Bull. Aust. Math. Soc. 100 (2019), 446–452 doi:10.1017/S0004972719000406

SCHUR'S COLOURING THEOREM FOR NONCOMMUTING PAIRS

TOM [SANDERS](https://orcid.org/0000-0003-1809-8248)

(Received 11 January 2019; accepted 18 February 2019; first published online 11 April 2019)

Abstract

For *G* a finite non-Abelian group we write $c(G)$ for the probability that two randomly chosen elements commute and $k(G)$ for the largest integer such that any $k(G)$ -colouring of *G* is guaranteed to contain a monochromatic quadruple (x, y, xy, yx) with $xy \neq yx$. We show that $c(G) \rightarrow 0$ if and only if $k(G) \rightarrow \infty$.

2010 *Mathematics subject classification*: primary 20P15; secondary 05C15. *Keywords and phrases*: Schur's colouring theorem, commuting probability, non-Abelian group.

1. Introduction

Our starting point is Schur's theorem [\[18,](#page-6-0) Hilfsatz], the proof of which adapts to give the following result.

Theorem 1.1. *Suppose that G is a finite group and* C *is a cover of G of size k. Then there is a set* $A \in \mathbb{C}$ *with at least* $c_k |G|^2$ *triples* $(x, y, xy) \in A^3$ *where* c_k *is a constant denending only on k depending only on k.*

The proof is a routine adaptation, but we shall not give it as the result as stated also follows from our next theorem.

If *G* is non-Abelian then we might like to ask for quadruples $(x, y, xy, yx) \in A^4$
tead of triples. Establishing the following result (which we do in Section 2) is the instead of triples. Establishing the following result (which we do in Section [2\)](#page-1-0) is the main purpose of the paper.

Theorem 1.2. *Suppose that G is a finite group and* C *is a cover of G of size k. Then there is a set* $A \in \mathbb{C}$ *with* $c_k |G|^2$ *quadruples* $(x, y, xy, yx) \in A^4$ *where* c_k *is a constant denending only on k depending only on k.*

When *G* is non-Abelian we should like to ensure that at least one of the quadruples found in Theorem [1.2](#page-0-0) has $xy \neq yx$, and to this end we define the *commuting probability* of a finite group *G* to be

$$
c(G) := \frac{1}{|G|^2} \sum_{x,y \in G} 1_{[xy=yx]};
$$

c 2019 Australian Mathematical Publishing Association Inc.

in words, it is the probability that a pair $(x, y) \in G^2$ chosen uniformly at random
has $xy = yx$. There are many nice results about the commuting probability (see the has $xy = yx$. There are many nice results about the commuting probability (see the introduction to [\[10\]](#page-6-1) for details) and it is an instructive exercise (see [\[9\]](#page-6-2)) to check that if $c(G) < 1$ then $c(G) \leq \frac{5}{8}$, so that if a group is non-Abelian there are 'many' pairs that do not commute. Despite this we prove the following result in Section 3 do not commute. Despite this we prove the following result in Section [3.](#page-4-0)

PROPOSITION 1.3. Suppose that G is a finite group and $c(G) \geq \epsilon$. Then there is a cover C *of G of size* $\exp((2 + o_{\epsilon \to 0}(1))\epsilon^{-1} \log \epsilon^{-1})$ *such that if* $A \in C$ *and* $(x, y, xy, yx) \in A^4$
then $xy = yx$ *then* $xy = yx$.

If *G* is non-Abelian we write *k*(*G*) for the *noncommuting Schur number* of *G*, that is, the largest natural number such that for any cover C of G of size $k(G)$ there is some *A* ∈ *C* and (x, y, xy, yx) ∈ *A*⁴ with $xy \neq yx$. (Note that since *G* is assumed non-Abelian we certainly have $k(G) > 1$) we certainly have $k(G) \geq 1$.)

The number $k(G)$ has been studied for a range of specific groups by McCutcheon in [\[12\]](#page-6-3) and we direct the interested reader there for examples and further questions.

