , Rn are the same as before, S is again [3n~2, 4]. 
(Cf. Stiefel [41, p. 183].) Thus the minimal vectors are ± p* =L p;- (i ^ j), 
and II is the truncated cross poly tope tipn whose 2n(n + 1) vertices are 
obtained by permuting 

( ± 1, ± 1, 0, 0, . . . , 0) 

(with n — 2 zeros). In other words, t\0n is determined by 

| r | O and I | r | <: 2. 

A is now the alternated cubic lattice h5 n + 1 whose vertices are all the points 
having n integral coordinates with an even sum [17, p. 158]. For instance, 
the permutations of 

( ± 1 , ± 1 , 0 , 0 ) 

are the vertices of the regular 24-cell /i/34, and the lattice points (£*, £2, £3, £4) 
with (-1 + £2 + £3 + £4 = 0 (mod 2) form the regular honeycomb of 16-cells, 
h56. 

The form Dn, equivalent to Bni is given by 

{ ^ ( P l ~ P») + - • • + ^ " H P n - l - Pn) + ^ ( P n - 1 + p n ) } 2 

= Or1)2 + (x1 - *2)2 + . . . + (*n~3 - *n~2)2 + (*n~2 - xn~l - xn)2 

+ {xn~l - xn)2 

= 2Dn. 

In this case S is the group [3n_1«*»*], of order 2n~1n\, which permutes the n 
vectors of the orthogonal basis while changing any even number of signs. 

Another possible basis, for a form equivalent to 2Dn, is 

Pn ~ Pi (i = 1, • • • , ft — 1), pn + Pn-l, 
giving 

{ " Z **"(Pn - Vi) + *"(Pn + Pn-l)}2 = *E (**)2 + C**"1 ~ ^ ) 2 + ( £ **)* 
1 1 1 

= L (**)2 + ( E **)2 - 2xn~1xn, 
i i 

which is proportional to Korkine and Zolotareff's Vn. 
Again, we might take 

Vi " Pi+l (* = 1, . . . , » — 1), Pi + Pn, 

which yields 

https://doi.org/10.4153/CJM-1951-045-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-045-8


EXTREME FORMS 419 

n- 1 

{ Z * ' ( P * - P i+ l )+X"( P l + P n)}S 

1 

= (x1 + XnY + (X1 - X2)2 + . . . + (Xw_1 - Xn)2 

= 2(An + xlxn). 

When n is odd we can reverse the signs of x2, x4, x6, . . . , x n _ 1 to obtain the 
cyclically symmetrical form 

(x1)2 + xlx2 + (x2)2 + x2x3 + . . . + (xn)2 + xnx\ 

So this again is equivalent to Dn. (But such a symmetrical form with n even 
is obviously semidefinite.) 

F4, equivalent to Diy is given by 

{ t f^P l - P2) + X2(p2~ p3) + X 3 ( - p i ~ p 2 + P 3 - P4) + ^ 4 (P l+ P2+ P3+ p4)}2 

= (x1 - x3 + x4)2 + (x1 - x2 + x3 - x4)2 + (x2 - x3 - x4)2 + (x3 - x4)2 

= 27v, 

and in this case S is [3, 4, 3], of order 1152 [17, p. 149]. 

When considering An we embedded the Euclidean w-space in a Euclidean 
(n + l)-space. In dealing with Bn, Cn and Dn, no such embedding was 
necessary. In the case of En (which is absolutely extreme when n = 5, 6, 7 or 
8) we shall find it convenient to embed the Euclidean n-space in a Minkowskian 
(n + l)-space, i.e., to use n + 1 "vectors" pi, . . . , p n + i which are mutually 
orthogonal with 

Pi2 = 1, . . . , pn
2 = 1, but p n + 1

2 = - 1. 

In fact, 

2En = (x1)2 + (x1 - x2)2 + (x2 - x3)2 + . . . + (xn~4 - xn~3)2 

+ (xn~3 - xn~2 - xn)2 + (xw~2 - xn~l - xn)2 + (xn~l - xn)2 - (xn)2 

= { x ^ i — (X1 — X 2 )p 2 — (X2 ~ X 3 )p 3 ~ . . . "~ (Xn~4 — Xn*"3)pn_3 

- (Xn~3 ~ Xw~2 - Xn) p n _ 2 - (x w ~ 2 - Xn~l - Xn) p n _ i - (X71"1 - Xn) p n 

+ x n p n +i |* 
= {xHpl ~ P2) + X2(p2 - p3) + • • • + Xn_3(pn_3 ~ pn~2) 
+ Xn-2(pn_2 - pn-l) + X^Hpn-l ~ p») 

+ Xn(pn-2 + Pn-l + Pn + Pn+l)}2, 
whence 

2*t; = pi ~ p i+ i (i = 1, . . . , fl - 1) and 2*t n = pn-2 + P n - l + Pn + Pn + l 

(all lying in the Euclidean w-space perpendicular to the time-like vector 
pi + . • . + pn + 3pn+i). Combining these vectors, we see that A (suitably 
magnified) consists of all the points whose Minkowskian coordinates are 
integers satisfying the equation 

e + . . . + {B = 3 ^ + 1 (» = 4, 5, 6, 7, 8). 
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We have thus obtained, in a single scheme, coordinates for the vertices of the 
five honeycombs 

oji (n = 4), hôa (n = 5), 222 (n = 6), 33i {n = 7), 52i (n = 8). 

The vertex figures 

Auft4» ^I/5B> I22, 231, 4 2 i 

can be derived by picking out those points for which 

a1)2 + . . . + (D2 = (r+1)2 + 2. 
It follows that the number of minimal vectors, 25, is given in these five cases 
by the formula 

-(;)+(;)+(:)+»G)-
The same vectors were considered, as long ago as 1894, in the thesis of Cartan 

[9a, pp. 142, 143]. His co* is our pi — J(pi + . . . + p7) for E6, and p* + $p8 

for E7. 
Du Val [18, p. 24] uses symbols R*, S\ and S** ' to denote the hyperplane 

e + . . . + r = 3r+1 - *, 
the sphere 

tt1)*4-... +ft*)1 = (£n+1)2- v, 
and their sphere of intersection. In this notation, A and II for En are formed 
by the integer points on R° and S0' "2. Du Val showed [1.8, pp. 32-34] that 
the integer points on 5 1 , _ 1 , S2' °, S3, * are the vertices of g2i, 2qu lg2, where 
q = n — 4. (Our n is his €.) Thus S0' ~2 resembles 51, ~1 when n — 8, S% ° 
when n = 7, and 53, x when w = 6. In fact, the translation 

( £ \ . . . , £w, r+1) -* tt1 + 1 , . . . , r + 1 , r + 1 + 3) 
converts S*% ' into S'+g-n, "+2*+9-n4 

