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1. Introduction

Many problems involving the solution of partial differential equations require the
solution over a finite region with fixed boundaries on which conditions are prescribed.
It is a well known fact that the numerical solution of many such problems requires
additional conditions on these boundaries and these conditions must be chosen to
ensure stability. This problem has been considered by, amongst others, Kreiss [11, 12,
13], Osher [16, 17], Gustafsson et al. [9] Gottlieb and Tarkel [7] and Burns [1]

It is also necessary to solve partial differential equations over infinite domains, this
type of problem occurring in transonic flows, seismology and meteorology. A numerical
solution must be over a finite domain and one method of limiting the area of
computation is to use artificial boundaries on which suitable conditions must be
obtained. These conditions must be such that the solution of the modified problem is
close to that of the original one over their common domain. If there is exact
correspondence between the solutions the boundary condition becomes non-reflecting.

Engquist and Majda [2, 3] examined such a problem, using the theory of pseudo-
differential operators to construct well-posed boundary conditions for wave and other
differential equations. Although the ideal non-reflecting boundary conditions are
non-local in both time and space, practical computing considerations required them to
use conditions which are local in both time and space. For the numerical problem these
local conditions were approximated in a stable manner and it was shown that the
resulting reflection at the artificial boundaries was small. In the second paper Engquist
and Majda also considered the construction of radiation boundary conditions for the
difference equation approximating the differential equation. For a finite difference
approximation to the wave equation they obtained the symbol of the theoretical
discrete-radiation boundary condition from the symbol of the approximation to the
differential equation. Practical stable finite difference boundary conditions involving a
parameter were given such that their symbol approximates closely that of the theoreti-
cal boundary condition. It is suggested that the parameter be chosen to minimise the
truncation error of the boundary approximation and an estimate of the reflection
coefficient for the boundary is given.

Gustafsson and Kreiss [10] examine the problem of artificial boundaries in a different
manner though some of the boundary approximations they derive are equivalent to the
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'no reflection' principle of Engquist and Majda. Initially a scalar problem on the half
line 0 = x<°° was considered and approximated by a similar problem over a finite
interval O S x ^ a so that a boundary condition is required at x = a. They sought
conditions for the Lax-Wendroff scheme such that convergence occurred and they
extended their results to systems with constant coefficients. The variable coefficient
problem was also considered and the structure for conditions on the artificial boundary
obtained. However only for certain cases can they be represented in a simple manner.
In their analysis Gustafsson and Kreiss used the correspondence at x = a between the
solutions for 0 S x = a and a = x<°°. A somewhat similar approach is used in this
paper.

The equation

^ ^ (1.1)+ 0
dt dx

can, for example, be used to represent, in conservation form, hydrodynamic flows in
one space variable, u being a three vector for this with components of density,
momentum and energy and F(u) is a vector function of u. Consider two problems
involving the solution of an equation of the type given by (1.1), firstly on the half line
0^=x<°°, (SO with initial conditions u(x, 0) = f(x) and some boundary condition on
x = 0 and secondly on the line — °o < x <oo with u(x, 0) = 0 for x < 0 and u(x, 0) = f(x) for
x is 0. The problems are discretised with a rectangular mesh, of sides Ax in the space
direction at At in the time direction, imposed on the solution domain such that x = 0 is
a mesh line. Suppose (1.1) is approximated by the one space variable Lax-Wendroff
scheme. With regard to the second problem implementation of this scheme at mesh
points in the region x < 0 shows that 1/JJ can be evaluated in terms of Uf, N<n and
j = 0 or 1, V> denoting the value of u at the point (/ Ax, n At).

The solution of the first problem using the Lax-Wendroff scheme requires a
boundary condition at x = 0 and matching the solutions of the two problems at x = 0
suggests a suitable boundary condition to be of the form

UZ+'=t CkUrk+1- (1.2)
k = l

This condition is local in space but non-local in time and the Ck sequence has to be
determined.

In Section 2 a generalisation of (1.1) and (1.2) to any finite number of space variables
is considered and a recurrence relation obtained for the corresponding Ck sequence.
The stable boundary conditions obtained are non-local in both time and space and it
was found impossible to implement them because of storage requirements. However
usable stable boundary conditions for the one space variable case are obtained. Initially
the conditions are obtained as a special case of the multidimensional problem and
involve some storage of past data. They are referred to as 'time dependent' boundary
conditions. 'Space dependent' conditions, which are local in time but not in space, are
obtained in Section 3 for the one space variable case and involve no storage of past
information.

Finally, in Section 4, the use of the one dimensional boundary conditions for higher
dimensional problems, with a Strang scheme used at the interior points, is examined.
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Gourlay and Morris [5, 6] and Morris and McGuire [14] considered the use of Strang
schemes for multidimensional problems with fixed boundaries and values prescribed on
some of them, that is they considered the situation where the characteristic conoid from
a point on the boundary cuts this boundary at only that point. Morris and McGuire [15]
also examined this problem and developed a method for feeding in the boundary data
such that stability was not upset.