THEOREM 1.4. Let $(G_n)_n$ be a sequence of non-Abelian groups. Then $c(G_n) \to 0$ if and *only if* $k(G_n) \to \infty$ *.*

Proof. The right to left implication follows immediately from Proposition [1.3.](#page-1-1) We can assume that c_k is monotonically decreasing. Suppose that $c(G_n) \to 0$ and there is a k_0 and an infinite set *S* of natural numbers such that $k(G_n) < k_0$ for all $n \in S$. Let $n \in S$ be such that $c(G_n) < c_{k_0}$ which can be done since $c(G_n) \to 0$ and $c_{k_0} > 0$.

Since $k(G_n) < k_0$ there is a cover C of G_n of size k_0 such that if $A \in \mathbb{C}$ and $(x, y, xy, yx) \in A^4$ then $xy = yx$. By Theorem [1.2](#page-0-0) there is an $A \in C$ such that $(x, y, xy, yx) \in A^4$ for at least c , $|G|^2$ quadruples. But then by design $xy = yx$ for all (x, y, xy, yx) ∈ *A*⁴ for at least $c_{k_0} |G_n|^2$ quadruples. But then by design *xy* = *yx* for all these pairs and so $c(G_n) > c_0$, a contradiction which proves the result these pairs and so $c(G_n) \ge c_{k_0}$, a contradiction which proves the result.

Before closing this section we need to acknowledge our debt to previous work. In [\[13\]](#page-6-4) McCutcheon proves that $k(S_n) \to \infty$ as $n \to \infty$. A short calculation shows that $c(S_n) \to 0$ as $n \to \infty$, and the possibility of showing that $k(G_n) \to \infty$ as $c(G_n) \to 0$ is identified by Bergelson and Tao in the remarks after [\[5,](#page-6-5) Theorem 11]. Earlier, in [\[5,](#page-6-5) Footnote 4], they also observe the significance of Neumann's work [\[14\]](#page-6-6) which is the main idea behind the proof of Proposition [1.3.](#page-1-1)

Write *D*(*G*) for the smallest dimension of a nontrivial unitary representation of *G*. (This is called the quasirandomness of *G* in [\[5,](#page-6-5) Definition 1] following the work of Gowers [\[8\]](#page-6-7).) In [\[5,](#page-6-5) Corollary 8] the authors show that $k(G_n) \to \infty$ as $D(G_n) \to \infty$, and in fact go further proving a density result. For general finite groups there can be no density result; we refer the reader to the discussion after [\[5,](#page-6-5) Theorem 11] for more details.

2. Proof of Theorem [1.2](#page-0-0)

The proof of Theorem 1.2 is inspired by an attempt to translate the proof of [\[3,](#page-6-8) Theorem 3.4] into a combinatorial setting. There the authors use a recurrence

448 **T.** Sanders **T.** Sanders **T.** Sanders **T.** Sanders **T.** Sanders **T.** 3

theorem $[4,$ Theorem 5.2]; in its place we use a version of the Ajtai–Szemeredi corners theorem [\[1\]](#page-6-10) for finite groups. This was proved by Solymosi [\[22,](#page-6-11) Theorem 2.1] using the triangle removal lemma.

^Theorem 2.1. *There is a function f*[∆] : (0, 1] [→] (0, 1] *such that if G is a finite group and* $A \subset G^2$ has size at least $\alpha |G|^2$ then

$$
S(\mathcal{A}) := \frac{1}{|G|^3} \sum_{x,y,z \in G} 1_{\mathcal{A}}(x,y) 1_{\mathcal{A}}(zx,y) 1_{\mathcal{A}}(x,yz) \ge f_{\Delta}(\alpha).
$$

Proof. Following the proof of $[22,$ Theorem 2.1], form a tripartite graph with three copies of *G* as the vertex sets (call them V_1 , V_2 , V_3) and joining $(x, y) \in V_1 \times V_2$ if and only if $(x, y) \in \mathcal{A}$; $(y, w) \in V_2 \times V_3$ if and only if $(y^{-1}w, y) \in \mathcal{A}$; and $(x, w) \in V_1 \times V_3$ if and only if $(x, w^{-1}) \in \mathcal{A}$. The man $G^3 \to G^{3-}(x, y, w) \mapsto (x, y, y^{-1}w^{-1})$ is a hijection and only if $(x, wx^{-1}) \in \mathcal{A}$. The map $G^3 \to G^3$; $(x, y, w) \mapsto (x, y, y^{-1}wx^{-1})$ is a bijection and (x, y, w) is a triangle in this graph if and only if (x, y) (τ, y) $(x, y) \in \mathcal{A}$ where and (x, y, w) is a triangle in this graph if and only if $(x, y), (zx, y), (x, yz) \in \mathcal{A}$ where $z = y^{-1}wx^{-1}$.

