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We revisit the construction of discrete kinetic models for single-component isothermal
two-phase flows. Starting from a kinetic model for a non-ideal fluid, we show that,
under conventional scaling, the Navier—Stokes equations with a non-ideal equation of
state are recovered in the hydrodynamic limit. A scaling based on the smallness of
velocity increments is then introduced, which recovers the full Navier—Stokes—Korteweg
equations. The proposed model is realized on a standard lattice and validated on a
variety of benchmarks. Through a detailed study of thermodynamic properties including
co-existence densities, surface tension, Tolman length and sound speed, we show
thermodynamic consistency, well-posedness and convergence of the proposed model.
Furthermore, hydrodynamic consistency is demonstrated by verification of Galilean
invariance of the dissipation rate of shear and normal modes and the study of
visco-capillary coupling effects. Finally, the model is validated on dynamic test cases in
three dimensions with complex geometries and large density ratios such as drop impact on
textured surfaces and mercury drops coalescence.
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1. Introduction

Multi-phase flows are omnipresent in science and technology. From micro-droplets
coalescing in clouds to solidification or melting of alloys and diesel droplets evaporation
and subsequent combustion, all involve multiple interacting phases and moving interfaces.
This ubiquity fuelled wide efforts focused on the development of predictive mathematical
models and numerical tools for multi-phase flows. While significant attention has
been focused on sharp interface methods requiring efficient tracking of the evolving
and deforming interfaces, and imposing jump conditions (Scardovelli & Zaleski 1999;
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Sethian & Smereka 2003; Prosperetti & Tryggvason 2009; Popinet 2018), the ever-growing
range of temperatures and pressures involved in typical systems of interest is making
thermodynamic consistency of the computational models essential. For instance,
dramatically different thermodynamic regimes are encountered in diesel engines during
the compression phase, in aeronautical engines during take-off, while most rocket engines
operate in trans- and super-critical regimes, where the interface thickness becomes
comparable to the flow scales. Nucleation and cavitation are yet another example, where
the sharp interface limit does not hold and modifications to the classical nucleation theory
(Debenedetti 1997), related to curvature-dependence of the surface tension, are required.
In such cases, an accurate account of the non-ideality of the fluid, including a finite
interface thickness, is crucial for predictive numerical simulations of the flow physics.
At a macroscopic level, a prime example for thermodynamics of non-ideal fluids is the
second-gradient theory, first introduced by van der Waals for single-component fluids (van
der Waals 1894), leading to the Navier—Stokes equations supplemented with the Korteweg
stress tensor (Korteweg 1901), and is a starting point for numerical methods known as
the diffuse interface approach (Anderson, McFadden & Wheeler 1998). Additionally,
extension of the Boltzmann equation to dense gases within the Enskog hard-sphere
collision model (Enskog 1921) and the Vlasov mean-field approximation (Vlasov 1961)
provides a kinetic-theory basis for the dynamics of a non-ideal fluid (Chapman & Cowling
1939).

Since the pioneering work of Shan & Chen (1993), the lattice Boltzmann method
(LBM) has gained popularity as a viable numerical tool targeting the hydrodynamic
regime of multi-phase flows. Despite their popularity and wide usage, most multi-phase
models for LBM, apart from a limited number of studies (He, Shan & Doolen 1998;
Martys 2001, 1999, 2006; He & Doolen 2002), lack a clear kinetic-theory thermodynamic
framework and/or well-defined target continuum thermodynamics. For instance, despite
active development and research, the so-called pseudo-potential lattice Boltzmann models
lack a clear and consistent continuous kinetic model, scaling law recovering the full target
macroscopic system and continuum level free energy functional (Sbragaglia et al. 2009).
Thorough analyses of the bulk thermodynamic and interface properties of the models
(especially near the critical state) are also very scarce. Furthermore, ever since their
inception, such models have continuously struggled with larger density ratio simulations
achieving at best, via different strategies, ratios of the order of 103, as reflected by a number
of recent reviews (Chen et al. 2014; Li et al. 2016).

In this paper, we revisit the construction of the lattice Boltzmann model for isothermal
two-phase flows. We propose a flexible kinetic framework for dense fluids with non-ideal
equations of states. Using the lattice Boltzmann method discretization strategy, and under
proper scaling, the model is shown to recover the full Navier—Stokes—Korteweg system of
equations. Through a detailed study of the thermodynamic properties, the model is shown
to be well posed and convergent to the capillary fluid thermodynamics. The well-posedness
of the model and proper consideration of the proposed scaling is shown to guarantee
recovery of the hydrodynamic-scale dynamics both at very large density ratio and near
critical point.

The outline is as follows: we begin in §2.1 with a summary of the second-gradient
theory due to van der Waals (1894) and Korteweg (1901). In §2.2, following a more
microscopic approach, we consider a class of kinetic models suitable for a non-ideal fluid.
We proceed in § 2.3 with a scaling assumption of small flow velocity increments which
leads to a lattice Bhatnagar—Gross—Krook (LBGK) equation with a new realization of the
non-local force that guarantees consistency with Korteweg’s stress.
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Thermodynamics of the LBGK model is validated in §3. In §§3.1 and 3.2, we
demonstrate convergence of vapour-liquid coexistence to the thermodynamic Maxwell
construction via the principle of corresponding states (Guggenheim 1945), independently
of the equation of state and for liquid—vapour density ratios up to at least ~10''. The
remainder of the paper is based on the van der Waals equation of state. In §3.3, we
show that the surface tension in the present LBGK model obeys a temperature scaling
in excellent agreement with the theory. After verifying that the proposed model allows
for choosing surface tension independently of the density ratio in § 3.4, we show in § 3.5
that it is also consistent with Gibbs’ theory of dividing surfaces (Gibbs 1874). Simulations
presented in § 3.5 reveal a generalized Laplace law and uncover the effect of curvature on
the surface tension, in agreement with the theory by Tolman (1949). Finally, in § 3.6, we
show that the interface width scales with the temperature in accord with van der Waals
theory.

We turn to probing hydrodynamic features of our model in § 4. In § 4.1, we demonstrate
that it correctly implements the jump condition for the stresses at the liquid—vapour
interface in the simulation of a layered Poiseuille flow. In §4.2, Galilean invariance
is demonstrated by measuring the dissipation of normal modes in a moving reference
frame. The viscosity—capillarity coupling is probed in § 4.3 by measuring the frequency
of higher-order capillary waves, in excellent agreement with Rayleigh’s theory (Rayleigh
1879). We also demonstrate that the damping rate of a capillary wave agrees with the
analytical solution. Validation of bulk properties is concluded by measuring the isothermal
speed of sound in §4.4, where excellent comparison to the theoretical prediction is
demonstrated for large density ratios. In §4.5, the model is extended to the simulation
of a fluid—solid interface, and is validated by demonstrating the Young—Laplace law and
a liquid column motion in a channel with non-uniform wettability. In § 5, the model is
used to simulate water impact on textured superhydrophobic surfaces and the coalescence
of mercury droplets, to demonstrate its ability to handle simulations at extremely high
density ratios. Conclusions are drawn in § 6.

2. Model for two-phase flows

2.1. Second-gradient theory: Korteweg’s stress and capillary fluid equations
In the second-gradient theory as introduced by van der Waals (1894), free energy per unit
volume is expressed as

Avaw = A+ 3|V, @.1)

where A is the bulk free energy per unit volume, p is the density and « is the capillary
coefficient. The second term represents the interface energy while the bulk free energy is
solely a function of the local density and temperature (Cahn & Hilliard 1958; Giovangigli
2020). The equilibrium state of the corresponding system is obtained by minimizing the
free energy in a given volume under the constraint of constant total mass, leading to the
stress tensor (Anderson et al. 1998),

oL
Tk =V — — LI 2.2
K ® 30V ) LI, (2.2)

where / is unit tensor and £ is the Lagrange function,

L=A+e|Vp|* = ap, (2.3)
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and A is the Lagrange multiplier for the mass constraint, or chemical potential,
1= ——kV?p, (2.4)

where V? is the Laplace operator. This in turn leads to the following Korteweg’s stress
tensor (Korteweg 1901):

Tk = (P —kpV?p — 3k|VplHI+«Vp® Vp, (2.5)
where
9A
P=p—-A (2.6)
ap

is the thermodynamic pressure, or equation of state. From the local balance equations
for mass and momentum, one obtains the macroscopic governing laws for an isothermal
capillary fluid:

oo+ Vepu=0, 2.7)
orpu+V-.pu@u+V-.T=0, (2.8)

where u is the fluid velocity and the stress tensor T is
T=Tg+ Tns. (2.9)
The Navier—Stokes viscous stress tensor reads
Tns = —uS —n(V - ul, (2.10)
where S is the trace-free rate-of-strain tensor,
S=Vu+Vu' —2(V-ul, (2.11)

and u and 7 are the dynamic and the bulk viscosity, respectively.
The momentum balance equation in (2.8) can be recast in the following form:

opu~+V-pu@u+Fr+V . -Tys =0, (2.12)
where Korteweg'’s force F is the divergence of the Korteweg pressure tensor,
Fx=V.Tg. (2.13)
The latter can be written in the following form:
Fg =VPy+ V(P —Py) —kpV(V?p), (2.14)
where we have introduced a reference pressure Py. Navier—Stokes momentum equations

with Korteweg’s force in (2.14) shall be a target for reconstruction by a suitable kinetic
model.
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2.2. Kinetic model for non-ideal fluid

To introduce a kinetic model for non-ideal fluid, we begin with the first
Bogolioubov-Born—Green—Kirkwood—Yvon (BBGKY) equation,

)
of+v-Vf=7J = //VV(lr—rlD . %ﬁ(r’ v, r1, 1, t)dvy dry, (2.15)

where f(r,v,t) and fo(r, v, r1,v1,7) are the one- and the two-particle distribution
functions, respectively, r, 1 and v, v| are particles’ position and velocity, while V is a
potential of a pair interaction. The local equilibrium state is defined by the Maxwellian 7
at constant temperature 7, parametrized by the local values of density p and flow velocity

u,
’ p (v —w)?
e = —(2 RT)2 exp |:_—2RT ] , (2.16)

where R is the gas constant. Furthermore, let us introduce a projector K onto local
equilibrium at constant temperature (Gorban & Karlin 2005),

KJ = <3feq ! 8feq>/Jd laf"‘l /vjdv. (2.17)
ap p

The projector property, > = /C, can be verified by a direct computation. With the
projector in (2.17), the interaction term in (2.15) is split into two parts by writing an
identity,

J=0-KJ+KJ. (2.18)
The first term,
Jioe = (1 =K)T, (2.19)
satisfies the local conservation of both mass and momentum,
KJtoe = 0. (2.20)

It is conventional to model the locally conserving part of the interaction with a single
relaxation time Bhatnagar—Gross—Krook (BGK) approximation,

1 1
Jioc = JBGk = —;(1 - K)f = —;(f -, (2.21)
where the relaxation time 7 is a free parameter. The second term in the identity of (2.18),

Tnioc = KT, (2.22)

satisfies the local mass but not the local momentum conservation. Indeed, after integration
by part in the velocity v and neglecting boundary integrals, we arrive at

1 of¢?
x7nloc = * Fnloc: (223)
p du
where the force F,;, reads
Foioe = / / f VV(r — rfar. v, 1. o1, 1) doy dry do. (224)
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Collecting the BGK approximation together with the non-local contribution, a generic
kinetic model may be written as

1 9fd
p ou
Evaluation of the force in (2.24) requires us to specify the particles interaction. It is
customary to invoke the Enskog—Vlasov model (Enskog 1921; Vlasov 1961), where both
hard-sphere collisions and a weak long-range attraction potential contribute to a non-local
momentum transfer. For the hard-sphere Enskog part, a de-localization of the collision is
responsible for a non-vanishing contribution of momentum transfer through the distance
between the centres of the spheres upon their impact while the Vlasov approximation
contributes non-locally to the momentum transfer from a distributed mean-field force.
Evaluation of both the Enskog and Vlasov contributions to the force in (2.24) proceeds
along familiar lines (Chapman & Cowling 1939; He et al. 1998; He & Doolen 2002; Martys
2006) and is reported in Appendices A and B for completeness,

Frpy =Fg+ Fy. (2.26)

The first term is the lowest-order contribution of the collisional momentum transfer from
the Enskog hard-sphere model,

Fg = Vbp’xRT + O(V3p). (2.27)

Here b = 4vys, with vgs = Vys/m the specific volume of a hard sphere of diameter d and
mass m, while Vs = md> /6 is the volume of the sphere. Moreover, x is the equilibrium
two-particle correlation function, evaluated at the local density reduced by the specific
volume of the hard sphere, x = x(bp(r,t)). To the lowest order, x =1+ (5/8)bp +
0((b,0)2), cf. Chapman & Cowling (1939). The second term in (2.26) is the contribution
of a long-range attraction potential V in the mean field Vlasov approximation. To third
order in the gradient of density,

1
Of +v-Vf= —;(f—feq) - * Fpioc. (2.25)

Fy =—Vap?> —kpVV?p +0(V>p), (2.28)
where parameters a and « are
o0

a=-2n / V() dr, (2.29)

d

2n [,

K = Y r*V(r)dr. (2.30)

d

Thus, with the approximations specified, the non-local force in (2.26) becomes
Fpy = V(Pgy — Po) = kpVV?p, 2.31)

where the reference ideal gas pressure Py is provided by the local Maxwellian in (2.16),
1
Po=3 f lv — u|?f¢¢dv = pRT, (2.32)

while the equation of state of the Enskog—Vlasov gas is of van der Waals type,
Pry = pRT(1 + bpy) — ap?. (2.33)

This allows us to extend the Enskog—Vlasov kinetic model, and a phenomenological
equation of state P in (2.6) can be used instead of Pgy in (2.33). Moreover, the reference
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pressure Pg can be made selective by rescaling the local equilibrium,

e P (v —u)?
e o

where D is the space dimension. While the Enskog—Vlasov partition above corresponds to
selecting Po = pRT, an alternative is provided by Reyhanian, Dorschner & Karlin (2020),
where Py = P is chosen. Another construction was proposed (Martys 1999, 2001) where
all contributions to the pressure tensor are introduced with the local attractor, rescaling
temperature and introducing a velocity shift to match the targeted system of moments.
Using the rescaled equilibria in (2.34), a family of kinetic models parametrized by the
reference pressure reads

. [V(P = Py) — kpVV?2p]. (2.35)

eq
Uf 4oV = o (f—p ) - L

T p ou

The kinetic equation in (2.35) shall be considered as a semi-phenomenological model of

a non-ideal fluid, with the relaxation time 7, the capillarity coefficient x, pressure P and

reference pressure Po as phenomenological input parameters, while the Enskog—Vlasov
realization will serve as a representative example for estimates of various flow regimes.

