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ON AN AVERAGE GOLDBACH REPRESENTATION
FORMULA OF FUJII

DANIEL A. GOLDSTON and ADE IRMA SURIAJAYA

Abstract. Fujii obtained a formula for the average number of Goldbach

representations with lower-order terms expressed as a sum over the zeros

of the Riemann zeta function and a smaller error term. This assumed the

Riemann Hypothesis. We obtain an unconditional version of this result and

obtain applications conditional on various conjectures on zeros of the Riemann

zeta function.

§1. Introduction and statement of results

Let

ψ2(n) =
∑

m+m′=n

Λ(m)Λ(m′), (1)

where Λ is the von Mangoldt function, defined by Λ(n) = logp if n = pm, p a prime and

m≥ 1, and Λ(n) = 0 otherwise. Thus, ψ2(n) counts Goldbach representations of n as sums of

both primes and prime powers, and these primes are weighted to make them have a density

of 1 on the integers. Fujii [F1], [F2], [F3] in 1991 proved the following theorem concerning

the average number of Goldbach representations.

Theorem (Fujii). Assuming the Riemann Hypothesis, we have∑
n≤N

ψ2(n) =
N2

2
−2

∑
ρ

Nρ+1

ρ(ρ+1)
+O(N4/3(logN)4/3), (2)

where the sum is over the complex zeros ρ= β+ iγ of the Riemann zeta function ζ(s), and

the Riemann Hypothesis is β = 1/2.

Thus, the average number of Goldbach representations is connected to the zeros of the

Riemann zeta function, and as we will see later, is also closely connected to the error in

the prime number theorem. The sum over zeros appears in the asymptotic formula even

without the assumption of the Riemann Hypothesis, but the Riemann Hypothesis is needed

to estimate the error term. With regard to the sum over zeros, it is useful to keep in mind

the Riemann–von Mangoldt formula

N(T ) :=
∑

0<γ≤T

1 =
T

2π
log

T

2π
− T

2π
+O(logT ) (3)
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(see [I, Th. 25] or [T, Th. 9.4]). Thus, N(T )∼ T
2π logT , and we also obtain

N(T +1)−N(T ) =
∑

T<γ≤T+1

1� logT. (4)

This estimate is very useful, and it shows that the sum over zeros in (2) is absolutely

convergent. Hence, the Riemann Hypothesis implies that∑
n≤N

ψ2(n) =
N2

2
+O(N3/2).

This was shown by Fujii in [F1]. Unconditionally, Bhowmik and Ruzsa [BR] showed that

the estimate ∑
n≤N

ψ2(n) =
N2

2
+O(N2−δ)

implies that for all complex zeros ρ = β+ iγ of the Riemann zeta function, we have β <

1− δ/6. We are interested, however, in investigating the error in (2), that is, the error

estimate not including the sum over zeros.

It was conjectured by Egami and Matsumoto [EM] in 2007 that the error term in (2) can

be improved to O(N1+ε) for any ε > 0. That error bound was finally achieved, assuming the

Riemann Hypothesis, by Bhowmik and Schlage-Puchta in [BS] who obtained O(N log5N),

and this was refined by Languasco and Zaccagnini [LZ1] who obtained the following result.

Theorem (Languasco–Zaccagnini). Assuming the Riemann Hypothesis, we have∑
n≤N

ψ2(n) =
N2

2
−2

∑
ρ

Nρ+1

ρ(ρ+1)
+O(N log3N). (5)

A different proof of this theorem was given in [GY] along the same lines as [BS]. It was

proved in [BS] that unconditionally,∑
n≤N

ψ2(n) =
N2

2
−2

∑
ρ

Nρ+1

ρ(ρ+1)
+Ω(N log logN), (6)

and therefore the error term in (5) is close to best possible.

In this paper, we combine and hopefully simplify the methods of [BS] and [LZ1]. Our

method is based on an exact form of Fujii’s formula (2) where the error term is explicitly

given. We state this as Theorem 1. We will relate this error term to the distributions of

primes, and this can be estimated using the variance of primes in short intervals.

We follow the notation and methods of Montgomery and Vaughan [MV1] fairly closely

in what follows. Sums in the form of
∑

ρ or
∑

γ run over nontrivial zeros ρ= β+ iγ of the

Riemann zeta function, and all other sums run over the positive integers unless specified

otherwise, so that
∑

n =
∑

n≥1 and
∑

n≤N =
∑

1≤n≤N . We use the power series generating

function

Ψ(z) =
∑
n

Λ(n)zn, (7)
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which converges for |z| < 1, and obtain the generating function for ψ2(n) in (1) directly

since

Ψ(z)2 =
∑
m,m′

Λ(m)Λ(m′)zm+m′
=

∑
n

( ∑
m+m′=n

Λ(m)Λ(m′)

)
zn =

∑
n

ψ2(n)z
n. (8)

Our goal is to use properties of Ψ(z) to study averages of the coefficients ψ2(n) of Ψ(z)2.

Our version of Fujii’s theorem is as follows. We take

z = re(α), e(u) = e2πiu, (9)

where 0≤ r < 1, and define

I(r,α) :=
∑
n

rne(αn), IN (r,α) :=
∑
n≤N

rne(αn). (10)

We also, accordingly, write Ψ(z) =
∑

nΛ(n)r
ne(αn) as Ψ(r,α).

Theorem 1. For N ≥ 2, we have∑
n≤N

ψ2(n) =
N2

2
−2

∑
ρ

Nρ+1

ρ(ρ+1)
−
(
2log2π− 1

2

)
N +2

ζ ′

ζ
(−1)−

∑
k

N1−2k

k(2k−1)
+E(N),

(11)

where, for 0< r < 1,

E(N) :=

∫ 1

0

(Ψ(r,α)− I(r,α))2IN (1/r,−α)dα. (12)

In particular, we have∑
n≤N

ψ2(n) =
N2

2
−2

∑
ρ

Nρ+1

ρ(ρ+1)
+E(N)+O(N). (13)

The prime number theorem is equivalent to

ψ(x) :=
∑
n≤x

Λ(n)∼ x, as x→∞. (14)

It was shown in [BS] that the error term E(N) in Theorem 1 can be estimated using the

functions1

H(x) :=

∫ x

0

(ψ(t)− t)2 dt and J(x,h) :=

∫ x

0

(ψ(t+h)−ψ(t)−h)2 dt. (15)

The integral H(x) was studied by Cramér [C] in 1921; he proved, assuming the Riemann

Hypothesis, that

H(x)� x2. (16)

Selberg [S] was the first to study variances like J(x,h) and obtain results on primes from

this type of variance, both unconditionally and on the Riemann Hypothesis. The estimate

1 In [BS] and [GY], there is a third integral error term that is also needed, but the method of [LZ1] and
here avoids this term.
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we need is a refinement of Selberg’s result, which was first obtained by Saffari and Vaughan

[SV]; they proved, assuming the Riemann Hypothesis, that for 1≤ h≤ x,

J(x,h)� hx log2
(2x
h

)
. (17)

By a standard argument using Gallagher’s lemma [M1, Lem. 1.9], we obtain the following

unconditional bound for E(N).

