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ABSTRACT. The winds of the hot, luminous, 0 , B, and W R stars are driven by the line-
scattering of the star's continuum radiation flux. Several kinds of observational evidence 
indicate that such winds are highly structured and variable, and it seems likely that a 
root cause of this variability is the known strong instability of the line-driving mechanism. 
Initial dynamical models of the nonlinear evolution of this instability confirm that the 
wind indeed becomes highly structured, with large amplitude (~500 - 1000 km/s) shocks 
that separate high-speed rarefied flow from lower speed, dense shells. Remarkably, such 
variability can often have an intrinsic character, persisting even in the absence of explicit 
perturbation, and it now appears that this is a direct consequence of a degeneracy in 
the steady-state solutions for such models. However, recent work indicates that including 
scattering effects, which have so far been ignored in these pure-absorption models, might 
reduce or even break this steady-state solution degeneracy; through the "line-drag" effect, 
scattering can also reduce the strength of the instability, possibly rendering it an advective 
character for which wind variability now requires explicit perturbation from below. This 
review will examine the consequences of these ideas for understanding the likely nature of 
wind variability among the various kinds of early-type stars. 

1. Introduction 

Although this conference focuses on the properties of Wolf-Rayet stars and their winds, 
this review on the theory of intrinsic wind variability will deal primarily with the related 0 
and Β stars. The reason for this is that for the massive Wolf-Rayet winds there are still no 
completely satisfactory models to explain even the mean, time-averaged properties, e.g., 
the large mass loss rate, and so there is little solid basis on which to build a much more 
complicated picture of instability and variabüity. Nonetheless, it is generally thought 
that the basic driving mechanism for Wolf-Rayet winds is similar to that of OB stars, 
namely scattering of the star's strong radiation field in spectral lines of heavy minor ions 
in the wind (Lucy and Solomon 1970; Castor, Abbott, and Klein 1975, hereafter CAK). For 
these OB stars, steady-state wind theories have reached a quite high level of sophistication 
(Abbott 1980; Pauldrach, Puis, and Kudritzki 1986) and their predictions of gross wind 
properties like the time-averaged mass loss rate or terminal flow speed are in quite good 
agreement with values inferred by observation. (See, e.g., recent reviews by Abbott 1988, 
Kudritzki and Hummer 1990, and Owocki 1990.) 

Despite this general success of steady-state models, there are numerous observational 
phenomena that seem to imply that such line-driven winds are not at all smooth, time-
steady flows, but rather are both spatially and temporally highly variable. These include: 
soft X-ray emission (Harnden et al. 1979); nonthermal radio emission (Abbott, Bieging, 
and ChurchweU 1984); line profile variations in UV spectra of OB stars ("narrow absorption 
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components"; Lamers and Morton 1976; Prinja and Howarth 1988) or in optical spectra 
of W R stars (Robert and Moffat 1990); and blackness of saturated UV profiles from OB 
stars (Lucy 1982a). 

It now seems likely that this observationally inferred variability is an intrinsic prop-
erty of the wind for which a root cause is the inherent instability of the line-driving 
mechanism. This means that the wind variability does not require external driving by, 
say, large-amplitude pulsation of the underlying star. Of course, to the extent that such 
stars might in fact exhibit pulsations (Baade 1988), these would have a definite impact on 
any wind variability (Willson and Hill 1979; Castor 1987), but such a circumstance will not 
be a focus of this review. Rather, the emphasis here will be on the physics of line-driven 
mass loss, its fundamental instability, and how this can by itself give rise to intrinsic wind 
variability that persists even without explicit excitation from the underlying star. 

