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Abstract

For G a finite non-Abelian group we write c(G) for the probability that two randomly chosen elements
commute and k(G) for the largest integer such that any k(G)-colouring of G is guaranteed to contain a
monochromatic quadruple (x, y, xy, yx) with xy , yx. We show that c(G)→ 0 if and only if k(G)→∞.
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1. Introduction

Our starting point is Schur’s theorem [18, Hilfsatz], the proof of which adapts to give
the following result.

Theorem 1.1. Suppose that G is a finite group and C is a cover of G of size k. Then
there is a set A ∈ C with at least ck|G|2 triples (x, y, xy) ∈ A3 where ck is a constant
depending only on k.

The proof is a routine adaptation, but we shall not give it as the result as stated also
follows from our next theorem.

If G is non-Abelian then we might like to ask for quadruples (x, y, xy, yx) ∈ A4

instead of triples. Establishing the following result (which we do in Section 2) is the
main purpose of the paper.

Theorem 1.2. Suppose that G is a finite group and C is a cover of G of size k. Then
there is a set A ∈ C with ck|G|2 quadruples (x, y, xy, yx) ∈ A4 where ck is a constant
depending only on k.

When G is non-Abelian we should like to ensure that at least one of the quadruples
found in Theorem 1.2 has xy , yx, and to this end we define the commuting probability
of a finite group G to be

c(G) :=
1
|G|2

∑
x,y∈G

1[xy=yx];
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in words, it is the probability that a pair (x, y) ∈ G2 chosen uniformly at random
has xy = yx. There are many nice results about the commuting probability (see the
introduction to [10] for details) and it is an instructive exercise (see [9]) to check that
if c(G) < 1 then c(G) ≤ 5

8 , so that if a group is non-Abelian there are ‘many’ pairs that
do not commute. Despite this we prove the following result in Section 3.

Proposition 1.3. Suppose that G is a finite group and c(G) ≥ ε. Then there is a cover
C of G of size exp((2 + oε→0(1))ε−1 log ε−1) such that if A ∈ C and (x, y, xy, yx) ∈ A4

then xy = yx.

If G is non-Abelian we write k(G) for the noncommuting Schur number of G, that
is, the largest natural number such that for any cover C of G of size k(G) there is some
A ∈ C and (x, y, xy, yx) ∈ A4 with xy , yx. (Note that since G is assumed non-Abelian
we certainly have k(G) ≥ 1.)

The number k(G) has been studied for a range of specific groups by McCutcheon
in [12] and we direct the interested reader there for examples and further questions.

Theorem 1.4. Let (Gn)n be a sequence of non-Abelian groups. Then c(Gn)→ 0 if and
only if k(Gn)→∞.

Proof. The right to left implication follows immediately from Proposition 1.3. We can
assume that ck is monotonically decreasing. Suppose that c(Gn)→ 0 and there is a k0
and an infinite set S of natural numbers such that k(Gn) < k0 for all n ∈ S . Let n ∈ S
be such that c(Gn) < ck0 which can be done since c(Gn)→ 0 and ck0 > 0.

Since k(Gn) < k0 there is a cover C of Gn of size k0 such that if A ∈ C and
(x, y, xy, yx) ∈ A4 then xy = yx. By Theorem 1.2 there is an A ∈ C such that
(x, y, xy, yx) ∈ A4 for at least ck0 |Gn|

2 quadruples. But then by design xy = yx for all
these pairs and so c(Gn) ≥ ck0 , a contradiction which proves the result. �

Before closing this section we need to acknowledge our debt to previous work.
In [13] McCutcheon proves that k(Sn)→∞ as n→∞. A short calculation shows that
c(Sn)→ 0 as n→∞, and the possibility of showing that k(Gn)→∞ as c(Gn)→ 0 is
identified by Bergelson and Tao in the remarks after [5, Theorem 11]. Earlier, in [5,
Footnote 4], they also observe the significance of Neumann’s work [14] which is the
main idea behind the proof of Proposition 1.3.

