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1. Introduction. Baer (1) introduced the term "(£,L)-collineation" to 
denote a central collineation with centre p and axis L. We shall find it con­
venient to use a modification of the related notion of u(p, L)-transitivity." 

DEFINITION. Let 7r0 be a subplane of the projective plane T. Let L be a fixed 
line of 7To, and let p be a fixed point of TO. Let r and s be any two points of T0 that 
are collinear with p, distinct from p, and not on L. If, for each such choice of r 
and s, there is a (p, L)-collineation of T that (1) carries TO into itself and (2) 
carries r into s, we shall say that T is (p, L, 7r0)-transitive. 

In effect, the requirement is that the (p, L)-collineations of T induce a 
(p, L)-transitive group on TO. 

We shall be particularly interested in the case where every point of T not 
in 7To belongs to (exactly one) line of T0. If T is finite, this occurs precisely 
when T is of order q2, where q is the order of 7r0. 

If (with the above restriction on order) T is (/>, L, T0)-transitive for each 
point p belonging to L P\ T0 and some fixed line L, then T is a semi-transla­
tion plane with respect to L (5). The "strict" semi-translation planes do not 
admit any (p, L)-transitivities. Just as planes in general may be classified 
in terms of their (p, L)-transitivities, we may hope to get some sort of classi­
fication of semi-translation planes in terms of (p, L, 7ro)-transitivities. 

The Hughes planes (4) play a special role in this situation. If w is a Hughes 
plane of order q2, then w contains a subplane TO of order q such that T is 
(p, L, 7T0)-transitive for every p and L in 7r0 (7; 8). 

Our main result is that the Hughes planes are unique in this respect. Indeed 
we are able to prove the stronger result: Let T be a plane of order q2 con­
taining a subplane TO of order q. Let Lœ be a line of TO. Then T is a Hughes 
plane if T is (p, L, 7r0)-transitive for each choice of p in Lœ O T0 and each 
choice of L (including Lœ) in TO. 

In the infinite case, the restriction on the orders of T and T0 may be replaced 
by the condition that each point of T belongs to a line of 7ro and each line of T 
contains a point of TO. While Hughes gave his definition for finite planes (4), 
his chief tool is a left near-field of dimension two over its centre. We may thus 
speak of "infinite Hughes planes" and our result still holds for the infinite 
case. We shall find it convenient to represent the affine version of Hughes 
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planes in a form different from that originally given by Hughes. In a pre­
vious paper, we have shown that Hughes' representation can be reduced to 
ours (6). The argument is reversible and we shall not give it in detail. For our 
purposes, then, a plane is considered to be a Hughes plane if it can be co-
ordinatized in the following fashion: 

Let J be a left near-field, i.e. [a(b + c) = ab + ac], which contains a 
subfield g s uch that X is a right vector space of dimension two over %. The 
affine points are ordered pairs (x, y) of elements of X. The lines are sets of 
points whose co-ordinates satisfy equations of any one of the following types: 

(1) y = (x - a)m + 0, « J Ç g . m î g , 

(2) y = xô + b, ô € g, 

(3) x = c. 

To facilitate shifting back and forth between projective and affine planes, we 
shall consider an affine plane to be a projective plane with one line designated 
as Lœ. 

We shall be using Hall's co-ordinate system (3), although we shall make 
only limited use of the ternary as such. Where we do use it, y = T(x, m, b) 
will denote the equation of the line of slope m with intercept b. We shall use 
(m) to denote the point at infinity on y = xrn, (°°) to denote the point at 
infinity on x = 0. 

It will be understood throughout that the projective plane T contains a 
proper subplane TO such that each point of T is on at least one line of 7r0 and 
each line of T contains at least one point of TO. The line Lœ will always be 
a line of T0. The co-ordinate system for T will be chosen so that it induces a 
co-ordinate system for T0. Thus the affine points of T0 are those whose co­
ordinates are chosen from a subsystem g. Small Greek letters (except in a few 
cases where they clearly denote operators) will always denote elements of g. 