The analysis of the kinetic model in (2.35) under the conventional scaling of a small
deviation from a uniform state (Chapman & Cowling 1939),

V€V, 0 — €0, (2.36a,b)

is detailed in Appendix C. To second order in space derivatives, the resulting momentum
balance equation reads

opu+€eV-pu@u—+eVP+ €V -eTNS—I-O(e3) =0, (2.37)

where the dynamic viscosity p and the bulk viscosity 7 in the Navier—Stokes stress tensor
in (2.10) are defined by the reference pressure (D = 3),

uw = TtPy, (2.38)
5 9dIlnPg p (2.39)
=|=-- TPy. .
7 3 dlnp 0

Thus, the momentum balance equation in (2.37) is form-invariant with respect to the
choice of reference pressure, provided Py satisfies a sub-isentropic condition,

Py < Cp3, (2.40)

for some C > 0. With (2.40), the bulk viscosity in (2.39) is positive and vanishes when

the reference pressure follows an isentropic process for ideal monatomic gas, Py = Cp>/3.
For example, any polytropic process, Po = Ap”", 1 < n < 5/3 satisfies the sub-isentropic
condition and results in n = (5/3 — n)TPy. A special case of the isothermal process n = 1
returns 1 = (2/3)t Py, and the viscous stress tensor becomes

TNS = —'L’P()(Vu—l-VllT). (241)

However, when compared to the two-phase momentum equation in (2.12), the macroscopic
limit recovers only the non-ideal gas component thereof while missing Korteweg’s
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capillarity contribution. Indeed, the third-order term, ~ e oV V2,0 in (2.28) and (2.35),
does not contribute to the momentum equation in (2.37) under the scaling of (2.36a,b).
This is consistent with the well-known results from kinetic theory (Chapman & Cowling
1939) and is not surprising. The scaling of (2.36a,b) is essentially based on the Knudsen
number, which overrides the relative contribution of the capillarity term by two orders, cf.
Appendix C. Thus, under the weak non-uniformity assumption in (2.36a,b), the capillarity
terms are seen as higher-order Burnett-level contributions, and cannot appear in the main
(first and second) orders in the momentum balance equation of (2.37). In fact, the condition
in (2.36a,b) rules out situations at an interface between phases where gradients of density
become large over a relatively short distance. Therefore, for the kinetic model in (2.35) to
recover in-full the momentum balance in (2.12), a different scaling needs to be applied.

2.3. Scaling by velocity increment and lattice Boltzmann equation

2.3.1. Time step and forcing

A rescaling of the kinetic model in this section shall be maintained by introducing a time
step 6¢. As a preliminary consideration, we evaluate the contribution of the force term over
the time step. To that end, as noted by Kupershtokh, Medvedev & Karpov (2009), for a
generic force F, we can write the action of the force on the distribution function as a full
derivative in a frame that moves with the local fluid velocity,

1 afed dred
1 g

= . 242
p ou dr ( )
Introducing the velocity increment,
F
du = —ot, (2.43)
0
and integrating in time, leads to an approximation,
1468t 1 feq
F = / - Fdr~ fUu+ du) — f(u). (2.44)

This so-called exact difference method (EDM) becomes accurate for a gravity force,
F/p = const., otherwise it often provides a reliable estimate for the force term and is
widely used. In what follows, the scaling to be applied assumes smallness of the velocity
increment in (2.43) rather than smoothness of the spatial distribution of the force. Since the
velocity increment is based on a time step, it is natural to proceed with a lattice Boltzmann
realization of the kinetic equation.

2.3.2. Standard lattice and product form
The lattice Boltzmann model shall be realized with the standard discrete velocity set
D3Q27, where D = 3 stands for three dimensions and Q = 27 is the number of discrete
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velocities,
ci = (ciX5 Ciy7 CiZ)’ Cia € {_15 0’ 1} (245a3b)
We first define a triplet of functions in two variables, &, and {yq,
Yo (Eas Saa) = 1 — Loas (2.46)
§a + &
V1 (s Gaa) = =5 (2.47)
—&a + ¢
Voo Gae) = — (2.48)

and consider a product form associated with the discrete velocities ¢; in (2.45a,b),

lIli = lpcix ('fxa Cxx) lpciy (fya ny) lpciz (Sz’ fzz)- (2-49)

All pertinent populations below shall be determined by specifying the parameters &, and
Cae 10 the product form in (2.49). A two-dimensional version of the model on the D2Q9
lattice is obtained by omitting the z-component in all formulae below. Finally, we use
the notation §r; = ¢;8t for the lattice links, and denote the grid spacing in any direction
o =X,y,zas 6r = |ciy|dt, ciq 0. For the D3Q27 discrete velocity set in (2.45a,b), the
lattice spacing is the same in all Cartesian directions.

2.3.3. The lattice Boltzmann equation
The local density p and flow velocity u are defined using the populations f;,

0—-1

plr.y = filr.0), (2.50)
i=0
0-1

ou(r, 1) = Z cifi(r, b). (2.51)
=0

With a reference pressure Pp, and by setting the parameters,

Eo = Ug, (2.52)

P
loe = 70 +u, (2.53)

the local equilibrium populations are represented with the product-form in (2.49),
eq Py 2
fl=p TT Yo (ter 2 +12). (2.54)
o=X,y,2 p

The LBGK equation, supplemented with a forcing term, is written as

filr +edt, 1+ 80 — fi(r, ) = o (£ = f) + (fF = £, (2.55)

where w is a dimensionless relaxation parameter, the equilibrium populations are provided
by (2.54), while the extended equilibrium populations f;* are defined by the product-form
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in (2.49) with the following assignment for the parameters:

Fo 8t
EF = Uy + ——, (2.56)

0
o, = " +ul + ;“", (2.57)

where @, /p 1s a correction term for the diagonals of the non-equilibrium momentum

flux tensor,
3P
Boo = (1 . %) 519, (Wa (ug, + 20 3;2)) : (2.58)
P

where ¢ = 6r/ V38t is the so-called lattice speed of sound. The form of the correction
term is a result of the multi-scale analysis presented in Appendix D. Thus, the extended
equilibrium is explicitly written as

Fuot P @
=0 [] ¥ <ua+ "/‘) ,?O+u§+ ““). (2.59)

A=X,Y,2

Comments are in order.

e If the correction term of (2.58) is omitted in (2.57), the population in (2.59) becomes
the equilibrium with the increment du in (2.43) due to force action added to the flow
velocity u. This corresponds to the EDM forcing maintained by the second bracket
in the right-hand side of the LBGK equation in (2.55).

* The correction term in (2.56) is added following a proposal by Saadat et al. (2021).

Its purpose is to compensate for the bias of the D3Q27 velocities in (2.45a,b), c?a =
Ciw» and to restore the Galilean invariance of the normal components of the viscous
stress tensor.

The LBGK model in (2.55) is generic with respect to the choice of reference pressure
Py and the force F. We now proceed with the special case of Korteweg’s force to establish
a representation thereof matched to the lattice Boltzmann system.

2.3.4. Pseudo-potential and capillarity

Following the representation in (2.14), Korteweg’s force includes two distinct parts, the
term supplying the non-ideal gas equation of state and the capillarity term responsible for
the surface tension. Introducing a pseudo-potential ¥,

P —Py if P> Py,
= 2.60
v {«/Po—P if P < Py, ( )

Korteweg’s force is written as

_ 2,
B {wwf kpVV2p  if P> Py, 060

T |2y VY —kpVVZp ifP < Py
In the lattice Boltzmann setting, the pseudo-potential part is represented as a linear
combination of the first- and second-neighbours contributions,

o-1
Sty (Vi (r) =y (r) Z gcl'[gnﬁ(i’ + €idt) + Gayr (r + 2¢i80)] + O([5r V), (2.62)
i=0
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where the weights w; are defined by the product-form in (2.49) at &, = 0, {eq = ¢2,
wi= [] %, (0., (2.63)
oU=X,y,2

and where the parameters G; and G, satisfy the conditions,

g1 +2G, =1, (2.64)
G +8G, =0. (2.65)

The condition in (2.64) maintains the equation of state, while the condition in (2.65)
eliminates the third-order error. Non-compliance with the first and/or second condition
would introduce respectively deviations of order O([§rV]) and/or O([6rV]?) from the
target Korteweg stress tensor.

The capillarity part of Korteweg’s force in (2.61) is represented in a similar way but
using the density instead of the pseudo-potential,

o-1

Stkp(NVV2p(r) = p(r) gci[gw + ¢i81) 4 Gap(r + 2¢;81)]
i=0

+ O([6rV D), (2.66)

where & = k8r? and the parameters G3 and Gy satisfy the conditions,

G3+2G4 =0, (2.67)
G3 + 8G4 = 6. (2.68)

The condition in (2.67) cancels the first-order derivative, while the condition in
(2.68) maintains the capillarity contribution. Combining both contributions of the
pseudo-potential in (2.62) and the capillarity in (2.66), we obtain the lattice Boltzmann
form of Korteweg’s force in (2.61) as

0-1
wi 4 1
§tF = £2v/(r) ; ke |:§w(r +eidt) — <Y+ 20,8t):|

~ “ wi 5
o) ) Sel2p(r+eid) = p(r+ 2ed)] + OrVE), (2.69)
i=0

where the sign convention follows (2.61).
In the context of the lattice Boltzmann method, various pseudo-potential representations
have long been in use, and comments are to make a distinction to the present formulation.

* By setting Go =0 in (2.62) and ignoring Korteweg’s capillarity term in (2.66)
by choosing Gz = G4 = 0, one recovers a model first proposed by Shan & Chen
(1993) for special equations of state (see (G1), (G2), (G3) in Appendix G) and
extended to a general equation of state by Yuan & Schaefer (2006). Unlike the above
condition in (2.65) which eliminates the third-order error in the pseudo-potential
part of Korteweg’s force in (2.14), the model of Shan & Chen (1993) requires
the third-order Korteweg-like term to be retained so that it mimics surface
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tension effects. Consequently, the force in the models of Shan & Chen (1993), Yuan
& Schaefer (2006) becomes

Fsc =2y Vy + Ly vviy. (2.70)

The force in (2.70) neither conforms with the van der Waals second-gradient
theory and Korteweg’s stress of § 2.1 (unless y» = Ap which, however, does not
lead to phase separation), nor can it be derived from the BBGKY equation with
a central-force particles interaction of §2.2. Another relatively minor issue is the
fixed parameter 1/3, which is mimicking the capillarity coefficient and is the result
of the third-order error retained in the expansion.

* By imposing the condition in (2.64) while still discarding Korteweg’s capillarity
contribution in (2.66), one arrives at a dual-range force model of Sbragaglia et al.
(2007), Shan (2008),

Fpr =2y VY + (3 — Gy VV3y. 2.71)

The model in (2.71) is an improvement on the first-neighbour model in (2.70), in
that it allows for a variable capillarity-like coefficient. At the same time, it does not
resolve the inconsistency with Korteweg’s stress tensor.

e Various other modifications of the original models of Shan & Chen (1993) were
proposed to improve on the main inconsistency by introducing and tuning ad hoc
numerical coefficients tailored to a selected equation of state (Kupershtokh et al.
2009; Li, Luo & Li 2013; Huang, Yin & Killough 2019; Luo, Fei & Wang 2021).
However, to the best of our knowledge, none of these proposals came to recognize
that the problem lies in the fact that it is impossible to represent both parts of
Korteweg’s force, the non-ideal equation of state and the capillarity term, while
using a pseudo-potential alone. This fact follows both from the phenomenological
thermodynamics reviewed in § 2.1, as well as from a more microscopic approach
of §2.2. The pseudo-potential in both cases represents only the equation of state,
while the capillarity term requires the density field to be used, as featured by (2.66).

e Pseudo-potential is a convenient form of representing the equation of state
contribution to Korteweg’s force, tailored to the lattice Boltzmann setting. If other
numerical methods are used to evaluate the force in (2.61), such as higher-order
finite difference, the model is usually renamed to a free energy approach.

With the generic LBGK model in (2.55) and Korteweg’s force in (2.69) both specified,
we proceed to the analysis of the hydrodynamic limit under a suitable scaling.

2.3.5. Hydrodynamic limit under small velocity increment scaling

Chapman—-Enskog analysis of the LBGK equation in (2.55) was performed under the
following scaling. With the characteristic values of the flow velocity I/, the flow scale L,
the density p, the force F and the velocity increment du, the following conditions apply:

Su StF

o A, 272

u_ ou° (2.72)
or (2.73)
E E. .

The first scaling condition in (2.72) refers to a smallness of velocity increment, that is, to
the smallness of the force action over time §z. The second scaling condition in (2.73) is
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a resolution requirement. Both conditions are assumed to hold simultaneously. Details of
the analysis are provided in Appendix D while the result is summarized below.