Write D(G) for the smallest dimension of a nontrivial unitary representation of G.
(This is called the quasirandomness of G in [5, Definition 1] following the work of
Gowers [8].) In [5, Corollary 8] the authors show that k(Gn)→∞ as D(Gn)→∞, and
in fact go further proving a density result. For general finite groups there can be no
density result; we refer the reader to the discussion after [5, Theorem 11] for more
details.

2. Proof of Theorem 1.2

The proof of Theorem 1.2 is inspired by an attempt to translate the proof of
[3, Theorem 3.4] into a combinatorial setting. There the authors use a recurrence
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theorem [4, Theorem 5.2]; in its place we use a version of the Ajtai–Szemerédi corners
theorem [1] for finite groups. This was proved by Solymosi [22, Theorem 2.1] using
the triangle removal lemma.

Theorem 2.1. There is a function f∆ : (0, 1]→ (0, 1] such that if G is a finite group and
A ⊂ G2 has size at least α|G|2 then

S (A) :=
1
|G|3

∑
x,y,z∈G

1A(x, y)1A(zx, y)1A(x, yz) ≥ f∆(α).

Proof. Following the proof of [22, Theorem 2.1], form a tripartite graph with three
copies of G as the vertex sets (call them V1,V2,V3) and joining (x, y) ∈ V1 × V2 if and
only if (x, y) ∈ A; (y,w) ∈ V2 × V3 if and only if (y−1w, y) ∈ A; and (x,w) ∈ V1 × V3 if
and only if (x,wx−1) ∈ A. The map G3 → G3; (x, y,w) 7→ (x, y, y−1wx−1) is a bijection
and (x, y,w) is a triangle in this graph if and only if (x, y), (zx, y), (x, yz) ∈ A where
z = y−1wx−1.

It follows from [23, Theorem 1.1] that one can remove at most

3 · oS (A)→0(|G|2) = oS (A)→0(|G|2)

elements fromA to make the graph triangle-free. On the other hand if (x, y) ∈ A then
(x, y, xy) is a triangle in the above graph and hence we must have removed all elements
fromA and α|G|2 ≤ oS (A)→0(|G|2) from which the result follows. �

There are a number of subtleties around the extent to which one can replace, say,
(zx, y) with (xz, y), and we refer the reader to the papers of Solymosi [22] and Austin [2]
for some discussion.

We take the convention, as we can, that the function f∆ is monotonically increasing
and f∆(x) ≤ x for all x ∈ (0, 1]. Even with Fox’s work [7], in general we only have
f∆(α)−1 ≤ T (O(logα−1)). However, when G is Abelian much better bounds are known
as a result of the beautiful arguments of Shkredov [19–21]. It seems likely that these
could be adapted to give a bound with a tower of bounded height if the Fourier analysis
is adapted to the non-Abelian setting in the same way as it is for Roth’s theorem in [17].
Doing so would give a quantitative version of [5, Theorem 10] (see [5, Remark 44]),
but the improvement to Theorem 1.2 would only be to replace a wowzer-type function
with a tower as we shall see shortly.

We shall prove the following proposition from which Theorem 1.2 follows
immediately on inserting the bound for f∆ given by Theorem 2.1.

Proposition 2.2. Suppose G is a finite group and C is a cover of G of size k. Then
there is a set A ∈ C with (g(k+1)(1))2|G|2 quadruples (x, y, xy, yx) ∈ A4, where g(k+1) is
the (k + 1)-fold composition of g with itself and g : (0, 1]→ (0, 1];α 7→ (3k)−1 f∆(αk).

Proof. Write A1, . . . , Ak for the sets in C ordered so that their respective densities are
α1 ≥ · · · ≥ αk; since C is a cover we have α1 ≥ 1/k. Let r ∈ {1, . . . , k} be minimal such
that

1
3 f∆(α1 · · ·αr) ≥ αr+1 + · · · + αk, (2.1)
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which is possible since the sum on the right is empty and so 0 when r = k. From
minimality and the order of the αis,

αi+1 >
1
3k

f∆(α1 · · ·αi) for all 1 ≤ i ≤ r − 1.

The function f∆ is monotonically increasing and f∆(x) ≤ x for all x ∈ (0,1] so it follows
from the above that αr ≥ g(r)(1) ≥ g(k)(1).