A more familiar description of 33i is in terms of the points in Euclidean 
8-space whose coordinates are mutually congruent mod 2, with sum zero [11, 
p. 390] (i.e., on a different scale, 8 integers, or 8 halves of odd integers, with 
sum zero; thus the vertices of 33i belong to two superposed a7h's). This co
ordinate scheme may be established quite elegantly by picking out the basis 

t l = Pi— P2, • • • , U = P 6 - P7, t7 = K— Pi"" P2— P S " P4+ P5+ p6+ p 7 + p8> 

and observing that 

(xHi+ . . . +x7 t7)2 = ( x 1 - i x 7 ) 2 + ( - x 1 + x 2 - è x 7 ) 2 + ( - x 2 + x 3 - J x 7 ) 2 

+ ( - x 3 + x 4 ~ è x 7 ) 2 + ( - x 4 + x 5 4 4 x 7 ) 2 + ( - x ^ 
= 2{(x1)2-x1x2 + (x2)2-x2x3 + (x3)2-x3x4 

+ (x4)2-x4x5+(x5)2-x5x6+(x6)2-x4x7 + (x7)2} =2E7 . 
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Similarly [11, p. 393] the vertices of Ô2i are the points in Euclidean 9-space 
whose coordinates are mutually congruent mod 3, with sum zero. (Thus they 
belong to three superposed a8h's.) To establish this scheme we pick out the 
basis 

t i = Pi— p2, . . . , t 7 = P7— ps, 
U = U- PO" P i " P 2 - P 3 - P4- P6 + 2p6 + 2p7 + 2p8) 

and observe that 

( ^ t i + . . .+xHs)
2 = (-lx*)2+(x1-%x*y+(-x1+x2-%x*)2+(-x2+xz-%x*)2 

+ (-xz+x*-ix*)2+(-x*+x5-ixs)2+(-x*+x«+%x*)2 

+ ( - x 6 + x 7 + f x 8 ) 2 + ( - x 7 + f x 8 ) 2 

= 2£8 . 

(In this case the co* of Cartan [9a, p. 144] is p t — •§• Z)pO 

To obtain a comparably elegant system of coordinates for 222, we have to 
use complex (or unitary) 3-space, where the distance between two points is 
equal to the square root of the sum of the norms of the differences of their 
coordinates. It is well known that the quadratic integers 

a + bo) (« = e2**/3), 

where a and b are rational integers, fall into three classes modulo 

X = 1 — co, 

typified by 0, 1 and —1 [26, p. 187, Theorem 222]. Let us consider the points 
whose coordinates are three of these quadratic integers, mutually congruent 
mod X. As a basis for this lattice we may use the vectors 

t i = XcOpi, t 2 = Xpi, t 3 = ~ Pi— p2— P3< t 4 = Xp2, t 6 = XcOp2, t 6 = Xp3 

[16, p. 473]. Then 

2>*'tf= (Xcox1+Xx2-x3)pi + (--x3+Xx4+XcoxB)p2+(--^3+X^6)p3, 

and the norm of this vector is 

(\o)X1+\x2—xz)( — \o)X1+\x2—xz) 
+ (-xz+\x*+\œx*)(-x*+\x*-\œxb) + (-x*+\x*)(-x*+\x^ 
= 3£6 . 

9. Automorphs. We saw in §5 that the group of automorphs of a reflexible 
form, being the symmetry group of the poly tope II, has a subgroup S whose 
typical generator Rk leaves invariant every xi except xk, which it changes into 

xk - 2xk/akk 

(see 5.3). If the non-vanishing a^ 's (i ^ k) are a^, ajk, etc. (so that the &th 
node of the tree is joined to the ith, jth% etc.) this transformed xk is 
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( — xk + x1 + xj + . . . if auk > lf 
\ — xk + aux{ + djjXj + . . . if aick = 1 

(by 6.1 with x for m). 
For instance, in the case of G2 = (x1)2— 3xlx2+ 3(x2)2, Ri and R2 change 

(x1, x2) into ( —xx+ 3x2, x2) and (x1, —x2 + x1), respectively. Again, in the 
case of the form A* = (x1)2 — xlx2 + (x2)2 — x2x3 + (x3)2, the three R's trans
form (x1, x2, x3) into 

( yy. 1 I *»" ,y»2 • v ' i (y*- /v^ y* —1— -v* /v**M l'y! ^^ -y^ — v " i 

In addition to S, the group of automorphs contains the symmetry group of 
the marked tree (p. 405), i.e., the "obvious" automorphs of the form, such as 
the transposition (x*x3) in the case of As, or the symmetric group on the three 
branches of the tree for D4. In the single case of J54 there are still other oper
ations, namely the cyclic automorphs of the equivalent form D±. The whole 
group of automorphs is most easily obtained as the symmetry group of II. 
Referring to the table on page 414, we see that this is S itself in the following 
cases : 

Cn, Bn(n^4), E7, £8 , F,, Gt. 

Hence the numbers of automorphs in these cases are the orders of the groups 

[3*-2, 4], [3*-2, 4], [33'2'1], [3W], [3, 4, 3], [6], 

namely 
2nn\, 2nn\, 8 -9! , 192-10!, 1152, 12. 

Of course, the forms A2, B± and D\, Dn (n > 4) have just as many auto
morphs as the respectively equivalent forms 

G2, 7% Bn, 

namely 12, 1152, 2nn\. 

The symmetry groups of the poly topes t0) n - ia n and I22 are derived from the 
corresponding reflection groups by adding the "central inversion" which 
reverses the signs of all the x's [11, pp. 368, 392]. In the notation of Du Val 
[18, p. 32] the groups are 

2[3n~1] and 2[32>*>1]. 

Hence in these cases the number of automorphs is twice the order of S, namely 

2(rc + 1)! for Ani 144 -6! for £ 6 

[8, pp. 366-368]. 

10. The enumeration of simple Lie groups. We saw, in §§5 and 6, that the 
fundamental region for the group G corresponding to a connected reflexible 
form is a Euclidean simplex whose dihedral angles are submultiples of w. We 
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saw also that such a simplex is conveniently denoted by a graph whose nodes 
represent the n + 1 bounding hyperplanes or the respectively opposite ver
tices, and that a certain number / of the vertices (most naturally described as 
the "sharpest corners" of the simplex) are special in the sense that they lie 
on the greatest possible number of reflecting hyperplanes of G. (Stiefel [40, 
p. 363] calls them Knotenpunkte. His /, m, y are our n, s, T.) This simplex 
is the polytope (P) of Cartan [9, pp. 216-228]. The discrete group G (Cartan's 
©i) is generated by reflections in the bounding hyperplanes of the simplex, 
and transforms any special vertex 0 into the point-lattice A (his R) which is 
conveniently symbolized by ringing the corresponding node of the graph, as 
in §7 above. If / = 1, this is the lattice of all special points. But if / > 1 , 
the simplex has / special vertices O0, Oi, . . . , 0/_i, and all the special points 
form a more complicated point-lattice, A/, consisting of/ superposed A's [17, 
p. 206]. This lattice Af is naturally symbolized by ringing each of the / 
special nodes in turn; e.g., for Z>4, A

4 is 

+ + + 
and for E&, A3 is 

and for E7, A2 is 

(§) • © « e » • -\- • - * •——• • ® 

The points of A' are distributed on s families of parallel hyperplanes. When 
an = 1, so that G is a "trigonal" group [17, p. 204], the distance between 
consecutive planes is the same in all the families, and there is a minimal vector 
of A perpendicular to the hyperplanes of each family. Hence, in the trigonal 
cases (namely An, Dni En), A and A' are reciprocal lattices. In particular, 
they are similar lattices in each of the cases A 2, D&, since the lattices 

a2h = {3, 6}, h$5 = {3, 3, 4, 3} 

are similar to their own reciprocals [17, p. 181]. These are the same as the 

https://doi.org/10.4153/CJM-1951-045-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-045-8


424 H. S. M. COXETER 

lattices for Gi, Fi, respectively, where A and A^ coincide for the simple reason 
t h a t / = 1. 