2. Development of the main theorem. 

LEMMA 1. Suppose that T is (p, Lœ, ir0) -transitive for each choice of p £ Lœ P\ TO. 

Then T can be co-ordinatized by a system X containing a subsystem g which is a 
right quasi-field (Veblen-Wedderburn system). Furthermore: 

(1) Points of TO have co-ordinates in §. 
(2) Lines of TO have equations of the form y = xa + (3 or x = 7. 
(3) Lines of T whose slopes m are not in % have equations of the form 

y = (x — a)m + ft. 
(4) (x - a)P = x/3 - a/3 for all x e X and all a, 0 <G %. 
(5) c + (b + 0) = (c + b) + Pfor all c, b e X and all p 6 g. 

Proof. (Note that, as remarked in the Introduction, small Greek letters 
denote elements of g-) Lemma 1 is essentially the same as Theorem 8 of (5) 
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so we shall not give the details. The collineations induced on w0 by the assumed 
collineations of T require that 7r0 be a translation plane. Hence 7r0 can be co-
ordinatized by a quasi-field $• The expression x — a denotes x plus the 
additive inverse of the element a which belongs to F. Part (5) of the con­
clusion is not mentioned in (5), but follows from the fact that w admits trans­
lations that can be represented as mappings (x, y) —* (x, y + /3). 

In the following lemmas, it is to be understood that T is co-ordinatized in 
the manner described in Lemma 1. 

LEMMA 2. If the hypotheses of Lemma 1 are satisfied and T admits an involutory 
collineation that fixes all points on the line y = x and interchanges (0) with 
(<»), then 

(1) (cm)mrl = c for all m ^ 0 and all c in X. 
(2) (c + b) - b = c for all c, b in X. 

Proof. The collineation must be represented by the mapping (x, y) —> (y, x). 
Since (0, 0) is fixed and (1, m) —> (ra, 1), we must have y = xm —» y = xm~l, 
where mm~l = 1. Since (c, cm) —> (cm, c), we have c = (cm)m~l, which 
establishes conclusion (1). 

Since (0, b) —» (b, 0) and (1) is fixed, y=xJt-b—>y=x — b, where 
b — b = 0. Conclusion (2) follows from the fact that (c, c + b) —-> (c + b, c). 

LEMMA 3. If the hypotheses of Lemma 1 are satisfied and T admits a homology 
with centre (oo)? axis y = 0, which carries (1) into (a), then 

(1) (cm)a = c(ma) for all c, m in X. 
(2) T(c, a, b) = (c + bor^a for all c, b in X. 

Proof. It is easily established that the homology must map (x, y) into 
(x, yd), (m) into (ma). Part (1) comes easily by looking at the point (c, cm) 
on y = xm. Note that (0, bor1) —•» (0, b). Thus y = x + bar1 -* y = T(x, a, b). 
Since (c, c + bar1) —> (c, (c + ba~l)a) on y = T(x, a, b) we get part (2) of 
Lemma 3. 

LEMMA 4. If (1) there is an affine line L' G T0 and a point r G 7r0 r\ Lœ such 
that 7T admits a central collineation of order two with axis Lf and centre r which 
carries 7r0 into itself and (2) T is (p, L, 7r0) transitive whenever p is any point 
on Lœ Pi 7To and L is any line of 7r0, then 

(1) ca + ba = (c + b)a 1 
(2) T(c, a, b) = ca + b > for all c, b £ T and all a G F; 
(3) c(a + b) = ca + cb J 
(4) addition is associative; the additive group is a right vector space over g\ 

Proof. Note the hypothesis (1) is included in hypothesis (2) if T is finite. 
Hypothesis (2) includes the hypotheses of Lemma 1 (with L = Lœ) and 

of Lemma 3, for each a i n $. The permutation group induced on Lœ C\ 7r0 by 
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the assumed collineations is triply transit ive ; the affine lines are all in a single 
transi t ive class under the group generated by these collineations. Hence the 
hypotheses of Lemma 2 are also satisfied. 

