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Abstract Let n be a closed real 1-form on a closed Riemannian n-manifold (M,g). Let d., 6 and A, be
the induced Witten’s type perturbations of the de Rham derivative and coderivative and the Laplacian,
parametrized by z = p+iv € C (u,v € R, i = v/=1). Let {(s,2) be the zeta function of s € C, defined as
the meromorphic extension of the function ((s,z) = Str(nAd.A; *) for Rs > 0. We prove that ((s,z) is
smooth at s =1 and establish a formula for {(1,z) in terms of the associated heat semigroup. For a class
of Morse forms, ¢(1,z) converges to some z € R as pu — 400, uniformly on v. We describe z in terms of
the instantons of an auxiliary Smale gradient-like vector field X and the Mathai-Quillen current on 7'M
defined by g. Any real 1-cohomology class has a representative 7 satisfying the hypothesis. If n is even, we
can prescribe any real value for z by perturbing g, 7 and X and achieve the same limit as g — —oo. This
is used to define and describe certain tempered distributions induced by g and 7. These distributions
appear in another publication as contributions from the preserved leaves in a trace formula for simple
foliated flows, giving a solution to a problem stated by C. Deninger.

1. Introduction

1.1. Witten’s perturbed operators

Let M be a closed n-manifold. For any smooth function » on M, Witten [74] introduced
a perturbed de Rham differential operator d,, = d+ udhA, depending on a parameter
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2 J.A. Alvarez Lopez et al.

© € R. Endowing M with a Riemannian metric g, we have a corresponding perturbed
codifferential operator 6, = d —pudh_, and a perturbed Laplacian A, =d,,6,,+9,d,. Since
d, = e M dett it defines the same Betti numbers as d. However, A, and the usual
Laplacian A have different spectrum in general. In fact, if & is a Morse function and g is
Euclidean with respect to Morse coordinates around the critical points, then the spectrum
of A, develops a long gap as p — 400, giving rise to the small and large spectrum.
The eigenforms of the small/large eigenvalues generate the small/large subcomplex,
(Ey,sm/1a,dy). When h is a Morse function, Witten gave a beautiful analytic proof of the
Morse inequalities by analyzing the small spectrum. This was refined by subsequent work
of Helffer and Sj6strand [35] and Bismut and Zhang [10, 11], showing that, if moreover
X := —gradh is a Smale vector field, then the Morse complex (C®,d) of X can be
considered as the limit of (E,, sm,d,,). More precisely, for certain perturbed Morse complex
(C*,d,,), isomorphic to (C*®,d), there is a quasi-isomorphism ®,, : (E. ¢m,d,) — (C*,d,),
defined by integration on the unstable cells of the zero points of X, which becomes an
isomorphism for g >> 0 and almost isometric as g — 400 (after rescaling at every degree).

We can replace dh with any closed real 1-form 7, obtaining a generalization of the
Witten’s perturbations, d,, J, and A,. Now, d,, need not be gauge equivalent to d,
obtaining new twisted Betti numbers 5Zj However, the numbers ﬁﬁ have well-defined
ground values ﬁ{{}o, called the Novikov numbers, which depend upon the de Rham
cohomology class [] € H!(M,R). Assume that:

(a) n is a Morse form (it has Morse-type zeros), and g is Euclidean with respect to
Morse coordinates around the zero points of 7.

(Some concepts used in this section are recalled in Sections 4.1 and 6.1.) Then A, also
develops a long gap separating a small spectrum and a large spectrum, and the analysis of
the small spectrum gives Morse inequalities for the Novikov numbers. Take any auxiliary
vector field X such that:

(b) X has Morse-type zeros and is gradient-like and Smale; and

(¢) n is Lyapunov for X, and n and ¢ are in standard form with respect to X.

Then the small complex approaches a perturbed Morse complex of X. We refer to work
by Novikov [55, 56], Pajitnov [58], Braverman and Farber [14], Burghelea and Haller [17,
18, 20] and Harvey and Minervini [34, 52].

We can similarly define the perturbation d, = d+ 2nA with parameter z = p+1iv € C
(u,v €R and i = /—1). Its adjoint is J, = § — 27, and we have a corresponding perturbed
Laplacian A, =d,d, +.d,. As a first step in our study, we prove extensions of the above
results to this case, taking limits as |u| — 400, uniformly on v. First, assuming (a),
we get the long gap in the spectrum of A, separating the small and large spectrum,
which depends only on g (Theorem 4.10). Second, assuming (a)—(c), we show that the
quasi-isomorphism @, : (E, ¢m,d.) — (C*,d;) becomes an isomorphism for |u| > 0 and
almost isometric as |u| — 400 (Theorem 6.3). To get that the convergence is uniform on
v, the key ingredient is a version of a Sobolev inequality for integers m > n/2: on smooth
complex differential forms,
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where C, > 0 is independent of v and ||a]|m,iv = Y peo(AE a,a)/? (Proposition 2.2).
(The analogous property for A, is wrong.) Then we adapt the arguments of Bismut and
Zhang [10, 11] (see also [75]).

The indicated properties of A,, holding uniformly on u, depend on remarkable
differences between A;, and A,,. For instance, if 7 is exact, all operators A;, are gauge
equivalent, whereas this is not true for the operators A, when 7 # 0. If  is not exact, the
operators A;, are not gauge equivalent either. Moreover, A;, — A is of order one when
v # 0, whereas A, — A is of order zero.

1.2. Zeta invariants of Morse forms

To begin with, 7 is only assumed to be an arbitrary closed real 1-form. Let I} and II. be
the orthogonal projections to the images of A, and d,. We consider a zeta function ((s,z)
associated with 77 and the parameter z € C. As a function of s € C, it is the meromorphic
extension of the holomorphic function

((8,2) = Str(nA S, AL = Str(npAd P AZSTTL)

defined for Rs > 0, where Str stands for the supertrace. We are interested in the
zeta invariant ((1,z) that can be interpreted as a renormalization of the supertrace of
nAd; I, which is not of trace class by the Weyl’s law. According to the general theory
of zeta functions of elliptic operators, {(s,z) might have a simple pole at s = 1. However,
our first main theorem states that {(s,z) is smooth at s =1 and gives a formula for {(1,z)
in terms of the associated heat semigroup.

Theorem 1.1. Let M = (M,g) be a closed Riemannian n-manifold, and let n be a closed
real 1-form on M. If n is even (resp., odd), then, for any z € C, s+ ((s,z) is smooth on
the half-plane Rs >0 (resp., Rs > 1/2). Furthermore,

. —1 _—tA,
<(1,z):1t1§)18tr(mdzle A1),

The existence of the limit of Theorem 1.1 is surprising because nAd; e *A=1I! is
weakly convergent to nAd; 'TIL. An expression similar to Str(nAd; e tA=11}) was used
by Mrowka, Ruberman and Saveliev to define a cyclic eta invariant [53].

Next, we additionally assume that n is a Morse form and use the results described in
the previous section. The zeta-function decomposes as the sum of terms defined by the
contributions from the small/large spectrum, (o /1a(5,2) = (om/1a(8,2,m), Where (m(s,2)
is an entire function of s. Our second main theorem describes the asymptotic behavior of
¢(1,2) as pu — £o0, uniformly on v. In fact, since

C(57Z777) = _C(Sa —Zz, _77) ) Csm/la(svzan) = _Csm/la(sv —Z,— 77) y (12)

it is enough to consider the case where p > 0 and take the limit as p — 4o0.

We use the current 1(M,V™) of degree n—1 on TM constructed by Mathai and
Quillen in [44], depending on the Levi-Civita connection V*. This current is smooth on
the complement of the zero section, where it is given by the solid angle. It is also locally
integrable, and its wave front set is contained in the conormal bundle in T*T M of the zero
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section of T'M . Since this set does not meet the conormal bundle of the map X : M — T M
(assuming (b)), (—X)*(M,VM) is well defined as a current on M. Assuming also (a)—(c),
consider the real number

210 = 710 (M. g.1) = /Mm (—X)" (M, VM),

which is known to be independent of X [10, Proposition 6.1].
Now, suppose also that:

(d) for every zero point p of X with Morse index k, the maximum value of the integrals
of n along the instantons of X with a-limit p only depends on £.

This maximum value is denoted by —ay for some ay > 0. Let mj = dimd.(E¥L) for
1> 0, which is independent of z. Consider also the real number

n
Zsm = Zsm M gana Z 176 )m11€
k=1

and let z = z(M,9,1,X) = Zgm + Z1a-
Recall that we write z = p+iv.

Theorem 1.2. Let M = (M,g) be a closed Riemannian n-manifold, let n be a closed real
1-form on M satisfying (a) and let X be a vector field on M satisfying (b)—(c).

(i) We have
Ga(L,2) =21+ O (™)

as b — +0o, uniformly on v.
(ii) If moreover (d) holds, then

Gm(1,2) = Zem + O(U_l)
as p — +o0, uniformly on v.

Theorem 1.2 (ii) shows that zs, and z are also independent of X. Thus, X will be
omitted in their notation. In the notation of zgy, /1, and z, we may also omit M or g if
they are fixed.

By Equation (1.2), if we take y — —oo in Theorem 1.2, we have to replace zgy 14(7)
With —2gy, /1a(—7). Descriptions of —zgy, /1.(—7) are given in Equations (7.9) and (8.1).

Our third main theorem is about the prescription of z = z(M,g,n) without changing
the cohomology class of 7.

Theorem 1.3. Let M be a smooth closed n-manifold. If n is even (resp., odd), for all
£€ HY(M,R) and 7 €R (resp., 7> 0), there is some n € £, a Riemannian metric g and
a vector field X satisfying (a)—(d) such that £z(M,g, £n) =71 (resp., z(M,g,n) =T).

1.3. A distribution associated to some Morse forms

A trace formula for simple foliated flows on closed foliated manifolds was conjectured by
C. Deninger (see, e.g., [24]). He was motivated by analogies with Weil’s explicit formulas
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in arithmetics and previous work of Guillemin and Sternberg [32]. This trace formula is
an expression for a Lefschetz distribution in terms of infinitesimal data of the flow at
the fixed points and closed orbits. This Lefschetz distribution should be an analogue of
the Lefschetz number for the action induced by the flow on some leafwise cohomology,
whose value is a distribution on R—the precise definition of these notions is part of the
problem. In [4, 5], the first two authors proved such a trace formula when the flow has no
preserved leaves; see also the contributions [42, 43] by the third author. The general case
is considerably more involved. In [6], we propose a solution to this problem using a few
additional ingredients. One of them is the b-trace introduced by Melrose [46]. Since the
b-trace is not really a trace, it produces an extra term, denoted by Z, in the same way
as the eta invariant shows up in Index Theory on manifolds with boundary. In our trace
formula, the term Z is a contribution from the compact leaves preserved by the flow,
which depends on the choice of a form defining the foliation and a metric on the ambient
manifold. But Z may not be well defined in general; it will be proved that appropriate
choices of the form and the metric guarantee its existence.
Precisely, we would like to define

Z=2(Mgm)= lim Z,, (1.3)
in the space of tempered distributions on R, where Z,, = Z,,(M,g,n) (1> 0) should be a
tempered distribution defined by

(Zu, f) = —%/0 /_ooStr (nA(Sze_“Az) f(w)dvdu, (1.4)

for any Schwartz function f, where f stands for the Fourier transform of f.
Let &g denote the Dirac distribution at 0 on R. The problem about the definition of Z
is solved in our fourth main theorem for the same class of Morse forms as before.

Theorem 1.4. Let M = (M,g) be a closed Riemannian n-manifold. Let 1 be a closed 1-
form on M satisfying (a), (c) and (d) with some vector field satisfying (b). Then Equations
(1.3) and (1.4) define the tempered distribution Z = zdy.

According to Theorems 1.3 and 1.4, we can choose 1 and ¢ in the trace formula for
foliated flows so that Z(M,g, +n) =0 if n is even, achieving the original expression of
Deninger’s conjecture.

It looks clear that extensions of Theorems 1.1 to 1.4 with coefficients in flat vector
bundles could be similarly proved. We only consider complex coefficients for the sake of
simplicity since this is enough for our application.