For Cn, À is the ordinary cubic lattice ôn+i, while Af is the body-centered 
cubic lattice formed by two dual3 ôn+i's [9, pp. 229, 230]. For Bni A is the 
alternated cubic lattice hôn+i, while Af is the 5 n + 1 formed by two complemen
tary hôn+i's. In fact, Af for Bn is the same as A for Cn, namely the self-recip
rocal lattice ôn+iî A for Bn is the same as A for Dny and A' for Cn is the same as 
A-*" for Dn. Hence 

10.1 A' (the lattice of special points) and A (the lattice of transforms of one 
special point) are reciprocal lattices except in the cases Bn and Cn (n > 2), where 
Af for each is reciprocal to A for the other. 

The translation group T of the lattice A is a subgroup of index/ in the trans
lation group V of A .̂ The larger group V includes translations from 0O to Ou 
02, etc. When / is composite, say / = qr, T may be a subgroup of index r 
in an intermediate group Tr which is itself a subgroup of index q in I7 . T h e / 
points Oi then fall into q sets of r, such that Tr is transitive on each set. The 
corresponding lattice Ar (which we shall sometimes prefer to write as rA) 
consists of r superposed A's. Similarly Af consists of q superposed Ar's. By 
considering the individual cases, we shall find that such a lattice Ar occurs for 
every divisor of / . Sometimes there are two different lattices for the same 
value of r; that is why we need the modified symbol rA. 

In the case of Ani the fundamental simplex (whose vertices are all special, 
so t h a t / = n + 1) is given in terms of n + 1 Cartesian coordinates by 

e ^ ? ^ . . . ^ p + l ^ ? +1, ? + . . . + p+ i = 0 
[12, p. 162; cf. 9, p. 219, where the coordinates are oblique]. Thus the co
ordinates for its vertex Oi consist of i repetitions of — 1 + i/(n + 1) followed 
by n + 1 — i repetitions of i/(n + 1). The coordinates for the transforms of 
this point Oi are all congruent to i/(n + 1) niod 1 (with sum zero). Hence 
the special points on the line OoOq are transforms of all the points Oi for which 
i is a multiple of q. It follows that any divisor r of n + 1 yields a point-lattice 
Ar consisting of all the transforms of each of the r points 

10.2 Oo, 0Q, <92<J, • • • , 0(r-l)q, 

where q = (n + l)/r; e.g., for Ah, A3 consists of three superposed ash's: 

10.3 

Since the transforms of Ojq have coordinates congruent to j/r mod 1, it is 

'We speak of dual honeycombs, rather than reciprocal honeycombs [17, p. 182], to avoid 
confusion with the different concept of reciprocal lattices. 

+ 
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natural to alter the unit of measurement so as to describe Ar as consisting of 
the points whose coordinates are integers mutually congruent mod r, with 
sum zero. 

Similarly, the fundamental simplex for Dn, given by 

[9, p. 220], has four special vertices: 

10.4 
Oo = (0, 0, 
0 2 = (1,0, 

,0,0), 
, 0, 0), 

0, = (§, i , . 
Oz = (I, i, . 

• • » 2 » 2>N 

1 
> 2» 

The coordinates of the transforms of 0O or 0 2 are integers whose sum is even 
or odd, respectively. The coordinates of the transforms of 0\ or Oz are num
bers, congruent to J mod 1, whose sum differs from \n by a number which is 
odd or even, respectively [9, p. 230]. Hence the transforms of Go and 02 to
gether form a cubic lattice 5n+i, but the transforms of 0O and 0\ (or of O0 and 
Oz) form a lattice only when n is even. It is convenient to distinguish these 
two cases (e.g. 

9 

+ 
* 

and + 
® 

when n = 6) by the respective symbols 2A and A2. When n — 4, the special 
vertices of the simplex are completely symmetrical, so the distinction dis
appears. 

Having found the various lattices Ar (or rA), we obtain appropriate sym
bols for the corresponding classes of forms by using, in place of the letter A, 
the "family" symbol An or Bni etc. Thus the complete list is as follows: 

A r 

C C 2 

10.5 Bn, Bn
2 

D 2 

EQ, JEÔ3, ET, E-J2, E%, FA, GI. 

( r | » + l ; n = 1, 2, 3, 
(n = 2, 3, 4, 
(n = 3, 4, 5, , 
(w = 4, 5, 6, 
(w = 6, 8, 10, 

(We exclude D£ because it is the same as W4. This is clear from the graph, 
which should really be drawn in three dimensions like the structural formula 
for methane.) 

Later on we shall adopt the same symbols for particular forms in these 
classes. Since one lattice may arise from several different groups, the following 
equivalences occur among the forms : 
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Al^Al\ A2~A2
Z~G2. C2~C2

2, 
Az ~ BZy A<? ~ £3

2 ~ C3, Az* ~ C3
2, 

10.6 Ci2 ~ BA ~ DA ~ £>4
4 ~ F4 

Bn ~ P n , Cn ~ Br? ~ *Dn, Cn
2 ~ Dn\ 

A7
2~E7, A7

A~E7
2, 

Asz~Ds*~Es. 

(Of course, An
r does not mean the rth power of An.) Thus the most concise 

list of the classes is 

An
r (r\n + 1), Cn, Cn2, Dn, Dn

2 (n even, £ 6), £«, £6
3, 

with the inevitable duplications 

Ax~ AS, A2~ A2\ C2~ C2
2, Az

2~ Cz, ,43
4 ~ C3

2, C 4
2 ~ £>4, - 4 8

3 ~ ZV. 

In §§12-14 we shall obtain simple expressions for An
r, Cn

2, Dn
2 and £6

3. We 
shall find that they are not all perfect. But 4.3 (with group S) shows that 
they are all eutactic. 

The application of these geometrical ideas to the theory of Lie groups, 
developed by Cartan, Witt [45] and Hopf [29], may be summarized as follows. 
Every Euclidean simplex whose dihedral angles are submultiples of -K is the 
fundamental region for a group generated by reflections; this discrete group G 
represents a family of locally isomorphic simple Lie groups; and every com
pact simple Lie group arises in this manner. Stiefel [40, p. 374] showed that 
the individual Lie groups in each family may be distinguished by associating 
them with the lattices Ar (or rA). Thus 10.5 can be interpreted as a complete 
list of compact simple Lie groups. 