By pa r t (2) of Lemma 3, T(c, a, ba) = (c + b)a. T h u s y = (x + b)a is 
the equation of a line. Let us reconsider the involution given by the mapping 
(x, y) —> (y, x)t (m) —> (w _ 1 ) . Under this mapping, the line y = (x + b)a is 
mapped onto y = (x — Ja )a - 1 , which contains (ba, 0) and (or1) . Since 
(c, (c + b)a) is on y = (x + b)a, ((c + b)a, c) mus t be on y = (x — ba)a~1. 
Hence 

[(c + &)a — ba\oTl = £. 

We then obtain (1) b y using the right inverse laws for multiplication and 
addit ion. P a r t (2) now follows from par t (2) of Lemma 3. 

Consider the elation with axis x = 0, centre (°°), which carries (0) into 
(5). T h e line y = b mus t m a p into y = T(x, 8, 6), i.e., y = x8 + b. Since 
the lines x = constant are fixed, the mapping takes the form (x, y) —> (x, 
xô + y). Since (1, w) —> (1, 5 + m), the line y = xm maps into 3> = x(8 + w ) . 
We then obtain (3) easily. 

Since (m) —> (<5 + m) and (a, 0) —> (a, a8), 

y = (x — a)m —> 3/ = (x — a) (8 + w) + a5. 

Bu t (c, (c — a)m) —-> (c, c£ + (c — a)ra). 

Hence c8 + (c — a)m = (c — a) (8 + #z) + a5. 

Using (3) and (2), 

c8 + (c — a )w = [(c5 — aô) + (c — a)m] + «5. 

Let 8 = 1 and (c — a)ra = b; then 

c + & = [(c-a) + b)+a 

or (c + b) — a = (c — a) + b. 

Now if we use this last ident i ty together with (3) and par t 5 of Lemma 1, 

(*fi + ih) + (*fc + m) = [ («i + m) + %*] + m 

= [(fh + rn) + 1 7 » ] + « 2 

= fôi + On + 172)] + th 

= (tli + « 0 + (171 + 17s) 

= *(£i + fc) + (171 + 17*). 

Here we m a y take / to be an arbi t rary fixed element of X t h a t is no t in g» 
while £1, 771, £2, 772 are arbi trary elements of %. 

If c is any element of X, the point (/, c) is on some line y = x% + 77 of 7r0 

by the s tandard assumption mentioned a t the end of the Introduct ion. T h u s 
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each element c of X may be written in the form c = t% + 77. The fact that 
addition is associative in the quasi-field § together with the identity 

(*{l + 1?l) + («2 + 772) = *({l + £2) + (771 + 1?2) 

then implies associativity of addition in X. 
The postulated collineations are enough to ensure that T0 must be Desargue-

sian and % must be a field. Using (1) of Lemma 3 and (1) of the present 
lemma, we get that the additive group in X is a right vector space of dimension 
two over gf. 

LEMMA 5. Under the hypotheses of Lemma 4, multiplication is associative. 

Proof. Suppose that b (£ $. Then if c is an arbitrary element of X, not in g, 
c may be written in the form b~lot + fia = (J - 1 + fi)a for some choice of fi 
and a. Then 

(ab)c = (aJ)I(ft-1 + fia] = [(aô)(6"1 + j8)]a 

= [a + (ai)j8]a = [a(l + ftj8)]a = a[( l + ftj8)a] - a(ic). 

If c € g, we have already established that (ab)c = a (be). Now we wish to 
show that (aa)c = a(ac) for all oc in g, a, c in £ . Let (aa)c = d. Then 
a = {dc-l)orl = d(crlorl). But (ac)(cr1-a1) = 1; hence ac = (c"1 a" 1 ) - 1 

from the right inverse property. Thus a(ac) = d(c~l a~l)(ac) = d\ that is, 
(aa)c = a(ac). The associative law is now established in all cases. 