A more difficult situation arises when artificial boundaries have to be used and the
characteristic conoid from a point on such a boundary cuts that boundary at more than
one point. The 'time dependent' one space variable boundary conditions are modified
for use with the Strang schemes and it is shown that stable boundary conditions of the
required accuracy are obtained. A similar result is obtained by modifying the 'space
dependent' conditions for use with the Strang schemes.

2. The problem with artificial boundaries

2.1. Time dependent boundary conditions for quarter space problems

The equation

in m (^1) space variables xp, -<^<xp <°°, <S0, p = 1, 2 , . . . , m, with u given at t = 0
and u asymptotically constant as any xp —» ±c° describes an initial value problem. (2.1)
is taken to be hyperbolic and in it Fp{u) is a vector of the same dimension as the vector
u. To enable this problem to be solved numerically two artificial boundaries are
required in each space direction. These boundaries are taken normal to the co-ordinate
axes and without loss of generality can be considered to be situated at xp = 0 and
xp = a p >0, p = l , 2 , . . . , m.

Suitable conditions must be derived for each of these boundaries. To obtain these
conditions the problem may be considered to be the intersection of 2m quarter space
problems, two in each space direction. Typical are the problems associated with the
boundaries xP = 0, xP = aP, P a value of p. The first, a right quarter space problem,
requires an expression to be determined for u at x — 0 for the problem defined by (2.1),
0SxP<°°, r ^ o with u given at r = 0 and the second, a left quarter space problem,
requires an expression for u at xP = aP for -°°<x P Sa P , t^O. In both problems
-°°<xp <c°, p = 1, 2 , . . . , m, pi2 P. By virtue of the similarity of the problems in each
space direction analysis need only be carried out for the artificial boundaries associated
with one of the space variables, namely xP.

Provided the boundary is sufficiently far removed from any source of disturbance and
the restriction imposed on u in (2.1) applies the linearised form of (2.1) can be used in
the vicinity of the boundary. Therefore for the purpose of the boundary analysis (2.1) is
considered to be replaced by

at p a ] ox
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where Ep(u) is the Jacobian of Fp(«) and Ep = Ep(u) is taken to be constant. The
problem is discretised and (2.2) approximated by the stable difference scheme

l/,"+1 = aIU/
n

+1 + a0£/;' + a_1l/;
i_1 (2.3)

where U" is a vector containing all the nodal values at the time station l = nAl and the
space station x=j Ax. U is required at all the mesh points in the solution domain and it
is assumed that the vector space remains finite. The a's are square matrix operators
which can only be simultaneously reduced to diagonal form in the one space variable
case.

The discrete forms of the initial and boundary value problems are now considered
and without loss of generality P is taken to be one in the analysis.

Problem 1. (2.3) is to be solved for -oo<y<oo with initial conditions 17° given for
all ; gO and 17° = 0 for / < 0 .

Problem 2. (2.3) is to be solved in the quarter space 0^Xi<°°, -°°<Xp<°°, t^O
and p = 2, 3 , . . . , m. 17"+1 for ; > 0 is obtained from (2.3) provided suitable initial and
boundary conditions are prescribed. The initial conditions are those for Problem 1 for
/SO and Uo is obtained from the boundary conditions

£ Akurk+1= t BkVrk, (2-4)
k=l k=\

Ak and Bk being constant matrices of the same order as the a's and have to be
determined.

These matrices are determined by demanding exact correspondence between the
solutions of Problems 1 and 2 at xa = 0. A corresponding left quarter space problem
can be defined for -oo<x1gAT Axu -°°<Xp <« , p = 2, 3 , . . . , m, fgO where N Axx =
au N a natural number. The boundary condition to be applied at x = N Axj is

The matrices in this are constant and the method of determining them is similar to that
for Ak and Bk in (2.4) so that the analysis will be confined to that case.

Problems 1 and 2 are solved by discrete Laplace Transforms. The transform is
defined by

with c large enough to ensure the uniform convergence of the series. Multiply (2.3) by
exp (-sn At), sum n = 0 to oo and simplify to give

J J a_ 1 C/ ,_ 1 =/ i , (2.5)

where

/j, = -exp (s At)Uf and / , = 0 for / < 0 .
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Let

A = I Ake~\ B = I Bke, (2.6)
fc = l (c = l

where £ = exp(-s At) so that transforming (2.4) in a manner similar to (2.3) gives

AUO = BU1. (2.7)

The homogeneous form of (2.5) is

«,V;-+1+(ao-exp(sAODVi + a_1V;._1=0. (2.8)

A solution of the form V, = A'X is considered for this and for X^O this requires

Assuming the a's are of order b x b this is a polynomial of degree 2b in A. In general, if
<*! and a_x are non-singular with linear divisors and Re (s) is large, the roots separate
asymptotically into two sets of b roots. This gives

(i) A~~exp (s Ar)/A(a,) with X~ the eigenvector corresponding to the eigenvalue

(ii) A+~exp (-s At)A(a_!) with X+ the eigenvector corresponding to the eigenvalue
A(a_x).