In particular, A\ is the group of quaternions of norm 1 [40, p. 378]; A<? is 
the group of rotations of a sphere with a fixed centre, or the group of displace
ments in the elliptic plane; and G2 is the group of automorphisms of the 
algebra of Cayley numbers [8, p. 370]. 

11. Determinants. The determinant of a reflexible form (or, more gener
ally, of any form represented by a tree in the manner of §5) is easily computed 
by the following rule. Let A denote the whole determinant, A' the cofactor 
obtained by deleting a node of degree 1 (say the &th node) and its single 
branch, and A" the cofactor obtained by deleting also the remaining end of 
this branch along with any branches occurring there. Then, since the only 
non-vanishing elements in the &th row or column of A are akk and one a^, 

11.1 A = akkA' - aa2A". 

(The case when akk = 2 and aik = — X̂  was described by Witt [45, p. 302].) 
It follows almost immediately that the determinants of 

An, Cn} Bni Dni EH1 F4, G2 

are 
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n+1 - 4 4 9-n 1 3 

2n 2n 2n 2n 

A. J. Coleman has made the interesting observation that these numbers 
are related t o / in each case by the formula 

A = fan . . . ann/2
n. 

This means t h a t / = det (dj), where 

dj = 2aij(aii ayy)"* 

so that Cii = 2 and any other C»y is twice the cosine of the angle between t» 
and ty. This enables us to replace the expression 6.6, for the order of S, by 

2nAz°zl. . .znnl 

Of course, 2nA is simply the determinant of the doubled form ^Y.2aijX
ix\ 

whose minimum is 2 instead of 1; e.g., the determinant of 2.4n is n + 1. 

It is interesting to observe that the determinants for the new classes of 
forms An

r, etc., can be computed before we have obtained any particular 
forms in these classes. In fact, Ar has r times as many lattice points (in a 
large region of w-space) as A itself; therefore the period parallelotope is r~l 

times as great. We saw in §3 that the content of the parallelotope is A*. 
Hence the determinant for Ar is r~2 times the determinant for A; e.g., for 2An

r 

it is 

11.2 (» + l)r~2. 

12. The forms An
r. We seek a form whose point-lattice consists of the 

transforms of the r points 10.2 under the group G generated by the symmetric 
group on the n + 1 coordinates (which is S) along with the translation (1, 0, 
0, . . . , 0, —1). Since 2A n is such a form when r = 1, it is natural to use 
such a unit that a suitable form in the general case is denoted by 2An

r. The 
precise expression for this form depends on our choice of a basis for the lattice. 
An obvious but redundant basis is afforded by any basis for A, say 

Pi — P2, p2 — p3, • • • , Pn — Pn+lf 

along with the vector 

OoOQ= ( - 1 + r - i ) ( P l + . . . + p,) + r-*(P*+i+ . . . +Pn+i) 
= - (Pi + . . • + VQ) + r~l (Pi + • • • + Pn+i). 

The desired basis of n vectors is derived by omitting one of these n + 1, 
namely one that can be expressed in terms of the remaining n. Accordingly, 
we ask whether pn — p n + 1 can be expressed in terms of 

1 2 1 t i = pi — p 2 , t 2 = P2 — p3, • • • , t n - l = Pn-1 ~ Pn, 

tn = - ( P i + • • • + pq) + r~l L P Iqr = n + 1). 
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In this investigation we assume r > 1, since otherwise tn would vanish. 
We have 

12.2 P i - P i = ti + t i + i + . . . + ty_i (i <j ^ n) 

and 
<Z r - l 

- r t n = ( r - l ) ( p i + . . . +pq) - (pQ+i + . . . +PQr) = E E (P.-P*<,+i). 

The only term in this double sum that is not of the form pz — py wi thi < j ^ n 
is the final term pg — pg r . Using 12.2 for all the preceding terms, we obtain 
an expression for pq — pqr involving the t's alone. Finally 

Pn - P n + l = ( p g — Vqr) — ( Pg — Pn) . 

Thus the vectors 12.1 do constitute a basis, the general lattice point is 
given by the vector 

x 4 ! + . . . + x n t n = { x 1 - ( l - r - 1 ) x n } p i + E { - x ^ + x ^ - C l - r - ^ l P i 
* = 2 

+ E ( - x ^ + ^ + f " 1 ^ ) Pi + (-xn'1+r'1xn) Pn+ rtnpn+i, 
» = (Z+1 

and the desired form 2An
r is 

(xHi + . ..+xntn)2 = \x1-(l-r~1)xn}2+ E { - x ^ + x * - (1 - r " 1 ^ 7 1 } 2 

* = 2 

+ E ( - x ^ + x ^ + r - V ) 2 + ( - x ^ 1 + r - V ^ + ^ - V 1 ) 2 

= 2 { ( X 1 ) 2 - X 1 X 2 + ( X 2 ) 2 - . . . + ( X n - l ) 2 _ x a x n J + g ( 1 _ r - l ) ( x n ) 2 

= 2 { ^ n _ ! - x*xn + i a ( l - r " 1 ) ^ " ) 2 } . 

Accordingly we define, as one of the simplest representatives of its class, 

12.3 An
r = ^ n . 1 - x * x n + | ( l - M ( x » ) 2 ( r > l , qr = n + l). 

In particular, ^47
2 = £7, and ^48

3 is obviously equivalent to £8-

By 11.2, the determinants for 2An and 2^4w
n+1 are » + 1 and (n + l )" 1 . 

By 10.1, the corresponding point-lattices are reciprocal, which means that 
either form is equivalent to the reciprocal of the other (see 3.3). More 
generally, 

12.4 The two form s 
2An

r = 2An-1 - 2x*xn + q(l - r^){xn)2 

and 2An
q = 2i4n-i - 2xrxn + r ( l - g_1)(xn)2 

belong to reciprocal classes whenever qr = n + 1 (g > 1, r > 1). 

To prove this we use the covariant basis 12.1 and compute the contra variant 
basis t1, . . . , tn, given by 
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l~(P« 

t*- t ; = 5 j , t ' - E p = 0, 

where E p means pi + . . . + pn+i- These relations with j < n yield (for some k) 

V = (k + l ) (p l + • • • + Pi) + fe(Pi+l + • • • + Pn) - (tt£ + *)Pn+l (*<»)• 

Using t* • tn = 0, we soon find that k = —iq~l or — 1 according as i ^ q or 
i ^ q. Thus 

. + p . ~ ^ E P + i(r - 1)pn+i (i ^ q), 

»+l + . . . + Pn) + (» ~ i) Pn+l (? ̂  * < »)• 

AISO tn = - 3 _ 1 E P + 'Pn+L 

These vectors generate the reciprocal lattice, which represents the recip
rocal form. To identify this with the lattice generated by p* — py and 
— (pi + • . . + Pr) + <Z~XEP» we observe that 

Pi - P* = t1 + t*"1 - t* 

Pi - Pn+l = t1 - tn, 

Pn+l ~ Vi = t t _ 1 - V 

Pn+l — Pn = tn_1, 

- iv- / t r - fr - l ) t n 

P i + . . . + p ^ ^ E P = | t r ^ ^ 1 ; t n 

(1 < i $ Q), 

(<Z < i< n) t 

(r 
(r W

/A
 

Thus 12.4 is proved. 