Theorem 2. Let log2N denote the logarithm base 2 of N. Then, for N ≥ 2, we have

|E(N)| ≤ E(N) :=

∫ 1

0

|Ψ(r,α)− I(r,α)|2|IN (1/r,−α)|dα

�
∑

0≤k<log2N

N

2k
W

(
N,

N

2k+2

)
,

(18)

where, for 1≤ h≤N ,

W(N,h) :=

∫ 1/2h

0

∣∣∣∣∣∑
n

(Λ(n)−1)e−n/Ne(nα)

∣∣∣∣∣
2

dα

� 1

h2
H(h)+

1

N2

∑
j

1

2j
H(jN)+

1

h2

∑
j

1

2j
J(jN,h)+

N

h2
.

(19)

Not only can Theorem 2 be applied to the error term in Fujii’s theorem, but it can also

be used in bounding the error in the prime number theorem.

Theorem 3. For N ≥ 2 and 0< r < 1, we have

ψ(N)−N =

∫ 1

0

(Ψ(r,α)− I(r,α))IN (1/r,−α)dα, (20)

and

ψ(N)−N �
√

E(N) logN. (21)

The formula (20) has already been used for a related problem concerning averages of

Goldbach representations [BR, (7)], and similar formulas are well known [Kou, (5.20)].

For our first application, we assume the Riemann Hypothesis and use (16) and (17) to

recover (5), and also obtain the classical Riemann Hypothesis error in the prime number

theorem due to von Koch in 1901 [Koc].

Theorem 4. Assuming the Riemann Hypothesis, then E(N) � N log3N and ψ(N) =

N +O(N1/2 log2N).

For our second application, we will strengthen the results in Theorem 4 by assuming

conjectures on bounds for J(x,h), which we will prove to be consequences of conjectured

bounds related to Montgomery’s pair correlation conjecture. Montgomery introduced the

function, for x > 0 and T ≥ 3,

F (x,T ) :=
∑

0<γ,γ′≤T

xi(γ−γ′)w(γ−γ′), w(u) =
4

4+u2
, (22)
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where the sum is over the imaginary parts γ and γ′ of zeta-function zeros. By [GM, Lem. 8],

F (x,T ) is real, F (x,T )≥ 0, F (x,T ) = F (1/x,T ), and assuming the Riemann Hypothesis,

F (x,T ) =
T

2π

(
x−2 log2T +logx

)(
1+O

(√
log logT

logT

))
(23)

uniformly for 1 ≤ x ≤ T . For larger x, Montgomery [M2] conjectured that, for every fixed

A> 1,

F (x,T )∼ T

2π
logT (24)

holds uniformly for T ≤ x ≤ TA. This conjecture implies the pair correlation conjecture

for zeros of the zeta function [Go]. For all x > 0, we have the trivial (and unconditional)

estimate

F (x,T )≤ F (1,T )� T log2T, (25)

which follows from (4).

The main result in [GM] is the following theorem connecting F (x,T ) and J(x,h).

Theorem (Goldston–Montgomery). Assume the Riemann Hypothesis. Then the

F (x,T ) conjecture (24) is equivalent to the conjecture that for every fixed ε > 0,

J(x,h)∼ hx log
(x
h

)
(26)

holds uniformly for 1≤ h≤ x1−ε.

Adapting the proof of this last theorem, we obtain the following results.

Theorem 5. Assume the Riemann Hypothesis.

(A) If for any A> 1 and T ≥ 2 we have

F (x,T ) = o(T log2T ) uniformly for T ≤ x≤ TA, (27)

then this implies, for x≥ 2,

J(x,h) = o(hx log2x), for 1≤ h≤ x, (28)

and this bound implies E(N) = o(N log3N) and ψ(N) =N +o(N1/2 log2N).

(B) If for T ≥ 2

F (x,T )� T logx holds uniformly for T ≤ x≤ T logT , (29)

then we have, for x≥ 2,

J(x,h)� hx logx, for 1≤ h≤ x, (30)

and this bound implies E(N)�N log2N and ψ(N) =N +O(N1/2(logN)3/2).

Montgomery’s F (x,T ) Conjecture (24) immediately implies (27), so we are using a

weaker conjecture on F (x,T ) in Theorem 5(A). For Theorem 5(B), Montgomery’s F (x,T )

Conjecture (24) only implies (29) for T ≤ x≤ TA, and this is a new conjecture for the range

TA ≤ x≤ T logT . Theorems 2 and 5 show that with either assumption, we obtain an improve-

ment on the bound E(N)�N log3N in (5), which we state as the following corollary.
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Corollary 1. Assume the Riemann Hypothesis. If either (27) or (28) is true, then we

have ∑
n≤N

ψ2(n) =
N2

2
−2

∑
ρ

Nρ+1

ρ(ρ+1)
+o(N log3N), (31)

whereas if either (29) or (30) is true, we have∑
n≤N

ψ2(n) =
N2

2
−2

∑
ρ

Nρ+1

ρ(ρ+1)
+O(N log2N). (32)

We will prove a more general form of the implication that a bound on F (x,T ) implies

a corresponding bound on J(x,h), but Theorem 5 contains the most interesting special

cases. We make crucial use of the Riemann Hypothesis bound (17) for h very close to x.

The conjectures (29) and (30) are weaker than what the Goldston–Montgomery theorem

suggests are true, but they suffice in Theorem 5 and the use of stronger bounds does not

improve the results on E(N). The result on the prime number theorem in Theorem 5(A) is

due to Heath-Brown [H, Th. 1]. The bound in (29) is trivially true by (25) if x≥ T logT .