The sets can be analytically continued for smaller Re (s) and the corresponding a's and
X's are written A"(s), X~(s), A+(s) and X+(s). Writing X* = [XfX? . . . X?], * repres-
enting either + or - , defining P+(s), P-{s) by

P+(s) = X+ diag (At, A Z,..., A^XXT1 = X+A+(X+)~X (2.9a)

PM) = X" diag (Ar, AI, • • •, Afc)(X-)-J = X-A-(X-)-1 (2.9b)

and substituting the expressions for V, into (2.8) leads to

At)/)P+ + a_, =0 (2.10)

At)/)P- + a - i=0 . (2.11)

Thus P+, P_ satisfy (2.8) so that its general solution is, with C+, C_ independent of /,

For Re (s) -* °° (2.9) gives ||P+|| -* 0, ||P_|| -> oo s 0 that for large Re (s) ||P+|| < 1, ||P_|| > 1.
Thus, for large Re (s), (P+)e -» 0 as (3 -» °° and (P_)e -»• 0 as /3 -» -oo. The solutions to
Problems 1 and 2 can thus be given in terms of P+ and P_. For Problem 1, t), is taken
such that

U, = I Pr'K/i + £ PL-'K/,. (2.12)
;=i «=j

Substituting (2.12) into (2.5) and equating coefficients of /, leads to

- iP : 1 r 1 . (2.13)
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The expression a ,P+ + a0 —exp (s AO^ + a- i^I1 and consequently l/,(s) may be singu-
lar for specific values of s. Such singularities give a contribution proportional to
exp (sk Af) in the calculation of Uf. For Re (s)>0 the stability of (2.3) ensures no such
points exist. For Problem 2, I/, is taken such that

U} = I P'+lLft + £ (Pr'M; + PL-WO/, (2.14)

Substituting this into (2.5) and (2.7) with the coefficients of /, equated gives the
following relations for L,, M{ and N^.

( ; M i l i )

A(P+iMi+PIiNi)-B(Pl-iMi+P}TiNi) = O.
When Lt= K = Nt and Mf = 0 there will be exact correspondence between the solutions
to Problems 1 and 2 and it immediately follows that

A = BP_. (2.16)

The 'exact' boundary condition for the right quarter space problem is obtained from
this. A similar result holds for the left quarter space problem, the analysis being similar
with <*! and a_r interchanged.

2.2. 'Exact' boundary conditions for the quarter space problems

The right quarter space problem is considered first, 'exact' conditions being obtained
from (2.16) by taking A = I, B = PI1. From (2.5) Bk is the coefficient of | k in the
expansion of B in powers of £ For large Re (s), (2.11) gives P_~£~1a71 so that
PI 1 ~£a! is an initial approximation for PI1. Equation (2.11) can be rearranged to give

PZ^^a^aoPZ' + a^PZ2). (2.17)

Successively better approximations to PI1 and hence Bk are obtained from this, (2.17)
producing from P_~^~1a71 the sequence

from which, since Bk is the coefficient of | k , follow the results

(2.18)
lc-2

r=i

Since the only boundary under consideration is xp = 0 the simplest way of implementing
(2.18) is to regard U" in (2.3) as the fourier transform of all the independent variables
other than t and xp. Thus if G(T),, . . . , t)m) is the amplication matrix for a component

it-3

A
i t - 3 - 9 ) , where 1 means X . then

AX /

https://doi.org/10.1017/S0013091500004053 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004053


DERIVATION OF BOUNDARY CONDITIONS 7

the a's being functions of exp (17), where y = £iiq. There is a contribution to each of
the a's from each mesh point at the appropriate space station. Let 2fq +1 be the width

of support in the direction xq, q^ p. Denote by 1f = Sdf=_tS the summation over such

ktkt
mesh points and let 2fc = S^=-k^2 denote the summation over mesh points contributing

lSfSm.f^p

to Bk, it being noted that the domain of dependence for these extends back to the
initial hyperplane. Then, for 8 = — 1, 0, 1, with

m

d = d u . . . , d p _ j , dp+1, ...,dm, a s = 2 r I I e x P (id<i'ri<i)as:d
q = l
q#p

and

Bk = 2 k IT exp (idqt]q)BKd
q = l
q#p

with Bkd interpreted as zero for \df\>ktf.
With /, = / , , . . . , jp-i, I, j p + l , ...jm equat ion (2.4) becomes

V?o = t ^u.BKdVi:k- (2-19)
k = \

Equating coefficients of exp (it,dqr]q) in (2.18) gives equations for the computation of
the Bkd's and this could be done on a "once and for all" basis. However the storage
problem created makes this impracticable. In an attempt to overcome this generating
functions were examined, these involving a summation of the product of Bkd, a time
function and powers of the xp's. Only the one space variable case will be considered,
the higher dimensional cases leading to a quadratic matrix equation which is a
generalisation of (2.23). This is considered in the next section.