2. Linear Theory of the Line-Driven Instability 

The basic physics of this line-driven instability is quite simple (Lucy and Solomon 1970; see 
review by Rybicki 1987): a small-scale increase in radial flow speed Doppler-shifts the local 
line-frequency out of the absorption shadow of underlying material, leading to an increased 
radiative force which then tends to further increase the flow speed. However, even in the 
linear case of small amplitude perturbations, there are two important modifications to 
this simple picture. First, the perturbation must also be on a small enough scale so as to 
remain optically thin (MacGregor, Hartmann, and Raymond 1979; Carlberg 1980), which 
allows one to ignore any change in the absorption shadow itself. As shown by Owocki 
and Rybicki (1984), the limiting scale is roughly the Sobolev length L^v^^dv/dr), over 
which the mean wind velocity υ increases by an ion thermal speed vth- Perturbations with 
a scale larger than this can be analyzed using the same Sobolev (1960) approximation 
methods that are used to model the mean outflow (Abbott 1980). The line-force is then 
proportional to the velocity gradient, and since this implies that the perturbed force is 
out of phase with the perturbed velocity, no net work can be done on such large-scale 
perturbations, which means they are stable. 

The second modification to the above simple picture has to do with its neglect of 
the diffuse radiation that results from the nearly pure-scattering character of most driving 
lines. In a frame comoving with the mean flow, this diffuse radiation has a near fore-aft 
symmetry, implying that its associated net mean force can be neglected in favor of the 
much stronger direct absorption term. However, Lucy (1984) first pointed out that, as 
seen by a small-scale velocity perturbation 6vy this diffuse field is stronger by a factor 
δυ/vth against the direction of the perturbed velocity. As a result, there is a net drag force 
that is on the same order as the perturbed direct force that gives rise to the instability. 
Very near the star this can in fact completely eliminate the instability, but away from 
the wind base, the combined effects of spherical expansion and the shrinking of the solid 
angle subtended by the stellar core sharply reduce the relative importance of this line-drag 
effect. At r = 1.5Ä., for example, the net growth rate is about half that obtained from a 
pure-absorption analysis (Owocki and Rybicki 1984, 1985). 

This still implies a strong instability, because the basic growth rate associated with 
the direct-absorption term is quite large, roughly Ω % 0rad/2t>th> i e . , about half the mean 
radiative acceleration rate through a thermal speed. Since y r ad % v(dv/dr), this can alter-
natively be written as Ω « v/2L, i.e., about half the flow rate through a Sobolev length. 
If we compare this to a typical expansion rate v/H, where Η = v/(dv/dr), we see that 
the growth rate is a factor H/2L = v/2vth higher. In these highly supersonic winds, this 
implies on the order of 50 - 100 e-folds of cumulative growth for a typical wind pertur-
bation! In practice, of course, this means that any perturbation with a small but finite 
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amplitude would quickly become nonlinear in the wind. The remaining sections review 
various attempts to determine the nature of the resulting nonlinear wind structure. 

3. Heuristic Models of a Wind with Embedded Shocks 

Given the supersonic nature of the wind outflow and the large instability growth rate, it 
seems inevitable that, whatever its detailed form, the nonlinear wind structure arising from 
this instability will include shocks. Several of the attempts to study the consequences of 
this instability have thus centered on determining the properties of these assumed shocks. 
(See review by Castor 1987). 

The first models along these lines (e.g., Lucy 1982b) assumed the wind contains a 
quasi-periodic train of forward shocks. Relatively fast flow exposed to a nearly unshadowed 
stellar flux is strongly driven, and so is pushed against relatively slow flow, which is 
shadowed by the fast material and only weakly driven. A forward shock thus forms that 
sweeps up and accelerates this slower material, thereby adding it to the faster flow. A 
crucial point is that the fast material represents post-shock flow, with its associated high 
density and (at least initially) high temperature. To maintain the structure, this material 
must quickly cool and reform the driving ions that line-absorb the radiative momentum. 

The question of the ionization and energy balance behind the shock was analyzed by 
Krolik and Raymond (1985) for a single, forward shock that propagates outward through 
the wind. For massive winds, they inferred that the cooling would be sufficiently rapid 
to allow the driving ions to reform and so maintain the structure. For low-density winds, 
however, they argue that the shock amplitude would be limited by the requirement that 
the cooling time be less than the flow time. 