It follows from [\[23,](#page-6-12) Theorem 1.1] that one can remove at most

$$
3 \cdot o_{S(\mathcal{A}) \to 0}(|G|^2) = o_{S(\mathcal{A}) \to 0}(|G|^2)
$$

elements from A to make the graph triangle-free. On the other hand if $(x, y) \in \mathcal{A}$ then (x, y, xy) is a triangle in the above graph and hence we must have removed all elements from \mathcal{A} and $\alpha |G|^2 \le \alpha_{S(\mathcal{A}) \to 0}(|G|^2)$ from which the result follows. from \mathcal{A} and $\alpha |G|^2 \le \alpha_{S(\mathcal{A}) \to 0}(|G|^2)$ from which the result follows.

There are a number of subtleties around the extent to which one can replace, say, (z, y) with (xz, y) , and we refer the reader to the papers of Solymosi [\[22\]](#page-6-11) and Austin [\[2\]](#page-6-13) for some discussion.

We take the convention, as we can, that the function *f*[∆] is monotonically increasing and $f_{\Lambda}(x) \leq x$ for all $x \in (0, 1]$. Even with Fox's work [\[7\]](#page-6-14), in general we only have $f_{\Delta}(a)^{-1} \leq T(O(\log a^{-1}))$. However, when *G* is Abelian much better bounds are known as a result of the beautiful arguments of Shkredov [19–21]. It seems likely that these as a result of the beautiful arguments of Shkredov $[19–21]$ $[19–21]$. It seems likely that these could be adapted to give a bound with a tower of bounded height if the Fourier analysis is adapted to the non-Abelian setting in the same way as it is for Roth's theorem in [\[17\]](#page-6-17). Doing so would give a quantitative version of [\[5,](#page-6-5) Theorem 10] (see [\[5,](#page-6-5) Remark 44]), but the improvement to Theorem [1.2](#page-0-0) would only be to replace a wowzer-type function with a tower as we shall see shortly.

We shall prove the following proposition from which Theorem [1.2](#page-0-0) follows immediately on inserting the bound for *f*[∆] given by Theorem [2.1.](#page-2-0)

Proposition 2.2. *Suppose G is a finite group and* C *is a cover of G of size k. Then there is a set* $A \in C$ *with* $(g^{(k+1)}(1))^2 |G|^2$ *quadruples* $(x, y, xy, yx) \in A^4$, *where* $g^{(k+1)}$ *is*
the $(k+1)$ -fold composition of a with itself and $g : (0, 1] \rightarrow (0, 1]$; $\alpha \mapsto (3k)^{-1} f$, (α^k) *the* (*k* + 1)*-fold composition of g with itself and g* : $(0, 1] \rightarrow (0, 1]$; $\alpha \mapsto (3k)^{-1} f_{\Delta}(\alpha^k)$.

Proof. Write A_1, \ldots, A_k for the sets in C ordered so that their respective densities are $\alpha_1 \geq \cdots \geq \alpha_k$; since C is a cover we have $\alpha_1 \geq 1/k$. Let $r \in \{1, \ldots, k\}$ be minimal such that

$$
\frac{1}{3}f_{\Delta}(\alpha_1 \cdots \alpha_r) \ge \alpha_{r+1} + \cdots + \alpha_k, \tag{2.1}
$$

which is possible since the sum on the right is empty and so 0 when $r = k$. From minimality and the order of the α_i s,

$$
\alpha_{i+1} > \frac{1}{3k} f_{\Delta}(\alpha_1 \cdots \alpha_i) \quad \text{for all } 1 \le i \le r - 1.
$$