1.4. Some ideas of the proofs of Theorems 1.1 to 1.4

As mentioned before, the inequality (1.1) is essential to obtain the uniformity on v of our
estimates. To prove it, we can take v =1 by considering an arbitrary closed real 1-form
n (Proposition 2.2). Let || ||m,i; be the mth Sobolev norm defined with the perturbed
Laplacian A, induced by in as above. By ellipticity, || ||zec < Cm,inll ||m,in for some
Cin,in > 0 depending on 7, which can be chosen to be optimal. For two such forms,

https://doi.org/10.1017/51474748024000343 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748024000343

6 J.A. Alvarez Lopez et al.

n and 7, the cohomology class [n—7'] is in the lattice 2rH'(M,Z) of H*(M,R) just
when 1 —1n' = h*df for some smooth map h: M — S', where 6 is the multivalued angle
function on the circle S*. This gives the gauge equivalence A;, = e ih™0 Agy e"? where
eih"0 i well defined on M. It follows that 7 — Cin,in induces a function on the torus
H'(M,R)/2rH*(M,Z). On the other hand, every C,, ;, can be estimated in terms of the
C™ norm of n (Proposition 2.1). Hence, by compactness of H*(M,R)/2rH*(M,Z), the
values Cp, i have an upper bound C,,, which satisfies the desired inequality || ||z <
Conll i

For an arbitrary closed real 1-form 7 and for all £ > 0 and z € C, a supersymmetric
argument shows that (Proposition 3.7)

0, Str (NeftAz) = —tStr (nA DzeftAz) , (1.5)

where N is the number operator on Q(M) (Section 2.1.1). Then we apply that the
coefficients of the asymptotic expansion of Str(Ne™*2#) as t | 0 (the derived heat trace
invariants) are independent of z up to order n [10, Theorem 7.10] (see also [3]). Thus, by
Equation (1.5), the coefficients of the asymptotic expansion of Str(nAD.e *2=) as t | 0
vanish up to order n. Now, Theorem 1.1 follows by the general theory of zeta functions
of operators (Section 3.6).

The theta function 6(s,z) is defined like ((s,z) by using —Str(NAZ°IIL) instead of
Str(nAS,A7*TI}). Assuming the hypotheses of Theorem 1.2, write 6(s,z) as the sum of
contributions from the small/large spectrum, O, /12 (s, 2), as before. Thus, e?(0.2)/2 ig the
factor used to define the Ray—Singer metric on det H? (M) [10], where the prime denotes
0s. We obtain (Corollary 5.10)

Cla(l’z) :azella(()?'z)' (16>

This equality allows us to use the deep relation between the Ray—Singer metric and
the Milnor metric on det H? (M), proved by Bismut and Zhang [10, 11]. To apply this
result, we have to make involved computations concerning derivatives with respect to z of
the orthogonal projection to E, ¢ and of other operators related with the isomorphism
¢, : E, on — C*, as well as estimates of the asymptotic behavior as ;1 — +o0 of these
operators and their derivatives (Sections 4.4, 4.5, 6.3, 6.4 and 7.2). In this way, we obtain
that (1a(1,2) is asymptotic to z, as p — +oo (Section 7.2). This proves Theorem 1.2 (i).

When 7 is exact, we show this asymptotic expression of (,(1,z) assuming only (a)
(Section 5.5), without using Equation (1.6) and the indicated strong result of Bismut and
Zhang. Instead, we apply that the index density of A, is independent of z, also proved
by Bismut and Zhang [10, Theorem 13.4]; see also [1, Theorem 1.5] and [6].

On the other hand, given any & € H*(M,R) and a vector field X satisfying (b), we
prove that there is some 7 € £ and a metric g satisfying (a), (¢) and (d) (Theorem 8.1).
This can be considered as an extension of a theorem of Smale stating the existence of
nice Morse functions [69, Theorem B] (the case where £ = 0). Its proof is relegated to
Appendix A because of its different nature.

The properties (a)—(d) are used to give an asymptotic description of d, as u — 400
(Section 8.2). From this asymptotic description and using that @, : E, ¢, — C® is an
isomorphism for p > 0, we get upper and lower bounds of the nonzero small spectrum
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of A, (Theorem 8.4), which are independent of v. This is a partial extension of accurate
descriptions of the nonzero small eigenvalues achieved in the case where 7 is exact and the
parameter is real [41, 48]. With the same procedure and using the bounds of the nonzero
small spectrum, it also follows that (s (1,2) = Zgm +O (™) as u — +oo (Section 8.4),
showing Theorem 1.2 (ii).

Next, by modifying 7 and X around its zero points of index 0 and n, without changing
the cohomology class of 7, we can achieve any real number as +z(+n) if n is even, or any
large enough real number as z(n) if n is odd (Section 9). This shows Theorem 1.3.

If it is possible to switch the order of integration in Equation (1.4),

<Zl1«af> = _%/_ /0 Str (nAaze_UAz) f(l/) dudv
1 o0

=5 mltiﬁ)lsm (pAd;te 210 f(v)dv, (1.7)
then Theorem 1.4 is an easy consequence of Theorem 1.1. Thus, it only remains to
prove that both Equations (1.4) and (1.7) define the same tempered distribution Z,,.
This follows from the Lebesgue’s dominated convergence theorem and Fubini’s theorem
(Section 10). The verification of the hypothesis of the Fubini’s theorem requires the above
lower estimate of the nonzero spectrum.

For the readers convenience, we recall the needed preliminaries about the many topics
involved: Witten’s perturbations, Morse forms, asymptotic expansions of heat kernels,
zeta functions of operators, Morse and Smale vector fields, the Morse complex and Quillen
metrics (Reidemeister, Milnor and Ray—Singer metrics).

2. Witten’s perturbations

2.1. Preliminaries on the Witten’s perturbations

2.1.1. Basic notation. Let M = (M,g) be a closed Riemannian n-manifold. For
any smooth Euclidean/Hermitian vector bundle E over M, let C™(M;E), C°(M;E),
L?(M;E), L>°(M;E) and H™(M;E) denote the spaces of distributional sections that
are C™, C*, L?, L> and of Sobolev order m, respectively; as usual, E is removed from
this notation if it is the trivial line bundle. Consider the induced scalar product ( , )
and norm || || on L?(M;E), and the induced norm || ||z~ on L*>(M;E). Fix also norms,
Il [|m on every H™(M;E) and || ||cm on C™(M;E). If P is the orthogonal projection of
L?(M;E) to some closed subspace V, then P+ denotes the orthogonal projection to V+.
Let o(E) denote the flat real orientation line bundle of E. It is said that E is orientable
when o(E) is trivial. In this case, an orientation of F is described by a (necessarily smooth)
nonvanishing flat section Og of o(E); for simplicity, it will be said that O itself is an
orientation. In particular, an orientation of M is described using o(M) := o(T'M). The
flat line bundle o(F) ® o( E) is always trivial.

Let TceM =TM ®C and T¢M =T*M ® C. The exterior bundle with coefficients
in K=R,C is denoted by Ax = AxM, and let Q(M,K) = C>*(M;Ax); in particular,
C>(M,K) = Q°(M,K). The Levi-Civita connection is denoted by V = VM. As usual,
d and ¢ denote the de Rham derivative and coderivative, and let D = d+ 4 and

https://doi.org/10.1017/51474748024000343 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748024000343

8 J.A. Alvarez Lopez et al.

A = D? = dé +dd (the Laplacian). Let Z(M,K) and B(M,K) denote the kernel and
image of d in Q(M,K). Thus, H*(M,K) = Z(M,K)/B(M,K) is the de Rham cohomology
with coefficients in K. We typically consider complex coefficients, so we will omit K from
all of the above notation just when K = C. Take || ||, and || ||cm given on Q(M) by

m m
lallm =D IID*al,  llallen =D IIVFal|ze.
k=0 k=0

In particular, we take || || = [[o and || [|co = || ||z |co(as;E)-

On any graded vector space V*, let w and N be the degree involution and number
operator; that is, w = (—1)¥ and N =% on V*. For any homogeneous linear operator
between graded vector spaces, T : V*®* — W*, the notation T} means its precomposition
with the canonical projection of V* to V*. If T is of degree | (T'(V*) c Wk*! for all k),
then

wl = (—=1)!Tw, NT =T(N+1). (2.1)

For any n € Q' (M,R) with nf = X € X(M) :=C>®(M;TM) (n=g(X,-)), let Lx and tx
denote the Lie derivative and interior product with respect to X, and let no=—(nA)* =
—vx. Using the identity Cl(T*M) = AgM defined by the symbol of filtered algebras,
the left Clifford multiplication by n is ¢(n) = nA+nJ, and the composition of w with
the right Clifford multiplication by 7 is é(n) = nA —n; in particular, ¢(n)* = —c(n) and
é(n)* = é(n). Recall that, for any h € C°(M,R),

[D,h] = é(dh). (2.2)

In the whole paper, unless otherwise indicated, we will use the following notation
without further comment. We use constants C,c > 0 without even mentioning their
existence, and their precise values may change from line to line. We may add subindices
or primes to these constants if needed. We also use a complex parameter z = p+iv € C
(u,v € R and i = v/—1). Recall that 9, = (9, —i0,)/2 and 9; = (9, +10,)/2.

2.1.2. Perturbations defined by a closed real 1-form. For any w € Z1(M), we
have the Witten’s type perturbations d,,, 6., D, and A, of d, §, D and A. Given 7 €
ZY(M,R) and z € C, we write d, = d.p, 6, =10y, D, =D, and A, = A,,. These operators
have the following expressions:
d,=d+znN, 0,=d,=0—2znJ,
D.=d.+06.=D+pcé(n)+ive(n) = Div + pé(n)
A, =D?=d,0,+6,d, = A+ uH, +ivd, +|z*|n|?
= A +uH, Jr!‘2|77|2 )

(2.3)

where, for X = 77’1,
H, = Dé(n)+é(n)D =Ly +Lx, Jy=Dc(n)+c(n)D =L —Lx.

Note that H,, is of order zero and J,, of order one.
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As families of operators, d, and §, are holomorphic and antiholomorphic functions of
z, respectively. More precisely, it follows from Equation (2.3) that

d.d, =nA, 8.6,=0, 3ZAZ=77/\§Z+5Z77/\,}

(2.4)
agdz :O, 826Z = —nN4, 85AZ = *T]JdZ*dZnJ.

The operator d, defines an elliptic complex on (M), whose cohomology is denoted by
H?(M). Since d, has the same principal symbol as d, it is a generalized Dirac complex
and A, a self-adjoint generalized Laplacian [7, Definition 2.2]. If § = n+ dh for some
h € C*°(M,R), then the multiplication operator

e (Q(M),d.g) — (UM),d.) (2.5)
is an isomorphism of differential complexes, and therefore it induces an isomorphism
HZy(M) = H?, (M). Thus, the isomorphism class of H?(M) only depends on & := [n] €
H'(M,R) and z € C. By ellipticity, D, and A, have a discrete spectrum, and there is a
decomposition, equalities and isomorphism of Hodge type,

Q(M) =kerA, @imd, ®imJ, ,

kerA, =kerD, =kerd,Nkerd,, imA,=imD,=imd,Himd,, (2.6)
H(M)=>=kerA,,

as topological vector spaces. The orthogonal projections of Q(M) to kerA,, imd, and

imd, are denoted by II, = II%, TI! and II2?, respectively; thus, II} = I} +II2. The

restrictions d, : imJ, — imd,, §, : imd, — imd, and D, :im D, — im D, are topological

isomorphisms, and therefore the compositions d; '11., 571112 and D TI} are defined and

2 z

continuous on Q(M). For every degree k, the diagram

. dz,k .
imé, pr1 —— imd. x
Az,kJV lAz,k+1 (27)

. dz,k .
imé, pr1 —— imd.

is commutative. The twisted Betti numbers 3% = 8¥(M,¢) = dim H* (M) give rise to the
usual Euler characteristic [28, Proposition 1.40],

D (1)FpE = x(M). (2.8)

k

(This is also a consequence of the index theorem.) For every degree k, 3% is independent
of z outside a discrete subset of C, where ¥ jumps (Mityagin and Novikov [57, Theorem
1]). This ground value of 3% is called the k-th Novikov Betti number, denoted by 8K, =
BE(M,E). Tt will be shown in Section 6.2.4 that

pr=pk, for |ul>0. (2.9)

(When z is real, this is proved in [27, Theorem 2.8|, [14, Lemma 1.3], [18, Proposition
4].) Thus, the discrete set of parameters z € C with g¥(M,&) > BE (M, €) for some degree
k is contained in a strip |u| < C.
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By Equation (2.3) and since 7 is real, for all o € Q(M),

m:dgd, (5Za:5564, DZO[:DEQ, Aza:Agd (210)
So conjugation induces C-antilinear isomorphisms
HF(M)= HE(M), kerA. ) =kerAsy,

z

yielding ¥ = pE.

2.1.3. Case of an exact form. When n = dh for some h € C*°(M,R), we have the
original Witten’s perturbations, which satisfy

dz — 67zh deZh _ efivh d/t 6il/h , (52 — ezhaefzh — efiuh 5# 6iuh , (2 11)
D, = e—il/h DH eil/h ; A, = e—iuh AH eiuh. '
Thus, the multiplication operator
e (QUM),d.) — (M),d) (212)

is an isomorphism of differential complexes. Therefore, H®(M) = H*(M), yielding ¥ =
B* = B*(M) (the kth Betti number) in this case. Moreover multiplication by e™" defines
a unitary isomorphism ker A, =2 kerA,,.