For the left quarter space problem a result similar to (2.19) is obtained with the 1, 0
in ji replaced by N - 1 and N respectively. The Bk sequence is generated from
P l ' — ^a-x and is as in (2.18) with ax and a_! interchanged. The stability of these
boundary approximations is easily established. In the given problem the method of
constructing the boundary conditions is such that the solution at mesh points on the
artificial boundaries and within the region enclosed by them is identical to the solution
obtained by applying the difference scheme at the same points for the infinite problem.
Since the finite difference representation of the infinite problem is stable then the finite
system is necessarily also stable and results in no reflection at the boundaries.

2.3. One dimensional time dependent boundary conditions

In one space dimension (2.1) is replaced by (1.1) whose linearised form is
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The generating function in this case is, with ck the one dimensional form of Bkd,

g(0 = £ ckt
fc-1 = c1+c2t+ £ ckt

k~\ (2.21)
k = l k=3

Initially the right quarter plane problem is considered and for this (2.18) gives
fc-2

c1=ax, c2 = a0cl and ck =aock_] + a_1 £ Cfc-!-!-̂ - for fci^3.

I a_, S Cfc-^c-r"-1. (2.22)
k=3 l'=l

Writing fc' + fc" = fc - 1 so that
kfI fck_1_,.c1.rk-1 = f2 £ ck-t

k'-* £ c^"""1

k = 3 1'=l k ' = l fc"=l

it follows that the last term in (2.22) reduces to a_if2g2(0 and the first term in (2.22)
combines with a0Cit to give aotg(t). Thus (2.21) becomes

a_, t2g2(O - ( / - aot)g(0 + a, = 0 (2.23)

Since only one space variable is involved the problem can be reduced to diagonal form,
with say b^ of the eigenvalues A. of E negative and b — bi of them positive. The
unknown is now represented by v= Xlu, X the matrix of eigenvectors of E. Represen-
tation can thus be made as a series of scalar equations in the components v of v so that

A At
(2.23) can be regarded as a scalar equation. Given q=~T—, where At and Ax are

respectively time and space increments, the a's will be functions of q and a study of the
characteristics at an artificial boundary shows that a condition at such a boundary is
'essential' if q < 0 . 'Essential' conditions are considered first.

Since g(f) must be non-singular at t = 0 the negative sign applies to the discriminant
of the quadratic. With a = f(ao-4a,a_1)1/2 and ix = ao(a2,-4a1a_1)~1/2 the solution of
(2.23) is

Define Q^ by

(l-2/xa + a2)1/2= ^ a*Q<()(/x), (2.25)
<J>=0

so that Qo = 1, Ql = ~ix. Using the generating function for Legendre polynomials P^ it
follows that

and by using the recurrence relation between P^, P^-x and P^-2 that

^ 0^2. (2.26)
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Substituting (2.25) into (2.24), simplifying and using (2.21) gives, with <£ = k,

1 ckt
k~l=^- t (ag-4a1a_1)

fc/2rfc-2Qk(n), ck=ck(n).
l

rk+1 inEquating the co-efficients of rk+1 in this and using (2.26) produces

ck+1 = ( a g"4T"}r+ ' {PkM-PM}, k^2. (2.27)
2a(2k + 3)

Using the above mentioned recurrence relation for Legendre polynomials it follows
that

(2.28)

Substituting (2.27) into (2.28), with 0 = k, leads to, for k g 3 ,

2k - 1 2 _ 1/2 k-2 2

This is a three point recurrence relation by means of which successive ck's can be
evaluated since cx=at. c2 = a0al. It can be simplified once a particular difference
scheme has been selected. For instance, the Lax-Wendroff approximation of (2.20)
gives a, = -5<j(l-q), ao=l-q2 and a-x=\q{\ + q). It then follows that ck=ck(ao/2)
and (2.29) becomes

f"-1- k~2 ' — (2.30)

with c, and c2 as above. Thus, for the right quarter plane problem, equation (2.19)
gives