Let us introduce a transformed velocity U by shifting the local velocity u by half of the
velocity increment Su in (2.43),

U=u+¢e——. (2.74)
2p

Then the following mass and momentum balance equations to second order in & are
recovered when the force in (2.69) is used under the scaling in (2.72) and (2.73),

ap+eV.pU+0@ED) =0, (2.75)
pU+ eV pUR U + eFg + 6V - eTys + 0(e%) = 0, (2.76)

where the dynamic and the bulk viscosity in the Navier—Stokes stress tensor in (2.10) are
related to the relaxation parameter @ and the reference pressure Py as follows:

11
= (- _ —) 5tPo, 2.77)
o 2
(5 _amPo) (1 1\, 078
T=\37 9mp ) \w 20" '

Unlike the previous result in (2.37), the momentum balance in (2.76) includes not only the
non-ideal gas pressure but also the capillarity term, and is thus consistent with Korteweg’s
force in the momentum balance. It should be pointed out that the scaling in (2.72) refers to
the smallness of the increment of the flow velocity rather than to the smallness of either the
time step or of the force. Thus, rescaling the kinetic model in (2.35) based on the smallness
of the flow velocity increments results in both the non-ideal gas equation of state and the
capillarity revealed at the Euler level O(e) of the momentum balance in (2.76). This is
in contrast to the conventional scaling, which is tied to the non-uniformity and surface

tension that would appear only at a Burnett level O(e3).

2.3.6. Code structure

The structure of the algorithm is given in figure 1. The algorithm consists of four
main building blocks: (a) evaluation of macroscopic variables p, u and Py via (2.50);
(b) evaluation of non-local macroscopic contributions @, and F, via (2.58), (2.69) and
(2.60); (c) evaluation of equilibrium and extended equilibrium functions via (2.54) and
(2.59) and (d) discrete space/time evolution following (2.55).

In the remainder of this paper, and without loss of generality, we set the reference
pressure Py = ¢2p to minimize the correction term in (2.58). This choice of reference
pressure follows the third-order quadrature leading to the family of lattices used here
and is quite common in both ideal and non-ideal fluid lattice Boltzmann simulations
(Kriiger et al. 2017). Other possibilities of choosing the reference pressure are illustrated
in Appendix H. In the next section, the model is scrutinized by a set of numerical tests
probing various aspects of thermo- and hydrodynamic consistency.
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l

Compute p, u, P: (2.50)

l

Compute Compute
Compute w(u, Py K .
0 D, (2.58) F,:(2.69)
Compute £ (p, u, £0): (2.54) poompute.
ute 1 u, =0): (2.
pute ;= (o, 1.5 I (p,u,%,#, 7"): (2.59)

Collision and streaming: (2.55)

Figure 1. Flow chart for a typical code based on the proposed two-phase lattice Boltzmann model.

3. Thermodynamic consistency
3.1. Liquid—vapour coexistence

We begin with the validation of liquid—vapour coexistence. Two-dimensional flat interface
simulations were performed on a grid 800 x 10, filled with the vapour phase of a fluid
with a specified equation of state and periodic boundary conditions. A column of the
liquid phase over 400 grid-points was placed at the centre of the domain. Simulations
were ran until the steady state was reached. The steady state was monitored via an Lo
norm convergence criterion based on the liquid density p; at the centre of the drop and
the vapour density p, at a location outside the drop. A theoretical prediction for the
coexistence density ratio p;/p, is readily obtained via the equilibrium condition leading
to the Maxwell equal-area construction,

Pl Pyyy — P
/ ——dp =0, 3.1
Pv p

where Py, (T) is the saturation pressure at which the liquid and vapour phases coexist at a
given temperature 7" below the critical point.

Initially, four generally adopted equations of state (EoS) were considered: the van der
Waals EoS (van der Waals 1873),

RT
p=L" a2 (3.2)
1—>bp

where parameters a and b are related to critical temperature 7, and pressure P, as

27 R*T? 1 RT,
J— b J— .

a= 64 P, =3P (3.3a,b)
the Peng—Robinson EoS (Peng & Robinson 1976),
with
a(T) = [1 + (0.37464 + 1542260 — 0.269920'%)(1 — /T/T)1*, (3.5)
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where ' the acentric factor (o’ = 0.344 for water), and

272 RT,
a = 0.45724 5 b =0.0778 5 (3.6a,b)

c c

the Riedlich—-Kwong—Soave EoS (Redlich & Kwong 1949; Soave 1972),

PRT aa(T)p?

P= , 3.7
1—bp 1+pb 3-7)
with
a(T) = [1 + (0.480 + 1.574e/ — 0.1760'*)(1 — /T /T, (3.8)
and
R’T? RT,
a=042748—<, b =0.08664—-; (3.9a,b)
PC c
and the Carnahan—Starling EoS (Carnahan & Starling 1969),
1+ bp/4+ (bp/4)? — (bp/4)?
P— oRT +bp/ Jr(p/)3 (bp/4) —ap?, (3.10)
(1 —=bp/4)
with
R*T? RT.
a = 0.4963 , b=0.18727—. (3.11a,b)
P, P,

Figure 2 demonstrates that the stationary density ratios p;/p, obtained from the
simulation are in excellent agreement with the theoretical coexisting liquid—vapour density
ratios that are defined by Maxwell’s equal-area rule in (3.1), for all four equations of state

and for ratios as high as at least p;/p, ~ 10!1. It is noted that high coexisting density
ratios were obtained without any tuning parameters, universally for all equations of state
considered. Therefore, and without loss of generality, in the remainder of this article, we
only consider the van der Waals equation of state in (3.2).

3.2. The principle of corresponding states and thermodynamic convergence

A discussion on the principle of corresponding states and the necessity of adherence to it
in the context of the van der Waals theory of a capillary fluid in the simulation of realistic
systems at large density ratios is in order. According to Guggenheim (1945), the principle
of corresponding states is ‘the most useful byproduct of van der Waals’ equation of state’.
The principle maintains that all properties that depend on inter-molecular forces are related
to the critical properties of the substance in a universal way, regardless of the molecular
compound of interest. While for real fluids, as shown by Guggenheim (1945), the principle
is an approximation, it is an exact property within the van der Waals capillary fluids theory.
This is, most notably, shown by the absence of substance-dependent parameters in the
non-dimensional form of the van der Waals equation of state and mean-field scaling laws.
For the equation of state, the principle of corresponding states implies that the reduced
pressure P, = P/P, is a universal function of the reduced temperature 7, = T /T, and of
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(a) (b)
1.0 1.0
0.8 0.8
T/TCO.6 0.6
0.4 0.4
0.2 0.2
0 0
0 107 10% 101152025 ! 107 10% 100 2 3
() (@)
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0.8 0.8
T/TCO.6 0.6
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0 0
10 107 104 10! 2 3 4 10t 107 10% 100 2 3
p/p, /P,

Figure 2. Liquid—vapour coexistence for various equations of state. Grey lines, Maxwell’s equal-area
construction in (3.1). Red symbol, simulation. (a) van der Waals (3.2) (a = 0.000159, b = 0.0952);
(b) Peng—Robinson (3.4) (a = 0.000159, b = 0.0952); (¢) Carnahan—Starling (3.10) (a = 0.000868, b = 4);
(d) Riedlich—-Kwong—Soave (3.7) (a = 0.000159, b = 0.0952). For all simulations, ¥ = 0.02.

the reduced density p, = p/pc,

P r
[Tc_f<Tc’pc)‘ 312

The universality of the reduced pressure in (3.12) can be used to write Maxwell’s
equal-area rule in reduced form,
pri p T,) — P
/ % dp, = 0. (3.13)
Prv Y r

The coexistence density ratio p;/p, at a given reduced temperature 7, is therefore also
universal. Deviation from these universal values can be rooted either in numerical artefacts
or inconsistent thermodynamics of the model. For a consistent discretization in the sense of
Lax’s equivalence theorem (Lax & Richtmyer 1956), the former should be vanishing in the
limit of a well-resolved simulation. The substance-agnostic form of the non-dimensional
equations, i.e. the principle of corresponding states, allows us to probe convergence by
systematically thickening the interface.

To probe the consistency with the principle of corresponding states in our model, we
performed simulations for different values of the weak attraction parameter a of the van
der Waals equation of state in (3.2). Reduced coexistence densities are shown in figure 3
for four different values of a. It is observed that, down from the critical point to 7, ~ 0.4,
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0.2 o2
105 103 107 15 20 25

p/p,

Figure 3. Convergence to the principle of corresponding states. Coexistence densities as obtained from (grey
lines) Maxwell’s construction and (markers) simulations with different choices of a: (green x) a = 0.0102;
(magenta +) a = 0.0051; (blue triangles) a = 0.0026; (red squares) a = 0.0013 and (black circles) a =
0.00064.

coexistence densities essentially overlap for all the four values of a, in agreement with
the principle of corresponding states. Deviations from the principle of corresponding
states are most pronounced on the vapour side, as observed in figure 3. This can be
explained as follows. The local value of the scaling parameter ¢ in (2.72) is estimated
as &1, ~ 0tF /pi U in the liquid and in the vapour, respectively. Hence, their relative
magnitude scales as the inverse of the density ratio, &,/&; ~ p;/py. Thus, even if the
scaling condition in (2.72) is satisfied for the liquid, ¢; <« 1, it is still prone to violation
for the vapour, if the density ratio p;/p, becomes sufficiently large. Conversely, if the
scaling condition is satisfied for vapour, €, < 1, it is also satisfied for liquid. Furthermore,
due to the scaling relation between interface width and temperature detailed in § 3.6, the
interface gets thinner at lower temperatures. This in turn means that for a given §r, fewer
grid-points resolve the interface with decreasing temperature. Whenever the parameters
8r/W and §tF / pU increase, contributions of higher orders in &€ become significant and lead
to deviations from the analytical predictions. The characteristic interface width scales as
W o 1/4/a (Jamet et al. 2001). As such, lower values of a lead to larger W, in parallel with
smaller force increments over 8¢, which restores dominance of order & terms over Burnett
and super-Burnett level contributions, and therefore the corresponding states principle.
This last point is demonstrated by the convergence of the coexistence density ratio to
the analytical predictions with decreasing a. For well-resolved simulations, as shown in
figure 2, the model correctly recovers the coexistence densities and thus complies with the
principle of corresponding states. Below, we refer to the convergence of the scheme to the
principle of corresponding states as the thermodynamic convergence.

To further clarify the utility of the principle of corresponding states in probing
convergence, we have also conducted simulations similar to those reported in figure 3, with
the first-neighbour pseudo-potential model (Shan & Chen 1993), (2.70), supplemented
with the van der Waals equation of state (Yuan & Schaefer 2006). The results are
shown in figure 4. Two points are worth noting here. First, a notion of convergence
is present as co-existence densities do converge to a limit. However, that limit does
not correspond to the capillary fluid model. Deviations become pronounced at lower
temperatures where density ratios are larger. These differences are explained by the
thermodynamic consistency issue where the mechanical stability condition governing the
classical pseudo-potential model is recovered as (Benzi et al. 2006; Shan 2008)

/M(P Ty —pPyL g, (3.14)
. rosat\Lr r 1/f,2 0, Pr =V, .
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Figure 4. Coexistence densities as obtained from (grey lines) Maxwell’s construction and (markers)
simulations with different choices of a: (green x) a = 0.0102; (magenta +) a = 0.0051; (blue triangles)
a = 0.0026; (red squares) a = 0.0013 and (black circles) @ = 0.00064. Simulations are conducted using the
first-neighbour pseudo-potential model in (2.70).

which is different from (3.13). Here v, = /¢, where ¥ is the pseudo-potential at
critical state. This in turn naturally leads to observations of figure 4 where the discrete
solver is convergent, but to a continuum-level behaviour dictated by (3.14) rather than the
capillary fluid of (3.13). It is worth nothing that a number of numerical modifications have
been proposed to improve on this issue. A detailed overview of such changes is out of the
scope of the present work. Interested readers are referred to Chen et al. (2014) for a review.

3.3. Temperature dependence of the surface tension near the critical point

Surface tension at the liquid—vapour interface decreases with increasing temperature and
vanishes at the critical point (Guggenheim 1945). For the van der Waals equation of state,
the surface tension coefficient o follows a scaling law as 7, — 1 (van der Waals 1894;
Blokhuis & Kuipers 2006),

16a |k
= —(1—=T,)%2, 3.15
0= a( ) (3.15)

To probe the consistency of the proposed lattice Boltzmann model, the temperature
dependence of the surface tension was numerically measured in two different
configurations, the flat interface and the circular drop, in a temperature interval 7, €
[0.85, 1].

In the first configuration, the surface tension coefficient was evaluated using its
definition for the flat interface (Kirkwood & Buff 1949),

+00
o= f (Pyx — Pyy) dx, (3.16)

—00

where the interface is normal to the x-axis in a two-dimensional simulation setup. The
normal P,, and the tangential P,, components of the discrete pressure tensor were
computed using a formalism developed in Appendix E, following a proposal by Shan
(2008).

In the second configuration, simulations of circular liquid drops surrounded with vapour
at the centre of a square domain were conducted. At each temperature, four different initial
drop radii were considered, Ry € {45, 55, 65, 75}, chosen in such a way that the interface
width is sufficiently small compared to the initial drop radius. In the simulation, we used
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W/Ry < 0.1, where W = (p; — py)/ max|Vp| is the interface width, to minimize the
curvature dependence of surface tension. The corresponding surface tension coefficient
was evaluated using the Laplace law (D = 2) in a form,

_(D-1o
=

AP , (3.17)
where the radius R, corresponds to the equimolar dividing surface (Gibbs 1874).

A brief reminder of Gibbs’ theory of dividing surfaces is in order. The total mass in
both the diffuse and sharp interface pictures can be written as

/ pdV = pVi+ pyVy + T, (3.18)
\%4

where p;V; and p,V, are the masses in the bulk liquid and vapour phases in the sharp
interface picture, while I is the excess mass on a dividing surface X, or mass adsorbance
(Gibbs 1874). By requiring that no mass be stored on the dividing surface, we get the
definition of the equimolar surface,

I =0. (3.19)

The family of dividing surfaces in the case of drop or bubble are concentric spheres
(D = 3) or concentric circles (D = 2) parametrized by their radius R. In particular, for
a two-dimensional drop, the mass adsorbance can be written as a function of the radius of
the dividing circle,

27 00 27 R
I'(R) =/0 /O (p(r)—pu)rdrdqo—/o /0 (o1 — py)rdrde, (3.20)

while the zero-adsorption condition in (3.19), I" (R,) = 0, implies the equimolar radius R,,

/0 (p(r) — py)rdr

R,
(o1 — pv)

(3.21)
The drop configuration along with the scaling of the pressure difference across the
interface with drop radius are shown in figure 5.