The function *f*∆ is monotonically increasing and $f_{\Delta}(x) \le x$ for all $x \in (0, 1]$ so it follows from the above that $\alpha_r \geq g^{(r)}(1) \geq g^{(k)}(1)$.
Now suppose that $s_1, \ldots, s_r \in G$ and x

Now, suppose that $s_1, \ldots, s_r \in G$ and write

$$
\mathcal{A}_i := \{(x, y) \in G^2 : xs_i y \in A_i\} \quad \text{for } 1 \le i \le r.
$$

Then

$$
\mathbb{E}_{s_i \in G} 1_{\mathcal{A}_i}(x, y) = \alpha_i \quad \text{for all } x, y \in G \text{ and } 1 \le i \le r,
$$

and so

$$
\mathbb{E}_{s \in G'} \left| \bigcap_{i=1}^r \mathcal{A}_i \right| = \sum_{x,y \in G} \mathbb{E}_{s \in G'} \prod_{i=1}^r 1_{\mathcal{A}_i}(x,y) = \alpha_1 \cdots \alpha_r |G|^2
$$

By averaging we can pick some $s \in G^r$ such that $\mathcal{A} := \bigcap_{i=1}^r \mathcal{A}_i$ has $|\mathcal{A}| \ge \alpha_1 \cdots \alpha_r |G|^2$.
By the definition of f , (from Theorem 2.1)

By the definition of *f*[∆] (from Theorem [2.1\)](#page-2-0),

$$
\mathbb{E}_{x,y,z\in G}1_{\mathcal{A}}(x,y)1_{\mathcal{A}}(zx,y)1_{\mathcal{A}}(x,yz)=S(\mathcal{A})\geq f_{\Delta}(\alpha_1\cdots\alpha_r);
$$

write

$$
Z := \{z \in G : \mathbb{E}_{x,y \in G} 1_{\mathcal{A}}(x,y) 1_{\mathcal{A}}(zx,y) 1_{\mathcal{A}}(x,yz) \geq \frac{1}{3} f(\alpha_1 \cdots \alpha_r) \}.
$$

Then

$$
\mathbb{P}(Z) + \frac{1}{3} f_{\Delta}(\alpha_1 \cdots \alpha_r) \ge \mathbb{E}_{x, y, z \in G} 1_{Z \sqcup (G \setminus Z)}(z) 1_{\mathcal{A}}(x, y) 1_{\mathcal{A}}(zx, y) 1_{\mathcal{A}}(x, yz)
$$

= $S(\mathcal{A}) \ge f_{\Delta}(\alpha_1 \cdots \alpha_r),$

and hence $\mathbb{P}(Z) \ge \frac{2}{3} f_{\Delta}(\alpha_1 \cdots \alpha_r)$. But then

$$
\mathbb{P}(Z \setminus (A_{r+1} \cup \dots \cup A_k)) \geq \frac{2}{3} f_{\Delta}(\alpha_1 \cdots \alpha_r) - (\alpha_{r+1} + \dots + \alpha_k)
$$

$$
\geq \frac{1}{3} f_{\Delta}(\alpha_1 \cdots \alpha_r)
$$

by [\(2.1\)](#page-2-1). Since $\bigcup_{i=1}^{k} A_i = G$, we conclude that there is some *i* with $1 \le i \le k$ such that

$$
\mathbb{P}((Z\setminus (A_{r+1}\cup\cdots\cup A_k))\cap A_i)\geq \frac{1}{3r}f_{\Delta}(\alpha_1\cdots\alpha_r).
$$

Of course $(Z \setminus (A_{r+1} \cup \cdots \cup A_k)) \cap A_j = \emptyset$ for $r < j \le k$ and so we may assume $i \le r$. Write $Z' := (Z \setminus (A_{r+1} \cup \cdots \cup A_k)) \cap A_i$. Since $Z' \subset Z$,

$$
\mathbb{E}_{x,y}1_{\mathcal{A}_i}(x,y)1_{\mathcal{A}_i}(zx,y)1_{\mathcal{A}_i}(x,yz) \geq \mathbb{E}_{x,y}1_{\mathcal{A}}(x,y)1_{\mathcal{A}}(zx,y)1_{\mathcal{A}}(x,yz) \geq \frac{1}{3}f_{\Delta}(\alpha_1 \cdots \alpha_r)
$$