VS= I ckvrk (2.31)

for each component V corresponding to a negative eigenvalue A. Note that a different
ck sequence is required for each such component. Equation (2.30), or (2.29) in the
general case, can be used to generate the ck coefficients on a "once and for all basis".
The components of v would still be required to be stored back to the initial level. The
stability requirements for the Lax-Wendroff scheme imply | q | < l so that |«o|< 1,
|«j|< 1 resulting in | c , |< l , | c 2 |<l and it easily follows from this and (2.30) that |c k |<l
for k < 8 . By using the second theorem of Stieltjes to give a bound on \Pk(al12)-
J\+2(«o/2)l it follows that, for k g 8 , | c k |< l provided \all2\^0.9988. The Stieltjes
bound is too conservative for |ai / 2 |> 0.9988. However as |«o/2| —* 1 the right hand side
of (2.27) tends to zero so that | c k |< l . In fact ck —* 0 as k—»<*> since ao<l and
Lim Pk(aA/2) = 0 for |aA/2|<l. Although n in (2.31) can tend to infinity this last result
k— «=

implies that only a finite number of terms of the ck sequence are required, being as low
as twelve for some values of a0.
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For the left quarter plane problem a sequence of functions ck satisfying (2.27), with
<*! and a-I interchanged, and (2.30) is produced such that Ci = a_,, c2 = a0cl. A
boundary condition is 'essential' for components with A>0 and is given by

Vn
N= t ckV"Nz\. (2.32)

Given either A > 0 for the right or A <0 for the left quarter plane problems a boundary
condition is "non-essential". Consider V partitioned into V1 for components with A <0
and V" for components with A >0 . Suitable 'non-essential' boundary conditions for the
right quarter plane problem are

VH = S0Vh • (2.33)

and for the left quarter plane problem are

Vj,= S,VjJ, (2.34)
where So, S, are constant rectangular matrices for which ||SO||<1, H S J I ^ I .

The relationship between the left and right half-plane problems and between the ck

and ck sequences implies that for a particular component the condition at x = NAx
with A > 0 for the Lax-Wendroff scheme is the same as would be obtained on x = 0 if A
had been negative. This suggests a procedure, which will not upset stability, for
'non-essential' boundary conditions at x = 0 and x = N Ax, namely replace the eigen-
value by its negative and proceed as for an 'essential' condition at that boundary. The
'non-essential' boundary condition for each component can thus be given at x = 0 by
(2.31) with cfc replacing ck and at x=NAx by (2.32) with ck replaced by ck. The
boundary conditions for the diagonalised system follow from this, finally giving for the
one space variable problem ,,

tfo= I AkU"rk (2.35a)

Wh=t AkU
n
NZ\ (2.35b)

w h e r e , f o r e x a m p l e , A k = X D k X ~ ' w i t h D k = d i a g ( c (
k

l \ ..., c k
b ' \ c k

b > + x \ ..., c(
k
b)), t h e

superscript indicating the component.
The stability of the strip problem follows from Section 2.3 and their manner of

derivation ensures the boundary conditions place no further restriction on q. Normal
mode analysis checks this and involves, for the right quarter plane problem, substituting
V" = VK'Z" into both the Lax-Wendroff scheme and the boundary condition (2.31).
Provided q < 0 examination of the spectrum of Z for \K\ < 1 shows no solution exists for
which | Z | > 1 for | « | < 1 . The corresponding result for the left quarter plane problem
requires q > 0. q = 0 gives a stable situation since it leads to a constant solution
problem. The results of Kreiss [12] therefore imply the stability of the strip problem.
Thus the presence of the derived boundary conditions does not alter the stability
requirements of the Lax-Wendroff scheme.

A typical strip problem is (1.1) with boundary conditions (2.35) and initial conditions

l)M2J'y(y-l)M
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Moo the freestream Mach number and 7 = 1.41. The stability of the boundary conditions
was tested by considering values 0.3(0.1)0.9 for M^ with Ax = 0.008 and At chosen to
be approximately 90% of the maximum allowed by the Lax-Wendroff stability criter-
ion, the two step Richtmyer version of the scheme being used at internal points. Each
run was for 1000 time steps and only in the case of Moo=0.9 was there any indication
of instability. This was overcome by decreasing Af slightly and was probably caused by
the fact that one of the ck sequences for M^ = 0.9 converged very slowly.

In the one dimensional problem the method of constructing the boundary approxi-
mation implies infinite accuracy. However all that is required is that they be second
order accurate. This is so provided

I ck = l (2.36a)
k = l

q-1+ I kck = 0 (2.36b)
k = l

1 + 2q £ (fc - l)Ck + q2 £ (fc - lfck = q2. (2.36c)
(c = l (c = l

Using the generating function g(f) these equations can be written in terms of g(l), g'(l)
and g"(l) and verified in an elementary manner using equation (2.23). Equations (2.36)
prove useful in the extension of the one space variable results to higher dimensions.