The results as obtained from both the flat interface and the drop configurations are
shown in figure 6. It is clearly observed that the surface tensions as obtained from the
proposed formulation (using either one of the considered configurations) agree very well
with (3.15), provided that W <« R,. Discussion of the curvature dependence of surface
tension shall be continued in § 3.5.

3.4. Control of surface tension

The present formulation allows us to select the surface tension in the simulation via
the capillarity parameter «, independently from the density ratio and temperature. To
demonstrate this feature, flat interface simulations were performed at three reduced
temperatures, 7, = {0.99, 0.98, 0.97}, for different values of k. The surface tension was
evaluated using (3.16). Results in figure 7 demonstrate that the surface tension can be
effectively tuned using « and that changes in surface tension do not affect the equilibrium
density ratios. This is further detailed in table 1 where the values of surface tension and
deviations of the vapour and liquid densities from theoretical values are given as a function
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Figure 5. (a) Circular D = 2 drop configurations; (b) pressure difference scaling with drop radius for 7, =
0.99, 0.98, 0.97 and 0.96. The pressure difference is defined as AP = Pj,, — P,,;. The slope of the straight line
is the surface tension coefficient.
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Figure 6. Temperature dependence of the surface tension coefficient near the critical point. Dashed grey line,
theory using (3.15); red circles, simulation results using Laplace’s law in (3.17); blue squares, surface tension
coefficient computed by (3.16).

of k for T, = 0.97. It is clearly observed that while the surface tension covers two orders
of magnitude, the deviation from the predicted density of vapour is at most 0.041 percent.
Furthermore, in the limit of vanishing «, the surface tension also vanishes, as expected
from the theory, (3.15).

3.5. Effect of curvature on surface tension: Tolman length

The drop simulation in § 3.3 made use of the Laplace law, relying on the equimolar
dividing surface of radius R, in (3.21). Further discussion on the non-uniqueness of the
choice of the dividing surface and the curvature dependence of surface tension is in
order. Following Gibbs (1874), the free energy of a drop or bubble separated from the
surrounding vapour or liquid by a dividing circle (D = 2) or sphere (D = 3) of length or
area XY iSA = U — TS + 0 X', where U and S are the internal energy and entropy of bulk
phases while the last term is the adsorbance of free energy. The equilibrium condition
requires vanishing of the variation §A; for the isothermal case, we have

8A = —P 8V — Py i8Vy + X80 + 085 =0, (3.22)
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Figure 7. (a) Surface tension as a function of capillarity parameter «; (b) liquid/vapour densities as a function
of k. Results of simulation shown at three different reduced temperatures: blue square, 7 = 0.99; red circles,
T, = 0.98; black triangles, T, = 0.97. Dashed grey lines, theoretical coexistence densities from the Maxwell
construction.

& x 103 0.2 1.7 33 8.3 13.3 20 26.7 333
o x 10% 0.03 0.13 022 044 0.62 0.81 0.98 1.12

Bal 10 041 033 027 015 0.1 0.06 0.04 0.03

%le 0.11 0.09 0.08 0.04 0.03 0.02 0.01 0.009

Table 1. Effect of the choice of k¥ on surface tension and deviations in equilibrium vapour and liquid phases
densities for 7, = 0.97.

where Py, and P, ; are the pressures inside and outside the liquid drop or vapour bubble.
Using 8V;, = =8V, =2(D — HRP~16R and 65 =2(D — 1)’R 28R leads to a
generalized Laplace law,

_ D —-1DoR) n dU(R)'

AP
R dr

(3.23)

The derivative of surface tension do/dR is termed a notional derivative by some authors
(Blokhuis & Bedeaux 1992) to stress that it refers to arbitrariness of the dividing surface.

Apart from the equimolar surface in (3.21), the surface of tension is another possible
choice to lift the ambiguity of the dividing surface. The notional derivative vanishes at
the surface of tension,

do

— =0, 3.24
R n (3.24)
thereby reducing the generalized Laplace law in (3.23) to a standard form,

(D10 (Ry)
e

AP (3.25)

Integrating (3.23) from R; to R, and eliminating AP using (3.25), one obtains an analytic
expression for the notional surface tension o (R) relative to its minimum oy at the surface
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Figure 8. Variation of surface tension o with the radius of the dividing circle R at T, = 0.98. Grey dashed
line, theory in (3.26); symbol, simulations with van der Waals equation of state; blue circles, drop simulations;
red diamonds, bubble simulations. Shading from dark to light, drops and bubbles of increasing sizes are shown.

of tension Ry,

o® 1(RN""'" D-1/R
- =B<E> 5 (R_s)' (3.26)

Equation (3.26) provides for a simple way of identifying the surface of tension and the
corresponding surface tension. Two-dimensional simulations at 7, = 0.98 were conducted
with different initial drop and bubble sizes, Ry € {30, 40, 50, 60, 70, 80, 100, 120, 140}.
For each dividing surface of radius R, the corresponding surface tension was evaluated as
(Blokhuis & Bedeaux 1992)

R—/OoiDlP R —Py(n1d 3.7
c® =] (z) 1PLR =Py (3.27)

where P (r) is the tangential component of the pressure tensor, computed via the discrete
pressure tensor detailed in Appendix E, and

Py (r,R) = Pin — (Pour — Pin) H(r — R) (3.28)

is the normal pressure component in the sharp interface system, where H is the Heaviside
step function. For each drop or bubble, surface tension o (R) in (3.27) was probed at
seventeen equidistant dividing circles between R,,,;, = 56r and R, = 1656r. The discrete
values o (R) obtained in these simulations were fitted with (3.26), with oy and R, as the
free fitting parameters. Figure 8 shows that the data for all drops and bubbles collapsed
on a single master curve are in excellent agreement with the theory in (3.26). Thus, the
proposed model correctly identifies the surface of tension for the van der Waals fluid.

While the notional derivative do (R)/dR vanishes at the surface of tension, the same
does not hold for the surface tension at the surface of tension, dog/dR; # 0. In other words,
surface tension o, depends on the curvature of the surface of tension. In a seminal paper,
Tolman (1949) characterized the curvature dependence of surface tension by the Tolman
length. For sufficiently large Rj, the leading-order curvature dependence of the surface
tension may be written as (Tolman 1949)

(3.29)

o (Ry) ~ a0 (ww),

Ry

where 67 is the Tolman length and oy is the flat interface surface tension coefficient. Here,
the negative (positive) sign corresponds to drops (bubbles).
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Figure 9. Pressure difference scaling with surface of tension radius R, for liquid drops and vapour bubbles.
Symbol, simulation data for van der Waals equation of state with a = 0.18 and b = 0.0951; black line, Laplace
law with o = oyp; blue lines, best fit with (3.29) used to compute Tolman length §7; red lines, best fit with the
second-order Helfrich expansion in (3.30).

We first compare the leading-order Tolman model in (3.29) with the simulation. The
values of R obtained in the previously described drops and bubbles simulations of figure 8
are plotted against the pressure difference for different drop and bubble sizes in figure 9.
It is clear that for smaller drops and bubbles, the pressure difference deviates from the
Laplace law with constant oy = oy, indicating a curvature-dependent surface tension.
Fitting the data points with (3.29), the Tolman length can be extracted from the simulation,
here 67 = 96r for both drops and bubbles, at the reduced temperature 7, = 0.98.

While the leading-order Tolman correction in (3.29) improves the agreement with
data at moderate R, deviation persists for smaller drops and bubbles at §r/R; > 0.03.
Higher-order terms in the inverse powers of Ry, important for droplets or bubbles of small
radius, are neglected by (3.29) and are addressed by Helfrich (1978)

(D—-18r kD—-1?% kD-2)
R, 2R2 R2

0 = 00 F 0y +---, (3.30)
where k and k are the bending and Gaussian rigidities; note that the latter vanishes for
D = 2. Taking the second-order term in (3.30) into account, the best fit in figure 9 results
in bending rigidity k = 1.049 x 10°5(87°.

Finally we consider the limit of a flat interface where the Tolman length can be derived
independently from the above considerations. In this case, the location of the surface
of tension X, can be found as the normalized first-order moment of the normal stress
difference (Rao & Berne 1979),

00
/ X(Pyy — Pyy) dx
X, = =2 : (3.31)
(Pxx - Pyy) dx
—00

With the dividing surface as a vertical straight line at X in two dimensions, the mass
adsorbance /" (X) is defined as (see example in figure 10)

oo

reo = [ 1o == (o= poHG =01 (3:32)
—0o0

Similar to the case of cylindrical symmetry considered in § 3.3, the equimolar surface is

found by annihilating the mass adsorbance, I"(X,) = 0.
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Figure 10. Example of mass adsorbance for a flat interface. Black continuous line, density profile at 7, = 0.98;
red dashed line, sharp interface profile with the dividing surface at X/8r = 70. Grey area represents the mass
adsorbance I"(X) in (3.32).
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Figure 11. (a) Temperature dependence of Tolman length §7. Results from the flat interface simulation for van
der Waals fluid are shown with blue squares while the grey dashed line represents theoretical scaling by (3.34).
(b) Surface of tension, equimolar surface and Tolman length for a flat interface. Continuous black line, density
profile at 7, = 0.98; red dashed line, sharp approximation with the equimolar surface as the dividing surface;
blue dotted line, sharp approximation with the surface of tension as the dividing surface. Distance between the
surface of tension and the equimolar surface is the Tolman length. In all simulations, a = 0.18 and b = 0.095.

The Tolman length in the limit of the flat interface is the distance between the surface of
tension and the equimolar surface (Blokhuis & Bedeaux 1992; Blokhuis & Kuipers 2006),

or = Xe — X;. (3.33)

An example from the simulation is presented in figure 11. As shown by Blokhuis &
Bedeaux (1992), the Tolman length scales with the reduced temperature as

Sroc(1—T,)" L. (3.34)

To validate the scaling of (3.34) in our model, flat interface simulations were conducted
over arange of temperatures in the vicinity of the critical state. The Tolman length in (3.33)
for various temperatures is shown in figure 11. The results obtained from simulations are
in excellent agreement with the theoretical scaling by (3.34). A similar study using the
Shan—Chen equations of states and the pseudo-potential model was presented in (Lulli
et al. 2021). Furthermore, the flat interface simulations lead to a 67 = 9.25r at T, = 0.98,
in agreement with the value obtained from drop and bubble simulations, 57 = 96r at the
same temperature. The relatively small discrepancy can be attributed to higher-order terms
in the curvature, neglected in the fitting process.
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3.6. Interface width: temperature scaling and control

In the present work, we use a definition for the interface width bearing numerical
information as to how well the stiff gradients are resolved on a given mesh, making it
directly related to the velocity increment per time step:

Pl — Pv

= —] 3.35
max|Vp| ( )

where p; and p, are the densities of saturated liquid and vapour, respectively. It can readily
be observed that in the limit of a sharp interface, i.e. resolved with ér, §r/W — 1. As
previously noted for the co-existence densities and surface tension, the model recovers
thermodynamical properties/scalings of the second-gradient fluid in the limit ¢ — O,
akin to §r/W — 0. As such, in the limit of ér/W — 1, one expects numerical effects
to dominate and observe deviations from thermodynamics of the van der Waals fluid.

Surface tension vanishes as the temperature approaches the critical, cf. § 3.3, (3.15) and
figure 6, while the interface diverges as T — T,. As noted by Widom (1965), the van der
Waals theory predicts the temperature scaling of the interface width as

W(T,) o (1 —T,)~'/2. (3.36)

To validate the consistency of the proposed model, simulations of flat interfaces were
carried out in a range of reduced temperatures 7, near the critical point, and corresponding
interface widths W(T,) in (3.35) were measured. Given the effect of the choice of a
on interface thickness, simulations were also carried out with different a. The results
obtained from simulations near the critical point are shown in figure 12. As noted by many
authors in the literature (Jamet et al. 2001), the parameter a can be used to control the
interface thickness, as done in the present work, at a given density ratio, leaving the ratios
and Maxwell construction unaffected. In agreement with the equivalent states theory, the
right-hand side plot in figure 12 points to the universality of the scaling of the interface
width near the critical point regardless of the choice of a. In addition, it is interesting
to note that for a fixed grid-size ér, as (1 —7T,) — 1, 6r/W — 1 (equivalent to the
scaling parameter ¢ introduced in the multi-scale analysis), indicating deviation from the
thermodynamically converged state. This is illustrated by the deviation of the numerical
interface thickness, starting at 7, & 0.98 from the theoretical predictions. Lowering the
value of a, i.e. rescaling the interface by a factor 1/,/a and therefore lowering &, it
is observed that interface is again well resolved and the scaling in (3.36) is restored.
In agreement with previous sections, in the limit of ¢ — 0, the model is shown to be
thermodynamically converged and recovers the properties of the second-gradient fluid.

4. Hydrodynamic consistency
4.1. Shear stress: layered Poiseuille flow

The setup consists of a rectangular domain filled with the liquid phase at the bottom
and the vapour phase on top. The flow is driven by a body force. Top and bottom are
subject to no-slip boundary conditions while the inlet and outlet are fixed by periodicity.
The momentum balance at the steady state reduces to a well-posed system of ordinary
differential equations,

dypidyu +pig =0, Vy:0=<y<=<hn, (4.1a)
Oyypoyu + pyg =0, Vy:h <y<H, (4.1b)
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Figure 12. (a) Interface width as a function of temperature. Blue square, simulation with a = 0.184; red circle,
simulation with a = 0.02; grey dashed line, theoretical scaling by (3.36). (b) Effect of the choice of a on the
interface width. Simulation for 7, = 0.98 (diamond), 0.99 (square), 0.995 (circle).

closed by the following boundary conditions:

u|y:0 = O’ (42(1)

uly—p =0, (4.2b)

uly:h; = uly:h?, (4.2¢)
mayu|y:h; = uvayu|y:h[+. (4.2d)

Here H is the height of the channel, /; the height of the section filled with the liquid
phase, u; and i, are the dynamic viscosities of the liquid and vapour, respectively, and g
is the acceleration due to the body force. An analytical solution is given in Appendix F.
This configuration is of particular interest as it probes the ability of a two-phase model to
capture jump conditions at the interface which happens only if deviatoric components of
the viscous stress tensor in (2.11) are correctly recovered.