2.1.4. Interpretation of the closed form as a flat connection. There is a unique
flat connection VM *C on the trivial complex line bundle M x C so that VM*C1 =1y, The
corresponding flat complex line bundle is denoted by £ = L,,. Note that £, = £L*. Let
(QUM,L7) = (Q(M),d*”) be the de Rham complex with coefficients in £7. It is well known
that d, = d*” on Q(M) = Q(M,L?), and therefore H®*(M,L?) = H?(M). Since every L*
is canonically trivial as a line bundle, it has a canonical Hermitian structure ¢ . An easy
local computation shows that (see the example given in [10, pp. 11-12])

VE ¢5 = —2um@ g~ . (2.13)

2.1.5. Perturbed operators on oriented manifolds. The mappings (,fB) =~ anp
and (a,f) — a A S induce respective bilinear and sesquilinear maps,

HE(M)x H (M) = H*'(M),  HE(M)x H' (M) — H"*'(M),

as follows from the interpretation of d, given in Section 2.1.4, or by a direct check.
Now, assume M is oriented. Then the above maps and integration on M define
respective nondegenerate bilinear and sesquilinear pairings

HE(M)x H";®(M) - C, HF(M)x H";*(M)—C.
Thus

g =pr k=prk =gk (2.14)
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Let x and * denote the C-linear and C-antilinear extensions to AM of the Hodge
operator x on Agr M, respectively. These operators are determined by the conditions

aAxB = g(a,B) dvol = a A%

for a,3 € Q(M), where dvol = 1 is the volume form. The following equalities on QF (M)
follow from Equation (2.3) and the usual equalities relating *, d, §, nA and 7. (see, e.g.,
(63, Chapters 1 and 3], [31, Section 1.5.2], [7, Section 3.6]):

dox= (‘Uk* 0z, O.,%= (—1)k+1* d_z, A, x=%xA_z,
5 (2.15)

Lx=(-1D)"xd_,, A.x=%A_..

Then we get a linear isomorphism x : ker A, — ker A_; and an antilinear isomorphism
*:ker A, — ker A_,, inducing a linear isomorphism H*(M)= H"*(M) and an antilinear
isomorphism H¥(M) = H",*(M) by Equation (2.6).

2.2. Perturbation of the Sobolev norms
For m € Ny and w € Z*(M), define the norm || ||, on H™(M;A) by

m
i, =D || DEall.
k=0

Proposition 2.1. For allw € Z'(M) and o € H™(M;A),

m m
lollm,ew < Com D Il el s Nellm < Co D ol *lledlio-
k=0

k=0

Proof. We proceed by induction on m. We have || ||o,,, = || |- Now, take m > 0 and assume
these inequalities hold for m — 1. For n € Z'(M,R) and o € Q(M), we have

le(m)alim lle(mallm < Chllnllcm llem. (2.16)

Applying these inequalities to the real and imaginary parts of w and using the induction
hypothesis and Equation (2.3), we get

m—1

ol = lldll + | Duetllm-1.0 < lldl +Crums D lwll | Ducr]lx
k=0

m—1
<l +Cm-1 Y el (I Dalls + Crllwllcxllallx)
k=0

m—1
<l +Cm1 Y lwllga =  (lallers + Cillwlicr lallk)
k=0

m
< C Y Iz lall

=0
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ltllm = lledl] + [ Detl|m—1 < [l + [ Duserllm—1 4+ C 4 [|w]
m—1

< el +Crmr Y (IWlIE~* I Duer
k

S -

—k
[ + Crnallw |G lelv,eo)

I
- o

m—
<l +Cm1 Y (IwllE  lellersew +Cr il lellk.w)
k=0

m
<Cn >l o

=0

O

Let Z(M,Z) C Z(M,R) denote the graded additive subgroup of forms that represent
cohomology classes in the image of the canonical homomorphism H®(M,Z) — H®(M,R).
Recall that we can consider H'(M,Z) as a lattice in H'(M,R) by the universal coefficient
theorem for cohomology. Let 6 be the multivalued angle function on S'. Then df
is the angular form on S' with [, df = 2x. For n € Z'(M,R), we have 1 € 2rZ"(M,Z)
if and only if there is some smooth map h: M — S! such that n = h*df (see, e.g., [28,
Lemma 2.1]).

In Proposition 2.1, the dependence of the constants on w cannot be avoided. For
instance, for M = S' with the standard metric g = (df)?, we have ||1||,, = v/27, whereas
L[ m,in = V271 > _pey [V|F for n=1df (v € R). However, the following version of a Sobolev
inequality for || ||, involves a constant independent of 7.

Proposition 2.2. If m >n/2, for alln€ Z'(M,R) and a € H™(M;A),
||O‘||L°C < CmHa”m,in-

Proof. By the Sobolev embedding theorem, we have

[l e

Ci,in = sup > 0.

0zaca(M) |allm,in
Take any n € Z1(M,R) and w € 2rZ'(M,Z), and let ' =n+w. Then w = h*df for some
smooth function h : M — S'. Since the difference between the multiple values of § at every
point of St are in 27Z, the functions e ? are well defined and smooth on M. Moreover,
applying Equation (2.11) locally, we get D;,y = e‘ih*eDm €0 So, for 0# o € Q(M),

ih*0 th*0

ez =lle™ Pl poe < Crminlle’™ *allm,in
m m

= m,i’rzz ||Df77 €Zh Ga” = Cm,inz ||€_Zh QD’?U elh ga”
k=0 k=0

m
= Cnin y_IIDEyall = Cuninlletm,in-
k=0

This shows that
n—n' €2rZ"(M,Z) = Cpin = Conins- (2.17)
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Since 2rH'(M,Z) is a lattice in H(M,R), there is a compact subset K C H*(M,R)
such that
K+2rH*(M,Z) = H*(M,R). (2.18)

Take a linear subspace V C Z'(M,R) such that the canonical projection V — H'(M,R)
is an isomorphism, and let L C V be the compact subset that corresponds to K. By
Equation (2.18),

L+27ZY(M,Z) = Z'(M,R). (2.19)
Moreover, L is bounded with respect to || ||¢m. Therefore, by Proposition 2.1, for all € L
and a € Q(M),
lallzee < Crmollatllm < Cmllellm,in ,
yielding
sup Cp,in < Cnp. (2.20)
nel
The result follows from Equations (2.17), (2.19) and (2.20). O
Given n € Z*(M,R), we write || |lm,> = || |/m, 2. Proposition 2.1 has the following direct
consequence.

Corollary 2.3. For all « € H™(M;A) and z € C,
e,z < Con > 2™ Fllalle s Nallm < Cn 12 el
k=0 k=0
Proposition 2.4. For all « € H*(M;A) and z € C,
ledls,= < Clledlva +lullladl) s llalm < Cllell,:+lulllal).

Proof. By Equations (2.3) and (2.16),

1z = lall+[Dzal < ol + [ Dival + C|ulllal < C(llalluw + lulllal)
.o = lladl +1Divedl < llll + ([ Dzall + Culllell < C(llelly, = + [llled])-

[l

3. Zeta invariants of closed real 1-forms

3.1. Preliminaries on asymptotic expansions of heat kernels

Let A be a positive semidefinite symmetric elliptic differential operator of order a, and B a
differential operator of order b; both of them are defined in C*°(M; E) for some Hermitian
vector bundle E over M. Then Be *4 is a smoothing operator with Schwartz kernel
Ki(z,y) in C*°(M?;EX E*) (omitting the Riemannian density dvol(y) of the second
factor). On the diagonal, there is an asymptotic expansion (as ¢t ] 0) with respect to the
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seminorms || |[cm (m € Ng) on C*°(M;E® E*) [31, Lemma 1.9.1], [7, Theorem 2.30,
Proposition 2.46 and the paragraph that follows],

o0

Ky(z,z) ~ > e(x)tt==b)/e (3.1)
=0

with ¢, € C°(M;E ® E*). Moreover, using a local system of coordinates, a local
trivialization of E and standard multi-index notation, if B =" _ b (x)Dg, then e;(z) =
Yo ba(2)era(x), where the e, o (x) are smooth local invariants of the symbol of A which
are homogeneous of degree [+ || —b. They vanish if [+ b is odd or if I+ |a| —b < 0. Hence,
the function

h(t) —Tr (BeftA) = /M tr K (:L’,l’) dVOl(fE)

has an asymptotic expansion

oo

h(t) ~ Y a0, (3.2)

=0

where

a; = /Mtrel(x) dvol(zx), (3.3)

which vanishes if [+ b is odd.

The case of truncated heat kernels, in the following sense, is also needed. Given any
A >0, let Py be the spectral projection of A corresponding to [0,A]; thus, Pj’A is
the spectral projection corresponding to (A,00). By ellipticity, Pa » is of finite rank,
and Be*tAPA » is a smoothing operator defined for all ¢ € R. Take any orthonormal
frame ¢1,...,¢, of im P4 ), consisting of eigensections with corresponding eigenvalues
0< A <--- <A <A Then the Schwartz kernel H;(x,y) of Be’tAPA’A (t > 0) is given by

K

Hy(z,y) =Y e ™ (Be) () @ 5(y),

Jj=1

using the isomorphism F 22 E* given by the Hermitian structure. Thus, Hy(z,y) is defined
for all ¢ € R and smooth. So

Tr(Be " P4 y) :/ tr Hy(x,x) dvol(z).
M

In particular, for t =0, we have

Ho(a,2) =Y _(Bé;)(x) ©6;(), (34)
j=1
Tr(BPy y) = /M tr Ho(z,x) dvol(x). (3.5)
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The Schwartz kernel of Be_tAPi)\ is Ki(z,y) = Ki(z,y) — Hy(,y) (t > 0), which has an
asymptotic expansion

oo

Ky(z,z) ~ Y &(x)tt—n=b/e, (3.6)

=0

where the first n+ b sections é; are given by

5 () ei(x) ifl<n+b
é(zr) =
: ei(x) — Ho(x,x) ifl=n+b.

Then the function
ha(t) = Tr (Be_tAPiA) =Tr (Be_tA) —Tr(Be " Py ) (3.7)

has an asymptotic expansion

/ Ki(z,z) dvol(x Zalt(l n=b)/a (3.8)

where the first n 4 b coefficients a; are given by

ifl<n+b

- aj
ap = . (3.9)
al—’I‘r(BPA,A) ifl=n+b.

Consider also smooth families of such operators, { A} and {B.}, for € in some parameter
space. Then Tr(B.e~*4<) is smooth in (¢,¢), and we add € to the above notation, writing for
instance Ki(x,y,€), e;(x,¢€), h(t€), a;(e), f(t(x,y,e), éi(z,e), h(t,e) and @ (¢) in Equations
(3.1), (3.2), (3.6) and (3.8). The operator B.P4_ » may not be smooth in e when some
nonconstant spectral branch of {A.} reaches the value A. If the values of all nonconstant
spectral branches of {A.} stay away from some neighborhood of A, then hy(t,€) is smooth

n (t,e).

3.2. Preliminaries on zeta functions of operators

Proposition 3.1 (See [31, Theorems 1.12.2 and 1.12.5], [7, Propositions 9.35-9.37]). The
following holds:

(i) For every A € R, there is a meromorphic function ((s,A,B,\) on C such that, for
Rs >0,

((s,4,B]\) =Tr(BA™*Py,) = F(ls)/ooots—lﬁx(t) dt. (3.10)

(ii) The meromorphic function I'(s)((s,A,B,\) has simple poles at the points s = (n+
b—1)/a, for 1 € Ny with a; #0. The corresponding residues are a;, and (s, A, B,\)
s smooth away from these exceptional values of s.

(iii) For p>X>0, let \y < --- < X\, denote the eigenvalues of A in (\p], tak-
ing multiplicities into account, and let q,...,r be corresponding orthonormal
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eigensections. Then, for all s,
E
C(s,A,B,p) = (s, A, BA) =Y N, *(Bj b)),
j=1

(iv) For smooth families {Ac} and {B.} of such operators, if the wvalues of all
nonconstant branches of eigenvalues of {Ac} stay away from some neighborhood
of A, then ((s,A¢,Be,\) is smooth in (s,e) away from the exceptional values of s
given in ().

(v) Consider the conditions of (iv) for € in some open neighborhood of 0 in R. If A
and By commute, then

aeC(SaAevBea)‘) |6:0 = C(S,AO,BO,)\) - SC(S + 17A07AOBO7A) 5
where the dot denotes O,.

The last expression of Equation (3.10) is the Mellin transform of the function hy(t)
divided by T'(s). This function ((s,A4,B,\) is called the zeta function of (A,B,\). If B=1
or A =0, they may be omitted from the notation.