For our third application, we consider the situation where there can be zeros of the

Riemann zeta function off the half-line, but these zeros satisfy the bound 1/2 < Θ < 1,

where

Θ := sup{β : ζ(β+ iγ) = 0}.

The following is a special case of a more general result recently obtained in [BHM+].

Theorem 6 (Bhowmik, Halupczok, Matsumoto, and Suzuki). Assume 1/2 < Θ < 1.

For N ≥ 2 and 1≤ h≤N , we have

J(N,h)� hN2Θ log4N and E(N)�N2Θ log5N. (33)

Weaker results of this type were first obtained by Granville [Gra1], [Gra2]. To prove

this theorem, we only need to adjust a few details of the proof in [BHM+] to match our

earlier theorems. With more work, the power of logN can be improved, but that makes no

difference in applications. We will not deal with the situation when Θ = 1, which depends

on the width of the zero-free region to the left of the line σ = 1 and the unconditional error

in the prime number theorem. The converse question of using a bound for E(N) to obtain

a zero-free region has been solved in an interesting recent paper of Bhowmik and Ruzsa

[BR]. As a corollary, we see that the terms in Fujii’s formula down to size β ≥ 1/2 are main

terms assuming the conjecture Θ< 3/4 instead of the Riemann Hypothesis.

Corollary 2. Suppose 1/2≤Θ< 3/4. Then∑
n≤N

ψ2(n) =
N2

2
−2

∑
ρ

β≥1/2

Nρ+1

ρ(ρ+1)
+o(N3/2). (34)

The term E(N) in Fujii’s formula will give main terms � N3/2 from zeros with β ≥
3/4. For weighted versions of Fujii’s theorem, there are formulas where the error term

corresponding to E(N) is explicitly given in terms of sums over zeros (see [BKP], [LZ2]). In

principle, one could use an explicit formula for Ψ(z) in Theorem 1 to obtain a complicated

formula for E(N) in terms of zeros, but we have not pursued this.
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We conclude with a slight variation on Fujii’s formula. We have been counting Goldbach

representations using the von Mangoldt function Λ(n), so that we include prime powers and

also representations for odd integers. Doing this leads to nice formulas such as Fujii’s formula

because of the weighting by logp and also that complicated lower order terms coming from

prime powers have all been combined into the sum over ρ term in Fujii’s formula. The reason

for this can be seen in Landau’s formula [L], which states that for fixed x and T →∞,∑
0<γ≤T

xρ =−TΛ(x)

2π
+O(logT ), (35)

where we define Λ(x) to be zero for real noninteger x. In the following easily proven theorem,

we remove the Goldbach representations counted by the von Mangoldt function for odd

numbers.

Theorem 7. We have ∑
n≤N
n odd

ψ2(n) = 2N logN +O(N), (36)

and therefore, by (13),∑
n≤N
n even

ψ2(n) =
N2

2
−2

∑
ρ

Nρ+1

ρ(ρ+1)
−2N logN +E(N)+O(N). (37)

The interesting aspect of (37) is that a new main term −2N logN has been introduced

into Fujii’s formula, and this term comes from not allowing representations where the von

Mangoldt function is evaluated at the prime 2 and its powers. If we denote the error term

Eeven(N) := −2N logN +E(N) in (37), then we see that at least one or both of E(N)

and Eeven(N) are Ω(N logN). The simplest answer for which possibility occurs would be

that the error term in Fujii’s formula is smaller than any term generated by altering the

support of the von Mangoldt function, in which case Eeven(N) = −2N logN + o(N logN)

and E(N) = o(N logN). Whether this is true or not seems to be a very difficult question.

§2. Proofs of Theorems 1–4

Proof of Theorem 1. We first obtain a weighted version of Fujii’s theorem. By (14),

we see Λ(n) is on average 1 over long intervals, and therefore as a first-order average

approximation to Ψ(z), we use

I(z) :=
∑
n

zn =
z

1−z
(38)

for |z|< 1. Observe that, on letting n=m+m′ in the calculations below,

I(z)
∑
m

amzm =
∑
m,m′

amzm+m′
=

∑
n≥2

⎛⎝ ∑
m≤n−1

am

⎞⎠zn,

and therefore

I(z)2 = I(z)I(z) =
∑
n≥2

⎛⎝ ∑
m≤n−1

1

⎞⎠zn =
∑
n

(n−1)zn,
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and

I(z)Ψ(z) =
∑
n≥2

⎛⎝ ∑
m≤n−1

Λ(m)

⎞⎠zn =
∑
n

ψ(n−1)zn.

Thus,

(Ψ(z)− I(z))2 =Ψ(z)2−2Ψ(z)I(z)+ I(z)2 =
∑
n

(ψ2(n)−2ψ(n−1)+(n−1))zn,

and we conclude that∑
n

ψ2(n)z
n =

∑
n

(2ψ(n−1)− (n−1))zn+(Ψ(z)− I(z))2, (39)

which is a weighted version of Theorem 1.

To remove the weighting, we take z = re(α) with 0< r < 1, and recalling (10), we have∫ 1

0

(
∑
n

anr
ne(αn))IN (1/r,−α)dα=

∑
n

∑
n′≤N

anr
n−n′

∫ 1

0

e((n−n′)α)dα=
∑
n≤N

an. (40)

Thus, using (39) with z = re(α) and 0< r < 1 in (40), we obtain∑
n≤N

ψ2(n) =
∑
n≤N

(2ψ(n−1)− (n−1))+

∫ 1

0

(Ψ(r,α)− I(r,α))2IN (1/r,−α)dα

=
∑
n≤N

(2ψ(n−1)− (n−1))+E(N).

Utilizing [I, Chap. 2, (13)], ψ1(x) :=
∫ x

0
ψ(t)dt, and ψ1(N) =

∑
n≤N ψ(n−1), we have∑

n≤N

ψ2(n) = 2ψ1(N)− 1

2
(N −1)N +E(N). (41)

To complete the proof, we use the explicit formula, for x≥ 1,

ψ1(x) =
x2

2
−
∑
ρ

xρ+1

ρ(ρ+1)
− (log2π)x+

ζ ′

ζ
(−1)−

∑
k

x1−2k

2k(2k−1)
(42)

(see [I, Th. 28] or [MV2, Chapter 12 Subsection 12.1.1, Exer. 6]). Substituting (42) into

(41), we obtain Theorem 1.