Two sets of parameters were considered: (a) w;/uy, = 10.1, p;/py, = 10.1 (T, = 0.77)
and (b) u;/my = 11.3, p;/py = 1030 (T, = 0.36). Simulations were conducted on a grid
of size 5 x 200, with a constant acceleration g = 10788r/87%. Furthermore, the same
simulations were performed with the conventional second-order equilibrium (Succi 2002)
instead of the product form in (2.54). The steady-state results are compared to the
analytical solution in figure 13. In contrast to the conventional second-order equilibrium,
the use of the product form of (2.54) in our model recovers the correct jump conditions and
therefore results in continuous velocity profiles, also for a large density ratio, in excellent
agreement with analytical solution. A look at the maximum non-dimensional velocities
in the domains, respectively 5 x 10~* and 0.04 for density ratios 10 and 1000, further
shows that in contrast to single-phase flows where deviations become only important for
large non-dimensional velocities, here, due to the presence of large density gradients at
the interfaces, third-order contributions to the equilibrium must be retained even for small
velocities.

4.2. Normal stress: dissipation of acoustic waves

To assess Galilean invariance of the diagonal components of the viscous stress
tensor and the effect of the correction term, the dissipation of acoustic waves was
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Figure 13. Steady-state velocity profiles for the layered Poiseuille flow. Configuration (a) is where 7, = 0.77,
pi/pv = 10.1, 1/, = 10.1. Configuration (b) is where 7, = 0.36, p;/p, = 1030 and p;/p, = 11.3. Grey
plain line, analytical solution; black dashed line, LBM with product-form equilibrium; red dashed line, LBM
with conventional second-order equilibrium.

measured numerically. Acoustic waves were initialized as a small perturbation of density
with an amplitude 3p and subject to uniform background velocity Up representing a
moving reference frame,

p(x,0) = po + 8p sin(2m/ 1), (4.3)

where pg is the density of saturated liquid or vapour at a given temperature and A is the
wavelength of the perturbation. The maximum velocity in the domain was monitored over
time and fitted to an exponential function of the form max(u) — Uy = exp(— At), where
the coefficient A is tied to the dissipation rate of the normal modes as
A

@n/p”

Simulations were performed on a periodic domain of size L = 128r x §r with 4 =
643r at the temperature T, = 0.36, corresponding to a density ratio p;/p, ~ 10°. The
perturbation amplitude was set to 8p = 10™*pg while the reference frame velocity varied
in the range Uydt/ér € [0, 0.3]. The dissipation rate from (4.4) with and without the
correction term are shown in figure 14. It is observed that the correction term for
the third-order diagonal moments of the equilibrium populations in (2.58) restores the

Galilean invariance (independence from the reference frame velocity) of the dissipation
rate of normal modes.

n 4.4)

4.3. Viscosity-capillarity coupling: oscillating drop

Rayleigh’s classical study of a freely oscillating drop of non-viscous liquid under small
deformations laid ground for the understanding of capillary waves (Rayleigh 1879).
Assuming purely axisymmetric oscillation modes, Rayleigh’s oscillation frequency of the
nth mode, n = 2, 3, ..., for large density ratios, p;/p, > 1, is given by

1 Jon(n—1)(n+2)
2n PIR} '

fo= (4.5)

Two-dimensional simulations were performed for a drop of initial radius Ry = 405r, for
a relatively low kinematic viscosity, v18t/8r2 = 0.01. Modes of order n =2,3,4,5,6
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Figure 14. Dissipation rate of acoustic mode at 7, = 0.36. Circle, saturated liquid; triangle, saturated vapour.
Blue, simulation of the model with the correction term; red, simulation of the model without the correction
term.
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Figure 15. (a) Drop oscillation period for modes n = 2, 3, 4, 5, 6. Red circle, simulation; blue square,
Rayleigh’s modes from (4.5). (b) Corresponding shapes of the drop at r = 1/26tf,, and t = 1/5tf,,.

were initiated with a monochromatic perturbation, R(6, 0) = Ro(1 + a,, cos(nf) — %na,%),
with the amplitude a, = 0.1. The reduced temperature of the van der Waals fluid was
set to T = 0.36, corresponding to a density ratio p;/p, &~ 103. The initial and mid-cycle
shapes of Rayleigh’s modes are shown in figure 15. Simulations were performed over
eight oscillation cycles and corresponding oscillation periods were identified. Figure 15
demonstrates an excellent comparison of the oscillation frequencies measured in the
simulation with the corresponding theoretical values from (4.5), even for higher-order
modes. While Rayleigh’s analysis was restricted to non-viscous liquids, a number of
analytical solutions for viscous oscillating drops have been obtained over the years. In
particular, Aalilija, Gandin & Hachem (2020) derived a time-dependent solution of the
following form:

R, 1) = Ro(1 + €, cos(nf) — ne ) (4.6)

where €, = a, exp(—A,t) cos(2mf,t), while 4, is the damping rate of the nth mode,
Ay = 2n(n — DRy 4.7)

To validate the damping rate of capillary waves, the previously described

two-dimensional drop was simulated in a range of kinematic viscosities, v;8¢/8r €
[0.01, 0.1], subject to a monochromatic perturbation with the lowest mode n = 2 and the
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Figure 16. (a) Time evolution of the drop radius in directions # = 0 and 6 = m/2 for kinematic viscosity
v81/8r? = 0.02. Grey line, analytical solution from (4.6); symbol: simulation; dashed black line, the exp(—Ar)
fit used to compute the dissipation rate in (4.7). (b) Apparent viscosity as computed via (4.7). Grey line,
analytical solution from (4.7); symbol, simulation. All results correspond to the oscillation mode n = 2.

initial perturbation amplitude was set to a; = 0.2. The envelope of oscillations was fitted
using the exponential function exp(— At), see figure 16. The effective damping coefficient
A was used along with (4.7) to evaluate the apparent kinematic viscosity. As shown
in figure 16, the dissipation rates obtained by simulation agree well with the analytical
solution from (4.7).

4.4. Isothermal speed of sound

Finally, we validate the speed of sound at different temperatures in both the liquid and
vapour phases. For the van der Waals fluid, the isothermal sound speed is
RT

Ccy = \/8—1) = |- 2ap. 4.8)
ap |7 (bp —1)

The sound speed was measured by monitoring the position of a pressure front over time
in a quasi-one-dimensional simulation at different temperatures. The obtained results are
compared to theory using (4.8) in figure 17. It is observed that the simulations accurately
capture the speed of sound in both liquid and vapour phases, for the entire range of density
ratios on the coexistence diagram in figure 2, up to at least p;/p, ~ 10''. Results for other
equations of state are compared in Appendix G.

4.5. Interaction with solid boundaries: equilibrium contact angle

A comprehensive review of various implementations of the contact angle on solid
boundaries in the lattice Boltzmann setting can be found in Li ez al. (2014). Here we follow
a proposal by Benzi et al. (2006) where a virtual density, and therefore a corresponding
virtual pseudo-potential, is attributed to the solid nodes. The calculations of the force using
(2.69) are then carried at all fluid nodes. The no-slip condition is imposed via the modified
bounce-back scheme of Bouzidi, Firdaouss & Lallemand (2001) for curved boundaries.
The virtual density attributed to the solid nodes is the free parameters controlling the
contact angle. The ability of this approach to correctly reproduce the dynamics of the
contact line in a high-density ratio regime will be validated below.
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Figure 17. Isothermal sound speed for van der Waals fluid at various temperatures. Line, theory using (4.8);
symbol, simulation. Upper branch, saturated liquid; lower branch, saturated vapour.

4.5.1. Young—Laplace equation

As a first validation of the solid/fluid interaction, the case of a two-dimensional channel
of height H and length L is considered. Initially a rectangular column of liquid of
length L/3 and height H surrounded by vapour was placed at the centre of the channel.
Simulations were performed until the system reaches steady state, and the angle between
the liquid/vapour interface and the solid wall at the triple-point was measured. The static
contact angle measured at the triple-point should verify the Young—Laplace law for this
configuration:

20 sin @
AP = ——,
H

4.9)
where 6 is the equilibrium contact angle and o the liquid/vapour surface tension.
Here, to validate the static angle, the reduced temperature of van der Waals fluid was set

to 7, = 0.36, which corresponds to a density ratio p;/p, = 10°. The height of the channel
is set to H = 755r and the length to L = 3005 r. The pressure difference AP is computed as
the difference in pressure between two monitoring points located respectively inside and
outside the liquid column. The convergence criterion used to assess steady state is based
on the time variations of pressure at these two monitoring points. The contact angles were
measured using the low-bond axisymmetric drop shape analysis module (Stalder et al.
2010) in Image]. The results obtained for the entire contact angle range are shown in
figure 18. The measured contact angles show excellent agreement with the Young—Laplace
equation. Furthermore, the results show that for p,, — p,, the contact angle tends to 6 —
180°, while as p,, — py, the contact angles tend to & — 0° therefore covering the entire
range of contact angles.

4.5.2. Wettability-driven drop motion in a channel

A difference in contact angle on opposite sides of a liquid drop placed on a surface with
a non-uniform wettability may initiate a motion of the drop. As a further validation of
the solid/liquid interaction of the proposed model, the case of a liquid column placed in
a channel and subjected to a wettability step function is considered. The configuration,
illustrated in figure 19, consists of a channel of length L and width/height of H. Initially
a liquid column of length L; is placed at the channel centre. Once the liquid column
has reached equilibrium, the wettability on the right-half of the channel is changed,
which results in unequal contact angles on the different sides of the liquid column.
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Figure 18. Static contact angles as (blue squares) obtained from the Young—Laplace equation and (red
circles) measured directly from the simulations.

Figure 19. Schematics of the wettability-driven liquid column. Arrow indicates the direction of motion of the
liquid column when the contact angle 6 (right) exceeds the contact angle 6_ (left).

An approximate analytical solution for the centre-of-mass position X and centroid velocity
U was found by Esmaili, Moosavi & Mazloomi (2012),

X(1) = TooUso (e7™ + (t/750) — 1), (4.10)
U(f) = Uso (1 — e7/7), 4.11)

where the saturated centroid velocity U, and transition time 7, are computed respectively
as

_ 0oH(cosf~ —cosfT)
%7 6lpiLy + pyve(L — L]’
_ H[pili+ py(L — L]
= 2[pviL + peve(L — L]

(4.12)

(4.13)

Here, H = 706r while L = 12606r, L; = 42067, vi = v, = 0.0758r2 /6t and the density
ratio is set to 10° as in the previous cases. Initially, the contact angles on both sides of
the water column were set to 6~ = 59.3°. Once a steady state was reached, the contact
angle on the right-hand side of the column was changed to 1 = 63.4°, which resulted in
a net force acting on the liquid. The liquid column centroid velocity and centre-of-mass
position are compared to the analytical solutions in figure 20. Both quantities closely match
analytical predictions.
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Figure 20. (a) Centroid velocity and (b) centre-of-mass position as obtained from (grey line) analytical
solution and (red markers) LB simulations for the wettability-driven motion case.

5. Application to the dynamic cases
5.1. Thermodynamic convergence and resolution requirements

Two-phase lattice Boltzmann models are routinely used to simulate the impact of liquid
drops on solids. While experiments are typically conducted with water and other liquids in
air, the applicability of the two-phase LBM is justified whenever the dynamic effects are
concerned. However, the majority of LB models do not reach the experimentally relevant
density ratios of, say, the water/air density. The proposed LBM was demonstrated to be
valid and thermodynamically well-posed at high density ratios. However, thermodynamic
convergence, especially at higher density ratios comes at a cost in terms of interface
resolution requirements. For instance, at 7, = 0.36 resulting in a density ratio of 10, to
guarantee deviation below one percent from theory in the vapour phase, one must have
W > 86r. In large-scale hydrodynamic-dominated cases targeted in the present section,
full thermodynamic convergence is not necessary. The only manifestations of deviation
from the thermodynamically converged state that must be kept under control are spurious
currents. Here, for density ratios 103, the interface thickness, in (3.35), is fixed at W = 56~
resulting in a seven percent deviation of the vapour phase density from theory and spurious

currents below 10738r/81. The Tolman length for this choice of parameter is 87/8r =
2.4 which, for the resolutions considered below (Ry = 756r), results in é7/Ry = 0.032
therefore minimizing the impact of curvature on effective surface tension. Below, we
consider benchmark simulations of dynamic effects at realistic density ratios of increasing
complexity to probe the accuracy and numerical stability of our model in the dynamic
setting.