MacFarlane and Cassinelli (1989) studied the evolution of wind shocks with a phe-
nomenological numerical-hydrodynamics model in which an initially smooth, slow wind is 
disrupted by a sudden increase in the driving force, thereby accelerating the wind to a 
much higher speed. For parameters chosen to give initial and final state terminal speeds 
of 500km/s and 2500 km/s, collision between the fast and slow flow forms a forward/reverse 
pair of shocks of velocity amplitude ^1000km/s each. This turns out to be just what's 
needed to reproduce the observed X-ray properties of their model star, r Sco. 

4. Radiât ion-Hydro dynamics Simulation of Non-Linear Structure 

Owocki, Castor, and Rybicki (1988; hereafter OCR) have recently developed a numerical, 
radiation-hydrodynamics code aimed at directly simulating the dynamical evolution of 
the line-driven wind instability, and thereby detennining the likely nature of the resulting 
nonlinear wind structure. Because the instability occurs for perturbations with a length 
scale near and below the Sobolev length, OCR had to develop a method for computation 
of the line force which did not use the Sobolev approximation, but which still avoided 
the inordinate computational expense of solving the full line-transfer problem at each time 
step. The crucial simplification they adopted was to ignore the difFuse, scattered radiation, 
and to assume that the flow is driven by an ensemble of nonoverlapping, pure-absorption 
lines. In order to focus on the flow dynamics, they also did not treat a detailed energy 
balance, but simply assumed that radiative processes would be rapid enough to keep the 
flow nearly isothermal. 

The wind variability simulated by OCR was not exactly intrinsic, but rather was 
the result of a small-amplitude (1%), periodic perturbation at the wind base. The strong 
dependence of driving force on flow speed quickly amplifies this initially small perturbation, 
giving rise to velocity variations Δυ < 1000 km/s by r « 2Ä*. An important finding was 
that these high velocity regions were actually extremely rarefied. This turns out to be 
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a very robust result, stemming directly from the linear instability property (Owocki and 
Rybickl 1984) that wave modes with opposite phase in density and velocity are much more 
unstable. Although advected away from the star by the supersonic flow, these unstable 
waves actually propagate inward relative to the fluid, and so as they steepen they naturally 
evolve into reverse, not forward, shocks. These reverse shocks act to decelerate high-speed, 
rarefied flow as it impacts slower material that has been compressed into dense shells. This 
is quite different from the Lucy (1982b) model, in which forward shocks were assumed to 
abruptly accelerate ambient wind material as it is rammed by a dense, strongly driven 
flow. In fact, the very low density of this high-speed flow implies that, unlike Lucy's 
model, only a very small fraction (~10~ 3 ) of the wind material ever undergoes a shock 
near the maximum amplitude Δυ « 1000 km/s. This type of structure is very favorable 
for explaining several observational features that are difficult to understand in terms of 
forward shock models (OCR; Owocki 1990), e.g., the hard X-ray tail (Cassinelli and Swank 
1983), and the non-sharp, variable blue edges of saturated UV resonance lines (Henrichs, 
Kaper, and Zwarthoed 1988). 

5. Intrinsic Nature of Wind Variability 

The wind structure computed by OCR arose from amplification of an explicit perturbation 
introduced at the wind base, but subsequent work (Owocki, Poe, and Castor 1990; Poe, 
Owocki, and Castor 1990, hereafter POC) has shown that such wind models can also 
often exhibit an intrinsic variability that persists even in the absence of such explicit 
perturbations. The incidence of this intrinsic variability was found empirically to depend 
on the assumed value of v^/a, the ratio of the ion thermal speed to sound speed. For 
the usual case of driving by CNO ions, an appropriate value of this ratio is v^/a « 0.3. 
However, in order to study the effect of variability arising from explicit perturbations 
without the complication of a background model that was itself intrinsically variable, 
OCR found it necessary to assume an artificially high value v^/a > 1/2. The situation 
is graphically illustrated in Figs. 1, which show the spatial and temporal variations of 
velocity and mass loss rate in unperturbed wind models that differ only in the assumed 
vth/α. In all cases the flow is initially disrupted because the assumed CAK/Sobolev initial 
condition is not an appropriate steady state for either non-Sobolev model. The model 
with vth/a = 0.5, however, quickly relaxes to a somewhat steeper (POC) steady solution, 
whereas the models with slightly smaller vtil/a never settle down. 