In particular, the reciprocal of -474 is equivalent to Af = E7. By 10.1, 
this is equivalent to the reciprocal of E72. Accordingly, we define 

£7
2 = AS. 

By 11.1, the determinant of 2An^ - 2xqxn + q(l - r~l)(xn)2 is 

A = q(l - r~l)A' - A", 

where A' is the determinant of 2An-i and A" is the determinant of the form 
derived from 2An-i by setting xq = 0, namely 

2Aq-i(x
l, . . . , x*-1) + 2An-q-1(x«+\ . . . , x*-1). 

Thus A' = ny A" = q(n — q), and 

12.5 A=S(l--^->-g(W-3)=-4-i=£=^±-1
I 

\ w + 1/ w + l r r2 

in agreement with 11.2. 
I t is interesting to compare this with the value of M, which we compute 

by considering the lattice points nearest to the origin. The coordinates of 
such a nearest point are obviously either 

1 , - 1 and n — 1 zeros 
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or q coordinates ± ( 1 — r *) and q(r — 1) coordinates =F r 1. Thus 2An
r has 

12.6 M = min {2, g(l - r" 1)}. 

(Clearly, this minimum is attained when one of the x's is 1 while all the rest 
vanish.) 

The two sets of vectors that we have just been comparing are the trans
forms of =b ti and dz t» under the symmetric group S. The minimal vectors 
for An

r (n = qr — 1, r > 1) consist of one or both of these sets: the former 
set if (q - 2)(r - 1) > 2, the latter if (q - 2)(r - 1) < 2, both together if 
(q — 2)(r — 1) = 2. Since q and r must be positive integers, Af and A$z 

are the only cases where both sets are minimal. 
The transforms of db ti are the n(n + 1) vectors p; — py (i F^ j). The 

number of transforms of =L tn is evidently I 1 or 21 1 according as r = 2 

or r > 2. Thus 5 ^ |w(w + 1) in every case except 

An
n+1 (s = n + 1), ^ 3

2 ( ^ = 3 ) and ^[6
2 (* = 10). 

These exceptional forms, violating 1.1, cannot be extreme. But we shall find 
that they are the only failures: 

12.7 Every j or m An
r is extreme, except An

n+1 (n > 2), ^43
2, A£. 

By the remark at the end of §10, what remains to be proved is that every 
form An

T satisfying 1.1 is perfect. In the two cases where (q — 2)(r — 1) = 2, 
we know this already from 5.7, since Af = E7 and As

z ^ Eg. 
By 3.5, An

T is perfect when (q — 2)(r — 1) > 2, since its minimal vectors 
pi — p; are the same as those of An. (This may seem paradoxical. But in 
saying that a perfect form is uniquely determined by the value of its minimum 
and all the representations, Voronoï was speaking of the algebraic represent
ations, which depend on the basis ti, . . . , tn; he did not mean that such a 
form is uniquely determined by the geometrical arrangement of minimal 
vectors.) 

The remaining possibility is (q — 2)(r — 1) < 2. Since we are assuming 
r > 1 and excluding the exceptional forms An

n+1 (q = 1), A$2 (q = 2), A£ 
(q = 3), this inequality reduces to 

q = 2, r > 2, 

in which case An
T is obviously equivalent to 

Dn - r~l{xny (n = 2r - 1). 

To test this for perfection, we investigate the possibility of a quadric cone 

2r 2r 

z E bu ee = o 
l l 
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containing all the vectors derived from (r — l) (pi + P2) — (ps + • . • + P2r) 
by permuting the 2r p's. Direct substitution yields 

2r It IT 

(r - mbn + 2b12 + bn) - 2(r - 1) Z (hi + bti) + L E hi = 0. 
3 3 3 

In terms of d$ = 2ba — bu — bjj, this becomes 

12.8 (r - l)2 e12 - (r - 1) £ («ly + e2j) + Z Z *y = 0. 
3 2<i<j 

Interchanging subscripts 2 and 3, subtracting, and dividing by r, we obtain 
2r 

12.9 (r - l)(«i2 - *i8) ~ Z foy - ezj) = 0. 

Since e*y = 0y» and €yy = 0, this implies 

r(e12 - e13) = Z («2/ - *sy). 
l 

Since there is nothing special about the subscript 1, we deduce that e^ — e%z. 
is the same for all values of i (other than 2 or 3), say 

e%2 — eiz = d. 

By 12.9, (r - l)d = (2r - 3)d, whence (r - 2)d = 0. Since r > 2, d = 0. 
Thus e»2 = 0*3, and since there is nothing special about 2 and 3, we deduce 
that dj has the same value for all i ^ j , say 

By 12.8, (r - l)2c - 4(r - l)2c + ( 2 r ~ 2 J c = 0, whence r(r - l)c = 0, 

c = 0, 26»y = 6« + 6yy, and 

E5>yF? = iZZ(^- + &yy)F'P' = Z Z ^ T = Z f • E&yyf. 
Thus the only quadric cone containing all the minimal vectors is the degener
ate cone that consists of the ^-space Z£* = 0 (which contains the whole 
lattice) and an arbitrary second n-space. Hence the form is perfect, by 3.5. 
But we have already seen that it is eutactic. Hence it is extreme, and 12.7 
is proved. 

By 12.4 with q = r, the form 

2^n_i - 2xrxn + (r - l)(xn)2 (n = r2 - 1) 

is equivalent to its own reciprocal. When r = 2 this is the imperfect form C3. 
When r = 3 it is equivalent to 2£8 . For any odd value of r we can halve it 
to obtain the extreme form 

An-! - xrxn + i(r - l)(xn)2 (» = r2 - 1) 
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which is remarkable as having the least possible determinant for a positive 
definite (r2 — l)-ary form with integral coefficients. O'Connor and Pall [33, 
p. 329] found an imperfect form of the same determinant (A = 2~n) consisting 
of the sum of n/S forms E% in separate sets of variables. 

The coefficient of (xn)2 in An
r is again integral when q = 2r. Then the 

form is 
An-! - x2rxn + (r - l)(xn)2 (n = 2r2 - 1), 

with M = 1 and A = 2 1 - n . When r is even, this is an integral (2r2 — l)-ary 
form of least possible determinant: e.g., when r = 2 it is £7 . 

