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COMPACTNESS IN TOPOLOGICAL HJELMSLEV PLANES 

BY 

J. W. LORIMER ( 1 ) 

ABSTRACT. In the theory of ordinary topological affine and 
projective planes it is known that (1) An affine plane is never 
compact (2) a locally compact ordered projective plane is compact 
and archimedean (3) a locally compact connected projective plane is 
compact and (4) a locally compact projective plane over a coordi­
nate ring with bi-associative multiplication is compact. In this paper 
we re-examine these results within the theory of topological 
Hjelmslev Planes and observe that while (1) remains valid (2), (3) 
and (4) are false. At first glance these negative results seem to 
suggest we are working in too general a setting. However a closer 
examination reveals that the absence of compactness in our setting 
is a natural and expected feature which in no way precludes the 
possibility of obtaining significant results. 

A topological projective (affine) plane is a projective (affine) plane whose 
point and line sets are topological spaces so that the joining of points and the 
intersection of lines (and parallelism) are continuous operations. Historically, 
this continuity was introduced into the classical geometries by means of 
topological coordinate fields ([5]; see also [12,7]) or order ([14], [10], [13]). 

The euclidean plane is not compact, but the classical projective planes over 
the reals, complexes, quaternions and Cayley numbers have compact to­
pologies. More generally Salzmann has proved that if a topological plane is 
neither discrete nor indiscrete then, 

I. An affine plane is never compact. ([12, page 48]) 
II. A locally compact ordered projective plane is compact and archimedean. 

([11, page 450]) 
III. A locally compact connected projective plane is compact. ([11, page 448]) 
IV. A locally compact projective plane, over a coordinate ring whose multipli­

cation is bi-associative; is compact. ([11 page 452]) 

In this paper we consider these results within the theory of topological 
Hjelmslev planes and show that, while I remains valid, II, III and IV are false. 
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At first glance these negative results seem to suggest we are working in too 
general a setting. However, a closer examination reveals that the absence of 
compactness in our setting is a natural, and expected feature, which in no way 
precludes the possibility of obtaining significant results. In case II, it is known 
historically ([4]) that ordered projective Hjelmslev planes are non-
archimedean; and hence it is not surprising that such planes are not compact. 
Finally, we remark that all the classical examples of projective Hjelmslev 
planes (the planes over the topological rings R[x]/(xn) where R is the reals) 
contain topological closed copies of the euclidean plane and hence, though 
locally compact, are never compact. 

1. Topological Hjelmslev planes. Incidence structures and their 
homomorphisms are defined as in Dembowski's Finite Geometries [2]. For any 
incidence structure (P, L, I): points are denoted by P, Q, R,. . . . and lines by /, 
m, n , . . . . Lp denotes the set of lines incident with P, / A m set of points incident 
with / and m, and PvQ the set of lines incident with P and Q. A parallelism of 
an incidence structure (P, L, I) is an equivalence relation || ç L x L. A 
homomorphism a = (a l5 a2) of incidence structures with parallelism also pre­
serves parallelism i.e. I \\m => a2(OII 0L2(m). (P, L, I) is a topological incidence 
structure if P and L are topological spaces; and we say it has a topological 
property (*) if its point set has the property (*). Finally, a homomorphism, 
(«!, a2) between topological incidence structures is continuous or open if both 
ax and a2 are continuous or open. 

For the definition and basic properties of a projective or affine Hjelmslev 
plane (PH or AH-plane for short) we refer the reader to [8] or [9]. We also 
adhere to the notational conventions of these two papers. In particular, ~ is the 
neighbour relation and P is the set of points neighbouring to P. 

(1.2) DEFINITION, (a) A topological incidence structure, H = (P, L, I) is a 
topological PH-plane (TPH-plane) if H is a PH-plane with the following 
additional axioms: 
(TPH1). The maps v : P x P \ ~ P ^ P and, A : L X L \ ~ L ^ P are continuous. 
(TPH2). ~p and ~ L are closed i n P x P and L x L respectively. 

(b) A topological incidence structure with parallelism, H = (P, L, I, ||) is a 
topological AH-plane (T AH-plane) if H is an AH-plane with the following 
additional axioms: 
(TAH1). The maps v : P x P \ ~ P ^ L , A :LxL\{(i, m): \l Am\ + 1}->P and 
L : P x L ^ L are continuous. 
(TAH2) = (TPH2). 

From now on, unless otherwise stated, if H is a TPH-plane or a TAH-plane, 
then we consider the canonical image H /~ as a topological incidence structure 
with respect to the quotient topologies of the neighbour relations. 
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2. Compactness in topological affine Hjelmslev planes. We easily see that I 
is also true in TAH-planes. 