A three point recurrence relation differing from (2.19) only in the coefficient of ck_2

is obtained when a lower order term Ku is added to (2.20). The results of this section
also apply to the MacCormack schemes since they give the same a1; a0, a_i as in the
Lax-Wendroff scheme.

2.4. Modified boundary conditions

The ck sequence developed in Section 2.3 is such that ck —» 0 as fc —» 00. However in
some cases the convergence rate is very slow and it is desirable to speed this up using
modifications which are still local in space but not in time.

Since

V3+1= I ckVrk+' and V"0=tckV"rk

k = i *c = i

it follows that
n

VS+1=5VS+ X (ck-8cfc_,)Vrk+1 with ck=0 if fc<l.
k = l

There is no 8 to ensure the rapid convergence of Ck-Sc^.-!. A similar result occurs
when two parameters are used except that when the ck sequence converges very slowly
the coefficient of V, quickly becomes very small. The four parameter case, with
Sic = ck -S1C|C_1-82C|C_2-53ck_3-S4cfc_4 is therefore considered and for a particular
component of the right quarter plane problem gives

n + l

VS+1 = 51VS + 82V8-1 + 83VS-2 + 54VS"3+ I SkV7"k+1. (2.37)
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By using (2.30) Sk can be expressed in terms of ck, ck_i and cfc_2 and by letting k -» °°it
follows that St = 4a0, S2 = —2ao(l + 2a0), 53 = 4al and 84 = - a j with an error Ek in Sk

given by

This error tends to zero faster than the corresponding error for the single and two
parameter cases in almost every situation. However for certain values of a0 more than
fifty ck terms are required to ensure |Sfc|<10~6. The situation is not improved by
increasing the number of parameters to six since more ck terms are sometimes needed
to ensure |Sfc|<10~6.

A result similar to (2.37) can be obtained for the left quarter plane problem and the
pair used as a basis for the boundary conditions for the strip problem of Section 2.3.
These conditions were applied to that problem and similar results were obtained
regarding stability.

The number of ck terms to be evaluated is still higher than was hoped for and, in an
attempt to minimise this, conditions which are local in time but not in space are now
considered.

3. Spacewise boundary conditions in one space variable

In the right quarter plane problem discussed in Section 2 the boundary value at x = 0
for each component at time level (n +1) At can be obtained as a linear combination of
the values at x = 0 for the previous time levels. A boundary condition is 'essential' for
such a component when the associated eigenvalue is negative. By considering the
characteristics from a point on x = 0 it is seen that the values at time level n At for
x > 0 are dependent on the values at x = 0 for 0 ^ t < n At. It would thus seem that the
boundary condition at x = 0, (n +1) At can be given as a linear combination of values at
n At, x ^ o without affecting the internal values too much provided sufficient terms are
taken. This procedure cannot apply at x = 0 to components for which the eigenvalue is
positive, the boundary value for such components having to be obtained independently.

3.1. The half plane problems

Equation (2.20) can be reduced to diagonal form in which the feth scalar equation of
the system is

being an eigenvalue of E. The problem is discretised with time and space
increments At and Ax respectively and (3.1) is approximated by

V,"+1= I <bVU- (3-2)

Suitable initial conditions must be prescribed and the boundary condition at x = 0 is
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taken as, with s —> °°,

VS+ 1= I bpV"p. (3.3)
p=0

With r = Af/Ax, a =a, Ax and q = rd(k) real, (3.1) has a solution proportional to

exp (i{-qna+ja}). (3.4)

Substituting this into (3.2) and truncating for second order accuracy gives qh I = — 1, 0,1
appropriate to the one space variable Lax-Wendroff scheme. Stability of this implies
| q | ^ l . Substituting (3.4) into (3.3) produces

e-^ = t bpe
ipa. (3.5)

p = 0

This can be expanded in Taylor series, and powers of a equated to yield a system of
linear equations for the b's. The coefficient matrix of the system is a Vandermonde type
and unless its dimension is small there will be instability. However writing the complex
exponential in terms of a sine and a cosine and equating real and imaginary parts
produces

cos qa = Z bp cos pa and sin qa = - £ bp sin pa.
p=0 p=O

Multiplying the first of these by cos ya, the second by sin -ya, adding and integrating
from 0 to 77 gives

'"" ^ if Pi=0
bp=< v(p + q) 7r(p + q) v (3.6)

LO if p < 0 .

Thus bp —> 0 as p —» °°. A constant solution of (3.3) implies X ^P
 = 1 and from (3.6)

p=0

| b p |< l . With the possible exception of the first, these terms alternate in sign but the
rate at which bp —>0 is in general too slow for |bp| to be small enough to be ignored
when p is small.