POC showed that the qualitative differences among the variability properties of these 
cases reflect a difference in the nature of the corresponding steady solutions. Fig. 2 
illustrates the steady-state solution topology near the critical (sonic) point. Unlike the 
usual saddle- or X-type solution that applies, e.g., to the solar wind (Fig. 2a) (Parker 
1963) the solution topology in this case is of the nodal type, with not one but two positive 
slope critical solutions (Fig. 2b). Note that along the steeper slope there is only one 
distinct solution passing though the critical point, whereas along the shallower slope there 
is a degenerate family of solutions that pass through this point. POC showed that, for 
reasonable boundary conditions, the distinct, steeper solution applies when vtu/a > 1/2, 
whereas the degenerate, shallower solution applies when vth/a < 1/2. (These values apply 
to the simple case of a point star, as was assumed by OCR; subsequent calculations 
now properly treat a finite stellar disk, and in this case steady, steeper solutions exist 
at the somewhat lower ratios v^/a > 3/8.) Apparently, the existence of a well-defined 
steady solution in the former case is sufficient to enable a time-dependent model without 
explicit perturbations to relax to this steady state. On the other hand, the lack of a 
well-defined steady solution for the latter case leads in the time-dependent model to an 
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Figure 1: 3-D perspective plots of the height and time variations of velocity (left) and mass loss 
rate (right) in models with t/t/»/a of 0.5 (top), 0.425 (middle), and 0.375 (bottom). (For clarity, the 
mass loss rate is plotted from a perspective looking outward along the height axis.) 
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Figure 2: The velocity near the sonic radius for solution topologies of (a) the usual saddle type 
that applies to the solar wind and (b) a nodal type that applies to absorption-line-driven winds. 
Note in the nodal case how a large number of solutions converge as they approach the sonic point 
along the shallower of the two positive critical solutions (heavy solid lines). The implied solution 
degeneracy leads to the intrinsic variability seen in the lower panels of Fig. 1. 

Figure 3: The nature of wind solutions in the 
parameter plane M vs. vth/a- In the hatched 
region solutions are excluded for various rea-
sons, but flow solutions are possible in the en-
tire non-hatched region. 

Figure 4: Velocity ν vs. radius r for steeper 
slope solutions with various M and vth/a. Note 
that models with M > do not extend to 
a large radius with a finite speed. 
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intrinsic variability in which the flow, roughly speaking, continuously varies among this 
degenerate family of possible steady solutions. 

This kind of solution degeneracy appears to be endemic to line-driving. It was only 
not apparent in the original CAK model because this model used the Sobolev approxi-
mation, even in the subsonic flow, to eliminate all but one "critical" solution. In a more 
self-consistent model in which one also assumes a vanishing sound speed α —• 0 in the usual 
Sobolev limit of vanishing thermal speed vth —• 0, a similar solution degeneracy exists in 
that the CAK mass loss rate MCAK then only defines an upper limit of the mass loss, not a 
unique value (POC, Owocki 1990). POC showed that in pure-absorption models in which 
both vth and a are nonzero, transonic solutions likewise exist up to a maximum rate M m a x . 
As shown in Fig. 3, for small thermal speeds (v^/a < 0.5) this can actually exceed MCAK, 
but in this case the CAK rate still roughly corresponds to the maximum rate, Moo , that 
the line force can drive all the way to infinity. Note also that the mass loss rate for the 
distinct, steeper slope solution, M e t e e p , can likewise exceed Moo- Fig. 4 then shows that 
for such steeper solutions with M e t e ep > Μ » , the velocity reaches a maximum supersonic 
value and then declines, returning to the sonic speed at a finite "stagnation" radius. Since 
the steeper solution defines an upper velocity limit for the degenerate family of shallow 
slope solutions, this means that all solutions with M > Moo must likewise stagnate at a 
finite radius. 