5.2. Contact time on flat non-wetting surfaces

Extensive studies of drop impact dynamics have shown that the contact time on so-called
super-hydrophobic surfaces is independent of the Weber number, We = p;Dy Ug /o, and

only scales with the inertio-capillary time, 7; = ,/ plDS /80, i.e. for a given drop initial

diameter Dy, the contact time is not affected by the impact velocity (Gauthier et al. 2015).
The different stages of the impact process are illustrated in figure 21 through water drops
impacting two surfaces with different contact angles. Simulations carried out under the
same conditions are shown and already point to very good agreement between simulations
and experiments. To quantify the ability of the proposed model to capture the dynamics of
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Figure 21. Drop impacting flat solid surface with different contact angles (first and second row) 6 = 180 and
(third and fourth row) 6 = 90. The Weber and Reynolds number are respectively 3.5 and 750. Experimental
data from Vadillo et al. (2009) are shown in the first and third rows. Density ratios in both experiments and
simulations are 10? and kinematic viscosity ratios are set to 15.
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Figure 22. Drop contact times on flat non-wetting surface (contact angle & = 165 for different Weber numbers
as obtained from simulations and experiments. Simulations results are shown with red circular markers while

experimental data reported by Gauthier et al. (2015) are illustrated with blue square markers. The dashed grey
line represents the average contact time as obtained from simulations, 7./7; = 2.4.

drop impact and to investigate the Weber independence of the contact time on non-wetting
surfaces, simulations were performed for a wide range of Weber numbers We € [1, 40],
resulting in Reynolds numbers in the range of Re € [400, 1400], with Re = UyDq/v;.
Simulations have been performed in boxes of size 4Dy x 4Dy x 4Dy with Dy = 1506r.
The temperature was set to 7, = 0.36 resulting in a density ratio of 10°. The obtained
data show very good agreement with experimental contact times measured by Gauthier
et al. (2015) and confirm the Weber independence of the contact times. Both numerical
and experimental data are shown in figure 22.

5.3. Reducing the contact time: pancake bouncing

To further reduce the drop contact times, a number of different strategies have been
devised during the past decades. Recently, Liu ef al. (2014) proposed to use macroscopic
structures, in the form of tapered posts, to reduce the contact time. It has been shown
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(@) ) ks
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Figure 23. Illustration of the geometry of tapered posts. Configuration follows the experiment setup by Liu
et al. (2014).

that above a certain threshold Weber number, these structures can decrease the contact
time by approximately 75 %. This mechanism is also known as pancake bouncing, due to
the pancake-like shape of the drop at take off. A detailed numerical study of pancake
bouncing using LBM has been presented in (Mazloomi Moqgaddam, Chikatamarla &
Karlin 2017) for a limited range of densities. Here, to further demonstrate the versatility
of our model, we consider a realistic density ratio of 103. The geometry consists of a
flat substrate populated by tapered posts of base and tip radii Rp and R, and height
h with a centre-to-centre distance w in a simple square arrangement. The simulations
were run following the geometrical configurations considered in experiments (Liu et al.
2014). Curved wall boundaries were implemented via the modified bounce-back scheme
introduced by Bouzidi et al. (2001). The geometry is illustrated in figure 23. As for the
flat substrate simulations, the domain size was set to 4Dy x 4Dg x 4Dg with Dy = 1508r.
Snapshots from the different stages of impact for two different Weber numbers, one below
the pancake bouncing threshold and one above, from both simulations and experiments
are shown in figure 24. The results show excellent agreement between simulations and
experiments. The contact times for different Weber numbers, as obtained from simulations,
are compared to the experimental results from Liu e al. (2014) in figure 25. It is shown that
the numerical simulations not only accurately capture the contact time reduction due to
pancake bouncing and the shape of the drop at take off, but they also correctly predict the
onset of pancake bouncing. The shape of the drop at take off is assessed via the pancake
quality parameter Q defined as the ratio of the drop radius at take off to its radius at
maximum spreading (Liu ez al. 2014).

5.4. Extreme density ratios: inertia-dominated coalescence of mercury drops

The sudden and pronounced topological changes involved in the coalescence of drops,
especially the formation and subsequent evolution of the neck between them, have been
of interest and subject to study for many years. The dynamics of the dimensionless neck
radius ryecr/Ro (with Ro the drop’s initial radius and 7. the neck radius) have been
shown to belong to one of two regimes (Eggers, Lister & Stone 1999) characterized by
the Ohnesorge number, Oh = w/+/2p;0 Ro: highly viscous Stokes or inertial. The neck
radius evolution over time has been shown to scale either as 7,k /Ro o t/7; (in the viscous
regime) or rpeck/Ro o /t/7; (in the inertial regime). Here, to better illustrate the ability of
the proposed scheme to model flows with extreme density ratios, we will focus on the first
regime, more specifically, the coalescence of mercury droplets, with Ohnesorge numbers

of the order of 10~* (for 1 g drops). We consider a case following the experimental

953 A4-34


https://doi.org/10.1017/jfm.2022.867

https://doi.org/10.1017/jfm.2022.867 Published online by Cambridge University Press

Two-phase lattice Boltzmann model

1.5 ms 34 ms 4.6 ms

_L.‘..aa........:

1.4 ms 2.9 ms 4.8 ms 16.5 ms

.L.A.A...-__

Figure 24. Drop impacting tapered posts at different Weber numbers (first and second rows) We = 28.2 with
pancake bouncing and (third and fourth rows) We = 14.2. The first and third rows are experiments from Liu
et al. (2014) while the second and fourth rows are from simulations.
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We We

Figure 25. (a) Drop contact times and (b) pancake quality at rebound on tapered posts for different Weber
numbers as obtained from simulations and experiments. Simulations results are shown with red circular markers
while experimental data reported by Liu et al. (2014) are illustrated with blue square markers.

configuration of Menchaca-Rocha et al. (2001) with two 1 g mercury droplets. To match
the proper density ratio of a mercury/air system (ppg = 13600 kg m~3), the temperature
is setto T, = 0.267, resulting in a density ratio of p;/p, ~ 11 500. The two drops, resolved
with 150 points on their radii are placed in a rectangular domain of size 400 x 400 x 800
with a centre-to-centre distance of 304 points. The drops are connected initially via a
neck of 4-points radius. The evolution of the drops’ shape over time are compared to
experiments from Menchaca-Rocha et al. (2001) in figure 26. To further illustrate the
agreement of numerical simulations with experiments, the evolution of the neck radii
Tneck Over time are shown in figure 27. Both qualitative comparison of the drops’ shape
and quantitative comparison of the neck radius show that the presented solver is able to
correctly model multi-phase flow dynamics with extreme density ratio. To the best of
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i-—w-—v*r'&'v

Figure 26. Sequential images from different stages of the mercury drops coalescence and sub-sequential
capillary waves propagation. First and third-row images are from experiments of Menchaca-Rocha et al. (2001),
while second and fourth rows are from LB simulations. Snapshots are taken at At = 3.5 ms intervals.

100}

r neck/ RO

101}

1073 102 100
t/ri

Figure 27. Time evolution of the neck radii from both (grey line) simulations and (red circular markers)
experiments as reported by Menchaca-Rocha er al. (2001). The dashed blue line represents the /#/7; scaling

with 1; = ,/pRS/o.

the authors” knowledge, this is the first lattice Boltzmann simulation at such high density
ratios, regardless of the formulation, i.e. pseudo-potential, free energy, phase-field etc.

6. Conclusion

Multi-phase flows are a well-established area in kinetic theory and more specifically in
the context of the LBM. While dynamic two-dimensional/three-dimensional simulations
are routinely carried out with the different LB-based formulations, which are subject to
continuous numerical improvements, a clear and concise kinetic framework along with a
characterisation of the resulting fluid thermodynamic properties is lacking.

The aim of the present work was to develop a general framework for isothermal
single-component multi-phase flow simulations consistent with the capillary fluid
thermodynamics. Starting from the first-order BBGKY equation and using a projector
operator in phase-space, a flexible model, in terms of pressure contribution partition,
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is proposed. A specific realization of the partition minimizing deviations from the
first-neighbour stencil reference (optimal) state was then discretized using the LBM. The
discrete solver was shown to recover the full Navier—Stokes—Korteweg under the proposed
scaling. The resulting discrete model was then probed for thermodynamic consistency and
shown to abide by all the scaling laws of the corresponding meanfield, i.e. surface tension,
interface thickness and Tolman length. Finally, the model was shown to allow for not only
static, but dynamic large density ratios simulations with complex geometries, illustrated
best by the extreme case of mercury drops coalescence, therefore effectively removing the
well-known limitations on maximum density ratio.

The detailed study of the properties of the proposed model and accompanying
theoretical analyses lead us to believe that the present framework fills important gaps
in the multi-phase literature, more specifically in the context of discrete kinetic models
such as the LBM. It provides a consistent framework for the simulation of challenging
physics as demonstrated by the curvature dependence of the surface tension. Furthermore,
it paves the way for extension to fully compressible non-ideal fluids and development of
corresponding lattice Boltzmann solvers following our previously introduced compressible
schemes (Saadat ez al. 2021) which will be the topic of an upcoming publication.
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Appendix A. Short-range interaction

The non-local contributions to particle’s interaction in (2.15) consist of short- and
long-range interactions, and are classically treated by splitting the integral over physical
space into two domains, |r; —r| < d and |r; —r| > d, where d is the hard-sphere
diameter. To derive the pressure form of the short-range interaction, we start with the
Enskog hard-sphere collision integral (Enskog 1921; Chapman & Cowling 1939),

jE_cﬂ//[ <r+—k>f(r V)f (r + dk, v})

—x (r—gk)f(r, v)f(r—dk,vl):|g'kdkd”1’ (AD

where k= (r1 — 1)/lri —rl,g=vi — v,V =v+k(g-k), v’1 =v; —k(g-k)and y is
the equilibrium pair correlation function, evaluated at local density taking into account
the effect of volume of particles in the collision probability (Chapman & Cowling 1939).
Using a Taylor expansion around 7,

d d 5
x\r£3k) = x@0) £ Tk V(1) + 0@, (A2)
f(r £ dk, w) = f(r, w) £ dk - V£(r, w) + O(d?), (A3)
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and neglecting terms of order O(d*), the resulting approximation of the Enskog collision
integral becomes

Te = xJg + TV, (A4)

where J is the Boltzmann collision integral for hard-spheres,
Tp =d° //[f(r, V)f(r, ) = f(r, 0)f (r, v1)1g - kdk dvy, (AS)
while 7, él) is the non-local contribution to the lowest order,
Ty = dx () / / ke« Lf(r, o)V (r, 0]) +f(r. 0)Vf (r, v1)]g - kdk do,

d3
+< / / k- VXL 0)f(r, v}) +f(r, 0)f (. v)]g - kdkdvy.  (A6)

Since the Boltzmann collision integral conserves the mass and momentum locally, it is
annulled by the projector,

KJp = 0. (A7)

Furthermore, 7. SIR is evaluated at the local equilibrium f°? in (2.16) to get (Chapman &
Cowling 1939)

Ty =d’ / / FUr, 0)f I, vk - VI (Of9(r, 0)f(r, v)]g - kdkdvy,  (A8)
which, after integration in v| and k, for the isothermal flow, results in
I _ eq 2
Tg’ = —bpxfUw—u) - Vinp“xT]

—bpyxf |:5R%(v —uw)®w—u):Vu+ (S%Jv —u)? - 1) V. u], (A9)

where b = 2nd? /3m. Finally, applying the isothermal projector K, we obtain

1 e
KT = ;g_u./ng” dv

T b
S e]; -/v(v—u)feq(r, v)dv-—TV,osz
p ou Y
1 ofe4
== ({;u - Vbp? xRT. (A10)

While the phenomenological Enskog’s collision integral (Enskog 1921) was used above,
the lowest-order approximation in (A9) is identical in other versions of hard-sphere kinetic
equations such as the revised Enskog theory (RET) (Van Beijeren & Ernst 1973) or kinetic
variational theory (Karkheck & Stell 1981).
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Appendix B. Long-range interaction

Vlasov’s mean-field approximation for a long-range interaction is reviewed next.
Assuming the absence of correlations, the two-particle distribution function is
approximated as

fo(r, v, e, v1) = f(r, 0)f(r1, v1), (BI)
while the long-range interaction integral can be simplified to
f (r, v)
Ty = V[ peovin —ran |, B2)
v |F1—r|>d

With a Taylor expansion around #,

p(r) =p) + (=1 Vo) + 301 =N @ (r1 =1 : V& Vp(r) + O(Vp),

(B3)
and neglecting higher-order terms, (B2) leads to
a
Jv =—=V2ap(r) +«V*p(r)] - 35 0 (B4)
where parameters a and « are, after integration over a unit sphere,
oo
a= —27:/ r2V(r) dr, (BS)
d
2 oo
k=—— / AV (r) dr. (B6)
3 Ja
Applying the projector, we obtain
1 9fd
Kdv=— A -/vjvdv
p ou
1 9f*4 a
= —— A . / v—f(r,v,t)dv - V[2ap +KV2p]
p ou av
afed
= {J; - V[2ap 4+ «V?p). (B7)
u

Finally, we can estimate the relative magnitude of the parameters a and « by introducing
a range of the attraction potential §. Assuming d < §, we have a ~ V83 and k ~ V§°,
where V is a characteristic value of the potential, and thus

VEK/a~$. (B8)

Appendix C. Hydrodynamic limit of the Enskog-Vlasov-BGK kinetic model
C.1. Rescaled kinetic equation

For the Enskog—Vlasov—BGK kinetic model,

1 of¢?

; u

let us introduce the following parameters: characteristic flow velocity Uf; characteristic

flow scale L£; characteristic flow time 7 = L/U; characteristic density p; isothermal
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speed of sound of ideal gas ¢; = ~/RT; kinematic viscosity of the BGK model of
ideal gas v = tc%. With the above, the variables are reduced as follows (primes denote
non-dimensional variables): time ¢t = 7¢'; space r = Lr; flow velocity u = Uu'; particle
velocity v = c;v'; density p = pp’; distribution function f = pc;f’. Furthermore, the
following non-dimensional groups are introduced: viscosity-based Knudsen number Kn =
tcg/L; Mach number Ma = U /c,; Enskog number En = bpKn/Ma; Vlasov number Vs =
a/bRT. With this, the Enskog—Vlasov—BGK kinetic model is rescaled as follows:

MaKnd)f +v - KnV'f' = —(f' _fea

1afeq/ |:/ N2 "2 (8)2 I/ ’2/:|
— = En |V (x(p) = Vs(p))—| =) Vs('V'Vip)|, (C2)
p' ou L
where § is the range of the attraction potential, estimated according to (B8). The following
scaling assumptions are applied: acoustic scaling, Ma ~ 1; hydrodynamic scaling,
Kn ~ En ~ §/L ~ €; Enskog—Vlasov parity, Vs ~ 1. In other words, the conventional
hydrodynamic limit treats all non-dimensional groups that are inversely proportional to
the flow scale £ (Kn, En and 8/L) as a small parameter, while the Enskog—Vlasov parity
ensures that both the short- and long-range contributions to the pressure are treated on
equal footing. Returning to dimensional variables, we may write

1 ofed
€ f+v-eVf=—(f —f9) — —g— - (eFD 4 EFO), (C3)
p du
where
F = V(bp®xRT — ap?), (C4)
F® = —kpVV?p. (C5)

Finally, taking into account the reference equilibrium in (2.34) and the reference pressure
Py, the rescaled kinetic equation in (2.35) takes the form of (C3) with

FO = v - py). (C6)

Chapman—Enskog analysis of the rescaled kinetic equation in (2.35) is presented in the
next section.