(2.1) THEOREM. A topological AH-plane, H, where H/~ is not discrete, is 
never compact. 

Proof. Since H/ ~ is a hausdorff affine plane and IT : H —> H/ ~ is open-
continuous [8, 1.9], then I clearly implies that H is never compact. 

3. Compactness in topological PH-planes. In this section we prove some 
results on compactness which help to explain why many interesting classes of 
topological projective Hjelmslev planes are not compact. 

(3.1) PROPOSITION. Let H be a TPH-plane with H/~ not discrete. Then, H is 
locally compact and hausdorff if and only if it possesses a locally compact 
hausdorff line. 

Proof. The necessity is clear from [6, 7.9] since a closed set of a locally 
compact space is locally compact. For the sufficiency we assume H has one (and 
hence all) locally compact hausdorff line. 

Now to show H is locally compact hausdorff it suffices to show any 2 points 
lie in an open locally compact hausdorff subspace. But any 2 points lie in an 
affine subplane ([7, 6.7]) whose point set is homeomorphic to the cartesian 
product of any of its (affine) lines with itself [6,1.5]. Also, by [8,1.6(a)], an 
affine line, l\P, is an open subset of / and since an open subset of a locally 
compact space is locally compact, we are done. 

We next generalize a result of Salzmann's for ordinary planes ([11]) using the 
ideas in [13]. 

(3.2) THEOREM Let H be a hausdorff TPH-plane. 
(a) If H /~ is discrete and infinite, then H is not compact. 
(b) If H /~ is not discrete, then H is compact if and only if it possesses a 

compact line. 

Proof, (a) Since H/~ is discrete, each P is an open set. The open cover {P}, 
then has no finite subcover, because H/~ is infinite. Thus, H is not compact. 

(b) The necessity is immediate from [8, 1.6(c)]. For the sufficiency, assume 
the lines are compact. By (3.1.) and [8, 2.7.1] we conclude that H is a locally 
compact hausdorff separable metric space. Hence, to show that P is compact it 
suffices to establish that every sequence of points has a convergent subse­
quence. 

Before we do this, we make the following two observations: 
(i) For each point P, Lp is a compact set. 
This follows since Lp is homeomorphic to a line with no points neighbouring 

to P i.e. ( - » L p ( X - ^ X v P ) . 
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(ii) For any sequence of points, {An} in P, 

This follows, because by [8,1.10.1] each Ân is a nowhere dense set. The 
statement is then just a consequence of the Baire category theorem for locally 
compact spaces ([3, pages 142-145]). 

Now, let {An} be a sequence in P. By (ii) we may choose Pj- An for each n. 
Then, the sequence {pn} with pn = P\sAneLp, has, by (i) a convergent subse­
quence, say pm —» p, with p E Lp. For any point P : £ (p) — {X : X is a neighbour of 
some point of p}. Now choose Q e P \ £ (p) so that Q-f- Am for each m. This is 
possible because X (p) is also a nowhere dense set [7,6.7] and so UT=iÂ-U 
X ( p ) ^ P . Thus, {qm} with qm = Q v A m 6 l Q has a convergent subsequence 
O vAi = qt —» q with q e L Q and so q-j-p. Then, pt —> p and so (pi5 qt)-» (p, q). 
Since ~ is closed and p-^q, we can assume, without loss of generality, that 
Pi -/- q{ for each i. Thus, pt v qt = A( -> p v q. 

We next determine several conditions which are equivalent to compactness 
in a PH-plane with connected lines. (Note that we do not know if a connected 
point set implies that the lines are connected. A weaker form of connectedness 
appears to be required for such a result. See [7] and [8]). We then use this 
result in section five to show that the topological desarguesian PH-plane over 
the dual numbers violates both III and IV. 

(3.3) THEOREM. Let H be a topological hausdorff PH-plane, with H / ~ not 
discrete and whose lines are connected. 

The following statements are equivalent. 
(A) P is compact. 
(B) For each point P, there exists a compact neighbourhood V of P so that 

P g V . 
(C) P is locally compact and P is compact for each point P. 

Proof. (A) => (B) is obvious and (B) ^> (C) since P is closed. (C) => (A). To 
verify (A) we need only show, because of (3.2.), that H has compact lines. Let g 
be any line and choose P so that P ~ X for each Xlg Since H is hausdorff,g is 
closed by [8, 1.6(c)]. Since H is locally compact, P is compact and P ç P \ g . 
Then by [3, Theorem 2, page 135] there exists a compact neighbour U of P so 
that P ç int U ç U ç P\g. Hence, P H d(U) = 0 = UHg. Moreover, d(U) ç U and 
so d(U) is compact. 
Claim. Vp : d(U) —* g(X -> (X vP) A g) is an epimorphism. 