We will also use ((s,A4,B,\) when B is not a differential operator, with the same defi-
nition. Then the asymptotic expansion (3.8) and the properties stated in Proposition 3.1
need to be checked. With this generality, we can write

C(&Aan}‘) = C(SaAvBPjX_,)\) = C(SvAan!_,)\B) )
¢(s,A,B) =((s,A,BP4 )+ ((s,A,B,\).

Since Py, is of finite rank, ((s,4,BPy4 ) is always defined and holomorphic on C.

3.3. Zeta invariants of closed real 1-forms

According to Proposition 3.1 (i), let

((s,2) = C(s,2,m) = ((s,A2,nADzw)
which is a meromorphic function of s € C. For s > 0,

((s,2) = Str (nA DZA;SHj) = Str (nAd.AZ®ILL)
=Str (pAD; P AZHIIY) = Str (nAd; P ASTHIY)

using that nAd, and A6 ! change the degree of homogeneous forms. So, when ((s,2) is
regular at s = 1, the value ((1,2) is a renormalized version of the super-trace of nAd; 111,
which is called the zeta invariant of (M,g,n,z) for the scope of this paper. According to
Proposition 3.1 (ii) and since I'(s) is regular at s =1, {(s,z) might have a simple pole at
s=1. But it will be shown that ((s,z) is regular at s =1 for all n € Z!(M,R) and 2z € C
(Corollary 3.9).
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3.4. Heat invariants of perturbed operators

Consider the notation of Section 2.1.2. For k=0,...,n, let K, 1 +(x,y) denote the Schwartz
kernel of e~**=+. By Equation (3.1), its restriction to the diagonal has an asymptotic
expansion (as ¢ 0),

K, p1(z,x) Zekla:zt(l ”)/2

where every ey ;(z,2) is a smooth local invariant of z and the jets of the local coefficients
of g and 7, which is homogeneous of degree [, and vanishes if [ is odd. According to
Equations (3.2) and (3.3),

hi(t,z) = Tr (e7*2=%) Zakl =z,
where
ar,1(z) :/ streg,(z,2) dvol(z).
M

The Schwartz kernel of e *2=w is

n

zthil/ Z zktxy)

k=0

We have induced asymptotic expansions,

K, i(z,x) ~ z:el(as,z)t(l*”)/2 ,
1=0
h(t,z) = Str (e714) ~ > " ay(2)t! /2
1=0
where
el(z,z) = (—l)kekwl(‘nz) , a(z) = (—l)kak,l(z).
k=0 k=0

Theorem 3.2 ([10, Theorem 13.4]; see also [1, Theorem 1.5] and [6]). We have:

(i) e(x,2) =0 forl <n; and,
(ii) if n is even, then e, (z,z) = e(M,VM)(z).

Remark 3.3. The analog of Theorem 3.2 fails for Witten’s type perturbations of the
Dolbeault complex on Kéahler manifolds [2].
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3.5. Derived heat invariants of perturbed operators

The following are sometimes called the derived heat density and derived heat invariant of
order [ of d, or A, [33], [61], [31, page 181], [3]:

Z kekl (z,2),

k=0
n
Z Vekag,( / stre;(x,z) dvol(x).
k=0 M
We have
Str (Ne ™) ~ Y "y (2)t=/2, (3.11)
1=0

Theorem 3.4 [10, Theorem 7.10]. For [ <n, a;(2) is independent of z.

Remark 3.5. [10, Theorem 7.10] gives Theorem 3.4 for real z But, since the functions
¢;(x,2) have local expressions, we can assume 7 is exact. Then the result can be extended
to nonreal z using Equation (2.11). The exactness of 7 in [10, Theorem 7.10] is irrelevant
because a general flat vector bundle is considered. Moreover, [10, Theorem 7.10] gives an
explicit expression of a;(z) for [ <n.

Remark 3.6. A refinement of Theorem 3.4 is given in [3, Theorem 1.3 (1b)], where

¢;(x,2) is described for [ < n, showing its independence of z.

3.6. Regularity

By Equations (3.2) and (3.3), we have an asymptotic expansion of the form
o0
Str (nA Dze_m‘z) ~ Zbl(z)t(l_"_l)/2 ) (3.12)

where b;(z) =0 if [ is even.
Proposition 3.7. For allt>0 and z € C, the equality (1.5) is true.
Proof. For all k, we have [7, Corollary 2.50]
0, Tr (e_mzf’“) =—tTr ((éLAz’k)e_tAz”‘").
So, by Equations (2.1) and (2.4),
0, Str (Ne ) —t Str
= —tStr Nn/\6 e_tA )—tStr (Nézn/\e_mz)

(N(@:A.)e™'2)
(

—tStr (NnAd.e ") —tStr (6.(N—1)pAae'4%)
(
(

—tStr N77/\5 e A ) +tStr ((N—l)n/\éze_mz)

)-

I

\

~
2]
=+
=
3

>
S
(b

E
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Corollary 3.8. Forl<n-—1, b(z)=0.
Proof. By Equations (3.11) and (3.12); Theorem 3.4; and Proposition 3.7, for | <n —1,
bi(z) = —0.a;11(2) = 0.

O
Corollary 3.9. If n is even and Rs >0, or n is odd and Rs > 1/2, then
1 o0
C(s,2) = —/ 571 Str (nA DLe 2= dt
I'(s) Jo ( )
where the integral is absolutely convergent, and therefore ((s,z) is smooth in this half-
plane.
Proof. By Equation (3.12) and Corollary 3.8,
o(1) if n is even
Str (nA D e %) = t10). 3.13
C ) {O(t1/2) tnisodd 0 (3.13)
On the other hand, there is some ¢ > 0 such that
Str (nAD,e "2%) = 0(e™) (£ 1 +o0). (3.14)

So the stated integral is absolutely convergent for s > 0 if n is even, or for Rs > 1/2if n
is odd, defining a holomorphic function of s on this half-plane. Then the stated equality
is true because it holds for s > 0. O

Remark 3.10. From Proposition 3.1 (ii) and Corollary 3.8, it also follows that, if n
is even (resp., odd), then ((s,z) is smooth on C (resp., on C\ ((1 —Ny)/2)). But this
additional regularity is not needed in this work.

Corollary 3.11. For all z € C,

1,2) =1i D e tA=11t).
¢(1,2) = limStr (pA D" e™*1L)

Proof. By Corollary 3.9, Equation (3.13) and Equation (3.14), and since
Str (nADZ eI ) = O(e™ ) (t1 +00),
we get
C(1,2) = / Str (77/\ D,e A Hi‘) du = ltiir(r;/ Str (77/\ D.e vA: Hi_) du
0 t

_ —1,—tA, 7L
—ltlf(l)lstl“ (nAD; e I;).

Corollaries 3.9 and 3.11 give Theorem 1.1.
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3.7. The case of the differential of a function

Let us consider the special case where nn = dh for a smooth real-valued function h.

Lemma 3.12. We have
Str (nA d7te i Hi) =—Str(h e A Hzl)
Proof. Since nA = [d,h],
Str (nAd; te t+11L) = Str ([da, k] d; te "2411E)

= Str (d, hd; e "2+11L) — Str (hd.d; ‘e "4+111)
= —Str (hd; e "2+11Ld.) — Str (he "2+111)
= —Str (hd;'d.e "*+112) — Str (he "A+111)
= —Str (he_mz I12) — Str (h et IT})
= —Str (he‘mz Hj‘)

Corollary 3.13. We have

T —tALTTL
((1,2)= ltlﬁ)lStr (he IT;).
Proof. Apply Corollary 3.11 and Lemma 3.12. O

Corollary 3.14. We have ((1,z) € R.

Proof. By Corollary 3.13, it is enough to prove that Str(he~*A-1I}) € R. But, taking
adjoints,

Str (he "2+II}) = Str (e A= h) = Str (hIILe 4% ) = Str (he~tA-TIL).

Corollary 3.15. If M is oriented, then
¢(1,2) =¢(1, —2) = (1, = 2) = ¢(1,2).
Proof. By Equation (2.15),
Str (he "A<IIF) = Str (%x ‘he "A+11}) = Str (x~ " he '24+111 «)
= Str (*_1 *he_tA*ZHfz) = Str (he_tA*EHfg).

Thus, the first equality of the statement holds by Corollary 3.13. The second equality
follows with a similar argument, using x instead of x. The third equality is equivalent to
the first one. O
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4. Small and large complexes of Morse forms

4.1. Preliminaries on Morse forms

Recall that a critical point p of any h € C°°(M,R) is called nondegenerate if the symmetric
bilinear form Hess, h on T}, M is nondegenerate; then the index of Hess, h is denoted by
ind(p). By the Morse lemma [49, Lemma 2.2], this means that

1 — , 1 _
h=h(p) = 5 D ens @) = 5 (1 P~y ). (11)
j=1
where

(4.2)

-1 if j <ind(p)
€pi = e
1 if j>ind(p),

n

on some chart (Up,zp, = (z,,...,2)) (centered) at p (Morse coordinates), where x, =
ind ind(p)+1
(2p,. .y ®)) and zy = (zp ) seey ).

Recall that h is called a Morse function when all of its critical points are nondegenerate.
Then its critical points form a finite set denoted by Crit(h). The Morse functions form
an open and dense subset of C*°(M,R) [36, Theorem 6.1.2]. On every U, we can assume
the metric is Euclidean with respect to Morse coordinates:

g=> (dz])>. (4.3)

j=1

Now, take any n € Z'(M,R). We can show that if p is a zero of 7, then (Vn), is
independent of the choice of the connection V, and is symmetric. The zero p is called
nondegenerate of index k if (Vn), is nondegenerate of index k. In this case, any local
primitive h,, , of n near p is a Morse function, and we can choose it so that h,, ,(p) = 0.
On a domain U, of Morse coordinates x, = (:czl,,...,:cg) for h, , at p, also called Morse
coordinates for n at p, hy , is given by the center and right-hand side of Equation (4.1),
and

n= Zenjxidajg (4.4)
j=1

If all zeros are nondegenerate, then 7 is called a Morse form. In this case, its zeros form
a finite set, X = Zero(n); subsets of X defined by conditions on the index are denoted
by writing the conditions as subscripts; for instance, Xy, X and X are the subsets of
zeros of index k, of positive index and of index < k, respectively. For any & € H'(M,R),
the Morse representatives of ¢ form a dense open subset of &, considering & C Q'(M,R)
with the C*° topology (see, e.g., [59, Theorem 2.1.25]). If £ = 0, this is just the classical
property of Morse functions mentioned before.

From now on, unless otherwise stated, we will use some 1 € Z!(M,R) and a Riemannian
metric g on M satistying (a) (Section 1.1).
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The Hopf index of nf at any p € X}, is (—1)* (Section 6.1.1). Thus, by the Hopf index
theorem,

SO (=104 = x(M). (4.5)

k=0

4.2. The small and large spectrum

Consider the perturbed operators (2.3) defined by  and g. We can suppose the closures U,
(p € X) are disjoint from each other, and z,(U,) = (—4r,4r)™ for some r > 0 independent
of p with 4r <1. Let U = ¢ x Up-

Denoting also the coordinates of R™ by (z,,...,2p), consider the function h, € C*(R™)

STy
defined by the center and right-hand side of Equation (4.1). Let d,, ., d;, ., D, ., and

p,Z?
A;yz (z € C) denote the corresponding Witten’s operators on R™, whose restrictions to

(—4r,4r)™ agree via x, with d,, §., D, and A, on U,,.
Proposition 4.1 (See, e.g., [63, Chapters 9 and 14], [75, Sections 4.5 and 4.7]). The
following holds for p € R:

(i) We have

n 9 \2 ) ) )
A= Zl (_ <(97;> 4P (@)’ + uep,j[dx;J,dxg,A]). (4.6)
p

Here, [-,-] stands for the commutator of operators. Using multi-index notation, we
can write

dzg  ifjeld
—dx] ifjé .

(ii) A}, is a nonnegative selfadjoint operator in L?(R™;A) with a discrete spectrum,
which consists of the eigenvalues

[da] dxf,/\]dx,{ = {

n

MZ(1+2UJ‘ +€p’j1}j), (4.7)

j=1
where u; € Ny and v; = £1. For the restriction of A;W to k-forms, the spectrum
has the additional requirement that exactly k of the numbers v; are equal to 1.
In particular, 0 is an eigenvalue of A;W with multiplicity 1 (choosing u; =0 and
v; = —¢€p ; for all j), and the nonzero eigenvalues are of order p as p — +oo. D;W
is also a self-adjoint operator in L?(R™; A) with a discrete spectrum, which consists

of the positive and negative square roots of Equation (4.7).