Now, suppose that s1, . . . , sr ∈ G and write

Ai := {(x, y) ∈ G2 : xsiy ∈ Ai} for 1 ≤ i ≤ r.

Then
Esi∈G1Ai (x, y) = αi for all x, y ∈ G and 1 ≤ i ≤ r,

and so

Es∈Gr

∣∣∣∣∣ r⋂
i=1

Ai

∣∣∣∣∣ =
∑
x,y∈G

Es∈Gr

r∏
i=1

1Ai (x, y) = α1 · · ·αr |G|2.

By averaging we can pick some s ∈ Gr such thatA :=
⋂r

i=1Ai has |A| ≥ α1 · · ·αr |G|2.
By the definition of f∆ (from Theorem 2.1),

Ex,y,z∈G1A(x, y)1A(zx, y)1A(x, yz) = S (A) ≥ f∆(α1 · · ·αr);

write
Z := {z ∈ G : Ex,y∈G1A(x, y)1A(zx, y)1A(x, yz) ≥ 1

3 f (α1 · · ·αr)}.

Then

P(Z) + 1
3 f∆(α1 · · ·αr) ≥ Ex,y,z∈G1Zt(G\Z)(z)1A(x, y)1A(zx, y)1A(x, yz)

= S (A) ≥ f∆(α1 · · ·αr),

and hence P(Z) ≥ 2
3 f∆(α1 · · ·αr). But then

P(Z \ (Ar+1 ∪ · · · ∪ Ak)) ≥ 2
3 f∆(α1 · · ·αr) − (αr+1 + · · · + αk)

≥ 1
3 f∆(α1 · · ·αr)

by (2.1). Since
⋃k

i=1 Ai = G, we conclude that there is some i with 1 ≤ i ≤ k such that

P((Z \ (Ar+1 ∪ · · · ∪ Ak)) ∩ Ai) ≥
1
3r

f∆(α1 · · ·αr).

Of course (Z \ (Ar+1 ∪ · · · ∪ Ak)) ∩ A j = ∅ for r < j ≤ k and so we may assume i ≤ r.
Write Z′ := (Z \ (Ar+1 ∪ · · · ∪ Ak)) ∩ Ai. Since Z′ ⊂ Z,

Ex,y1Ai (x, y)1Ai (zx, y)1Ai (x, yz) ≥ Ex,y1A(x, y)1A(zx, y)1A(x, yz) ≥ 1
3 f∆(α1 · · ·αr)

for all z ∈ Z′. On the other hand, every z ∈ Z′ has z ∈ Ai and so we conclude that there
are at least

1
3

f∆(α1 · · ·αr)|G|2 ·
1
3r

f∆(α1 · · ·αr)|G|
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triples (x, y, z) ∈ G3 such that

z ∈ Ai, xsiy ∈ Ai, zxsiy ∈ Ai and xsiyz ∈ Ai.

The map (x, y, z) 7→ (xsiy, z) has all fibres of size |G| and so there are at least

1
9r

f∆(α1 · · ·αr)2|G|2 ≥ (g(αr))2|G|2

pairs (a, b) ∈ G2 such that a, b, ab, ba ∈ Ai. This gives the result. �

3. Proof of Proposition 1.3

The key idea comes from Neumann’s theorem [14, Theorem 1] which is already
identified in [5, Footnote 4]. Neumann’s theorem describes the structure of groups G
for which c(G) ≥ ε; they are the groups containing normal subgroups K ≤ H ≤ G such
that K and G/H have size Oε(1) and H/K is Abelian. Neumann’s theorem was further
developed in [6, Theorem 2.4], but both arguments provide a more detailed structure
than we require.

We have made some effort to control the exponent; results such as [6, Lemma 2.1]
or [15, Theorem 2.2] could be used in place of Kemperman’s theorem in what follows
at the possible expense of the 2 becoming slightly larger. Moving the 2 + oε→0(1)
below 1 would require a slightly different approach as we normalise a subgroup of
index around ε−1 at a certain point which costs us a term of size ε−1!.

Proposition (Proposition 1.3). Suppose that G is a finite group and c(G) ≥ ε. Then
there is a cover C of G of size exp((2 + oε→0(1))ε−1 log ε−1) such that if A ∈ C and
(x, y, xy, yx) ∈ A4 then xy = yx.