C.2. Chapman—Enskog analysis
Expanding the distribution function as

=1 +efV+ P 1+ 0, (C7)

introducing it back into (C3) and separating terms with different orders in €, at order zero,
one recovers

fO = (C8)

This latter implies the solvability conditions,
/ f®dv=0, Vk+0, (C9)
/ vf®dv =0, Vk 0. (C10)
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At order e€:
VO 4y vrO = —%f(l) - %%{q .FD, (C11)
which, upon integration in v, leads to
3V +V.pu=0, (C12)
3V pu+V-pu@u+V-Pl+FD =0. (C13)
At order €
8,(2)f(0) + 8t(l)f(]) +v.VFD = _%f(z)’ (Cl4)
which leads to the following equation for mass conservation:
3Pp =0, (C15)
while for momentum:
3P pu+v. U v ® vf ) dv} = 0. (C16)

The last term on the left-hand side can be evaluated using the previous order in € as

/,,@vf(l)dv:_f [8,(1)/v®vf(0)dv+V-/v®v®vf(0)dv

1 afed
+— f vl -F(l)dv:|, (C17)
0 ou
where
o / v Odv=-V.pu@uau—[ue FD +vpry) + FD
+ VPo) ®@ ul + 8" Pol, (C18)
and

V-/v@v@vﬂ“dv:V-pu®u®u+[vpou+vpouﬁ+lv-Pou, (C19)

1 Iy M 4 g
—Jv@v— F/dv=u@F'"+F"'’ Qu, (C20)
P du
which leads to
/ v @ of D dv = —7[Po(Vu+ Va') + (3" Po + V - Pou1], (c21)

where the last two terms can be re-written as

oP oP
0VPo +V - Pou = a—po(af”p +V - pu) + (Po - pa—po> V-u

alnPo
=pPy(1- V.u, (C22)
dlnp
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in turn recovering the Navier—Stokes-level momentum equation:

.2
3P pu—V.p (Vu—i— V' -3V ul) — V.0V -ul) =0, (C23)
where
u = tPo, (C24)
5 9lnP
n=tPo (2 20). (C25)
3 dlnp

Appendix D. Chapman-Enskog analysis of the lattice Boltzmann model
Using a Taylor expansion around (7, ),

81
file + it 1+ 80) — fir, 1) = [azu + 7Df}ﬂr, N +06r), (D1)
the discrete time-evolution equation is re-written as

2
8tD, fi + %D,zfi +068) = o(ffT = f) + (FF — 9, (D2)

where we have only retained terms up to order two. Then, introducing characteristic flow
size £ and velocity U, the equation is made non-dimensional as

or Su
( )Dﬁfl —( ) Dfi=o(f —f) + (f,-*(u/ + E(Su/) —ff‘f(u’)) . (D3)
where primed variables denote non-dimensional form and
= —(8 +c -V, (D4)

where ¢ = 8r/8t. Assuming acoustic, i.e. U/c ~ 1, and hydrodynamic, i.e. §r/L ~
du/U ~ ¢, scaling and dropping the primes for the sake of readability,

eDifi + 367D + 0(e) = w(f — f) + (FF (u + edu) — [ (w)).  (DS)

Then introducing multi-scale expansions,

ﬁ :f;(O) 4 8f;-(1) + 82‘](;(2) 4 0(83), (D6)
f[* zf;*(o) 4 8](;'*(1) 4 82](;‘*(2) + 0(83), (D7)
the following equations are recovered at scales ¢ and &
g D(l)f(o) a)f(l) +f*(1) (D8a)
1
2) (0 1 1 2 2 D) (1

with fl.(o) = fi*(o) = fl.eq. The moments of the non-local contributions (including both
non-ideal contributions to the thermodynamic pressure, surface tension and the correction
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for the diagonals of the third-order moments tensor) are

Y =0, vk>o (D9a)
i
Y iV =F, (D9b)
i
dYweffV=u@F+Fou+o (D9c)
i
1

dwaff? = SFOF. (D9d)

i

Taking the moments of the Chapman—Enskog-expanded equation at order ¢,

aVp+V.pu=0, (D10)
3V pu+V-pu®u+V-Pyl+F =0, (D11)

while at order €2, the continuity equation is
5@ F
' ,0+V-3=0. (D12)
Summing up (D10) and (D12), we recover the continuity equation as

dqp+V.pU=0, (D13)

where U = u + (6¢/2p)F . For the momentum equations, we have

1 1 11
8 pu + 5af”1~"+ SV @®F+FQu)+V- (5 - 5) 00 +v . 1

1 1 1
—V-<———>(u®F—I—F®u)+V-—¢=O, (D14)
2 w

where ﬂéo) and n§0) are the second- and third-order moments of fl.(o) defined as

Y = pu® u+ Pol, (D15)
ngo)=ng43—pu®u®qu—3(Po—pgz)u@)loJ (D16)
where H%By = pugupu, + Poperm(uydg,) is the third-order moment of the Maxwell—

Boltzmann distribution, and for the sake of simplicity, we have introduced the
diagonal rank three tensor J, with Jug, = 848wy 8, and o is the Hadamard product.
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The contributions in the fourth term on the left-hand side can be expanded as
0" = 5" pu @ u+ 0" Pyl
=uQ® Bt(l),ou + (Bt(l)pu) Qu-—u® uat(l),o + at(l)POI
=-V.pu®uu—[u® (VPy—F)+ (VPy— F)@u]+ 3" Pyl (D17)

and
V.nY =V.pu@u®u+ (VPyu+ VPyu') + (V - Pou)l

—V-[pu®u®qu+3(Po—pg2>u®IoJ], (D18)
resulting in
o' +v .1 =Py(Vu+Vu') + u®@ F+ueF")
F (V- Pout 3 PYI -V [pu@u@uod+3 <Po —pg2>u®loJ]. (D19)
Plugging this last equation back into (D14),

@ mF 1 I 1 i
9;” pu + 0, §+EV-(u®F+F®u)+V- 37 Po(Vu+Vu')

1 1 (1
+V|-—— )0 "Py+V:Pou)
2 o

1 1 1
+V.[<_——)V.(pu®u®qu+3(Po—pg2>u®lod)+—d>i| =0,
2 o w
(D20)

where the last term cancels out by setting
¢=<1—%)V-(,ou®u®qu+3(Po—pgz)u®lod), (D21)

and the fourth and fifth terms reduce to the viscous stress tensor by defining p/Py =

(1/w —1/2) and
p (20 ey (1 o2
D dlnp w 2

Furthermore, using U = u + (6t/2p)F and

SPFQF
4p
in combination with the Euler-level equation, and keeping in mind that errors of the form

V.GrF® F)/4p in the convective term and 6tV u(V (F/p) + V(F/p)%) in the viscous
stress are of order &3, one recovers

St
pU®U=pu®u+5(u®F+F®u)+ (D23)

2
atpU+V.pU®U—V.M<VU+VUT—l—)V-U:)

—V.V-U)+0(E*) =0. (D24)

The scaling parameter introduced for the perturbation analysis, and consistency at the
first two orders in ¢, is further confirmed by simulations. To demonstrate this point, flat
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Figure 28. Error in vapour-phase coexistence density, E = |0y, ref — Pv,sim|/ Pu,ref» as obtained from flat
interface simulations (red circular markers). The dashed line shows the slope 2.

interface simulations at 7, = 0.36 have been conducted for different values of . The
expansion parameter is controlled by introducing a scaling parameter & into the pressure
P appearing inside the pseudo-potential, P’ = kP, the reference pressure P, = kPy and
the surface tension term resulting in F’ = kF. As introduced here, the scaling parameter
directly scales the magnitude of the force term and therefore k/p ~ ¢. It must be noted that
this scaling is akin to a space grid refinement. The results obtained for different values of k
are shown in figure 28 and point to a second-order scaling in agreement with the theoretical
analysis provided in the manuscript.

Appendix E. Discrete non-local contributions to pressure tensor

Following the analysis presented by Shan (2008), we write the force contribution for the
present model as

=+ w(>Z
P =g me
_2Kp(7)z
——xp(r)Z

F=FA+FB+FC—|—FD, (E1)
Y (r + ¢idt), (E2)

c,tﬁ(r +2¢;81), (E3)

c, p(r+ c;8t), (E4)

C,,O(i‘ + 2¢;61). (ES)
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Figure 29. Pressure distribution from a simulation at 7, = 0.36, corresponding to P, = 0.0022 and p;/p, =
10°. Black line, evaluation using the discrete pressure tensor; red line, evaluation using continuous pressure
tensor; dashed blue line, density profile.

The pressure tensor contributions from forces F4 and F€ can be readily written as
8 Ca
Pl=x2y() g—;c,- ® iV (r + ¢id1), (E6)
i=0
= —kp(r) Z —5¢i @ cip(r+¢id), (E7)

while F2 and FP contribute to the pressure tensor as follows:

I =
P =+ w(r)z 2c1®c,1ﬁ(r+2c,8t)+z 6 @ e (r — cidny(r + e8|
i= O
(E8)
p 0- 0-1
PP 5 Z c,®c,,0(r—|—20,6t)+ Z 2 c,®c,p(r—c,6t),o(r+cz§t)
:O i=0
(E9)

These expressions allow to compute the discrete pressure tensor with high accuracy.
Figure 29 shows the distribution of the normal pressure, P,,, in a flat interface simulation
as computed from both the discrete and continuous pressure tensors,

P = P+ k(320 — 3130 l?). (E10)

While the discrete evaluation method correctly results in a uniform pressure distribution
throughout the domain, also across the interface, the continuous approximation evaluated
using a finite differences approximation fails to do so, indicating errors due to higher-order
terms. This points to the necessity of using the discrete pressure tensor instead of (E10)
for evaluation of quantities such as surface tension and Tolman length in §§ 3.3 and 3.5.
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Appendix F. Analytical solution of layered Poiseuille flow
Solving the system presented in (4.1) and (4.2), one gets

u(y) =apy® + by, Vy:0<y<hn, (Fla)
u(y) = ayy’ +byy+co, Vy:h<y<H, (F1b)
with aj = —p18/2 1, ay = —ppg/244y, and

H?pipy — 203 wipr + hi wipy + b3 o pr + 2Hhyui o0 — 2Hhyju,

bi=g . (F2a)
2ui(Hpg — hypag + hyay)
H?pipy — hi wipy + 203 11y py
b, = (F2b)
2uy(Hpp — by + hipy)
2 2 2
) = th[ Hipy + h[ MHvpr — 2hl Moy — Hhyppy + Hhypey py . (F2¢)

2uy(Hpg — hypg + hypy)

Appendix G. Isothermal sound speed for other equations of states

Apart from the van der Waals equation of state in the main text, the present
LBM formulation was also used to simulate the speed of sound for the three
other cubic equations of state, Peng—Robinson (3.4), Riedlich-Kwong—Soave (3.7) and
Carnahan—Starling (3.10), along with two equations of state proposed by Shan & Chen
(1993),

P,
Psc = Py + %gwszc, (G1)
with
Ysc1 =1 —exp(—p), (G2)
VYsc-n = exp(—=1/p), (G3)

while Py = ¢?p. Corresponding critical densities p. and pseudo-temperatures G, are
readily computed by solving the conditions at the critical point,

P 92P
sc -0 s¢ =0, (G4a,b)

8'0 Gespe ’ 8p2 Ge,pe

which results in (G, = —4, p. = 0.6931) and (G, = —7.389, p. = 1) for the pseudo-potentials

(G2) and (G3), respectively. Figure 30 shows excellent agreement between simulations
using the present model and theory for all equations of state. It is interesting to note that,
in contrast to the conventional equations of state of the van der Waals type, the equations
of state in (G1), (G2) and (G3) demonstrate higher speed of sound in the vapour phase
than in the liquid. While this, by itself, does not contradict thermodynamics, it remains
unclear which substances may feature such an unusual behaviour.

Appendix H. Alternative reference pressure

The general framework introduced in the present publication allows for a wide range of
pressure partitions. As mentioned in the main text, one possible choice is to set Po = P
leaving only the surface tension contribution in (2.69). Another alternative is to follow the
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Figure 30. Isothermal sound speed for various equations of state. (a—c) Peng—Robinson (3.4),
Carnahan—Starling (3.10) and Riedlich-Kwong—Soave (3.7); (d,e) Shan—Chen (G2) and (G3). Grey plain lines,
theory; symbol, simulations with the present LB model.

(a) ()
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E 08 08
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Figure 31. Liquid—vapour coexistence for the van der Waals equation of state using two different pressure
partition choices: (@) using (H1) and (H2) (@ = 0.00033, b = 0.0952) and (b) Py = P (a = 0.002, b = 0.381).
Grey lines, Maxwell’s equal-area construction (3.1); red symbol, simulation.

Enkog—Vlasov short- and long-range interaction partition leading, for the van der Waals
equation of state, to

RT
py= - (H1)
1—>bp
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and
P— Py = —ap°. (H2)

To better showcase the flexibility of the framework, flat interface simulations have been
conducted using these alternative partitions. The resulting co-existence densities are
shown in figure 31. For choices of partition leading to Py/p # const., an additional
constraint tied to the stability properties of the chosen lattice must be taken into account.
For instance, for standard lattices used in the present work, it is well known that

Po8t?/pdr? > 1/3 would lead to instabilities. Simulations shown in figure 31 were run
with parameters guaranteeing Podt>/psr?> < 1/3.