Proof of Theorem 2. Letting

Λ0(n) := Λ(n)−1n≥1, (43)

we have

E(N) :=

∫ 1

0

|Ψ(r,α)− I(r,α)|2|IN (1/r,−α)|dα

= 2

∫ 1/2

0

∣∣∣∣∣∑
n

Λ0(n)r
ne(nα)

∣∣∣∣∣
2

|IN (1/r,−α)|dα.

We will now choose r in terms of N by setting

r = e−1/N , (44)
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and with this choice, it is easy to see that for |α| ≤ 1/2, we have

|IN (1/r,−α)|=
∣∣∣∣e−e(αN)

r−e(α)

∣∣∣∣�min

(
N,

1

|α|

)
. (45)

Therefore, we obtain

E(N)�
∫ 1/2

0

∣∣∣∣∣∑
n

Λ0(n)r
ne(nα)

∣∣∣∣∣
2

min

(
N,

1

α

)
dα. (46)

Letting

hN (α) :=N10≤α≤ 2
N
+

∑
k<log2N

N

2k
1 2k

N <α≤ 2k+1

N

,

then 1
2hN (α)≤min(N, 1α)≤ hN (α) in the range 0≤ α≤ 1/2. Now, if we put

HN (α) :=
∑

0≤k<log2N

N

2k
1
0≤α≤ 2k+1

N

,

then hN (α)≤HN (α)≤ 2hN (α) and therefore 1
4HN (α)≤min(N, 1α)≤HN (α) in the range

0≤ α≤ 1/2. We conclude

min
(
N,

1

α

)
	 hN (α)	HN (α), for 0≤ α≤ 1/2.

Thus,

E(N)�
∑

0≤k<log2N

N

2k

∫ 2k+1/N

0

∣∣∣∣∣∑
n

Λ0(n)r
ne(nα)

∣∣∣∣∣
2

dα=
∑

0≤k<log2N

N

2k
W

(
N

2k+2

)
. (47)

Gallagher’s lemma gives the bound (see [M1, Lem. 1.9] or [GY, §4])

∫ 1/2h

0

∣∣∣∣∣∑
n

ane(nα)

∣∣∣∣∣
2

dα� 1

h2

∫ ∞

−∞

∣∣∣∣∣∣
∑

x<n≤x+h

an

∣∣∣∣∣∣
2

dx

provided
∑

n |an|<∞, and therefore we have

W(N,h) =

∫ 1/2h

0

∣∣∣∣∣∑
n

Λ0(n)r
ne(nα)

∣∣∣∣∣
2

dα

� 1

h2

∫ ∞

−∞

∣∣∣∣∣∣
∑

x<n≤x+h

Λ0(n)r
n

∣∣∣∣∣∣
2

dx

=
1

h2

∫ 0

−h

∣∣∣∣∣∣
∑

n≤x+h

Λ0(n)r
n

∣∣∣∣∣∣
2

dx+
1

h2

∫ ∞

0

∣∣∣∣∣∣
∑

x<n≤x+h

Λ0(n)r
n

∣∣∣∣∣∣
2

dx.

We conclude that

W(N,h)� 1

h2
(I1(N,h)+ I2(N,h)) , (48)
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where

I1(N,h) :=

∫ h

0

∣∣∣∣∣∣
∑
n≤x

Λ0(n)e
−n/N

∣∣∣∣∣∣
2

dx, I2(N,h) :=

∫ ∞

0

∣∣∣∣∣∣
∑

x<n≤x+h

Λ0(n)e
−n/N

∣∣∣∣∣∣
2

dx.

(49)

To bound I1(N,h) and I2(N,h), we will use partial summation on the integrands with

the counting function

R(u) :=
∑
n≤u

Λ0(n) = ψ(u)−
u�. (50)

Recalling H(x) and J(x,h) from (15), and making use here and later of the inequality

(a+ b)2 ≤ 2(a2+ b2), we have, for x≥ 1,∫ x

0

R(t)2 dt=

∫ x

0

(ψ(t)−
t�)2 dt=
∫ x

0

(ψ(t)− t+ t−
t�)2 dt

�
∫ x

0

(ψ(t)− t)
2
dt+

∫ x

0

(t−
t�)2 dt

�H(x)+x

(51)

and ∫ x

0

(R(t+h)−R(t))
2
dt� J(x,h)+

∫ x

0

(
t+h�−
t�−h)2dt

� J(x,h)+x.

(52)

Next, by partial summation,∑
n≤x

Λ0(n)e
−n/N =

∫ x

0

e−u/NdR(u) =R(x)e−x/N +
1

N

∫ x

0

R(u)e−u/N du, (53)

and therefore, for 1≤ h≤N , we have, using Cauchy–Schwarz and (51),

I1(N,h)�
∫ h

0

(
R(x)2e−2x/N +

1

N2

(∫ x

0

|R(u)|e−u/N du

)2
)

dx

�
∫ h

0

(
R(x)2e−2x/N +

1

N2

(∫ x

0

R(u)2e−u/N du

)(∫ x

0

e−u/N du

))
dx

�
(
1+

h2

N2

)∫ h

0

R(x)2 dx�
∫ h

0

R(x)2 dx�H(h)+h.

(54)

For I2(N,h), we replace x by x+h in (53) and take their difference to obtain∑
x<n≤x+h

Λ0(n)e
−n/N =R(x+h)e−(x+h)/N −R(x)e−x/N +

1

N

∫ x+h

x

R(u)e−u/N du

= (R(x+h)−R(x))e−x/N +O

(
h

N
|R(x+h)|e−x/N

)
+O

(
1

N

∫ x+h

x

|R(u)|e−u/N du

)
.

(55)
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Thus, we have

I2(N,h)�
∫ ∞

0

(R(x+h)−R(x))2e−2x/N dx+
h2

N2

∫ ∞

0

R(x+h)2e−2x/N dx

+
1

N2

∫ ∞

0

(∫ x+h

x

|R(u)|e−u/N du

)2

dx.