These rather peculiar properties of the steady wind solutions actually provide a useful 
basis for understanding the intrinsic variability seen in the corresponding time-dependent 
models. For v^/a « 0.5, M m a x « Meteep « Moo, meaning that the distinct, steeper solution 
through the sonic point has just the mass flux the line-force can drive all the way to 
infinity; as shown in Figs, la and l b , this steeper slope solution thus provides a suitable 
asymptotic steady-state for the time-dependent model. 

Figs, l c and Id show, however, that for a somewhat smaller value v^/a = 0.425, the 
flow remains highly variable. The initial base oscillation in mass flux now settles onto a 
value which the line-force can only lift to a finite height « 0.3Ä*. As matter accumulates 
at this stagnation point, a shock forms which slows the underlying outflow. By time 
t « 100 this turns it into an accretion shock, and until t « 150, when all the accumulated 
material falls back onto the star, this completely disrupts the wind. The recovery from this 
accretion is quite irregular, but ultimately the wind will be reestablished. Soon, however, 
the mass flux again settles onto a value that is too high to reach infinity, and so another 
disruption interval of accretion begins. Both the accretion and reestablishment phases of 
this cycle require on the order of several free-fall times from the stagnation point, and so 
the entire cycle can take a day or more, depending on the stellar gravity and the height 
of the stagnation (Section 6). 

This stagnation height depends sensitively on vth/a. In models with v^/ata 0.45, for 
example, material actually reaches a height of more than a stellar radius before falling 
back on the star. On the other hand, for the model with v^/a = 0.375, this stagnation 
height is only slightly above the sonic point itself. In this particular case, the accretion and 
reestablishment phases turn out to be nicely synchronized and so give rise to the smooth 
oscillatory behavior seen in Figs, le and If. 

By focusing on the associated cyclical variation in the mass flux (Fig. If) , we can 
formulate the following simple picture of the dynamics of this oscillation: First, inward 
propagation of a small portion of unstable waves that form near the sonic point causes 
the mass flux in the subsonic flow to temporarily overshoot the continuously sustainable 
value. As material near the sonic point becomes shadowed from the driving radiation by 
the enhanced density of the underlying subsonic flow, it decelerates, which then causes the 
mass flux to undershoot, even becoming briefly inward (the accretion). Once this wave of 
diminished mass flux reaches the subsonic flow, the overlying material is now less shadowed 
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and so accelerates, forming another unstable wave to enhance the mass flux and repeat 
the cycle. 

β. Characteristic Time Scales 

The time scale for this relatively simple relaxation oscillation is found empirically to scale 
with the acoustic cutoff period . This can be understood physically by noting this 
is also roughly the sound travel time between the unstable flow just below the sonic point, 
and the stable subsonic base region below the "thermal" point (i.e., where υ < v th)- In the 
present models, which for reasons of computational expense (see OCR) assume a sound 
speed α = 80 km/s that is about a factor of 3 too high, this yields a relaxation period of 
47,000 s « 13 hours. Analogous models with a sound speed ο = 25 km/s more appropriate 
to the assumed stellar temperature (50,000 K) exhibit shorter periods 16,000 s « 4 hours. 
This is about a factor ten longer than the corresponding growth times for small scale 
instabilities. 

However, this is still significantly shorter than the observed repetition time of dis-
crete absorption features (typically 1/2 - 2 days; Henrichs, Kaper, and Zwarthoed 1988). 
Despite this disagreement in scale, the time-variations of synthesized absorption profiles 
do show moving narrow absorption features quite reminiscent of such discrete absorption 
components (Prinja and Howarth 1988). These arise from outward accelerating dense 
"shells" whose formation is repeatedly triggered by the quasi-periodic disruptions. For 
other selected models in which the stagnation height is quite high above the star, the 
overall time for the semi-regular cycles of accretion/recovery can become correspondingly 
longer, resulting in profile variations with time-scales approaching that of observed discrete 
components. 