The claim immediately implies that g is compact. To verify our claim it 
suffices to show that for each Y eg, d(U) H (P v Y) + 0 : f or if X e d(U) C\(PvY) 
then X - P and (P v X) H g = Vp (X) = Y. Now suppose d(U) H (P v Y) = 0. We 
then claim that U H (P v Y) is clopen in the relative topology of P v Y = h. First 
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observe that U Pi (P v Y) is clopen in h if and only if dh(\JPi h) = 0, where dh is 
the relative boundary operator in h. Let Ch, Th and inth be the relative 
compliment, closure and interior operators in h. Then, 

dh(vnh) = rh(vnh)nchmth(vnh) = (vnh)nrh)ch(vnh). 
But 

ch(vnh) = hnc(vnh) = hn(cvuch) = hncv^hnrcv. 
Thus, 

ôh(unh)ç(unh)nhnr(hncu)çun(hnrcu) 
= hn(unrcu)çhn(uncintu) = hna(u)-o 

Since U P l g ^ O , then Y£U, and so PeUDh^h, which contradicts the 
connectedness of h. 

4. Compactness in ordered projective Hjelmslev planes. The details of the 
result in this section already appear in [1], but for the sake of completeness we 
briefly discuss the ideas here. 

Let H be a PH-plane. If /, m are two lines and P is a point so that Pll and P 
is not a neighbour of any point on m, then the set P = {(X, Y):Xel, Y em 
and, (X, Y, P) are collinear} is a projective relation. In ordinary planes P is a 
(bijective) projection. H is an ordered PH-plane if each line / possesses a cyclic 
ordering | ç I2 x I2, and the orderings are invariant under projective relations. 

For each line, / the segments (intervals) (P, Q) s = {X | PQ \ XS} form a base 
for the interval topologies on /. The dual plane, Hd, is also ordered and the 
dual of a segment is an angle (P, q)r. This angle determines the sector 
S = {X\pq\(VvX)r} where VIpvq. The intersection of two sectors defines 
what Wyler calls a quadrangle. The quandrangles form a base for the order 
topology on the point set P. Dually, we have an order topology on the line set L. 
An open set in P intersects any line in an open set of the interval topology. 

If we endow H with the order topologies, then it is a TPH-plane. Moreover, 
in the order topologies, each P is an open set and so the quotient topology on 
H/~ is discrete. But H/~ is also ordered and so infinite. Thus, from (3.2.) (a) 
and [1] we have 

(4.1) THEOREM. An ordered PH-plane H (endowed with the order topologies) 
is never compact. Moreover, H is never archimedean nor connected; and H /~ is 
discrete. 

5. The counter example. In this section we prove that III and IV are false 
by showing that Hjelmslev's original geometry ([4]) over the dual numbers 
violates both assertions. Details concerning the following discussion can be 
found in [9]. 
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D = R + tR, where R is the reals, t2 = 0 and tr = rt for all reR is the real 
algebra of dual numbers. Another model is 

D = j ( a j : a , b e R | = j [ a b ] : a , b e R | with t = [ol] . 

Then, D is a local ring with jacobson radical, J = {[ob] : b e R}, equal to the set 
of non-units. Also, D/J = R. The geometry over D is defined as follows. Let ~i 
and ~ r be the equivalence relations on D x D x D \ J x J x J whose equivalence 
classes are 

(abc) = {k(a, b, G ) : À G D \ J } 

and 

[uvw] = {(u, v, w)k : À G D\J}. 

Then, the incidence structure H(D) = (P, L, I) defined by 

P = ( D x D x D \ J x J x J ) / - t 

L = ( D x D x D \ J x J x J ) / ^ r 

and (a, b, c)I [uvw] <£> au + bv + cw = 0, is a PH-plane. 
Neighbours in H(D) are described algebraically by (abc) ~(a'b'c')ç> there 

exists À E D \ J SO that (abc)-k(a'b'c')(= JxJxJ . Then H(D)/~=H(D/J) = 
H(R), the real projective plane. 

If we endow D with the subspace topology from R4, then D is a topological 
ring whose radical J is closed with a void interior. Then, H(D) is a topological 
PH-plane when endowed with the quotient topologies from « t and ~ r . 
Moreover, H(D)/~ is not discrete and H is locally compact hausdorff with 
connected lines. Now, the closed set <[00][00][10]> = {<[0x][0y ][10]> : x, y e R} is 
easily seen to be homeomorphic to R2 and so is not compact. Thus, by 3.3, H is 
not compact, and so is a counter example to both III and IV. 
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