Applying the Cauchy–Schwarz inequality to the double integral above and changing the

order of integration, we bound this term by

≤ h

N2

∫ ∞

0

∫ x+h

x

R(u)2e−2u/N dudx=
h2

N2

∫ ∞

0

R(u)2e−2u/N du,

and therefore, for 1≤ h≤N ,

I2(N,h)� h2

N2

∫ ∞

0

R(x)2e−2x/N dx+

∫ ∞

0

(R(x+h)−R(x))2e−2x/N dx.

Now, for any integrable function f(x)≥ 0, we have∫ ∞

0

f(x)e−2x/N dx≤
∫ N

0

f(x)dx+
∞∑
j=1

e−2j

∫ (j+1)N

jN

f(x)dx

≤
∞∑
j=1

1

2j−1

∫ jN

0

f(x)dx,

and therefore

I2(N,h)�
∞∑
j=1

1

2j

∫ jN

0

(
h2

N2
R(x)2+(R(x+h)−R(x))2

)
dx

�
∞∑
j=1

1

2j

(
h2

N2
H(jN)+

jh2

N
+J(jN,h)+ jN

)

�
∞∑
j=1

1

2j

(
h2

N2
H(jN)+J(jN,h)

)
+N.

(56)

Thus, by (48), (54), and (56), we conclude that, for 1≤ h≤N ,

W(N,h)� 1

h2
H(h)+

1

N2

∞∑
j=1

1

2j
H(jN)+

1

h2

∞∑
j=1

1

2j
J(jN,h)+

N

h2
. (57)

Proof of Theorem 3. From (43), we have Ψ(z)− I(z) =
∑

nΛ0(n)z
n, and (20) follows

from (40). To obtain (21), applying the Cauchy–Schwarz inequality to (20) and using (45),

we have

ψ(N)−N �

√
E(N)

∫ 1/2

0

min(N,
1

α
)dα�

√
E(N) logN.
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Proof of Theorem 4. Assuming the Riemann Hypothesis, from (16) and (17), we have

H(x)� x2 and J(x,h)� hx log2x for 1≤ h≤ x, and therefore, by (19), we have W(N,h)�
N
h log2N for 1≤ h≤N , and therefore E(N)�N log3N , which is the first bound in Theorem

4, and Theorem 3 gives the second bound.

§3. Theorem 8 and the proof of Theorem 5

We will prove the following more general form of Theorem 5. In addition to J(x,h) from

(15), we also make use of the related variance

J (x,δ) :=

∫ x

0

(ψ((1+ δ)t)−ψ(t)− δt)
2
dt, for 0< δ ≤ 1. (58)

The variables h in J(x,h) and δ in J (x,δ) are roughly related by h 	 δx. Saffari and

Vaughan [SV] proved in addition to (17) that, assuming the Riemann Hypothesis, we have,

for 0< δ ≤ 1,

J (x,δ)� δx2 log2(2/δ). (59)

Theorem 8. Assume the Riemann Hypothesis. Let x≥ 2, and let L(x) be a continuous

increasing function satisfying

logx≤ L(x)≤ log2x. (60)

Then the assertion

F (x,T )� TL(x) uniformly for e
√

L(x) ≤ T ≤ x (61)

implies the assertion

J (x,δ)� δx2L(x) uniformly for 1/x≤ δ ≤ 2e−
√

L(x), (62)

which implies the assertion

J(x,h)� hxL(x) uniformly for 1≤ h≤ 2xe−
√

L(x), (63)

which implies E(N)�NL(N) logN and ψ(N) =N +O(N1/2
√
L(N ) logN).

Montgomery’s function F (x,T ) is used for applications to both zeros and primes. For

applications to zeros, it is natural to first fix a large T and consider zeros up to height T

and then pick x to be a function of T that varies in some range depending on T. This is

how Montgomery’s conjecture is stated in (24) and also how the conjectures (27) and (29)

in Theorem 5 are stated. However, in applications to primes, following Heath-Brown [H],

it is more convenient to fix a large x and consider the primes up to x, and then pick T as

a function of x that varies in some range depending on x. This is what we have done in

Theorem 8.

The ranges we have used in our conjectures on F (x,T ), J (x,δ), and J(x,T ) in Theorem

8 are where these conjectures are needed. In proving Theorem 8, however, it is convenient

to extend these ranges to include where the bounds are known to be true on the Riemann

Hypothesis.
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Lemma 1. Assume the Riemann Hypothesis. Letting x ≥ 2, then the assertion (61)

implies, for any bounded A≥ 1,

F (x,T )� TL(x) uniformly for 2≤ T ≤ xA; (64)

the assertion (62) implies

J (x,δ)� δx2L(x) uniformly for 0≤ δ ≤ 1; (65)

and the assertion (63) implies

J(x,h)� hxL(x) uniformly for 0≤ h≤ x. (66)

Proof of Lemma 1. We first prove (64). By the trivial bound (25), we have uncondition-

ally in the range 2≤ T ≤ e
√

L(x) that

F (x,T )� T log2T � TL(x),

which with (61) proves (64) for the range 2 ≤ T ≤ x. For the range x ≤ T ≤ xA, we have

T 1/A ≤ x ≤ T , and therefore on the Riemann Hypothesis (23) implies F (x,T ) ∼ T logx�
TL(x) by (60).

Next, for (65) in the range 2e−
√

L(x) ≤ δ ≤ 1, we have log2(2/δ)≤L(x), and therefore on

the Riemann Hypothesis by (59), we have J (x,δ)� δx2 log2(2/δ)� δx2L(x) in this range.

For the range 0≤ δ < 1/x, we have 0≤ δx < 1 and therefore there is at most one integer in

the interval (t, t+ δt] for 0≤ t≤ x. Hence,

J (x,δ)�
∫ x

0

(ψ((1+ δ)t)−ψ(t))
2
dt+

∫ x

0

(δt)2 dt

�
∑

n≤x+1

Λ(n)2
∫ n

n/(1+δ)

dt+ δ2x3

� δ
∑

n≤x+1

Λ(n)2n+ δ2x3

� δx2 logx+ δ2x3

� δx2(logx+ δx)� δx2 logx� δx2L(x).

(67)

By this and (62), we obtain (65). A nearly identical proof for J(x,h) shows that (63) implies

(66).

Proof of Theorem 5 from Theorem 8. To prove (A), choose L(x) = ε log2x. The

assumption (61) becomes F (x,T )� εT log2x for x
√
ε ≤T ≤ x, or equivalently T ≤ x≤T 1/

√
ε.