(iii) The kernel of D,, ,, and Aj, , is generated by the normalized form

;o\t 2/9 51 ind(
ep,u_(;> e Hlwnl™/ dr,\--- Ndx, 28

For any z € C with > 0, let A;yz = Whp A;yue“’hfd. Since the operator of multiplica-
tion by e~ *"» is unitary, A;,Z is also selfadjoint and nonnegative in L?(R™;A), it has a
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discrete spectrum with the same eigenvalues and multiplicities as A, u» and its kernel is

generated by the normalized form e}, , := e~ whe €y, We will also use the notation

o= x;e’ eC™ (Up;Aind(”)).

€p,z P,z
The function zjh), € C*>°(Up) agrees with h,, ,, which is also denoted by h,, in this section.
Fix an even C* function p: R — [0,1] such that p=1 on [—r,r] and suppp C [—2r,2r].
For every p e X, let

pp = plp) - play) € CE(Up), (4.8)
o=, € OF (U A™0) (4.9
m
€p,z = e_iyhpep,u = Zleé,z eCx (Up;Aind(p)) ) (4.10)
"

where

a, = </2T ;7(310)267*“‘”2 d:c) : = (Z)% +O0(e™ M), (4.11)

—2r 1%

as u — +oo. The extensions by zero of the forms e, ., to M are also denoted by e, .. They
form an orthonormal basis of a graded subspace E, C Q(M) with dim E, = |X|. Observe
that d. does not preserve E, so that E, is not a subcomplex of (2(M),d,). Let P, be the
orthogonal projection of L2(M;A) to E..

Remark 4.2. For the sake of simplicity, most of our results are stated for > 0 or
as u — +o0o, but they have obvious versions for u < 0 or as u — —oo, as follows by
considering —n and using that X (—n) = X—r(n).

Proposition 4.3. If 1> 0 and 8 € H'(M;A) with supp3 C M\ U, then
D=8l = CullB-

Proof. This follows like [75, Proposition 4.7], using that H, is of order zero in Equation
(2.3). Actually, according to the statement of [75, Proposition 4.7], this inequality would
hold with /i instead of y, but its proof clearly shows that using y is fine. O

Proposition 4.4. The following properties hold:

(i) P,D,P,=0.
(i) If x>0, a € E, and B € EXNH(M;A), then

1P Dol < e=*|lal|,  [|P.D:5|| < e=[|]].
(iii) If u>>0 and B € EXNH(M;A), then
1P DB > Cv/ilBll.

Proof. This follows like [75, Propositions 4.11, 4.12 and 5.6]. Property (i) is true because
every D.e, . is supported in U, and has homogeneous components of degree different
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from ind(p); therefore, it is orthogonal to ker A,. The other properties are consequences
of Propositions 4.1 and 4.3 and Equations (4.8)—(4.11). According to [75, Proposition
4.11], the inequalities of (ii) hold with 1/u instead of e~°*, but its proof shows that
indeed e~ can be achieved. O

Proposition 4.5. For all m € Ny, if 4> 0, then
[Dzep,zllm < |v[™e™ ", ||Daep,z|lm,imw < e

Proof. From Proposition 4.1 (iii) and Equations (2.2), (4.9) and (4.10), we get

. n/4
D.ey.=D. (%e;z) = e—whpalﬂ(D &(dpy)el . (4.12)
Thus, the stated estimate of || De,, . ||m is true by Equations (4.9) and (4.11), since dp, =0
around p, and using the definition of h, and the condition 4r < 1. (When v =0, this is
indicated in [75, Eq. (6.17)].)

By Equation (2.11), for all k € Ny and p € X, the form D% D.e, . is the extension by
zero of the form e~®"» DkDHep,M on Up. Then the stated estimate of || Dep, . ||m, i follows
from the case v =0. O

Proposition 4.6. If u >0, then
[D:ep,z L < e

Proof. Apply Equations (4.9) and (4.11) in Equation (4.12), and use that dp, =0 around
p. O

Consider the partition of specA, into its intersections with [0,1] and (1,00), called
the small and large spectrum; the term small/large eigenvalues may be also used. Let
E, sm C (M) denote the graded finite-dimensional subspace generated by the eigenforms
of the small eigenvalues, let E, 1, = Ej?sm in L2(M;A), and let P, ¢m/1a be the orthogonal
projection to E, g /1a, called small/large projection. Moreover, (Q(M),d.) splits into a
topological direct sum of the subcomplexes E, ¢, and E, 1,NQ(M), called the small and

large complezes, and Equation (2.6) gives

H*(E, sm,d,) 2 H; (M), H*(E,;1.NQ(M),d.)=0. (4.13)
For any operator B defined on Q(M) or L?(M;A), let B sm/1a = BP; s /1a-
Proposition 4.7. For allm € Ny, p>0 and a € E,,

||04*Pz,sm04||m,iy < 6767”‘”

|all.

Proof. This follows like [75, Lemma 5.8 and Theorem 6.7], using || |/, instead of || ||,
The following are the main steps of the proof.

Let St = {w e C||w| =1}. With the argument of the proof of [75, Eq. (5.27)], using
Proposition 4.4, we get that, for all « € HY(M;A), w € S* and >0,

[(w=Dz)e| = Cllall.
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Thus, w— D, : HY(M;A) — L*(M;A) is bijective, and, for all 3 € L?(M;A), w € S! and
u>0,

[(w=D2)~']| <78l (4.14)

On the other hand, arguing like in the proof of [75, Eq. (6.18)], it follows that, for all
v € H™(M;A), weS! and >0,

1Yl < Con (| (w = D)V, oy + £l =1, + 1)

Continuing by induction on m € Ng, we obtain

1l < Con (1™ 1+ D015 w0 = Dy )
k=1

In other words, for all 3 € H™~Y(M;A),
l(w=D2)78]l,, ., < Con (" [[(w = D2) Bl + 3 1 1B, )-
k=1

Applying Equation (4.14) to this inequality, we get, for m > 1,
w—D2) 7B, 1, < Cont™ 1Bl (4.15)
From Equations (4.14) and (4.15) and Proposition 4.5, it follows that, for m € Ny,
H(w—Dz)_lDzepyzH =0(e ") (4.16)

m,iv

as it — +00, uniformly on w € S'. But, endowing S' with the counterclockwise orientation,
basic spectral theory gives (see, e.g., [25, Section VIL.3])

1 _ _
P smep,z —€pz = %/SI (w=D:)™ —w™")ep,- dw
1 - _
= 5mi J Yw—D,) ' D.e, . dw. (4.17)
The result follows using Equation (4.16) in Equation (4.17). O

Corollary 4.8. For u>0 and a € E,,
o= Pz smerf| oo < e lal].
Proof. Apply Propositions 2.2 and 4.7.
Alternatively, the proof of Proposition 4.7 can be modified as follows to get this result

(some step of this alternative argument will be used later). Iterating Equation (4.15), we
get
[(w D)8, ,,, < Crapt™ ™28

for all 3 € L2(M;A). Then, by Proposition 2.2,
[(w—D2)71B]| o < CUHI™2) B (4.18)

https://doi.org/10.1017/51474748024000343 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748024000343

26 J.A. Alvarez Lopez et al.
Thus, by Proposition 4.5,

H(w—Dz)*lDzep,z :O(e*c’"“)

[

as p — 4o0o. Finally, apply this expression in Equation (4.17). O

Corollary 4.9. If 1> 0, then P, ¢ : E, = E, ¢ @5 an isomorphism; in particular,
dim B g = |X| and dim E¥ | = |X|.

Proof. This follows from Propositions 4.4 and 4.7 for m = 0 like [75, Proposition 5.5]. [

When p > 0, Equation (4.5) also follows from Corollary 4.9 and Equations (2.8) and
(4.13).

Theorem 4.10 (Cf. [17, Theorem 3]). We have
specA, C [O,e_c“‘q U [C|u|,oo).

Proof. First, we establish the theorem for |r| > 0, and then the constants will be changed
to cover all pu.

We can assume p > 0 according to Remark 4.2. By Propositions 4.4, 4.7 and 2.4, for
alae F,,

D2 P smal| < | Dol + || Dz(a = Py sma) || < [[Daaf| + |l = Py smedlly, -
<P D.all+ Cplla— P.anel + la = Pz anal1i)
< (em "+ C(pe " +em)) ||all.

Hence, by Corollary 4.9, for all 8 € E, 3,
0<(A.8,8) = ID:B|* <e | BII>.
This shows that
spec A, N[0,1] C [0,e™]. (4.19)

Now, let ¢ € E, 1N H(M;A), and write « = P,¢ € E, and 8= P}¢p € ELNH(M;A).
By Proposition 4.7,

[al|* = (e, d) = (@ = Prsmand) < [la — P smalll|g]] < e™#[|a][| ],
yielding
] < e™ |||
So
18 =ll¢—all = gl = llall = (1—e=*)||]l.
Then, by Proposition 4.4,
D26l = |D2Bl| — || Dza| > | P Dl — e[|
> CVpllBl —e gl = (Cyvu(l—e ") —e™")[|¢].
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Therefore, for all ¢ € E, 1,NH(M;A),

(A:0,0) = |D=9|1” > Cullo|*.
This proves that
specA, N (1,00) C [Cu,00). (4.20)

The inclusions (4.19) and (4.20) give the result for p > 0. But, in those inclusions,
we can take ¢ and C so small that, if one of them is not true for some p > 0, then
Cu<e M, O

4.3. Ranks of some projections in the small complex

Recall that (I11)gm, k, I}, and IT2 denote the orthogonal projections to the

z,sm, k
images of A, sm ks dzsmk—1 and &, em k+1, respectively. Let m, p, m!, and m?, be
the corresponding ranks (or traces) of these projections. They satisfy
_ 1 2 1.2 _ 2 _ 1
Mz k _mz,k—’_mz,k? mz,O _mz,n _0’ mz,k _mz,k+1 ’ (421)

where the last equality is true because d, : imd, — imd, is an isomorphism. For p > 0,

we have m ,m? ; <|A%| by Corollary 4.9 and Equation (4.21).

Lemma 4.11. The numbers mi)k are determined by the numbers m, j:

n

k
k— —k—
mi,k#»l = mi,k = Z(_l) me,p = Z (_1)q 1mz,q~
p=0 q=k+1

Proof. This follows from Equation (4.21) with an easy induction argument on £. O
Lemma 4.12. For >0, we have m, j = || — k.

Proof. This is a consequence of Equations (2.6) and (4.13) and Corollary 4.9. O
Corollary 4.13. Str((I1])sm) =

0.
Proof. By Equations (2.8) and (4.5) and Lemma 4.12,
Str (113 )sm) = Y (=1)F |4 =Y (=1)" 8% = x(M) —x(M) = 0.

k k
O
Lemma 4.14. If M is oriented, then, for k=0,...,n,
_ _ 12 2
Mek =M-zn—k=M—2n—k, mz7k - m—27n—k) m—z,n—k'
Proof. This is true because, by Equation (2.15),
1L 1 1 2
(Hz )sm,k* = *(H—2>sm,n—k ’ Hz,sm,k:* = *H—E,sm,n—k )
1L - — (L 1 - o712
(Hz )sm,k* - *(H_z)sm,n—k ) Hz,sm,k* - *H—z sm,n—k
O
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Corollary 4.15. For 1> 0, m, and mi’k only depend on |X| and the class £ =[n] €

HY(M,R).

Proof. Apply Equation (2.9) and Lemmas 4.11 and 4.12. O
By Corollary 4.15, we write my, = mg(n) = m,  and mi = mi(n) = m;k for p>> 0.

Corollary 4.16. If M is oriented, then, for k=0,...,n,

my(n) =ma—x(—n), mi(n) =mi_.(=n) =m) 41 (—n).

Proof. Apply Equation (4.21), Lemma 4.14 and Corollary 4.15. Alternatively, we can
apply Equations (2.9), (2.14) and (4.21); Remark 4.2; and Lemma 4.12. O

Corollary 4.17. For >0,

Str(Hi am) = — Str Hz sm) Z Ve kmy,.

k=0
If moreover M is oriented and n is even, then
- k _ - k n
> () = 321~ G ()

Proof. Corollary 4.13 gives the first equality. By Lemma 4.11 and Corollary 4.13,

n n n n

Str(IT} o) = Y _(=1)* > (—1 0= _(=D)Ug+D)mg=>_(~1)%gm,.

k=0 q=k q=0 q=0

Now, assume M is oriented and n is even. Then, by Equations (2.8), (2.9) and (2.14),

D EDEEBY =Y (-1 (=DA% = (- (n =18,
k=0 1=0 1=0
Z lﬂNo
1=0
Hence, the last equality of the statement follows from Lemma 4.12. O

4.4. Asymptotic properties of the small projection

Notation 4.18. Consider a function f(z) >0 (z > 0). When referring to vectors in
Banach spaces, the order notation O(f(|u|)) (& — oo0) will be used for a family of
vectors v = v(z) (z € C) with [Jv(z)]| = O(f(|u|)). This notation applies, for example, to
bounded operators between Banach spaces. We may also consider this notation when the
Banach spaces depend on z.