The sign change between successive bp terms suggests considering a sequence of
elements \{bp + bp+i), p = 0 , 1 , . . . with bp = 0 if p <0 . These elements tend to zero and,
except for the first two, the terms alternate in sign. This suggests extending the
averaging process and produces the boundary condition

oo

VS+1 = Z W , (3.7)
p=0

with, for p = 0, 1 , . . . ,

K = UK + 5bp_i + 10bp-2 + 10bp-3 + 5bp_4 + bp-5) (3.8)

and bp = 0 for p <0 . (3.6) can be used to express hp in a more suitable form. Thus for

h = -15(- l )«in^
" 4ir(p + q)(p + q-l)(p + q-2)(p + q-3)(p + q-4)(p + q-5)> l '
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hp, 0^=p<5, being obtained from (3.8). It is clear that |hp |<l and, after the first six
positive terms, the signs of hp alternate. Moreover hp = O(p~6) so that they decay
rapidly. The requisite number of terms for a given accuracy depends on the value of q,
the choice p = 14 being adequate to satisfy |hp|<10~6. Considering a constant solution
of (3.7) gives

I hp = l. (3.10a)
p=0

Applying the averaging process to the /ip's gives terms which are O(p~7). This results in
greater accuracy for large p but the multiplicative constant and the additional de-
nominator term (p + q-6) ensure that the gain for small p is minimal.

Equation (3.7) is therefore chosen as the basic boundary condition, stability being
established for q ̂ 0 using normal mode analysis as in Section 2.3. The case q>0 leads
to instability, implying boundary conditions such as (2.33) must be used for such
components. Equations (2.33) and (3.7), with at most fourteen values of hp stored,
constitute suitable boundary conditions for the right quarter plane problem.

The left quarter plane problem is similar to the one described in Section 2.3 except
that 'essential' boundary conditions for q l O are given by

VnN+l=lK+NVn
p+N (3.11)

p=0

with (2.34) providing suitable conditions for components with q<0.
Second order accuracy of the boundary conditions (3.7) and (3.11) requires (3.10a)

to be satisfied together with
I p h p = - q (3.10b)

p=0

p=0

these being established using residue calculus.
An alternative for a 'non-essential' boundary condition is obtained by changing the

sign of the eigenvalue and using the hp sequence generated from the corresponding q.
Stability is not upset by this choice and a result similar to (2.35) is obtained for the
stable quarter plane problems. The results of Kreiss [12] then imply the stability of the
strip problem.

The stability of the boundary conditions was tested using the flow problem of Section
2.3 with boundary conditions (3.7), (3.11), (2.33) and (2.34) with So = & W and
Sj = [| J]. The same time and space increments were used as before and fourteen
values of hp stored. There was no evidence of any instability after 1000 time steps.

4. Higher dimensional problems

4.1. Problem in two space variables

In two space variables (2.1) takes the form

dt dx dy
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and has to be solved in the region O^xSa , O ^ y ^ b with suitable initial and boundary
conditions prescribed. The problem is discretised with a = K^ Ax, b = K2 Ay, Xj and K2

natural numbers, and (4.1) approximated by the Strang [18] scheme

Un+l=k(LxLy+LyLx)U
n. (4.2)

In this Lx and Ly are the operators associated with the one dimensional problems

dudF(u) . , du , dG(u)
—I- =0 and —I = 0
dt dx dt dy

respectively. Equation (4.2) is implemented at all internal mesh points using the
standard formulation of Morris and Gourlay [4]. This formulation uses the standard
two step Richtmyer scheme for Ly and Lx with the same approximations used for them
on boundaries on which x and y are respectively constant. Special schemes are required
for the operators Lx and Ly on boundaries on which x and y are respectively constant.
A 'time dependent' form for these is considered first.

The one dimensional nature of the basic operators in (4.2) and in the other Strang
schemes allows the stability of the boundary problem to be treated in the same fashion
as in Section 2.3. The approximations for LXU at the boundaries x = 0, x = Kx Ax are
of the form of (2.35) and are given by

Uo.i = t AkU"uk (4.3a)

UK,,I= t AkU
n
K~Xi- (4-3b)

k = l

The one dimensional 'y' problem has boundaries at y = 0, y = K2Ay and the approxi-
mations used for LyU at these boundaries are respectively

n

U"o = I BkC7?rfc (4.4a)
k = l

^ " K 2 = I 4tf/"Kl-i. (4-4b)

The results of Section 2 imply that the boundary approximations for Lx and Ly will be
bounded and the stability of the initial boundary value problem in two space variables
follows from the stability analysis of the basic Strang scheme.