Letting A=1/
√
ε, we have F (x,T )�A−2T log2x for T ≤ x≤ TA. The assertion (27) implies

that this bound for F (x,T ) holds since

F (x,T ) = o(T log2T )� o(T log2x)�A−2T log2x

if A → ∞ sufficiently slowly. Thus, (63) holds which implies by Lemma 1, J(x,h) �
εhx log2x for 1 ≤ h ≤ x. Moreover, by Theorem 8, E(N) � εN log3N and ψ(N) = N +

O(
√
εN1/2 log2N), where ε can be taken as small as we wish.

To prove Theorem 5(B), choose L(x) = logx. The assumption (61) becomes F (x,T )�
T logx for e

√
logx ≤ T ≤ x, or equivalently T ≤ x ≤ T logT and this is satisfied when (29)
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holds. Thus, by (63) and Lemma 1, J(x,h) � hx logx for 1 ≤ h ≤ x, and by Theorem 8,

E(N)�N log2N and ψ(N) =N +O(N1/2 log3/2N).

Proof of Theorem 8, (61) implies (62). We start from the easily verified identity

F (x,T ) =
2

π

∫ ∞

−∞

∣∣∣∣∣∣
∑

0<γ≤T

xiγ

1+(t−γ)2

∣∣∣∣∣∣
2

dt,

which is implicitly in [M2] (see also [GM, (26)] and [Go, §4]). Next, Montgomery showed,

using (4),

F (x,T ) =
2

π

∫ T

0

∣∣∣∣∣∑
γ

xiγ

1+(t−γ)2

∣∣∣∣∣
2

dt+O(log3T ). (68)

The main tool in proving this part of Theorem 8 is the following result.

Lemma 2. For 0< δ ≤ 1 and e2κ = 1+ δ, let

G(x,δ) :=

∫ ∞

0

(
sinκt

t

)2
∣∣∣∣∣∑

γ

xiγ

1+(t−γ)2

∣∣∣∣∣
2

dt. (69)

Assuming the Riemann Hypothesis, we have, for 1/x≤ δ ≤ 1,

J (x,δ)� x2G(x,δ)+O(δx2). (70)

We will prove Lemma 2 after completing the proof of Theorem 8.

Since κ= 1
2 log(1+ δ)	 δ for 0< δ ≤ 1, we have

0≤
(
sinκt

t

)2

�min(κ2,1/t2)�min(δ2,1/t2),

and hence

G(x,δ)�
∫ ∞

0

min

(
δ2,

1

t2

)∣∣∣∣∣∑
γ

xiγ

1+(t−γ)2

∣∣∣∣∣
2

dt.

For U ≥ 1/δ, we have, since by (4)
∑

γ 1/(1+(t−γ)2)� log(|t|+2),

∫ ∞

U

1

t2

∣∣∣∣∣∑
γ

xiγ

1+(t−γ)2

∣∣∣∣∣
2

dt�
∫ ∞

U

log2 t

t2
dt� log2U

U
.

On taking U = 2log2(2/δ)/δ, we have by (68)

G(x,δ)�
∫ U

0

min

(
δ2,

1

t2

)∣∣∣∣∣∑
γ

xiγ

1+(t−γ)2

∣∣∣∣∣
2

dt+O(δ)

� δ2
∫ 2/δ

0

∣∣∣∣∣∑
γ

xiγ

1+(t−γ)2

∣∣∣∣∣
2

dt
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+
∑

k�log log(4/δ)

δ2

22k

∫ 2k+1/δ

2k/δ

∣∣∣∣∣∑
γ

xiγ

1+(t−γ)2

∣∣∣∣∣
2

dt+O(δ)

�
∑

k�log log(4/δ)

δ2

22k
(
F (x,2k/δ)+ log3(2k/δ)

)
+O(δ)

� δ2
∑

k�log log(4/δ)

1

22k
F (x,2k/δ) +O(δ).

We now assume (61) holds and therefore by Lemma 1, (64) also holds. Taking 1/x≤ δ ≤ 1,

we see that for 1≤ k� log log(4/δ) we have 2≤ 2k/δ� x logC x, for a constant C. Therefore,

F (x,2k/δ) is in the range where (64) applies, and therefore

G(x,δ)� δ2
∑

k�log log(4/δ)

1

22k
(2k/δ)L(x) +O(δ)

� δL(x),

which by (70) proves (62) over a wider range of δ than required.

Proof of Theorem 8, (62) implies (63), and the remaining results. To complete the proof

of Theorem 8, we need the following lemma of Saffari–Vaughan [SV, (6.21)] (see also [GV,

pp. 126–127]), which we will prove later.

Lemma 3 (Saffari–Vaughan). For any 1 ≤ h ≤ x/4, and any integrable function f(x),

we have ∫ x

x/2

(f(t+h)−f(t))2 dt≤ 2x

h

∫ 8h/x

0

(∫ x

0

(f(y+ δy)−f(y))2 dy

)
dδ. (71)

Taking f(t) = ψ(t)− t in Lemma 3, and assuming 1≤ h≤ x/8 so that we may apply (65),

we have

J(x,h)−J(x/2,h)� x

h

∫ 8h/x

0

J (x,δ)dδ

� x3L(x)
h

∫ 8h/x

0

δ dδ

� hxL(x).

Replacing x by x/2,x/4, . . . ,x/2k−1 and adding, we obtain

J(x,h)−J(x/2k,h) =
∑
j≤k

(
J(x/2j−1,h)−J(x/2j ,h)

)
� h

∑
j≤k

(x/2j−1)L(x/2j−1)

� hxL(x),

where we used L(x/2j−1) ≤ L(x), and note that here we need h ≤ x
2k+2 . Taking k so that

log2x≤ 2k ≤ 2log2x, then by (17), we have

J(x/2k,h)≤ J(x/ log2x,h)� hx.
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Thus,

J(x,h)� hxL(x),

for 1≤ h≤ x
8log2x

≤ x
2k+2 . This proves (63) over a larger range of h than required.

Now, applying to (19) the estimates (16) and (66) (which is implied by (63)), we obtain

W(N,h)� NL(N)

h
, 1≤ h≤N,

which by (18) gives the bound E(N)�NL(N) logN and this with (21) gives

ψ(N) =N +O(N1/2
√
L(N ) logN).