By 12.5 and 12.6, the form An
r with n = 2 r - 1 has 

In particular, the quinary form 

A5
Z= (x 1 ) 2 - xlx*+ (x 2 ) 2 - x2x3+ (x 3 ) 2 - x3x4+ (x 4 ) 2 - x2x5+ f M 2 , 

whose lattice is 10.3, has 

A \ 3 / 81 -

But the extreme quinary forms are all known, viz, A$D$ (or B6) and an extra 
one which Korkine and Zolotareff named Z [32, pp. 243, 247]. Hence Z must 
be equivalent to A^y and we can verify this directly by deriving Z from the 
basis 

— Ci5, C25, C35, C45, Ci 6 , 

where 
C.7 = - ( P . ' + Pi) + I E P. 

Another interesting special case is the septenary form ^47
4 = £7

2, whose 28 
pairs of minimal vectors zbc»y correspond to the 28 bitangents of the general 
plane quartic curve [11, p. 406]. 

13. The forms Cn
2 and Dn

2. The ^-dimensional body-centred cubic lattice, 
representing Cn

2, has the obvious basis 

tl = Pl, . . . , t n - l = Pn-1, t„ = — | ( p i + . . . + Pn)i 

in terms of which pn = — (ti + . . . + tn_i + 2tn). Accordingly we define 

C ^ C x ^ i + . - . + x ^ t n - i + x ^ H 

= E {x{ - ix*)2. 
1 

Since A = 1 for Cn, the principle at the end of §11 yields A = \ for Cn
2. 

Clearly, a minimal vector is either ± pi or | ( ± pi db P2 ± . . . db pn). Thus 

M = min (1, | « ) . 
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Since there are 2n vectors ± p t , and 2n of the other type, 

s = 2n~l or n + 2n~l or n 

according as n < 4 or n — 4 or n > 4. 

By 1.1, Cn
2 is imperfect whenever » ^ 4 . Hence 

13.1 The only extreme form Cn
2 is C42, which is obviously equivalent to D4. 

The ternary form 

4/ = x2 + | (x + 2y + s)2 + z2 = j{(* - s)2 + (x + 2y + z)2 + (x + z)2) 

of §1 is equivalent to 2C3
2 by the transformation 

x1 — x, x2 = — y, x3 = x + z, or x = x1, y = — x2, 2; = x3 — x1. 

Its reciprocal form, <t> or 4 3, is equivalent to Z)3. More generally (see 10.1). 
the reciprocal of 2Cn

2 is equivalent to Bni and therefore also to Dn. In other 
words, the reciprocal of Cn

2 (which has A = j) is equivalent to 2Dn (which 
has A = 4). 

In the case of Cn
2, S is the "hyper-octahedral" group [3n~2, 4], of order 2nw!, 

generated by the permutations and sign changes of the p's. This is the whole 
group of automorphs except when n = 4. 

The form Dn
2 is more interesting. Here S is the group [371-3'1'1], of order 

2n_1w!, generated by reflections in the hyperplanes £l ± £y = 0, and G contains 
also the reflections in £* ± £; = 1. The point-lattice consists of the trans
forms of Go and O3, in the notation of 10.4. Since these points are just as 
densely distributed as the transforms of Go and 02, which are the points of the 
ordinary cubic lattice, we still have A = 1. 

A minimal vector is either dbp» dbpy, or ^(=bpi±p2 ± . . . =bpn) with an 
even number of minus signs; thus 

M = min (2, in). 
A convenient basis is 

tl = Pl —P2, • • • , tn-2 = Pn-2~ Pn-1» tn_i = pn_2 + p n- l , tn = ~ | ( p l + - • -+Pn), 

in terms of which 

P n - 1 + P n = - { t i + 2 t 2 + . . . + ( w - 3 ) t n _ s + (Jfl - 1) ( t n _ 2 + t„_x) + 2 t n } . 

(Notice that the lattice includes every vector 2pz-, but not p t itself.) Thus 
the form is 

( E x ' t ; ) 2 = {(* 1 - i*»)pi + *E (-X^+xt-ix^Pi 
1 2 

+ ( -X n - 3 +X n - 2 +X w - 1 - | x n )p n _ 2 +( -X n - 2 + X w - 1 - ix n )p n _ 1 -èx n p n } 2 

w-3 

= (x1-^)2^- E (-**-l+x*-ixn)2 

2 

+ ( - x 7 l - 3 + x n - 2 + x n - 1 - î x n ) 2 + ( - x n - 2 + x n - 1 - § x n ) 2 + Q x n ) 2 
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= 2{(x1)2-x1x2+(x2)2-x2xz+. . .-xn~3xn~2+(xn-2)2 

-xn-*xn-l + {xn-l)2-xn-lxn}+\n(xn)2 

= 2Dn-1-2xn~1xn + ln(xn)2. 

Halving this for closer analogy with the other forms, we define 

ZV = Dn-x - xn~lxn + in(xn)2. 

Since there are 2n(n — 1) vectors ± p» zb p ; , and 2 n _ 1 of the other type, 

5 = 2n~2 or n(n - 1) + 2n~2 or n(n - 1) 

according as 

n < 8 or n = 8 or n > 8. 

Thus the form is imperfect when n = 2 or 4 or 6. But it is perfect when 
w ^ 8, since the vectors ± p t zt py are likewise minimal for Dn, as we saw 
in §8. Hence 

13.2 The forms Dn
2 with n = 8, 10, 12, . . . are extreme. 

We easily find by inspection the contravariant basis 

t 1 = P l ~ P n , t 2 = p i + p 2 - 2 p n , . . . , t n _ 3 = p i + . . . + p n _ 3 ~ ( W - 3)pn , 

t n - 2 = t » - l _ pn_2 + pn> t ^ 1 = è(pi + . . . + pw) - ^ P n , tW = - 2p n . 

When \n is even, these contravariant f s generate the same lattice as the co-
variant t's. But when \n is odd they generate the image of that lattice by 
reflection in one of the hyperplanes J* = 0; for then we can give pn an even 
coefficient by writing tn~l = £ (P i+ . . . + p n - i ~ pn) — {\n - l ) p n , 
which shows that the reciprocal lattice consists of the transforms of Oo and Ou 
instead of Oo and 03. In other words, the reciprocal lattice either coincides 
with the original or is its reflected image. Hence 

13.3 The form 2Dn
2 is equivalent to its own reciprocal. 

Clearly S, of order 2n~~1n\, is the whole group of automorphs except when 
n = 4 or 8. But 2Z)4

2 is obviously equivalent to C4, and therefore also to 
{xl)2Jr (x2)2+(x3)2+ (x4)2; and Z)8

2 is obviously equivalent to Es. Incidentally 
Dn (with A = 2~n) remains an integral form of least possible determinant 
whenever n is divisible by 8. (Since D8

2 ~ Asz, we might expect Z>242 to be 
equivalent to ^245; but this is not so, as s = 552 for the former and 300 for 
the latter.) 