REFERENCES

AALILUA, A., GANDIN, C.-A. & HACHEM, E. 2020 On the analytical and numerical simulation of an
oscillating drop in zero-gravity. Comput. Fluids 197, 104362.

ANDERSON, D.M., MCFADDEN, G.B. & WHEELER, A.A. 1998 Diffuse-interface methods in fluid
mechanics. Annu. Rev. Fluid Mech. 30 (1), 139-165.

BENzI, R., BIFERALE, L., SBRAGAGLIA, M., Succl, S. & ToscHI, F. 2006 Mesoscopic modeling of a
two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74 (2), 021509.

BLoOKHUIS, E.M. & BEDEAUX, D. 1992 Pressure tensor of a spherical interface. J. Chem. Phys. 97 (5),
3576-3586.

BLokHUIS, E.M. & KUIPERS, J. 2006 Thermodynamic expressions for the Tolman length. J. Chem. Phys.
124 (7), 074701.

Bouzipi, M., FIRDAOUSS, M. & LALLEMAND, P. 2001 Momentum transfer of a Boltzmann-lattice fluid
with boundaries. Phys. Fluids 13 (11), 3452-3459.

CAHN, J.W. & HILLIARD, J.E. 1958 Free energy of a nonuniform system. L. Interfacial free energy. J. Chem.
Phys. 28 (2), 258-267.

CARNAHAN, N.F. & STARLING, K.E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys.
51 (2), 635-636.

CHAPMAN, S. & COWLING, T.G. 1939 The Mathematical Theory of Non-uniform Gases: An Account of the
Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.
CHEN, L., KANG, Q., MU, Y., HE, Y.-L. & TA0, W.-Q. 2014 A critical review of the pseudopotential
multiphase lattice Boltzmann model: methods and applications. Intl J. Heat Mass Transfer 76, 210-236.

DEBENEDETTI, P.G. 1997 Metastable Liquids. Princeton University Press.

EGGERS, J., LISTER, J.R. & STONE, H.A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293-310.

ENSKOG, D. 1921 Der Wirmeleitung, Reibung und Selbstdiffusion in gewissen verdichteten Gasen. Kungl.
Svenska Vetenskapsakademiens Handlingar. 63 (4).

EsSMAILL E., MOOSAVI, A. & MAzZLOOMI, A. 2012 The dynamics of wettability driven droplets in smooth
and corrugated microchannels. J. Stat. Mech.: Theory Exp. 2012 (10), P10005.

GAUTHIER, A., SYMON, S., CLANET, C. & QUERE, D. 2015 Water impacting on superhydrophobic
macrotextures. Nat. Commun. 6 (1), 8001.

GIBBS, J.W. 1874 On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. III, 108-248.

GIOVANGIGLI, V. 2020 Kinetic derivation of diffuse-interface fluid models. Phys. Rev. E 102 (1), 012110.

GORBAN, A.N. & KARLIN, 1.V. 2005 Invariant Manifolds for Physical and Chemical Kinetics, vol. 660.
Springer.

GUGGENHEIM, E.A. 1945 The principle of corresponding states. J. Chem. Phys. 13 (7), 253-261.

HE, X. & DOOLEN, G.D. 2002 Thermodynamic foundations of kinetic theory and lattice Boltzmann models
for multiphase flows. J. Stat. Phys. 107 (1), 309-328.

HE, X., SHAN, X. & DOOLEN, G.D. 1998 Discrete Boltzmann equation model for nonideal gases. Phys. Rev.
E 57 (1), R13.

HELFRICH, W. 1978 Steric interaction of fluid membranes in multilayer systems. Z. Naturforsch. A 33 (3),
305-315.

HUANG, J., YIN, X. & KILLOUGH, J. 2019 Thermodynamic consistency of a pseudopotential lattice
Boltzmann fluid with interface curvature. Phys. Rev. E 100 (5), 053304.

JAMET, D., LEBAIGUE, O., COUTRIS, N. & DELHAYE, J.M. 2001 The second gradient method for the direct
numerical simulation of liquid—vapor flows with phase change. J. Comput. Phys. 169 (2), 624-651.

KARKHECK, J. & STELL, G. 1981 Kinetic mean-field theories. J. Chem. Phys. 75 (3), 1475-1487.

953 A4-49


https://doi.org/10.1017/jfm.2022.867

https://doi.org/10.1017/jfm.2022.867 Published online by Cambridge University Press

S.A. Hosseini, B. Dorschner and 1.V. Karlin

KIRKWOOD, J.G. & BUFF, F.P. 1949 The statistical mechanical theory of surface tension. J. Chem. Phys.
17 (3), 338-343.

KORTEWEG, D.J. 1901 Sur la forme que prennent les équations du mouvement des fluides si I’on tient compte
des forces capillaires causées par des variations de densité considérables mais continues et sur la théeorie
de la capillarité dans ’hypothese d’une variation continue de la densité. Arch. Néerl. Sci. Exactes Nat
6 (265).

KRUGER, T., KUSUMAATMAJA, H., KUuzMIN, A., SHARDT, O., SILVA, G. & VIGGEN, E.M. 2017
The Lattice Boltzmann Method: Principles and Practice, Graduate Texts in Physics, vol. 3. Springer
International Publishing.

KUPERSHTOKH, A.L., MEDVEDEV, D.A. & KARPOV, D.I. 2009 On equations of state in a lattice Boltzmann
method. Comput. Maths Applics. 58 (5), 965-974.

LAX, P.D. & RICHTMYER, R.D. 1956 Survey of the stability of linear finite difference equations. Commun.
Pure Appl. Maths 9 (2), 267-293.

L1, Q., Luo, K.H., KANG, Q.J. & CHEN, Q. 2014 Contact angles in the pseudopotential lattice Boltzmann
modeling of wetting. Phys. Rev. E 90 (5), 053301.

L1, Q., Luo, K.H., KANG, Q.J., HE, Y.L., CHEN, Q. & LIu, Q. 2016 Lattice Boltzmann methods for
multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62-105.

L1, Q., Luo, K.H. & L1, X.J. 2013 Lattice Boltzmann modeling of multiphase flows at large density ratio
with an improved pseudopotential model. Phys. Rev. E 87 (5), 053301.

Liu, Y., MOEVIUS, L., XU, X., QIAN, T., YEOMANS, J.M. & WANG, Z. 2014 Pancake bouncing on
superhydrophobic surfaces. Nat. Phys. 10 (7), 515-519.

LULLI, M., BIFERALE, L., FALcUccCI, G., SBRAGAGLIA, M. & SHAN, X. 2021 A mesoscale perspective
on the Tolman length. Phys. Rev. E 105, 015301.

Luo, K.H., FEL, L. & WANG, G. 2021 A unified lattice Boltzmann model and application to multiphase flows.
Phil. Trans. R. Soc. A 379 (2208), 20200397.

MARTYS, N.S. 1999 Energy conserving discrete Boltzmann equation for nonideal systems. Intl J. Mod. Phys.
C 10 (07), 1367-1382.

MARTYS, N.S. 2001 A classical kinetic theory approach to lattice Boltzmann simulation. Int/ J. Mod. Phys. C
12 (08), 1169-1178.

MARTYS, N.S. 2006 A BBGKY-based density gradient approximation of interparticle forces: application for
discrete Boltzmann methods. Physica A 362 (1), 57-61.

MAZLOOMI MOQADDAM, A., CHIKATAMARLA, S.S. & KARLIN, I.V. 2017 Drops bouncing off
macro-textured superhydrophobic surfaces. J. Fluid Mech. 824, 866-885.

MENCHACA-ROCHA, A., MARTINEZ-DAVALOS, A., NUNEZ, R., POPINET, S. & ZALESKI, S. 2001
Coalescence of liquid drops by surface tension. Phys. Rev. E 63 (4), 046309.

PENG, D.-Y. & ROBINSON, D.B. 1976 A new two-constant equation of state. Ind. Engng Chem. Fundam.
15 (1), 59-64.

POPINET, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 49-75.

PROSPERETTI, A. & TRYGGVASON, G. 2009 Computational Methods for Multiphase Flow. Cambridge
University Press.

RAO, M. & BERNE, B.J. 1979 On the location of surface of tension in the planar interface between liquid and
vapour. Mol. Phys. 37 (2), 455-46l.

RAYLEIGH, L. 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29 (196-199), 71-97.

REDLICH, O. & KWONG, J.N.S. 1949 On the thermodynamics of solutions. V. An equation of state. Fugacities
of gaseous solutions. Chem. Rev. 44 (1), 233-244.

REYHANIAN, E., DORSCHNER, B. & KARLIN, I.V. 2020 Thermokinetic lattice Boltzmann model of nonideal
fluids. Phys. Rev. E 102 (2), 020103.

SAADAT, M.H., HOSSEINI, S.A., DORSCHNER, B. & KARLIN, I.V. 2021 Extended lattice Boltzmann model
for gas dynamics. Phys. Fluids 33 (4), 046104.

SBRAGAGLIA, M., BENZI, R., BIFERALE, L., Succl, S., SUGIYAMA, K. & ToscHI, F. 2007 Generalized
lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E 75 (2), 026702.

SBRAGAGLIA, M., CHEN, H., SHAN, X. & Succi, S. 2009 Continuum free-energy formulation for a class
of lattice Boltzmann multiphase models. Europhys. Lett. 86 (2), 24005.

SCARDOVELLI, R. & ZALESKI, S. 1999 Direct numerical simulation of free-surface and interfacial flow.
Annu. Rev. Fluid Mech. 31 (1), 567-603.

SETHIAN, J.A. & SMEREKA, P. 2003 Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35 (1),
341-372.

SHAN, X. 2008 Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Phys. Rev. E
77 (6), 066702.

953 A4-50


https://doi.org/10.1017/jfm.2022.867

https://doi.org/10.1017/jfm.2022.867 Published online by Cambridge University Press

Two-phase lattice Boltzmann model

SHAN, X. & CHEN, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and
components. Phys. Rev. E 47 (3), 1815-1819.

SOAVE, G. 1972 Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Engng Sci.
27 (6), 1197-1203.

STALDER, A.F., MELCHIOR, T., MULLER, M., SAGE, D., BLU, T. & UNSER, M. 2010 Low-bond
axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops.
Colloids Surf. A 364 (1-3), 72-81.

Succt, S. 2002 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford Science Publications.

ToOLMAN, R.C. 1949 The effect of droplet size on surface tension. J. Chem. Phys. 17 (3), 333-337.

VADILLO, D.C., SOUCEMARIANADIN, A., DELATTRE, C. & RoUXx, D.C.D. 2009 Dynamic contact angle
effects onto the maximum drop impact spreading on solid surfaces. Phys. Fluids 21 (12), 122002.

VAN BEUEREN, H. & ERNST, M.H. 1973 The modified Enskog equation. Physica 68 (3), 437-456.

VLASOV, A.A. 1961 Many-particle Theory and its Application to Plasma. Gordon & Breach Science Publisher
Inc.

VAN DER WAALS, J.D. 1873 Over de Continuiteit van den Gasen Vloeistoftoestand. PhD thesis, University of
Leiden.

VAN DER WAALS, J.D. 1894 Thermodynamische Theorie der Kapillaritit unter Voraussetzung stetiger
Dichtednderung. Z. Phys. Chem. 13U (1).

WIDOM, B. 1965 Surface tension and molecular correlations near the critical point. J. Chem. Phys. 43 (11),
3892-3897.

YUAN, P. & SCHAEFER, L. 2006 Equations of state in a lattice Boltzmann model. Phys. Fluids 18 (4), 042101.

953 A4-51


https://doi.org/10.1017/jfm.2022.867

	1 Introduction
	2 Model for two-phase flows
	2.1 Second-gradient theory: Korteweg's stress and capillary fluid equations
	2.2 Kinetic model for non-ideal fluid
	2.3 Scaling by velocity increment and lattice Boltzmann equation
	2.3.1 Time step and forcing
	2.3.2 Standard lattice and product form
	2.3.3 The lattice Boltzmann equation
	2.3.4 Pseudo-potential and capillarity
	2.3.5 Hydrodynamic limit under small velocity increment scaling
	2.3.6 Code structure


	3 Thermodynamic consistency
	3.1 Liquid--vapour coexistence
	3.2 The principle of corresponding states and thermodynamic convergence
	3.3 Temperature dependence of the surface tension near the critical point
	3.4 Control of surface tension
	3.5 Effect of curvature on surface tension: Tolman length
	3.6 Interface width: temperature scaling and control

	4 Hydrodynamic consistency
	4.1 Shear stress: layered Poiseuille flow
	4.2 Normal stress: dissipation of acoustic waves
	4.3 Viscosity-capillarity coupling: oscillating drop
	4.4 Isothermal speed of sound
	4.5 Interaction with solid boundaries: equilibrium contact angle
	4.5.1 Young--Laplace equation
	4.5.2 Wettability-driven drop motion in a channel


	5 Application to the dynamic cases
	5.1 Thermodynamic convergence and resolution requirements
	5.2 Contact time on flat non-wetting surfaces
	5.3 Reducing the contact time: pancake bouncing
	5.4 Extreme density ratios: inertia-dominated coalescence of mercury drops

	6 Conclusion
	Appendix A. Short-range interaction
	Appendix B. Long-range interaction
	Appendix C. Hydrodynamic limit of the Enskog--Vlasov--BGK kinetic model
	C.1 Rescaled kinetic equation
	C.2 Chapman--Enskog analysis

	Appendix D. Chapman--Enskog analysis of the lattice Boltzmann model
	Appendix E. Discrete non-local contributions to pressure tensor
	Appendix F. Analytical solution of layered Poiseuille flow
	Appendix G. Isothermal sound speed for other equations of states
	Appendix H. Alternative reference pressure
	References