THEOREM 1. Let IT be a finite projective plane of order q2 containing a subplane wo 
of order q. Let Lœ be a fixed line of T0. Suppose that T is (p, L, x0)-transitive for 
every choice of p and L such that p G Lœ r\ 7r0 and L Ç TT0. Then ir is a Hughes 
plane. 

Proof. In view of the previous lemmas, the co-ordinate system we have 
chosen satisfies all of the conditions of a left near-field that is a right vector 
space over gf> with the possible exception of the left distributive law. However, 

a(b + c) = a[b(l + b-H)] = ab(l + b~x) = ab + ac. 

Hence ir is a Hughes plane as represented at the beginning of this paper. 

THEOREM 2. Let T be a projective plane containing a subplane wo such that every 
point of T is on a line of wo and every line of ir contains a point of TO. Let Lœ be 
a line of 7r0. Suppose that (1) T admits an involutory central collineation that 
carries x0 into itself, has an affine line of T0 as its axis, and has some point in 
Lœ r\ wo for its centre; (2) T is (p, L, T0)-transitive for each choice of p and L 
such that p £ Lœ f~\ TO and L Ç T0. Then T is an ilinfinite Hughes plane." 

Proof. The proof is essentially the same as the proof of Theorem 1. 
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3. Concluding remarks. It may be worth while to look at some examples 
of planes that are not Hughes planes but do admit a fair amount of (p, L, 7r0)-
transitivity. But first we remark that the whole idea is of interest chiefly in 
situations where there is a ' 'natural' ' choice for ir0. We might also note that 
instances of (p, L)-transitivity will frequently induce (p, L, ir0)-transitivity for 
an appropriately chosen ir0. In such cases, the fact that we have (p, L, 7r0)-
transitivity would seem to be relatively unimportant—unless we can make 
further choices of p and L for the same subplane to get additional (p, T, L0)-
transitivity. Note Example 1 below. 

We now give examples of finite planes of order q2 for some q. In each case, 
7To is a suitably chosen subplane of order q. In each case, there is a natural 
choice of the co-ordinate system so that the affine points of T0 have co-ordi­
nates taken from a subfield g. We shall indicate choices of p and L (in terms 
of the co-ordinate system) for which the plane is (p, L, TO)-transitive. 

1. 7T is a dual translation plane of dimension two over its kernel. Here we 
may take p = (oo ) together with L as any line of 7r0. 

2. Fryxell (2) has studied a class of dual semi-translation planes (which 
are not dual translation planes) in which we can make the same choices of 
p and L as in case 1. 

3. 7T is a self-dual semi-translational plane; cf. (5, part V) for an example. 
Here we may take L = Lœ, p as any point of Lœ P\ 7r0. Dually, we may also 
take p = (oo) and L as any line of 7r0 that goes through (oo). 

4. Fryxell (2) has investigated another class of self-dual semi-translation 
planes. Besides the (p, L, 7r0)-transitivities of case 3, here we may also take 
p as any point of iro P\ Lœ together with L as any line of 7r0 that goes through (oo ). 

In each of these classes there are planes that are not Hughes planes. The 
same remark applies to the dual of case 2. 

The outstanding unknown case is the one where p and L may be taken as 
any incident point-line pair in 7r0. This corresponds to the case where ir is 
a strict semi-translation with respect to each line of TTQ. The Hughes planes 
have this property. It is not known whether there are any other planes that 
have it. A property that can be shown to be identical with this one is the 
following: T admits a group of collineations (carrying 7r0 into itself), which 
induces a doubly transitive group of collineations on 7r0. In this case, T0 is 
Desarguesian and the induced group includes the little projective group of 
7T0. If the little projective group of w0 is the full projective group (which it 
will be if q ?£ 1 (mod 3), we could apply our Theorem 1 if we could guarantee 
that the homologies of 7r0 extend to homologies of w. The author has been 
unable to do this without making additional assumptions. 
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