To prove that Dn
2 is equivalent to the Wn of Korkine and Zolotareff [31, 

p. 367] we can use the basis 

Pi + p2, Pi — P2, Pl + p3, Pi + p4, . . . , pi + pn-l, è(Pl + • • • + Pn), 

which yields the form 
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{x1(Pl + p 2 )+X 2 (p 1 ~p 2 )+X 3 (p 1 +p 3 )+ . . .+^- 1 (P l+Pn- l ) + è x w ( P l + . . . + p n ) } 2 

= (**+ x2+ . . . + xn~l+ \xnY+ ( x 1 - x2+ \xnY 

+ (x*+ ixny+... + {xn~i + \xny + (ixny 
= 2 { L (**)2+ E * ' * * - x V - x2xn+ ^ ^ (xw)2}. 

î i< * 8 

14. The form £6
3. Beniamino Segre [39, p. 3, §4] denotes the twenty-seven 

lines on the general cubic surface by the symbols 

Ojk, kOj, jkO, 

where j and k take the values 1, 2, 3, independently. Typical relations of 
incidence are as follows: Oil intersects the ten lines 

022, 023, 032, 033, £01, jlO 

(each having just one coordinate in common with 011) and is skew to the 
remaining sixteen lines. 

The corresponding vertices of the six-dimensional polytope 22i [16, p. 469] 
are 

14.1 (0,Û>>, - « * ) , (-«*,(),«'•), («>,-«*,<>), 

where o> = e2v%fz. Here the values of j and k are most conveniently taken to 
be 0 ,1 , 2, but can just as well be 1, 2, 3, making the agreement complete. Cor
responding to the relations of incidence, we have the fact that two vertices 

til,?,?) and (rj\ rj2, „») 

belong to a diagonal or to an edge according as the real part of 

e v1 + e v2 + e v3 

is equal to — 1 or §. 

If we interpret coasa primitive root of the field GF(22), the minus signs in 
14.1 can be omitted, and we have Framed notation for the twenty-seven lines 
[21, p. 660]. This notation is exactly the same as Segre's, except that Frame 
uses the symbols 1, to, co where Segre uses 1, 2, 3. 

Returning to the interpretation of co as an ordinary complex number, we 
observe that the twenty-seven vectors 14.1 (in complex 3-space) generate the 
lattice of points (£*, J2, £3) whose coordinates are integers of the Eisenstein field 
R(a>) satisfying 

e+e+e = 0 (modX), 

where A = 1 — co. This lattice, whose vertex figure consists of the two ''semi-
reciprocal' ' 22i's 

(0, ±G>>, T c A ( T c A 0, dbco'*), (±« ' " , =Fcurf, 0), 

is easily identified with the lattice representing E<? (see page 423). In fact, 
one of the three superposed 222's is given by 
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{i == e = £3 (mod X), 

as we saw at the end of §8. The other two are derived from this by adding, 
in turn, the vectors (0, 1 , - 1 ) and (0, — 1 , 1). 

As a basis for the whole lattice we may take the six vectors 

ti = (Xco,0,0), t2 = (X,0,0), t3 = ( - 1 , - 1 , - 1 ) , 
U = (0, X, 0), t5 = (0, co, -co), t6 = (0, 0, Xco). 

For, using xl. . . x6 as an abbreviation for xlU + . . . + x6U, we find 

000010 = (0, co, -co), 000011 = (0, co, -co), 012221 = (co, 0, - 1 ) , 

000110 = (0, 1, -co), 000111 = (0, 1, -co), 112221 = (co, 0, - 1 ) , 

001110 = (-1,0, Û), 001111 = (-1,0, co), 122221 = (1,0, - 1 ) , 

011110 = (-co,0, «), 011111 = (-co,0, co), 012342 = (co, -5,0), 

111110 = (-co, 0, co), 111111 = (-«,0, co), 112342 = (co, -co, 0), 

122342 = (1, -co,0), 

000121 = (0, -Û, 1), 123342 = (0, co, - 1 ) , 

001121 = (-l,co,0), 001221 = (-1, 1,0), 123442 = (0, 1, - 1 ) , 

011121 = (-co, co,0), 011221 = (-co, 1,0), 123452 = (0, -co, co), 

111121 = (-co, co, 0), 111221 = (-co, 1,0), 123453 = (0, - « , co). 

The general vector 

xxx2x3x4x5x6 = (Xcox1 + Xx2 — x3, — x3 + Xx4 + cox5, — x3 — cox5 + \o)X6) 

has norm 
(Xcox1 + Xx2 — x3) ( — Xcox1 + Xx2 — x3) 

+ ( — x3 + Xx4 + cox5) ( — x3 + Xx4 + cox5) 

+ (— xz — cox5 + Xcox6) (— x3 — côx5 — Xcox6) 

= 3(x02 - 3 x V + 3(x2)2 - 3x2x3 + 3(x3)2 - 3x3x4 + 3(x4)2 - 3x4x5 

+ 2(x5)2 - 3x5x6 + 3(x6)2 

= 3 4 6 ~ (x5)2. 
We therefore define 

£6
3 = A, - Kx5)2. 

Alternatively we may use a Euclidean hyperplane of Minkowskian 7-space. 
As we remarked in §8, Du Val [18, p. 33] obtained the vertices of 2 g i as integer 
points on S2'0. In particular, the vertices of 22i are those integer points which 
satisfy the two equations 

e +... + *• = 3*7 - 2, (ey +... + m2 = a7)2, 
namely the twenty-seven points ai, a2, . . . , a6, bi, b2,. . . , bô, C12, C13, . . . , C56, 
where 

a i = ( 1 , 0 , 0 , 0 , 0 , 0 ; ! ) , c12 = (0, 0, 1, 1, 1, 1; 2), bx = (2, 1, 1, 1, 1, 1; 3), 
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and so on. Shifting the origin to the centre, we obtain, in the Euclidean 
6-space ? + . . . + £6 = 3f7, 

a = f * 2 2 2 2 2 • 1 "\ t> — ( 2 2 1 1 1 1 . / \ \ 
«1 = \~5i ~~ 3» ~~ 3» ~~ 3> ~~ 3> 3 > ~~ 1)i C 1 2 — V"~ S> ~~ 3J "3> "3» "3) ? > U j , 

1 ~* l 3 > 3> 3) 3> 3 ) 3 i 1)i 

etc. Identifying these points with the corresponding vectors, we record the 
useful combinations 

ai - a2 = b ! - b2 = (1, - 1, 0, 0, 0, 0; 0), etc., 
bi - a! = b2 - a2 = . . . = (1, 1, 1, 1 ,1 ,1 ; 2), 
ax + a2 + a3 + a4 + a5 + a6 = ( - 3 , - 3 , - 3 , - 3 , - 3 , - 3 ; - 6 ) = - 3 ( b i - ai). 

Since a2- + by + ĉ y = 0, the lattice generated by the a's, b's and c's is 
actually generated by the a's and b's alone (though not by the a's alone, 
since we would need the non-integral combination J £ a*; see Burnside 
[7, p. 487]). In fact, a convenient basis is 

,* 2 ti = ai — a2, t2 = a2 — a3, t3 = a3 — a4, 
t4 = a4 — a5, ta = a5, te = bi — ai, 

in terms of which 
a* = ti + tt-+i + . . . + U (i ^ 5), 
a6 = ai + . . . + a6 - (ai + . . . + a5) 

= - 3t6 - (ti + 2t2 + 3t3 + 4t4 + 5t5) 
= - (ti + 2t2 + 3t« + 4t4 + 5t5 + 3t«) 

and, of course, 
bi = a, + t6 (i ^ 6). 