Proposition 4.19. For every 7 € R, on L2(M;A), as u — +oo,
Pz,sm =P, +O(3_0M) = Pz,sszJr‘r,ssz,sm —|—O(/1,_2) = Pz+7’,sm + O(N_l)'
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Proof. By Corollary 4.9, for 1> 0, the elements P, gnep, . (p € X) form a base of E, gn,.
Applying the Gram-Schmidt process to this base, we get an orthonormal base é, .. By
Proposition 4.7,

Ep,z=e€p.+O0(e”H). (4.22)

This gives the first equality of the statement: for any o € L2(M;A),
Paa=) (oepe)ens =) (020 +0(e)|all = Pesma+0(e™) o]
peEX peX

Since the sets U, (p € X) are disjoint one another, for p # ¢ in X,

(ep,zrqzir) =0. (4.23)

On the other hand, by Equations (4.8)—(4.11), we can also assume

—ivh

(€p,z:€p,z47) = (€ penweiwmep,/ﬁﬁ = (ep, ps€p,putr)

— M<ppe*M%\2/27ppef(“+r)|mp|2/2> + 0(676“)

/2
n/4 2
L e
T n
(u(p+1))"* e -
= O =110 2

where dx, = dz)...dz} = dvol(x)). Combining Equation (4.22) for z and z+7 with
Equations (4.23) and (4.24), we obtain

P.irsmép,z = Z<épméq,z+r>éq,z+'r = Z (€p,2:€q,247)€q, 247 —|—O(6_CM)
qeEX qeX

=epotr +O(U2) = Epoir +O(u72). (4.25)
Repeating Equation (4.25) interchanging the roles of z and z+7, we get
Pz,sszJr'r,smép,z = Pz,smép,erT + O(IU’_Q) = éP,Z + O(IU’_Q)'

This gives the second equality of the statement: For any o € L?(M;A),

Prosma =Y (0,8,2)8,: = PomPasriom ) (0:8p,2)8,: 0 (u?) [l
PEX pEX

= Pz,ssz+T,ssz,sma + O(Niz) ||Oé||
By Equation (4.25),

~ ~ 2 ~ ~ ~ ~ ~ ~
llép, > — 6p,z+r|| = ||€p,Z||2 —2R€p, 2,€p, 24r) + ||ep.,z+r||2 =2 —2R(P, 7 5m€p, 2 Ep 2 47)
=2- 2§R<ép,z+ﬁép,z+7—> +O(ﬂ72) = O(U72) ’
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which means
Epz=Epatr+O(u). (4.26)
The last stated equality follows from Equations (4.25) and (4.26): For any o € L?(M;A),

P sma= Z<O‘76P7Z>énz = Z<avép,z+7>ép,Z+T JFO(Hil)O‘
peX peEX

=Lt smQ+ O(/’L_l)a'

Corollary 4.20. For every 7 € R, on L2(M;A\),
dz+T7sm - derTPz,sm = O(/J/_l) (M — +OO)

Proof. Since d,;, = d, +7nA, it follows from Theorem 4.10 that d,;, is bounded on
E. sm+ E.4+ sm, uniformly on p > 0. Hence, by Proposition 4.19,

dz+T,sm - dz+TPz,sn1 = dz+7' (Pz+T,sm - Pz,sm) = O(M_l) .

Proposition 4.21. On L?(M;A),
P, s "ANA Py g = O(/fl) (1 — +00).
Proof. By Theorem 4.10, for all a € Q(M),
||dzPZ)smoz||2 = (0,d, P, sm® Py sm@) < (AP, sma, P, smar) < O(e_c“) ,

yielding d, P, sm = O(e*C“). This is also true with the parameter z+ 1. So, by Corollary
4.20,

nAPZ,Sm = (dz+1 7dz)Pz,sm = dz+1Pz+17sm 7dsz,sm+O(/l71) = O(Mfl)

4.5. Derivatives of the small projection

Remark 4.22. For reasons of brevity, most of the results about derivatives are stated
for 0., which may be simply denoted with a dot. But there are obvious versions of those
results for 0z with analogous proofs.

Proposition 4.23. We have

rank 0, P, sm <2|X| (1>>0), 0,P,sm= O(,u_l) (1t — +00).

Proof. By Equation (2.4) and Theorem 4.10, for p>> 0 and every w € S, a standard
computation gives

9:(w—D.)"") =(w—D.) "npA(w—D,)"". (4.27)
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Then, by Equation (4.14), 8. ((w— D.)™!) defines an operator on L?*(M;A), bounded
uniformly on w € S* and z € C. By Equation (4.14) and Proposition 4.21, we also get

Pz,la/smaz((w_Dz>_1) Pz,sm/la
= (w _Dz)ilpz,la/smn/\Pz,sm/la(w _Dz)71 = O(,uil) y

uniformly on w € S*.
On the other hand, applying again basic spectral theory, we obtain

1

Pz,sm = %/Sl(w_Dz)ildw

for u >0, yielding

1

P =
2o Ja

9.(w—D.) ") dw, (4.28)

which defines an operator on L?(M;A), bounded uniformly on z.
Using that P.s, is an orthogonal projection, the argument of the proof of
[7, Proposition 9.37] shows that

Pz,sm = z,laPz,ssz,sm +Pz,ssz,ssz,la~ (429)

So ransz75m < 2rank P, ¢, < 2|X| by Corollary 4.9, and

. 1
Pz,sm = . / Pz,laaz((w _Dz)il) Pz,smdw
21 s1

1 _ _
+% SIPZ7sm<?Z((w—Dz) 1)Pz,1adw:O(:u 1)'

Lemma 4.24. For allpe X,

no o e
8zep’zz(8ﬂ— ; +O0(e “))enz (1 — +00).

Proof. Using integration by parts, and since p is an even function and p’ vanishes on
[—7,r], we obtain

2r 2r
1
/ p(a:)%?e*““dx:ﬂ 2<2p<z>p’<a:)x+p<x>2>e*w2dsc
—2r —2r

— 5 (2) +ole ) (4.0)
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So

=5 (/71)2%21/1(2); O(e™ M) = ﬁ(ﬁ)% +O(e™ ")
Hence, by Equation (4.11),
o)== 5 () (8) rorem = (5) o wan

It also follows from Proposition 4.1 (iii) and Equations (4.9), (4.11) and (4.31) that

Ouep, = Oy (pp —plopl? /2dm A- /\dxipnd(p))

n
1 |zp|” no_ Japl? e
= (a“(aﬂ)a“_ ; >ep,ﬂ: <4H—S+O(e ) ) ep, - (4.32)
So, by Equation (4.10),
2
Opep,» = (AZL - |m;| +O(e_c")> €pz, Ovep,=—ihpep . (4.33)
Then the result follows using the right-hand side of Equation (4.1). O

Proposition 4.25. Forallpe X,
[0=(Dzep,z)|[Lee = O(e™) (1 — +00).
Proof. From Equation (4.12), we get

0.(Dsey,.) = ;<ewhpa (al, (%) eldoy)er

e~ why ( > c(dpp)Ouep, — hpeiuhp;(z>zé(dl’p)ep,u>' (4.34)

By Equations (4.11) and (4.31),

(o (D)) =0 () a0

-5 () -0 () o =0, aw

The result follows applying Proposition 4.1 (iii) and Equations (4.9), (4.11), (4.32) and
(4.35) to Equation (4.34), and using that dp, =0 around p. O

Proposition 4.26. For every p e X,
10- (Prvsmnep. — el = O(e™) (14— +00).
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Proof. By Equation (4.17),

1

—/ w™to, ((w - Dz)*l)Dzep,z dw
Sl

0:(P: smép,» —€p,2) = o

27 Ju w™ (w— D)7 0:(Dzep, ) du.

Now, apply Equations (4.18) and (4.27) and Propositions 4.6 and 4.25. O

5. Small and large zeta invariants of Morse forms

5.1. Small and large zeta invariants

According to Sections 3.2 and 4.2, if B is an operator in L?(M;A) so that ((s,A.,B) is
defined, we have

C(SvszB) = Csm(S,Az,B) +C1a(3aAzaB) »
where
Csm/la(saszB) = C(SaAzaBz,sm/la)'

These are the contributions from the small/large spectrum to {(s,A., B), which are called
the small/large zeta functions of (A,,B). In particular, we can write

C(S,Z) = Csm(svz) + Cla(svz) )

where (i /1a(5,2) = Gsmy1a(5,2,m) is the small/large zeta function of (A.,nAD.w). Since
Csm(8,2) is an entire function, (j,(s,z) has the same poles as ((s,z) (Remark 3.10), with
the same residues. The value (o /1a(1,2) will be called the small/large zeta invariant of
(M,g,n,2). The following results follow like Corollaries 3.9 and 3.11.

Corollary 5.1. If s > 1/2, then

1 oo
Ca(s,2) = @/ 71 Str (77/\ D,e A= ZJa) dt ,
0
where the integral is absolutely convergent.

Corollary 5.2. We have

Csm(laz) = Str(’]/\ Dz_l(HzL)Sm) 5
. —1_—tA,
Ga(1,2) ZIngStf (nADZ'e 24P, 1,).

5.2. Truncated heat invariants of perturbed operators
For k=0,...,n, let K  ; ,(z,y) and K. 1.+(z,y) denote the Schwartz kernels of e~ 2=+t

and e 1A=k .1a,k, Tespectively. According to Section 3.1, their restrictions to the diagonal

have asymptotic expansions (as t | 0),

K;,k,t(xvx) ~ Ze;c,l(mvz)t(l_n)/Q ) I?z,k,t(xax) ~ Zék,l($12)t(l_n)/2' (51)
1=0 =0
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We have
er1(z,2) ifl<n
e;c,l(xaz) = P
exn(z,2)—BF ifl=n,
) if | <
ep,1(z,2) = o (7:2) S (5.2)
ek,n(x,z)—HZ,]%O(l",’L‘) lfl:n7

where H., 1 ;(7,y) is the Schwartz kernel of e=*2=* P, o 1, which is defined for all t € R
and is smooth. We also have asymptotic expansions

R, (t,2) i=Tr (e "8=+IIL) ~ Za;)l(z)t(l_")/% (5.3)
=0
_ oo
hk(t,z) ="Tr (e_tAz'k z,la,k) ~ Z&k,l(z)t(l_n)ﬂ. (5.4)
1=0

By Equations (3.4), (3.5) and (3.9),

ifl<n
/ = tr e ,2) dvol = CL&[(Z) ! 9.5
a1 (2) /MS re,(z,z) dvol(z) {ak’l(z) — Bk ifl=n. (5:5)
. ~ ag l(z) lf l <n
_ st ) dvol _ ) 5.6
ak,l(z) /M I‘ek,l(ilf Z) v (CC) {ak,l(z) — dimEf,sm if ] =n. ( )

The operators e *A=1I}w and e~*2 P, ;,w have Schwartz kernels

n n

KL (wy) =Y (DKL (2y), Koi(zy) =) (-1 K. kilzy),
k=0 k=0

with induced asymptotic expansions
(oo} - oo
K. (aa) ~ S et 2 R y(aa) ~ 3 (a2,
1=0

where

We also have induced asymptotic expansions,

B (t,z) := Str (e_tAszL) ~ a(2)ttm2

h(t,z) = Str (e 2+ P, 1,) ~

5

&l(z)t(l—n)/Q ,
=0
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where

n n

aj(z) =Y (~DFap(2), a(z) =Y (~1) ar(2).

k=0 k=0

If 1> 0, by Equation (2.9), Corollary 4.9 and Theorem 4.10, €} ,(x,2) and € (x,2)
depend smoothly on z (Section 3.1), and therefore so do hj,(t,2), hx(t,2), ay.1(2), ax(2),
ej(x,2), é(x,z), W (t,z), h(t,z), aj(z) and a;(z).

5.3. Truncated derived heat invariants of perturbed operators
For k=0,...,n and j = 1,2, let
hf;(t,z) =Tr (e_tAz~’“H;k) , ﬁfc(t,z) = Tr( —tAz, "Hi a, k)

Lemma 5.3. We have

k n
hia(t2) =hi(t2) =) (=) Phy(t,z) = > (=) ') (t,2).
p=0 q=k+1

Proof. This follows by induction on £, using that

ho(t,z) = ho(t,2) =0, hi(t,2) = hy(t,2) + hi(t,z),  hi(t,z) = hiy o (,2).