Proof. We work with the conjugation action of G on itself (that is, (g, x) 7→ g−1xg) and
write xG for the conjugacy class of x (the orbit of x under this action) and CG(x) for
the centre of x in G (the stabiliser of x under this action).

Let η, ν ∈ (0, 1] be parameters (we shall take ν = 1
2 and η = ε/ log ε−1) to be

optimised later and put
X := {x ∈ G : |xG | ≤ η−1}.

Then

ε|G|2 ≤ |G|2P(xy = yx) =
∑

x

|CG(x)| = |G|
∑

x

1
|xG |
≤

∑
x∈X

|G| +
∑
x<X

η|G|.

Writing κ := |X|/|G| we can rearrange the above to see that κ ≥ (ε − η)/(1 − η).
Suppose that s ∈ N is maximal such that

|

s times︷ ︸︸ ︷
X · · · X | ≥ (1 + (1 − ν)(s − 1))|X|.

There is some s ∈ N since the inequality certainly holds for s = 1, and there is a
maximal such s with s ≤ (κ−1 − ν)/(1 − ν) since |X| ≥ κ|G|.
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Since 1G
G = {1G} we have 1G ∈ X and 1G ∈ X · · · X for any s-fold product. By

Kemperman’s theorem [11, Theorem 5] (also recorded on [16, page 111], and which
despite the additive notation does not assume commutativity) it follows that there is
some H ≤ G such that

|

s+1 times︷ ︸︸ ︷
X · · · X | ≥ |

s times︷ ︸︸ ︷
X · · · X | + |X| − |H| and H ⊂

s+1 times︷ ︸︸ ︷
X · · · X .

By the maximality of s,

(1 + (1 − ν)s)|X| > |

s+1 times︷ ︸︸ ︷
X · · · X | ≥ (1 + (1 − ν)(s − 1))|X| + |X| − |H|.

Consequently |H| > ν|X| and so |G/H| < ν−1κ−1.
Let K be the kernel of the action of left multiplication by G on G/H, that is,

K := {x ∈ G : xgH = gH for all g ∈ G}. The action induces a homomorphism from G
to Sym(G/H) so that by the First Isomorphism Theorem

K /G and |G/K| ≤ |Sym(G/H)| ≤ |G/H|!.

Each x ∈ H (and hence each x ∈ K since xH = H for such x) can be written as a product
of s + 1 elements of X. Moreover, the function x 7→ |xG | is submultiplicative, that is
|(xy)G | ≤ |xG ||yG |, and so it follows that

|xG | ≤ η(s+1) ≤ R := bη−(κ−1+1−2ν)/(1−ν)c

for all x ∈ Xs+1 and in particular for all x ∈ K. Thus for each x ∈ K there is an injection
φxG : xG → {1, . . . ,R}. With this notation we can define our covering; let

S := {{x ∈ K : φxG (x) = i} : 1 ≤ i ≤ R} and C := ((G/K) \ {K}) ∪ S,

so that S is a cover of K and C is a cover of G. Now

|C| ≤ |G/K| − 1 + |S| ≤ bν−1κ−1c! − 1 + R

≤ exp
(

max
{
ν−1κ−1 log ν−1κ−1,

κ−1 + 1 − 2ν
1 − ν

log η−1
}

+ O(1)
)
.

Optimise this by taking ν = 1
2 and η = ε/ log ε−1 as mentioned before so that

κ ≥ ε(1 − oε→0(1)) and log η−1 = (1 + oε→0(1)) log ε−1.
Suppose that A ∈ C and x, y, xy, yx ∈ A. If A ∈ (G/K) \ {K} then xK = yK = xyK =

yxK = A. Since K / G we have xK = xyK = (xK)(yK) and so yK = K which is a
contradiction. It follows that A ∈ S and hence x, y, xy, yx ∈ K. We conclude that
φ(xy)G (xy) = φ(yx)G (yx) but xy = y−1(yx)y and so (xy)G = (yx)G. Since φ(xy)G is an
injection, xy = yx as required.

The result is proved. �
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