Interestingly, the time scale for the simple relaxation oscillation is roughly comparable 
to that of optical line-profile variability that has often been described in terms of "non-
radial pulsations" (Baade 1988). This might not be just coincidence since, as noted above, 
this intrinsic wind variability actually does extend down to the subsonic wind base, where 
these optical lines are formed. Furthermore, the accretion that occurs when the wind 
stagnates should surely have a substantial impact on the underlying photosphere, perhaps 
even inducing variations of sufficient magnitude to appear as "pulsations" (Fullerton 1990). 
Of course, at this point, such a "tail wags dog" scenario of a wind inducing photospheric 
variability is quite speculative, since these highly simplified, 1-D models ignore several 
potentially important effects, e.g., stellar rotation. 

7. Role of Scattering 

The lines that drive hot star winds are actually more nearly pure-scattering than pure-
absorption, and including the dynamical effect of this diffuse radiation may have important 
effects on the intrinsic variability. In the supersonic regions of a smooth flow, the near fore-
aft symmetry of the diffuse radiation field means that the associated net force is typically 
small; but in the region near and below the sonic point, the radiation escape probability 
is rapidly increasing, leading to a diffuse field asymmetry. Since the escape probability 
scales with the velocity gradient, the net asymmetry depends on the second derivative of 
velocity, and so the effect of the diffuse field can be reasonably modeled as a radiative 
viscosity. Owocki and Zank (1990) show that such a radiative viscous force can alter or 
even "break" the solution degeneracy found in pure-absorption models, and this might 
explain why comoving frame models that include scattering appear to have a well-defined 
solution (Pauldrach, Puis, and Kudritzki 1986). 
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Through the Lucy (1984) line-drag effect (Section 2), scattering might also stabilize 
the wind base enough to suppress variations that govern the intrinsic variability. The wind 
instability would then have an advective rather than absolute character, (Bers 1983; Owocki 
and Rybicki 1986; OPC) for which variability would persist only with some explicit driving 
from the underlying star, and would only become large amplitude in the supersonic wind. 
Recently, Owocki and Rybicki (1990) have extended their previous linear stability analyses 
to the case, relevant to Wolf-Rayet stars, in which the continuum remains optically thick 
into the supersonic flow. Assuming that the continuum radiation thus attains an angular 
distribution appropriate to the diffusion approximation, they find that a flow driven by 
pure-scattering lines is then stabilized by this line-drag effect. They also And, however, 
that a relatively small amount of photon destruction can cause such a flow region to remain 
unstable. Deterniining the linear stability properties of the lower regions of Wolf-Rayet 
winds will thus require knowing the effective mean destruction probabilities for the lines 
that drive the wind. 

For OB stars, the linear stability properties are relatively well understood, but how 
scattering effects might influence the nonlinear properties like the intrinsic variability is 
still not clear. Unfortunately, straightforward calculation of the diffuse field transfer at 
each time step would be prohibitively expensive, with a timing increase of more than a 
factor 100 over the present pure-absorption calculation. It will thus be essential to develop 
less costly approaches. One simple technique currently being tested is based on escape 
probability methods; this can be implemented with only modest (factor 2) timing increase, 
and, although quite crude, nonetheless appears capable of incorporating several important 
effects, like the radiative viscosity and line-drag terms mentioned above. Other methods, 
such as accelerated Lambda iteration (e.g., Olson, Auer, and Buchler 1986), are also being 
explored, as is the possibility of some kind of hybrid between the two. 