The last equality holds because the diagram of Equation (2.7) is commutative. O
Let
W (t,z) = Str (e 7'4110) =Y " (=1)*hi(t,2)
k=0
W (t2) = Str (e <11 1) = 3 (-~
k=0
Thus,
R'(t,z) = h*(t,2) + h3(t,z), h(t,z) = h*(t,z) + h3(t,2). (5.7)
Corollary 5.4. We have h/(t,z) =0.
Proof. This is a direct consequence of Lemma 5.3 and Equation (5.7). O

Corollary 5.5. We have

h'(tz) = —h3(t,z) =Y (=1)Fkhj(t,2) = Str (Ne™"2-117).
k=0
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Proof. Corollary 5.4 and Equation (5.7) give the first equality. By Lemma
Corollary 5.4,
W (tz) =D (=D (D)7 Fhl(tz) =D (—1)7(q+ 1)kl (t,2)
k=0 q=k q=0

=h(tz)+) (=1)%qhy(t,2) = ) (=1)%qhy(t.2).
q=0 q=0

3

Remark 5.6. Note the similarity between Corollaries 4.17 and 5.5

Applying Equation (5.3) and Lemma 5.3, we get

Rl (t,2) ~ Za 7 ()2 0w (t2) ~ Za{(z)t(l_")m,
1=0

1=0
where
k n
apy1,(2) = ap (2) = Z( 1)+ Pay, ,(t,z) = Z ( 1)q_k_1af; 1(t,2),
p=0 q=k+1
ab(2) = —a}(=) = 3" (=1)*ka (2)
k=0

Lemma 5.3, Corollary 5.4 and Equation (5.8) have obvious versions for A7 (t,

5.3 and

z) and

hi (t,2z), with similar proofs. The coefficients of the corresponding asymptotic expansions

are denoted by di’l(z) and @ (2).

Corollary 5.7. For alll <n and ;1> 0, a}(2) and a; (z) are independent of 2.

Proof. Apply Equations (2.9), (5.5) and (5.6); Corollary 4.9; and Theorems 3.4 and

4.10.

5.4. Zeta function versus theta function

Consider also the meromorphic function
6(572) = 6(552777) = 7C(37A27NW) )
called theta function of A,, and write

0(s,2) = Osm(s,2) + O1a(s,2) ,

where

esm/la(saz) = 9sm/1a(8,3777) = _Csm/la(57AZaNW)~
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By Corollary 5.5,
—((s,A,,TTw) = C(s5,A,,T12wW) = 6(s,2) ,
_Csm/la(SaAmHiW) = Csm/la(stmHiW) = esm/la(saz)- (511)

Recall that ((s,z) is smooth at s =1 (Corollary 3.9). Moreover, 0(s,z) is smooth at
s =0 [66]. The same is true for (5(s,2) and O,(s, ).

Proposition 5.8. If >0, then
0.01a(5,2) = sQa(s+1,2).
Proof. Recall that a dot may be used to denote 9,. Like in Equation (4.29),
1 — (1) T i )
Therefore, since II! and (I11)* commute with A7* and P, 1, for s> 0,
Cla(8, A2, ITEw) = Str (TILAZ* P, 1) =0,

yielding Qa(s,Az,ﬂiw) =0 for all s because this is a meromorphic function. Hence, since
A and IT} |, w commute, Proposition 3.1 (i),(v) gives

azgla(s,AmHiw) = —5Ca(s+ 1,AZ,AZHiW) = —5Str (AZAZ_S_IH;M). (5.12)
Next, by Equation (2.4),
AT |, = (PAG. + 6. nA)IL |, = nASLILL |, + 0. pATLL . (5.13)

But, since 111§, =0,
Str (0. npAAZ° I ) = —Str (pAAZSTL 1,6, ) =0. (5.14)
From Equations (5.11)—(5.14) and Proposition 3.1 (i), we get
0.60(5.2) = —0-Guals, A, IThw) = sStr (pA S, AT T )

= sStr (n/\ DAL ) =sQa(s+1,2).

z,la

O

Remark 5.9. In the case where 1 is a Morse form and g > 0, the regularity of {(s,z)
indicated in Remark 3.10 also follows from Corollary 5.7 and Proposition 5.8.

Corollary 5.10. If u >0, then Equation (1.6) is true.

Proof. Apply Proposition 5.8 and Corollary 5.1. O

5.5. The case of the differential of a Morse function

Let us consider the special case where n = dh for a Morse function h. The following four
results follow like Lemma 3.12 and Corollaries 3.13 to 3.15.
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Lemma 5.11. For u> 0,
Str (nAdz 'L ) = —Str (R (113 )sm)
Str (7]/\ d;'e mzﬂz la) — Str (h e tA z,la)~

Corollary 5.12. For >0,
Com(L,2) = = Str (A (11 )sm)
Ga(l,2) = fltiirélStr (he " P, 1,).
Corollary 5.13. If 1> 0, then (gm/1a(1,2) € R.
Corollary 5.14. If M is oriented and |u| > 0, then
Csmy/1a(1,2) = Gmyta(l, = 2) = Gmyta(l, — 2) = Comy1a(1,2)-
Corollary 5.15. The value (s (1,2) is uniformly bounded on z for > 0.

Proof. The operator h (I} )gy, is uniformly bounded and, for p >> 0, has uniformly
bounded rank. So Str(h (II})sy,) is uniformly bounded on z for p > 0, and therefore
the result follows from Corollary 5.12. O

Theorem 5.16. The following limit holds uniformly on v:

lim 413(1,2):—/Mhe(M,vM) dvol + Zn:(—l)ind(p)h(p).

H—>+00 e
Proof. By Equations (5.1) and (5.2), Theorem 3.2 and Corollary 5.12, for x>0,
Ca(1,2) = —lim Str (he*mz P.1a) = —/ h(x) stré, (z,z) dvol(z)
10 M
= —/ h(z) stre, (x,z) dvol(x) + Str(hP;, sm)

M

—/ he(M,VM) dvol +Str(h P o).
M

According to Corollary 4.9, the elements P, smep, » (p € X) form a base of EX | when

Z,8m

1> 0. Applying the Gram—Schmidt process to this base, we get an orthonormal frame
ép,» (p € X) of E, ¢nn. By Proposition 4.7 for m =0 and Equations (4.8)—(4.11),
lim (hé, .64 .)= lUm (hep . eq ) =h(p)dpg.

p—>400 p—>—+00

Hence,

Jim Str(hP. o) kgo > h(p)

PEX
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6. The small complex versus the Morse complex

6.1. Preliminaries on Morse and Smale vector fields

6.1.1. Vector fields with Morse-type zeros. Let X be a real smooth vector field
on M with flow ¢ = {¢'}. Let Y = Zero(X) denote the set of zeros of X (or rest points
@). It is said that a zero p of X is of Morse type with (Morse) index of ind(p) if, using
the notation of Equation (4.2),

.0
- ,’L'p
Jj=1
on the domain U,, of some coordinates =), = (xll), ... ,x;j) at p, also called Morse coordinates.
This condition means that X = —grad, hx , on Uy, where hx ;, and g are given on U, by

the center and right-hand side of Equations (4.1) and (4.3). The coordinates xz, used in
Equation (6.1) are not unique; that expression is invariant by taking positive multiples
of the coordinates (contrary to the expressions of Equations (4.1), (4.3) and (4.4)). But
ind(p) is independent of x,. Note that the Hopf index of —X at p is (—1)™d®),

Let us consider n € Z!(M,R) and use the notation of Section 4.1. For p € X NY), if
Equations (4.3), (4.4) and (6.1) hold with the same coordinates, then 7 and g are said to
be in standard form with respect to X around p. In this case, Cn and Cg (C > 0) are also
in standard form with respect to X around p; indeed, Cn, X and Cg satisfy Equations
(4.3), (4.4) and (6.1) with the coordinates vCx,. If X =), and 7 and g are in standard
form with respect to X around every p € X, then i and g are said to be in standard form
with respect to X. This concept is also applied to any Morse function A on M referring
to dh and g. The reference to ¢ may be omitted in this terminology.

Unless otherwise indicated, we assume from now on that X has Morse-type zeros. Then
Y is finite, and the sets Vg, V1 and V< are defined like in Section 4.1.

6.1.2. Stable/unstable manifolds. For k=0,...,n and p € Y, the stable/unstable
manifolds of p are smooth injective immersions, L;t : W;[ — M, where the images L;[(Wf)
consist of the points satisfying ¢'(x) — p as t — +00, and the manifolds W;‘ and W, are
diffeomorphic to R * and R*, respectively [70, Theorem 9.1]. In particular, p € Lpi (Wf),
and the maps L; and ¢, meet transversely at p. Let pt = (L;t)_l(p). Assume every U, is
connected, and let U be the connected component of (¢:£)~!(U,) that contains p*. The
restriction ¢ : Ugc — (x;,t)’l(O) is a diffeomorphism, and therefore (Upi,:z:;—LL;t) is a chart
of WpﬂE at pi.

6.1.3. Gradient-like vector fields. Given a Morse function h on M in standard
form with respect to X, we have X = —grad h on M for some Riemannian metric g
if and only if Xh <0 on M\ Y [16, Lemma 2.1], [40, Section 6.1.3]; in this case, X is
said to be gradient-like (with respect to h). If X is gradient-like, then the maps Lpi are
embeddings [68, Lemma 3.8], [16, Lemma 2.2], and their images cover M [69, Theorem B
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and Lemma 1.1], [16, Corollary 2.5]. Thus, in this case, the a- and w-limits of the orbits of
X are zero points, we can write I/Vpi = L;E(Wpi) and p* = p, and L;t becomes the inclusion
map.

Unless otherwise indicated, we also assume in the rest of the paper that X is gradient-
like.

6.1.4. Smale vector fields. X is said to be Smale if W; h W, for all p,g € Y. Then
M(p,q) :== W, NW, is a ¢-saturated smooth submanifold of dimension ind(p) —ind(q).
If p = q, we have M(p,p) = {p}; in this case, define T (p,p) = 0. If p # q, the induced
R-action on M(p,q) is free and proper; in this case, define T (p,q) = M(p,q)/R, which
is a smooth manifold of dimension ind(p) —ind(q) — 1. The elements of T (p,q) are the
(unparameterized) trajectories with a-limit p and w-limit ¢, which are oriented by X. If
ind(p) < ind(q), then T (p,q) = 0. If ind(p) —ind(q) = 1, then T (p,q) consists of isolated
points, each of them representing a trajectory in M. Let

T=U 7o, 7= U Teo wW=UT. Tl=kU77§~
=0

p,qEX GEXina(p)—1 PEX)

The elements of 7' are called instantons.'

X can be C*-approximated by gradient-like Smale vector fields that agree with X
around X [20, Proposition 2.4] (this follows from [69, Theorem A]). A well-known
consequence is that, for any Morse function h, there is a C°°-dense set of Riemannian
metrics g on M such that —grad h is Smale; this density is also true in the subspace of
metrics that are Euclidean with respect to Morse coordinates on given neighborhoods of
the critical points.

Unless otherwise indicated, besides the above conditions, we assume from now on that
X is Smale; that is, we assume (b) (Section 1.1).

6.1.5. Lyapunov forms. Any n¢€ Z'(M,R) is said to be Lyapunov for X if n(X) <0
on M\ Y [20, Definition 2.3]. Note that this condition implies that Zero(n) =Y. By (b),
every class in H'(M,R) has a representative  which is Lyapunov for X and n* = —X for
some Riemannian metric ¢ on M, with 7 and g¢ in standard form with respect to X [18,
Proposition 16 (i)], [20, Observations 2.5 and 2.6], [34, Lemma 3.7], [40, Section 6.1.3].

6.1.6. Completion of the unstable manifolds.

Proposition 6.1 ([10, Appendix by F. Laudenbach, Proposition 2], [39, Chapter 2],
[15, Theorem 2.1], [17, Theorem 1], [16, Theorem 4.4], [40, Sections A.2 and A.8], [52,
Corollary 2.3.2]). The following holds for every p € Vi (k=0,...,n):

' [12], the elements of T are called instantons, and the elements of T proper instantons.
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(i) W, is a C' submanifold with conic singularities’ and a Whitney stratified
subspace®. Its strata are the submanifolds W, for q € Y<i with T(p,q) # 0. As
a consequence, W, has finite volume, and

Wy nw, ¢ | wy
TE€EYV <k
if g # p in Yi; in particular, p ¢ Wy .

(ii) There is a compact k-manifold with corners* Wp* whose l-corner” is

l
aw, = |_| ( T(q]‘—hqy')) xW, (0<1<k).
(g0, a1)€{p}x Yt *j=1
In particular, the interior of Wp_ is OOWP_ =W, , and the set T (p,q) is finite if
q€ V1.
(iii) There is a smooth map i, + W, — M whose restriction to every component of
6l/W7p_ is given by the factor projection to W, , according to (#). In particular,

by =t, on W, and i, : Wp_ — Wy is a stratified map.