Consistency and accuracy comparable with the internal scheme is also required for
the boundary approximation. At x = 0 the approximations for LxU

n and LyU" are
respectively (4.3a) and the standard Lax-Wendroff approximation. By expanding these
approximations in Taylor series and using the extension of (2.36) to a system it follows
that

LxLyU" = O(At2), LyLxU
n = O(Af2) with \{LxLy +LyLse)l7" = O(Af3), (4.5)

just as for the internal scheme. The same results hold for the boundary x = Kl Ax using
(4.3b) and also for the boundaries y = 0, y = K2 Ay using the standard Lax-Wendroff
approximation for LXU" and (4.4a), (4.4b) respectively for LyU". At the corner x = 0,
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y = 0 the boundary operators are (4.3a) and (4.4a). Expanding these in Taylor series
and using (2.36) establishes (4.5) with similar results for the other corner points. The
boundary approximations are therefore consistent and of the same order of accuracy as
the internal scheme.

The boundary conditions given above extend easily to higher dimensions and can
also be adapted for use with the Strang [19] scheme U"+1 = Lxl2LyLxl2 in its com-
pounded form. Stability follows readily and the accuracy of the boundary and internal
approximations are comparable. The main difficulty would lie in feeding in the
boundary information.

Equations (3.3) and (2.33) can be used to approximate LxU
n at x = 0, with similar

approximations used at the other boundaries. Stability follows readily but the required
accuracy, which need only be first order as is shown in Section 4.2, cannot be
established. In fact consistency only holds for a special relation between the elements of
u. This is also true of the conditions given by Gottlieb and Turkel [7]. The 'space
dependent' condition can be employed with an hp sequence defined on each boundary
for each component. The stability of such a scheme is easily established and the
required accuracy obtained from equations (3.10).

Analysis of the accuracy of the approximations follows the same pattern as given
above.

4.2. Minimum accuracy for boundary approximations

Equation (4.1) is to be considered with initial conditions uo(x, y) and homogeneous
boundary conditions which are either specified or are derivable in some way. Lx is
defined so that

Lxu0(x,y) = V(x,y,At)+O(At3)

with V(x, y, 0) = uo(x, y) and where V(x, y, At) is the solution of V, + E V x = 0 with
homogeneous boundary conditions applying. Mx is taken as the exact solution step
operator for this, that is Mx«0(x, y) = V(x, y, At), My and M being similarly defined for
the corresponding 'y problem' and the two dimensional problem.

The numerical scheme (4.2) will have the required accuracy provided

Muo(x, y) = k(MxMy +MyMx)«0(x, y) + O(At3).

Since the properties of the one dimensional operators are well established it suffices to
consider Mx, My and M, rather than the numerical operators Lx and Ly. The results of
Strang [18] ensure only mesh points for which Muo(x, y) is dependent on one or more
boundary conditions need be investigated.

Assuming no explicit dependence on t it follows from the semi group property
M(f! + f2) = M(tx)M{t2) that

} (4.6)

with similar results holding for Mx and My. Let

., (4.7)
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similar definitions applying to Mx and My with m replaced by mM and m(y).

m^ = \m\m1, (4.8)

where m[ is a Frechet derivative, this being also satisfied by m(x) and m(y). (4.6) can
thus be expanded and powers of t equated to give the operators m2, m3,... in terms of
mx. The operators MxMy and MyMx are formed and (4.8), for m2

x) and m2
y), used to

give
\{MxMy +MyMx) = / + r(m(!x)+ m(

1
y)) + ̂ 2(mi(x)+ m'1

(y))(m(
1
x)+ m(!y)) + O(t3) (4.9)

so that if m = m(,x)+m(iy) then

5(MxMy + MyMx) = M + O(t3).

Thus it is only necessary to ensure that the first order term is correct. This result is also
true of the Strang scheme Un+1 = Lx/2LyLx/2l7" in which the exact operator Mx/2

corresponding to Lx/2 is defined in a manner similar to that for Mx. Equation (4.9) is
true for the internal points and this indicates that the conditions used on the boundary
need only be first order accurate, agreeing with the one dimensional result of Gustafs-
son [8].

5. Conclusions

du dF(u)
In Section 2 the solution of the equation —I = 0 was considered over an

dt dx
infinite domain. The problem was discretised and artificial boundaries introduced in
order that a numerical solution could be effected. 'Time dependent' conditions which
were local in space but non local in time were obtained for these boundaries. Although
they were stable certain components required more storage of past information than
was desirable. This was overcome by developing, for these artificial boundaries,
conditions which were local in time but non local in space. The stable 'space dependent'
conditions involved no storage of past information.

Both the 'time dependent' and 'space dependent' boundary approximations in one
space variable were adapted for use with higher dimensional problems. In both cases
stable conditions of the required accuracy were obtained for the two space variable
problem.

Finally it was shown for the Strang schemes that it is only necessary to ensure that
the boundary approximations are of first order accuracy. This applies to problems with
the boundary conditions specified as well as to problems involving artificial boundaries.
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