8. Future Work 

In addition to clarifying the role of scattering in regulating the instability, there is obviously 
a great deal of work still to be done to include the many other potentially important 
effects neglected so far, e.g., detailed energy and ionization balance, shock X-ray emission, 
2-D or 3-D structure, and stellar rotation. Inclusion of a realistic energy balance in the 
dynamical wind models is needed to determine the temperature structure and thereby the 
shock X-ray emission. Likewise, inclusion of ionization balance is needed to determine 
whether ionization from shock heating and/or X-rays can effect the line-driving and hence 
the dynamics of the wind and instability. Consideration of rotation and other 2-D (and 
ultimately 3-D?) effects is needed to determine the likely lateral scales of the dense clumps. 
For example, can rotation string out such structures in longitude in a manner similar 
to corotating interaction regions in the solar wind (Mullan 1984, 1985), and thus make 
it possible for a given dense clump to cover a large enough fraction of the stellar disk 
to produce the observed discrete absorption components? Finally, perhaps one of the 
most urgent needs is to develop methods to compare more closely predictions from the 
theoretical simulations with available observational diagnostics, and thereby guide and test 
the further theoretical development in this complex but fascinating problem in radiation 
hydrodynamics. 

This work was supported in part by NSF grant AST 88-14580 and NASA grant NAGW-
1487. Many of the computations were carried out using an allocation of supercomputer 
time from the San Diego Supercomputer Center. I thank G. Cooper and A. Fullerton for 
many helpful discussions, questions, and comments. 
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DISCUSSION 

Montmerle: To what extent are the instabilities you find dependent on the fact that you 
are doing 1-D calculations? Rotation for instance could remove some of the degeneracies? 
Owocki: I have not yet investigated this question in detail, but I believe going to 2-D 
and 3-D will mostly add new instabilities, e.g. Rayleigh-Taylor, which will tend to break 
my "shells" into "clumps". I think it likely that rotation plays a big role in extending 
the lateral scale of those clumps, helping to make them occult a large enough fraction of 
the stellar disk to be observable as narrow components. The ultimate structure may be a 
hybrid of Mullan's CIR picture and this instability model. 

Langer: Thinking about a pulsating W R star with a high density (optically thick) wind, 
would the wind instabilities wipe out the signature of pulsation or would it even amplify 
it, i.e. would you observe any variations with the period of the pulsation? 
Owocki: On the contrary. I think the effect of any underlying pulsation would ultimately 
be amplified by the wind, and thus be quite observable. 

Spurzem: Could you please give a comment on the method used to numerically solve the 
hydrodynamic equations, e.g. which type of artificial viscosity was utilized? 
Owocki: We use van Leer's method of piecewise linear, monotonized advection on a stag-
gered spatial mesh. Quadratic viscosity is used on strong compression to smooth shocks. 
We tried and abandoned use of linear viscosity on expansion to limit steepness of strong 
rarefactions. We now limit this by cutting off a few of the very strongest lines from our 
power-law number distribution of lines vs. opacity. Details can be found in Owocki, Castor 
and Rybicki (1988). 

Sreenivasan: I do not wish to make life any more difficult but I must point out that a 
realistic energy conservation equation (including rotational effects) must be included to 
understand really what happens in this case. 
Owocki: I agree, and I have a graduate student whose thesis will be to do just that. I 
should point out, however, that the isothermal assumption is not too unrealistic in the 
case of dense winds, since then the radiative cooling length behind the shocks can be 
estimated to be quite small compared to other length scales. 

Maeder: What is according to your models the deep physical reason for the difference 
between the winds (and the mass loss rates) of W R stars and Ο stars? 
Owocki: Because W R winds are optically thick at the sonic point, the used "core-halo" 
approximations of OB winds breaks down, and any radiative driving must be by the diffuse, 
scattered radiation field. This already means that the wind dynamics and structure must be 
entirely different than in the OB star case. As for the "deep" reason, I believe it ultimately 
stems from the lower ^-abundance of W R stars. An atmosphere dominated by He has 
lower sound speed a, and this increases the ratio v^ja leading to a breakdown of the usual 
Sobolev approximation near the sonic point. This means the usual direct driving of the 
core-halo picture fails, and so the diffuse driving must take over. 
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