for all $z \in Z'$. On the other hand, every $z \in Z'$ has $z \in A_i$ and so we conclude that there are at least

$$
\frac{1}{3}f_{\Delta}(\alpha_1\cdots\alpha_r)|G|^2\cdot\frac{1}{3r}f_{\Delta}(\alpha_1\cdots\alpha_r)|G|
$$

triples $(x, y, z) \in G^3$ such that

 $z \in A_i$, $xs_i y \in A_i$, $zxs_i y \in A_i$ and $xs_i yz \in A_i$

The map $(x, y, z) \mapsto (xs_iy, z)$ has all fibres of size |*G*| and so there are at least

$$
\frac{1}{9r}f_{\Delta}(\alpha_1\cdots\alpha_r)^2|G|^2 \ge (g(\alpha_r))^2|G|^2
$$

pairs $(a, b) \in G^2$ such that $a, b, ab, ba \in A_i$. This gives the result. □

3. Proof of Proposition [1.3](#page-1-1)

The key idea comes from Neumann's theorem [\[14,](#page-6-6) Theorem 1] which is already identified in [\[5,](#page-6-5) Footnote 4]. Neumann's theorem describes the structure of groups *G* for which $c(G) \geq \epsilon$; they are the groups containing normal subgroups $K \leq H \leq G$ such that *K* and G/H have size $O_e(1)$ and H/K is Abelian. Neumann's theorem was further developed in [\[6,](#page-6-18) Theorem 2.4], but both arguments provide a more detailed structure than we require.

We have made some effort to control the exponent; results such as [\[6,](#page-6-18) Lemma 2.1] or [\[15,](#page-6-19) Theorem 2.2] could be used in place of Kemperman's theorem in what follows at the possible expense of the 2 becoming slightly larger. Moving the $2 + o_{\epsilon \to 0}(1)$ below 1 would require a slightly different approach as we normalise a subgroup of index around ϵ^{-1} at a certain point which costs us a term of size ϵ^{-1} !.

PROPOSITION (Proposition [1.3\)](#page-1-1). *Suppose that G is a finite group and* $c(G) \geq \epsilon$ *. Then there is a cover C of G of size* $exp((2 + o_{\epsilon \to 0}(1))\epsilon^{-1} \log \epsilon^{-1})$ *such that if* $A \in C$ *and* $(x, y, ry, y) \in A^4$ *then* $xy = yx$ $(x, y, xy, yx) \in A^4$ then $xy = yx$.

Proof. We work with the conjugation action of *G* on itself (that is, $(g, x) \mapsto g^{-1}xg$) and write x^G for the conjugacy class of *x* (the orbit of *x* under this action) and $C_G(x)$ for write x^G for the conjugacy class of *x* (the orbit of *x* under this action) and $C_G(x)$ for the centre of x in G (the stabiliser of x under this action).

Let η , $v \in (0, 1]$ be parameters (we shall take $v = \frac{1}{2}$ and $\eta = \epsilon / \log \epsilon^{-1}$) to be timised later and put optimised later and put

$$
X := \{ x \in G : |x^G| \le \eta^{-1} \}.
$$

Then

$$
\epsilon |G|^2 \le |G|^2 \mathbb{P}(xy = yx) = \sum_{x} |C_G(x)| = |G| \sum_{x} \frac{1}{|x^G|} \le \sum_{x \in X} |G| + \sum_{x \notin X} \eta |G|.
$$

Writing $\kappa := |X|/|G|$ we can rearrange the above to see that $\kappa \geq (\epsilon - \eta)/(1 - \eta)$. Suppose that $s \in \mathbb{N}$ is maximal such that

s times

$$
|\overbrace{X\cdots X}^{s \text{ times}}| \geq (1 + (1 - \nu)(s - 1))|X|
$$
.

There is some $s \in \mathbb{N}$ since the inequality certainly holds for $s = 1$, and there is a maximal such *s* with $s \le (k^{-1} - \nu)/(1 - \nu)$ since $|X| \ge \kappa |G|$.