Proof of Lemma 2. We define e2κ = 1+ δ, 0< δ ≤ 1, and define

a(s) :=
(1+ δ)s−1

s
. (72)

Thus,

|a(it)|2 = 4

(
sinκt

t

)2

,

and

G(x,δ) =
1

4

∫ ∞

0

|a(it)|2
∣∣∣∣∣∑

γ

xiγ

1+(t−γ)2

∣∣∣∣∣
2

dt

=
1

8

∫ ∞

−∞
|a(it)|2

∣∣∣∣∣∑
γ

xiγ

1+(t−γ)2

∣∣∣∣∣
2

dt,

on noting the integrand is an even function since in the sum for every γ there is a −γ. The

next step is to bring |a(it)|2 into the sum over zeros using [GM, Lem. 10], from which we

immediately obtain, for Z ≥ 1/δ,

G(x,δ) =
1

8

∫ ∞

−∞

∣∣∣∣∣∣
∑

|γ|≤Z

a(1/2+ iγ)xiγ

1+(t−γ)2

∣∣∣∣∣∣
2

dt+O
(
δ2 log3(2/δ)

)
+O

(
log3Z

Z

)
.

We comment that the proof of Lemma 10 in [GM] is an elementary argument making use of

(4). We have not made use of the Riemann Hypothesis yet, but henceforth we will assume

and use ρ= 1/2+ iγ and a(ρ) = a(1/2+ iγ). In order to keep our error terms small, we now

choose

Z = x log3x, and 1/x≤ δ ≤ 1. (73)

Thus,

G(x,δ)+O(δ) =
1

8

∫ ∞

−∞

∣∣∣∣∣∣
∑

|γ|≤Z

a(1/2+ iγ)xiγ

1+(t−γ)2

∣∣∣∣∣∣
2

dt. (74)

Define the Fourier transform by

f̂(u) :=

∫ ∞

−∞
f(t)e(−tu)dt.
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Plancherel’s theorem says that if f(t) is in L1∩L2, then f̂(u) is in L2, and we have∫ ∞

−∞
|f(t)|2 dt=

∫ ∞

−∞
|f̂(u)|2 du.

An easy calculation gives the Fourier transform pair

g(t) =
∑

|γ|≤Z

a(ρ)xiγ

1+(t−γ)2
, ĝ(u) = π

∑
|γ|≤Z

a(ρ)xiγe(−γu)e−2π|u|,

and therefore by Plancherel’s theorem we have, with y = 2πu in the third line below,

G(x,δ)+O(δ) =
π2

8

∫ ∞

−∞

∣∣∣∣ ∑
|γ|≤Z

a(ρ)xiγe(−γu)

∣∣∣∣2e−4π|u| du

=
π2

8

∫ ∞

−∞

∣∣∣∣ ∑
|γ|≤Z

a(ρ)(xe−2πu)iγ
∣∣∣∣2e−4π|u| du

=
π

16

∫ ∞

−∞

∣∣∣∣ ∑
|γ|≤Z

a(ρ)(xe−y)iγ
∣∣∣∣2e−2|y| dy

≥ π

16

∫ ∞

0

∣∣∣∣ ∑
|γ|≤Z

a(ρ)(xe−y)iγ
∣∣∣∣2e−2y dy.

(75)

On letting t= xe−y in the last integral, we obtain∫ ∞

0

∣∣∣∣ ∑
|γ|≤Z

a(ρ)(xe−y)iγ
∣∣∣∣2e−2y dy =

1

x2

∫ x

0

∣∣∣∣ ∑
|γ|≤Z

a(ρ)tρ
∣∣∣∣2 dt,

and we conclude that ∫ x

0

∣∣∣∣ ∑
|γ|≤Z

a(ρ)tρ
∣∣∣∣2 dt� x2G(x,δ)+O(δx2). (76)

We now complete the proof of Lemma 2 by proving that we have∫ x

0

∣∣∣∣ ∑
|γ|≤Z

a(ρ)tρ
∣∣∣∣2 dt= J (x,δ)+O(δx2). (77)

By the standard truncated explicit formula [MV2, Chap. 12, Th. 12.5] (see also [GM,

(34)]), we have, for 2≤ t≤ x, and Z ≥ x,

−
∑

|γ|≤Z

a(ρ)tρ = ψ((1+ δ)t)−ψ(t)− δt+E(t,Z), (78)

where

E(t,Z)� t log2(tZ)

Z
+log tmin

(
1,

t

Z‖t‖

)
+log tmin

(
1,

t

Z‖(1+ δ)t‖

)
, (79)

and ‖u‖ is the distance from u to the nearest integer. Using the trivial estimate

ψ((1+ δ)t)−ψ(t)� δt log t,
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we have∣∣∣∣∣∣
∑

|γ|≤Z

a(ρ)tρ

∣∣∣∣∣∣
2

= (ψ((1+ δ)t)−ψ(t)− δt)2+O(δt(log t)|E(t,Z)|)+O(|E(t,Z)|2).

There is a small complication at this point since we want to integrate both sides of this

equation over 0≤ t≤ x, but (78) requires 2≤ t≤ x. Therefore, integrating from 2≤ t≤ x,

we obtain∫ x

0

∣∣∣∣ ∑
|γ|≤Z

a(ρ)tρ
∣∣∣∣2 dt= J (x,δ)−J (2, δ)+

∫ 2

0

∣∣∣∣ ∑
|γ|≤Z

a(ρ)tρ
∣∣∣∣2 dt+O(E∗), (80)

where

E∗ = δx logx

∫ x

2

|E(t,Z)|dt+
∫ x

2

|E(t,Z)|2 dt. (81)

We note first that, by (67),

J (2, δ)� δ.

Next, for |Re(s)| � 1, we have |a(s)| �min(1,1/|s|), and by (4), we obtain∑
|γ|≤Z

|a(ρ)| � log2Z.

Thus, ∫ 2

0

∣∣∣∣ ∑
|γ|≤Z

a(ρ)tρ
∣∣∣∣2 dt� log4Z � log4x.

Both of these errors are negligible compared to the error term δx2 � x. It remains to

estimate E∗. First, for j = 1 or 2,∫ x

2

min(1,
t

Z‖t‖)
j dt�

∑
n≤2x

∫ n+1/2

n

min

(
1,

n

Z(t−n)

)j

dt

�
∑
n≤2x

(
n

Z
+(

n

Z
)j
∫ n+1/2

n+n/Z

1

(t−n)j
dt

)

� x2 log2−jZ

Z
� x

logj+1x
.

