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Layered carbon nitride materials, including graphitic carbon nitride (g-CNxHy) and poly(triazine imide) 

with intercalated Li and Cl ions (PTI/LiCl), are emergent materials for energy-related applications 

including solar water splitting and “postsilicon” electronics [1, 2]. Synthesis of g-CNxHy and PTI/LiCl 

involves specific pyrolysis routes that achieve heptazine (C6N7) and triazine (C3N3) based structural 

motifs, respectively, with varying degrees of amine bridging-groups owing to incomplete condensation. 

Due to their polymeric nature, it is likely that a range of defects in addition to amine content contribute 

to their optoelectronic properties. A fundamental understanding between structure and defects’ 

relationship to functionality will lead to rational engineering of these materials for efficient 

photocatalytic hydrogen production. Traditional optical characterization techniques, including 

infrared/visible/UV absorption and Raman scattering spectroscopy, are limited in the sense that they 

contain bulk-averaged signals. By employing monochromated electron energy-loss spectroscopy (EELS) 

with an aloof-beam geometry, vibrational modes and interband transitions can be probed on the 

nanoscale without damaging these beam-sensitive materials [3]. 

 

To determine the molecular species present with high spatial resolution, several vibrational EEL spectra 

(vibEELS) were acquired with a 2 meV/ch dispersion and approximate energy resolution (measured in 

the vacuum) of 16 meV. The bandgap energies were also measured in the valence-loss region using a 

dispersion of 5 meV/ch and corresponding energy resolution of ~25 meV. All EEL spectra were 

collected at 60-kV on a Nion UltraSTEM-100 using a convergence angle of 12 mrad. For g-CNxHy, a 

commercial powder (“Nicanite”) was obtained from Carbodeon Ltd. and synthesis of PTI/LiCl powder 

was performed according to Schwinghammer et al [4]. Samples for EELS were prepared by immersing 

lacey-C grids in aqueous dispersions of the powders after ultrasonicating for 40 minutes. Bulk optical 

spectroscopic techniques including UV-Vis diffuse reflectance, FTIR absorption, and FT-Raman 

(λexcitation=1064 nm) spectroscopy were also collected as a means for interpreting low-loss EEL spectra. 

 

Several vibEEL spectra taken from outside the g-CNxHy and PTI/LiCl samples exhibit two major 

features centered at around 170 and 400 meV. Figure 1(a) displays these vibEELS “fingerprints” of 

heptazine- and triazine-based carbon nitrides; all were acquired with an impact parameter of ~4 nm. 

Variations in the vibEELS signal (spectra 2 and 4) are characterized by the presence of a very weak, 

additional peak at ~265 meV, which is believed to be due to small amounts of double/triple bonded 

carbon. From the FTIR absorption spectra, the vibEELS can be directly interpreted as containing 

excitations of C-N ring stretch/bending modes (140-200 meV) and N-H stretching modes (370-410 

meV). An FT-Raman spectrum was also collected from the g-CNxHy powder. Figure 1(b) shows the raw 

FTIR and FT-Raman spectra from the g-CNxHy (heptazine-containing) sample. To simulate the effect of 

the EEL spectrometer energy resolution, the bulk optical spectra from g-CNxHy were convolved with a 

Gaussian of FWHM=16 meV. A comparison between the resulting spectra, all with the backgrounds 

subtracted, is found in Figure 1(c). Using aloof-beam valence EELS as a probe (Fig.2(a)), the bandgap 

energies of three different layered carbon nitrides were found to be between 2.7-3.1 eV. The Kubelka-

Munk diffuse reflectance spectra (f(R)=(1-R)2/2R), commonly used for determining the UV-Vis 
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absorption of highly scattering powders, is quite different from EELS in that a 2.5-eV absorption feature 

is not observed in the later. Figure 2(b) shows the experimental UV-Vis absorption spectra from the 

three different carbon nitride powders that were also measured with valence EELS. A table displaying 

the similarity in bandgap energies derived from the valence EELS and UV-Vis absorption spectra are 

summarized in Figure 2(c). A detailed interpretation of low-loss EELS, in the context of related 

bulk/optical spectroscopies, will be presented for the graphitic carbon nitride system with an overall goal 

of connecting the dots between nanoscale defects and functionality for photocatalytic water reduction. 
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Figure 1. (a) Typical vibEELS from g-CNxHy and PTI/LiCl. (b) Raw FTIR and FT-Raman spectra from 

g-CNxHy. (c) Processed FTIR and FT-Raman (background-subtracted, convolved with a Gaussian of 

FWHM=16 meV) compared to the (background-subtracted) vibEELS signal for g-CNxHy. 

 
Figure 2.  (a) Characteristic valence EELS spectra for g-CNxHy, PTI/LiCl, and amorphous PTI/LiCl (a-

PTI/LiCl); spectra are shifted vertically for clarity. (b) Normalized UV-Vis absorbance, f(R), from the 

same materials. (c) Table summarizing the extrapolated bandgap energies from both spectroscopies.  
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