Since $1_G^G = \{1_G\}$ we have $1_G \in X$ and $1_G \in X \cdots X$ for any *s*-fold product. By Kemperman's theorem $[11,$ Theorem 5] (also recorded on $[16,$ page 111], and which despite the additive notation does not assume commutativity) it follows that there is some $H \leq G$ such that

$$
|\overbrace{X\cdots X}^{s+1 \text{ times}}| \ge |\overbrace{X\cdots X}^{s \text{ times}}| + |X| - |H| \quad \text{and} \quad H \subset \overbrace{X\cdots X}^{s+1 \text{ times}}.
$$

By the maximality of *s*,

$$
(1 + (1 - \nu)s)|X| > |\underbrace{\overbrace{X \cdots X}}^{s+1 \text{ times}}| \ge (1 + (1 - \nu)(s-1))|X| + |X| - |H|.
$$

Consequently $|H| > v|X|$ and so $|G/H| < v^{-1}k^{-1}$.
Let K be the kernel of the action of left to

Let *K* be the kernel of the action of left multiplication by *G* on *G*/*H*, that is, $K := \{x \in G : xgH = gH$ for all $g \in G\}$. The action induces a homomorphism from *G* to $Sym(G/H)$ so that by the First Isomorphism Theorem

$$
K \triangleleft G
$$
 and $|G/K| \leq |\text{Sym}(G/H)| \leq |G/H|!$.

Each $x \in H$ (and hence each $x \in K$ since $xH = H$ for such x) can be written as a product of $s + 1$ elements of *X*. Moreover, the function $x \mapsto |x^G|$ is submultiplicative, that is $|(xy)^G| \le |x^G||y^G|$, and so it follows that

$$
|x^G| \le \eta^{(s+1)} \le R := \lfloor \eta^{-(\kappa^{-1}+1-2\nu)/(1-\nu)} \rfloor
$$

for all $x \in X^{s+1}$ and in particular for all $x \in K$. Thus for each $x \in K$ there is an injection $\phi_{x^G}: x^G \to \{1, \ldots, R\}$. With this notation we can define our covering; let

$$
S := \{ \{ x \in K : \phi_{x^G}(x) = i \} : 1 \le i \le R \} \text{ and } C := ((G/K) \setminus \{ K \}) \cup S,
$$

so that S is a cover of K and C is a cover of G . Now

$$
|C| \le |G/K| - 1 + |S| \le \lfloor \nu^{-1} \kappa^{-1} \rfloor! - 1 + R
$$

$$
\le \exp\left(\max\left\{\nu^{-1} \kappa^{-1} \log \nu^{-1} \kappa^{-1}, \frac{\kappa^{-1} + 1 - 2\nu}{1 - \nu} \log \eta^{-1}\right\} + O(1)\right).
$$

Optimise this by taking $v = \frac{1}{2}$ and $\eta = \epsilon / \log \epsilon^{-1}$ as mentioned before so that $v > \epsilon (1 - \epsilon \epsilon_0 (1))$ and $\log \epsilon^{-1}$ $k \ge \epsilon (1 - o_{\epsilon \to 0}(1))$ and $\log \eta^{-1} = (1 + o_{\epsilon \to 0}(1)) \log \epsilon^{-1}$.
Suppose that $A \subseteq C$ and $x, y, xy \in A$ if $A \subseteq G/I$.

Suppose that $A \in \mathbb{C}$ and $x, y, xy, yx \in A$. If $A \in (G/K) \setminus \{K\}$ then $xK = yK = xyK =$ *yxK* = *A*. Since *K* $\triangleleft G$ we have $xK = xyK = (xK)(yK)$ and so $yK = K$ which is a contradiction. It follows that $A \in S$ and hence *x*, *y*, *xy*, *yx* $\in K$. We conclude that $\varphi_{(xy)}(xy) = \varphi_{(yx)}(yx)$ but *xy*
injection, *xy* = *yx* as required. $G(xy) = \phi_{(y,x)}G(yx)$ but $xy = y^{-1}(yx)y$ and so $(xy)^G = (yx)^G$. Since $\phi_{(xy)^G}$ is an $G(x)y = y - yx$ as required