Expanding 14.2, we have 

U = (1, - 1 , 0, 0, 0, 0; 0), t2 = (0, 1, - 1 , 0, 0, 0; 0), 
t , = (0,0, 1, - 1 , 0 , 0 ;0) , 

t4 = (0, 0, 0, 1, - 1 , 0; 0), U = ( - 1 , - ! , - § , -f , i - f ; - 1 ) , 
t 6 = (1, 1, 1, 1, 1, 1; 2), 

whence 

( E xHi)2 = (x1 - fx5 + x6)2 + ( - x 1 + x2 - fx5 + x6)2 

+ ( - x 2 + x3 - fx6 + x6)2 + ( - x 3 + x4 - fx5 + x6)2 

+ ( - x 4 + i*5 + x6)2 + ( - f x 5 + x6)2 - ( - x 5 + 2x«)2 

= 2Ae - f (x5)2 = 2£6
3. 

This senary form is eutactic, since all the forms 10.5 are eu tactic (by 4.3). 
To test it for perfection, we ask whether its minimal vectors can lie on a cone 

L E M**'" = o, £ ?" = 3f. 
1 1 1 

Now, the fifteen vectors — c»y = p t + py — i (P i + • • • + PÔ) all lie in the 
5-space £* + . . . + £6 = 0, £7 = 0; and we saw on page 431 that any cone 
containing them must degenerate into this 5-space and another. Thus it 
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only remains to be seen whether the twelve vectors a* and b t all lie in one 
5-space. They certainly do not, since the corresponding points form two 
simplexes in parallel 5-spaces. Hence 

14.3 The senary form JE6
3 = AQ — i(xs)2 is extreme. 

The determinant of this form is easily found from 11.1 by computing, in 
turn, the determinants of 2AX, 2A2, 2AZl 2AAr 2AA - 2x*xb + i(xb)2 

and 2A* - 2xW + •§• (x5)2 - 2x*x* + 2(x6)2 = 2E6
3, namely 

2, 2 - 2 - 1 = 3 , 2 - 3 - 2 = 4, 2 - 4 - 3 = 5, f - 5 - 4 = f 

and 2 - f - 5 = i Thus A = i Since M = f, 

A 35 " 243 " 

The two forms DQ and EQ
Z provide the surprising spectacle of two ways of 

packing equal spheres in six dimensions, the number of spheres touching any 
one sphere being 60 or 54, respectively, although the latter is the denser packing, 
(since 24 < 2l2/35). 

Instead of 14.2, we could have taken as basis 

U = c66 —ai, t2 = ai — a2, t3 = a2 — a3, t4 = a3 —a4, U = — c4B, t6 = a6 —as, 

obtaining the same expression again for (]£ xl ti)2. Since a; — ay = Cy& — c^ , 
the five vectors t2, . . . , t6 (without ti) generate the fifteen c's and are thus a 
basis for the lattice representing A^ or Z>5 — i(xb)2 (which we found to be 
equivalent to the Z of Korkine and Zolotareff). Leaving out ti means setting 
xl = 0. Hence, after another trivial change of notation, 

14.4 The extreme quinary form A*? is equivalent to A$ — \{x*)2. 

This equivalence can be verified directly by comparing the basis 

Pi — P2, P2 — P3, p3 — P4, P4 + p5 ~ \ E P, Pô ~ p5 

for A 6 — \(x*Y with the basis 

Pi — P2, p2 — P3, P3 — P4, P4 — P6, P4 + p5 — | £ P 

for Db - K*B)2. 

15. Conclusion. The forms that we have been discussing are all derived 
from groups generated by reflections in the manner explained in §§5 and 10. 
The principal results are epitomized in the table (page 439) of w-ary forms 
up to n = 11, which covers all classes of extreme forms for n ^ 6, possibly 
also for n = 7. The actual expressions are given on pages 394 and 405. 

For an extreme form, Mn/A is (locally) maximum, i.e., A/M71 is minimum. 
The table records the more convenient number 2nA/Mn. This attains its 
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TABLE OF THE SIMPLEST EXTREME FORMS 

Korkine and Group / 9\n 
Form Zolotareff's 

symbol 
of auto-
morphs 

Order 5 M 2"A 
( » ) * 

A1 Ul [ ] 2 1 2 2 
Ai^Gi u2 [6] 12 3 3 3 

Az~Bz~Dz U* [3,4] 48 6 4 4 

A, u* 2[33] 240 10 5 5 
B^D^Fi V, [3, 4, 3] 1152 12 4 4 

Ab Us 2[34] 2-6! 15 6 6 
Ab* z 2[34] 2-6! 15 2 

3 34/24 

Bs~Ds vt [3s, 4] 265! 20 4 4 

A, u6 2[36] 2-7! 21 7 7 
Be~D6 v« [34, 4] 266! 30 4 4 

£6
3 2[32'2'1] 144-6! 27 i 

3 
35/26 

E6 X 2[3"'1] 144-6! 36 3 3 

A7 u7 2[36] 2-8! 28 8 8 
B7~D7 v7 [36, 4] 277! 42 4 4 

A7* = E7
2 [33,2,1] 8-9! 28 i 

2 213/37 

A7*=E7 Y [33.2,1] 8-9! 63 2 2 

As U8 2[3T 2-9! 36 9 9 
Bs^Bs va [36, 4] 288! 56 4 4 

As3~Ds
2~E8 Ws [34.2,1] 19210! 120 1 1 

A, u9 2[38] 210! 45 10 10 
B9~D9 v9 [37, 4] 299! 72 4 4 

^ 9 5 2[38] 2-10! 45 2 
5 58/217 

AJ 2[38] 210! 45 5 
2 5 

2 

A10 Uio 2[39] 2 1 1 ! 55 11 11 
£io~Z)io V19 [38, 4] 21010! 90 4 4 

£>io2 w10 [37'1'1] 2910! 90 1 1 

4 1 1 Un ! 2[310] 212! 66 12 12 
£ i i ~ . D i i Vn 1 [39, 4] 2 n l l ! 110 4 4 

i 4 n 2 2[310] 212! 66 3 3 
A H6 2[310] 212! 66 i 

3 211310/511 

4 ii* 2[310] 2-12! ! 66 4 
3 

4 
3 

A^ 2[310] 212! 66 3 
4 

3 
4 
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smallest possible value (for each n) when the form is absolutely extreme 
(viz, A\, A2, Az, D4l D$, £ 6 , ET, ES). The absolutely extreme forms for n > 8 
are not listed, because they are not related to groups generated by reflections; 
in fact, they are essentially more complicated: their groups of automorphs 
are not transitive on their minimal vectors. 
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