The same estimate holds for the term in (79) with ‖(1+δ)t‖ by a linear change of variable

in the integral. Thus, ∫ x

2

|E(t,Z)|dt� x2 log2(xZ)

Z
+

x

logx
� x

logx

and ∫ x

2

|E(t,Z)|2 dt� x3 log4(xZ)

Z2
+

x

logx
� x

logx
.
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We conclude from (81) that

E∗ � δx2+
x

logx
� δx2,

since, by (73), x� δx2. Substituting these estimates into (80) proves (77).

Proof of Lemma 3. This proof comes from [GV, pp. 126–127]. We take 1≤ h≤ x/4. On

letting t= y+u with 0≤ u≤ h, we have

J : =

∫ x

x/2

(f(t+h)−f(t))2 dt=

∫ x−u

x/2−u

(f(y+u+h)−f(y+u))2 dy

=
1

h

∫ h

0

(∫ x−u

x/2−u

(f(y+u+h)−f(y+u))2 dy

)
du

≤ 1

h

∫ h

0

(∫ x−u

x/2−u

(|f(y+u+h)−f(y)|+ |f(y+u)−f(y)|)2 dy
)
du

≤ 2

h

∫ h

0

(∫ x−u

x/2−u

(f(y+u+h)−f(y))2+(f(y+u)−f(y))2 dy

)
du.

Since the integration range of the inner integral always lies in the interval [x/4,x], we have

J ≤ 2

h

∫ 2h

0

(∫ x

x/4

(f(y+u)−f(y))2 dy

)
du=

2

h

∫∫
R

(f(y+u)−f(y))2dA,

where R is the region defined by x/4≤ y≤ x and 0≤ u≤ 2h. Making the change of variable

u = δy, then R is defined by x/4 ≤ y ≤ x and 0 ≤ δ ≤ 2h/y, and changing the order of

integration gives

J ≤ 2

h

∫ x

x/4

(∫ 2h/y

0

(f(y+ δy)−f(y))2ydδ

)
dy

≤ 2x

h

∫ x

x/4

(∫ 8h/x

0

(f(y+ δy)−f(y))2 dδ

)
dy.

Inverting the order of integration again, we conclude that

J ≤ 2x

h

∫ 8h/x

0

(∫ x

0

(f(y+ δy)−f(y))2 dy

)
dδ.

§4. Proofs of Theorem 6, Corollary 2, and Theorem 7

Proof of Theorem 6. From [I, Th. 30], it is well known that

ψ(x)−x� xΘ log2x,

but it seems less well known that, in 1965, Grosswald [Gro] refined this result by proving

that, for 1/2<Θ< 1,

ψ(x)−x� xΘ, (82)
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from which we immediately obtain

H(x) :=

∫ x

0

(ψ(t)− t)2 dt� x2Θ+1. (83)

From [BHM+, Lem. 8], we have from the case q = 1 that, for x≥ 2 and 1≤ h≤ x,∫ 2x

x

(ψ(t+h)−ψ(t)−h)2 dt� hx2Θ log4x. (84)

We first need to prove that the same bound holds for J(x,h). We have

J(x,h) =

∫ h

0

(ψ(t+h)−ψ(t)−h)2 dt+

∫ x

h

(ψ(t+h)−ψ(t)−h)2 dt

:= J1(h)+J2(x,h).

For J1(h), we use (83) to see that, for 1≤ h≤ x,

J1(h)�
∫ h

0

(ψ(t+h)− (t+h))2 dt+

∫ h

0

(ψ(t)− t)2 dt�H(2h)� h2Θ+1 � hx2Θ.

For J2(x,h), we apply (84) and find for any interval (x/2k+1,x/2k] contained in [h/2,x]∫ x/2k

x/2k+1

(ψ(t+h)−ψ(t)−h)2 dt� hx2Θ log4x

22kΘ
,

and summing over k ≥ 0 to cover the interval [h,x], we obtain J2(x,h) � hx2Θ log4x.

Combining these estimates, we conclude, as desired,

J(x,h)� hx2Θ log4x, (85)

and using (83) and (85) in Theorem 2 gives E(N)�N2Θ log5N .

Proof of Corollary 2. Using (13) of Theorem 1, we see that, since the sum over zeros is

absolutely convergent, the contribution from zeros with β < 1/2 is o(x3/2).

Proof of Theorem 7. We have if n is odd that

ψ2(n) =
∑

m+m′=n

Λ(m)Λ(m′) = 2log2
∑

n=2j+m
j≥1

Λ(m) = 2log2
∑

j≤log2n

Λ(n−2j)

and therefore ∑
n≤N
n odd

ψ2(n) = 2log2
∑

j≤log2N

∑
2j<n≤N
n odd

Λ(n−2j).

We may drop the condition that n is odd in the last sum with an error of O(log2N) since

the only nonzero terms in the sum when n is even are when n is a power of 2. Hence,∑
n≤N
n odd

ψ2(n) = 2log2
∑

j≤log2N

(
ψ(N −2j)+O(log2N)

)
.
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Applying the prime number theorem with a modest error term, we have∑
n≤N
n odd

ψ2(n) = 2log2
∑

j≤log2N

(
(N −2j)+O(N/ logN)

)
= 2N logN +O(N).

§4. Added in proof

Languasco, Perelli, and Zaccagnini [LPZ1], [LPZ2], [LPZ3] have obtained many results

connecting conjectures related to pair correlation of zeros of the Riemann zeta function to

conjectures on primes. It has been brought to our attention that the main result in our

follow-up paper [GS] to this paper on the error in the prime number theorem has already

been obtained in [LPZ2]. Our method is based on a generalization Fβ(x,T ) of F (x,T ) from

(22) where w(u) is replaced with wβ(u) =
4β2

4β2+u2 . In [LPZ2], they used Fβ(x,T ) with a

change of variable β = 1/τ . The results we obtained are analogous to some of their results.

In the paper [LPZ3], it is shown how this method can be applied to generalizations of J (x,δ)

in (58). We direct interested readers to these papers of Languasco, Perelli, and Zaccagnini.
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