The result is proved. \Box

452 T. Sanders T. Sanders (7)

References

- [1] M. Ajtai and E. Szemeredi, 'Sets of lattice points that form no squares', ´ *Studia Sci. Math. Hungar.* 9 (1974), 9–11.
- [2] T. Austin, 'Ajtai–Szemeredi theorems over quasirandom groups', in: ´ *Recent Trends in Combinatorics*, IMA Volumes in Mathematics and its Applications, 159 (Springer, Cham, 2016), 453–484.
- [3] V. Bergelson and R. McCutcheon, 'Recurrence for semigroup actions and a non-commutative Schur theorem', in: *Topological Dynamics and Applications (Minneapolis, MN, 1995)*, Contemporary Mathematics, 215 (American Mathematical Society, Providence, RI, 1998), 205–222.
- [4] V. Bergelson, R. McCutcheon and Q. Zhang, 'A Roth theorem for amenable groups', *Amer. J. Math.* 119(6) (1997), 1173–1211.
- [5] V. Bergelson and T. C. Tao, 'Multiple recurrence in quasirandom groups', *Geom. Funct. Anal.* 24(1) (2014), 1–48.
- [6] S. Eberhard, 'Commuting probabilities of finite groups', *Bull. Lond. Math. Soc.* 47(5) (2015), 796–808.
- [7] J. Fox, 'A new proof of the graph removal lemma', *Ann. of Math. (2)* 174(1) (2011), 561–579.
- [8] W. T. Gowers, 'Quasirandom groups', *Combin. Probab. Comput.* 17(3) (2008), 363–387.
- [9] W. H. Gustafson, 'What is the probability that two group elements commute?', *Amer. Math. Monthly* 80(9) (1973), 1031–1034.
- [10] P. Hegarty, 'Limit points in the range of the commuting probability function on finite groups', *J. Group Theory* 16(2) (2013), 235–247.
- [11] J. H. B. Kemperman, 'On complexes in a semigroup', *Nederl. Akad. Wetensch. Proc. Ser. A.* 59 (1956), 247–254.
- [12] R. McCutcheon, 'Non-commutative Schur configurations in finite groups', Preprint, http://citeseerx.ist.psu.edu/viewdoc/download?doi=[10.1.1.538.5511&rep](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.5511&rep=rep1&type=pdf)=rep1&type=pdf.
- [13] R. McCutcheon, 'Monochromatic permutation quadruples—a Schur thing in *Sn*', *Amer. Math. Monthly* 119(4) (2012), 342–343.
- [14] P. M. Neuman, 'Two combinatorial problems in group theory', *Bull. Lond. Math. Soc.* 21(5) (1989), 456–458.
- [15] J. E. Olson, 'Sums of sets of group elements', *Acta Arith.* **28**(2) (1975/76), 147–156. [16] J. E. Olson, 'On the sum of two sets in a group', *J. Number Theory* **18**(1) (1984), 110
- [16] J. E. Olson, 'On the sum of two sets in a group', *J. Number Theory* 18(1) (1984), 110–120.
- [17] T. Sanders, 'Solving $xz = y^2$ in certain subsets of finite groups', *Q. J. Math.* **68**(1) (2017), 243–273.
- [18] I. Schur, 'Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$ ', *Jahresber. Dtsch. Math.-Ver.* **25** (1916), 114–117.
- [19] I. D. Shkredov, 'On a generalization of Szemerédi's theorem', *Proc. Lond. Math. Soc.* (3) **93**(3) (2006), 723–760.
- [20] I. D. Shkredov, 'On a problem of Gowers', *Izv. Ross. Akad. Nauk Ser. Mat.* 70(2) (2006), 179–221.
- [21] I. D. Shkredov, 'On a two-dimensional analogue of Szemerédi's theorem in abelian groups', *Izv. Ross. Akad. Nauk Ser. Mat.* 73(5) (2009), 181–224.
- [22] J. Solymosi, 'Roth-type theorems in finite groups', *European J. Combin.* 34(8) (2013), 1454–1458.
- [23] T. C. Tao, 'A variant of the hypergraph removal lemma', *J. Combin. Theory Ser. A* 113(7) (2006), 1257–1280.

TOM [SANDERS,](https://orcid.org/0000-0003-1809-8248) Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK e-mail: tom.sanders@maths.ox.ac.uk