By Proposition 6.1 (i), we can choose the open sets U, (p € Vi, k=0,...,n) so small
that Upﬁwiq_:@ if g# pin V.

For every q € V1 and v € T (p,q), the closure 4 in M is a compact oriented submanifold
with boundary of dimension one, and 95 = {p,q}. We may also consider ¥ as the closure
of v in Wp*.

6.2. Preliminaries on the Morse complex
6.2.1. The Morse complex when M is oriented. For reasons of clarity, assume
first that M is oriented. Fix an orientation O, of every unstable manifold W, (p € Vg,

k=0,...,n), which can be also considered as an orientation of Wp’. Then W, = (W, ,0,)
defines a current of dimension k on M, also denoted by W,"; namely, for a € QF(M),

(W) = /Wpa: /AP(Z;)*a. (6.2)

Let 010, be the orientation of 81Wp_ induced by O, like in the Stokes’ theorem;
precisely, it is determined by O, =v, ® 9,0, along 81ﬁ/\p’ for any outward-pointing

normal vector v, . The restriction of 010, to every component T (p,q) x W, (q € Vi)

of 61Wp_ is of the form O, ,® O, for a unique orientation Oy, , of T(p,q). If k' =k —1,

2In the sense of [10, Appendix by F. Laudenbach, Section a)] and [40, Appendix A.1].
3Introduced by H. Whitney [72, 73], and the definition was simplified by J. Mather [45].
4In the sense of [47, Section 1.1.8].

5The union of the interiors of the boundary faces of codimension .
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then O, 4 can be represented by a unique function €, 4 : 7 (p,q) — {£1}; combining these
functions, we get a map e: 7' — {£1}. By the descriptions of 9; W; and i, : 0y sz —M,
and by the Stokes’ theorem for manifolds with corners, we have [10, Appendix by F.
Laudenbach], [34, Remark 1.9], [16, Theorem 3.6 and Proposition 5.3], [40, Section 6.5.3]

oW, = > (W, . (6.3)

q€Vk—1, YE€T(p,q)

Thus, the currents W, (p € X) generate over C a finite-dimensional subcomplex
(Co(X,W7),0) of the complex (2(M)’,0) of currents on M, called the Morse complez.
The simpler notation Cq = Co(X) = Co(X,W ™) may be also used. Moreover, Co —
Q(M) is a quasi-isomorphism,® H,(C,,0) = H,(M,C) [71, 67, 51] (see also [29, 64, 65],
[35, Theorem 0.1], [10, Appendix by F. Laudenbach, Proposition 7], [40, Section 6.6.5]).

Let (Co(X,WT),0) = (Co(—=X,W),0), involving the stable Morse cells W,. If M is
oriented by Oy and the orientation O of every W, is chosen so that Of ® O, = Oy
at p, then the canonical pairing

() Ca(X, W)X Cr_ o (X,WF) 5 K, (W, , W) =6, (6.4)
satisfies [40, Section 6.6.2]
(OW, W)y =(=1D)F (W, ,0W}) (pe Xy, g€ Xio1). (6.5)

6.2.2. The Morse complex when M may not be oriented. When M is not
assumed to be oriented, the concepts of Section 6.2.1 can be extended as follows. We
fix an orientation NO, of every normal bundle NW", which can be also considered as

an orientation of N WP_ (the normal bundle of the immersion i, ). Then we can consider
_ _ _ k . _ . . .

W, =W, ,NO, ) € Q*(M,o(M))', by using NO, ®a as 1£13€grand 1n/E\lquatlon (6.2)

for every a € QF(M,0(M)); note that NO, @ a € QF(W,",0o(W,")) = Q¥(W,"). With the

notation of Section 6.2.1, i NO, := NO, ®@v, describes an orientation of N@lwpﬂ

and the Stokes theorem has the extension (see [13, Theorem 7.7] for the case without
boundary)

/A Nop—@dﬁ:/A HNO, ®B (Be Q1 (M,o(M))). (6.6)
Wy W,

If M is oriented by Oy, then NO, and O, determine each other by the condition
Om =NO, ®0, . Then N 0O, and 81(9; determine each other in the same way:
Oum :NO; ®O; :NO; ®Vp_ ®610; :81]\]0; ®810;

So Equation (6.6) agrees with the usual Stokes’ theorem in this way.
If M is not oriented, by using local orientations of M, the above argument shows that
Equation (6.6) also agrees with the usual Stokes’ theorem for o(M)-valued forms § with

6Actuaully, H.(M,Z) is isomorphic to the homology of the complex of free abelian groups
generated by the currents W, .
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small enough support. Then, like in Section 6.2.1, we get the same map e: 7! — {41},
and therefore the same definition of (C,,d).

6.2.3. The dual Morse complex. Let C*¥(X,W~)=(Cy)*=CY (k=0,...,n) and
d = 0*. The simpler notation C* = C*(X) will be preferred. It is said that (C*,d) is the
dual Morse complex. Boldface notation is also used for elements of C® and other operators
on C*. Let e, (p € )) denote the elements of the canonical base of C®, determined by
e,(q) = d,q- By Equation (6.3), for ¢ € Vi_1,

de, = > () e, (6.7)

PEYVE, YET (p,q)

Comparing Equations (6.3) and (6.7), we see that (C*(X,W™),d) = (Co(—X,WT),0).
Thus, from now on, (C*,d) will be also called a Morse complex. If M is oriented, it also
follows from Equations (6.4) and (6.5) that (C*(X, W~ ),wd) = (C,,_(X,WT),d).

6.2.4. The perturbed Morse complex. Take any n € Z!(M,R) defining a class
¢ € HY(M,R) (there is no need of any condition on 1 or g in Sections 6.2.4 to 6.2.6). For
reasons of brevity, write n(v) = f,yn for every v € T*. According to [17, 18, 20], (C*®,d)
has an analog of the Witten’s perturbation, (C*®,d, =d.,) (z € C), where, for g € Vi1
(k=1,...,n),

d.e; = Z e(y)e" Ve, (6.8)

PEYVE, YET (p,q)

If = dh for some h € C°°(M,R), then d, = e~*"de*" on C* because () = h(q) — h(p) for
PE Ve, € Ve1 and v € T(p,q); here, eT*" also denotes the operator of multiplication by
the restriction of this function to Y. It will be said that (C®,d.) (z € C) is the perturbed
dual Morse complex defined by X and 7. A perturbation (C,,0%) is similarly defined,
multiplying by e*?(?) the terms of the right-hand side of Equation (6.3).

Since W, (p € Vi, k=0,...,n) is diffeomorphic to RE, there is a unique horp
C> (W, ,R) such that h, (p~) =0 and dh,, = (1,)*n, where p~ € W, C W is

determined by ¢, (p~) = p. Indeed, h, , has a smooth extension h_ to W because

/Wp_ is contractile. By Proposition 6. 1 ( i), for all ¢ € Yx,—1 and v € T(p,q), we have
ﬁ;p('y,cj’) =n(y) at (v,¢7) € {7} x W C 31W Therefore, h corresponds to the

restriction of B;p —n(v) via the canonical diffeomorphism W ~ {7} X W_
According to [17, Proposition 4], [18, Proposition 10], [20, Proposmons 2.15 and 2.16
and Section 6.2], a surjective homomorphism of complexes,

o, : ((M),d:) = (C*.dz.),
is defined by

B.()(p) = [ M= /W e (i3 ) w.

P P
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Moreover, ®, is a quasi-isomorphism for all z € C [10, Proposition 7 in the Appendix by
F. Laudenbach] (see also [10, Theorem 2.9], [11, Theorem 1.6], [20, Proposition 2.17 and
Section 6.2]). If n and ¢ satisfy (a), then, by Equation (4.13),

D, : (E, smd.) = (C*.dy,)
is also a quasi-isomorphism. Since a direct adaptation of [18, Appendix A] shows that, for

k=0,...,n, dim H*(C®,d,) is independent of z € C with |u| > 0, we get Equation (2.9)
because any £ € H(M,R) is represented by a Morse form.

6.2.5. Morse complex with coefficients in a flat vector bundle. With more
generality, for a flat vector bundle F, we may consider (C*(X,W~,F),df), where
CHX,W~,F) = @pGyk F,, and dfe (e € F,, ¢ € Vx_1) is defined like in the right-
hand side of Equation (6.7), replacing e, with the parallel transport of e along
71 [10, Section 1c)]. This is the dual of the complex (Co(X,W~,F*),0¥"), where
Ce(X, W F") =@D,cy, Iy, and OFf (f € F}, pe Xy) is defined like in the right-hand
side of Equation (6.3), replacing W, with the parallel transport of f along 4. A quasi-

isomorphism
o =X (Q(M,F),d) — (C*(X,W~,F),d")

can be defined like @, [10, Theorem 2.9], using the isomorphism
O (W,

P

(i, )'F)=Q* (W, )®F,
given by the parallel transport of (i,;)*F. If F'= L* (Section 2.1.4), then

(C*(X,W~,L),d" ) =(C"d.), oF =0..

6.2.6. Hodge theory of the Morse complex. Consider the Hermitian scalar
product on C* so that the canonical base e, (p € ) is orthonormal. All operators induced
by d, and this Hermitian structure are called perturbed Morse operators. For instance,
besides d,, we have the perturbed Morse operators

b.=d!, D.,=d.+6., A.=D?>=d.j.+6.d..

In particular, it will be said that A, is the perturbed Morse Laplacian, and its eigenvalues
will be called perturbed Morse eigenvalues. If z =0, we omit the subscript ‘2z’ and the
word ‘perturbed’. From Equation (6.8), we easily get

3.ep = > De(v)ey, (6.9)
4€YVk—1, YET (p,q)
for p € V.. We also have
C® =kerA,®imd, ®imd, ,
ker A, =kerD, =kerd,Nkerd,, imA,=imD,=imd,®imd,.

The orthogonal projections of C® to ker A, imd, and imé, are denoted by II, = Hg,
1! and IT?, respectively. The compositions d'TI}, 87 'TI? and D;lﬂj are defined like
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in Section 2.1.2, and there is an obvious version of the commutative diagram of Equation
(2.7).

6.3. The small complex versus the Morse complex

Our main objects of interest are the form n € Z!(M;R) and the Riemannian metric g; X
plays an auxiliary role. As indicated in Section 6.1.5, by (b), we can choose some 7 € £
and g satisfying (a) and (c) (Section 1.1). Thus, unless otherwise indicated, assume from
now on that X,  and ¢ satisfy (c), besides (a) and (b). In particular, Y = Zero(n).

For every p € Y, consider the functions hy) p, hx p, b, , and ﬁ;p defined in Sections 4.1,
6.1.1 and 6.2.4. By (c), we have

hyp=hx.p on U,,

- I _ -
By =hnp = —§|xp > on U, (6.10)
hy, <0 on W, \{p}. (6.11)

From now on, the subscripts X and n will be dropped from the notation of these functions.

Continuing with the notation of Section 6.2.4, let J, : C®* — E, be the C-linear isometry
given by J.(e,) =ep, ., and let U, = P, ¢, J, : C* — E, ¢, which is an isomorphism for
>0 (Corollary 4.9). By Proposition 4.7,

[9.ell = (1+0(e™"))llell (n—+o0)

for all e € C*®. Using polarization (see, e.g., [37, Section 1.6.2]) and conjugation, this means
that, as u — +o0,

Vi, =1+0(e™"), V. 0I=1+0(e""). (6.12)
Notation 6.2. Consider functions u(z) and v(z) (z € C) with values in Banach spaces.
The notation u(z) =<o v(2) (4 — +00) means
u(z) =v(z)+ O(efc‘”‘) (1 — £00).
This notation may be used even when the Banach spaces depend on z.

Theorem 6.3 (Cf. [11, Theorem 6.11], [75, Theorem 6.9], [17, Theorem 4]). For every
TER, as p — +o0,

N/2 n/4
ot () ()
w+7/2 v

Proof. We adapt the proof of [75, Theorem 6.9] to the case of complex parameter. For
every p € Vg,

®,.,V,.e,= Z e, /A (=g (ig )" P: smep, z- (6.13)
qEVr Wa

Then the result follows by checking the asymptotics of these integrals using the
compactness of W™
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In the case ¢ = p, by Equation (6.11) and Corollary 4.8,

/ e+ (i) (Pesm — ey . =0 0.
W,

But, by Proposition 4.1 (iii) and Equations (4.8)—(4.11) and (6.10),

/,\7 e(z+7')fz; (Z;)*ep,z _ /A7 e(z+7)ﬁ; (E;;)* (e—iuh,, ep,u)

p WP
. 1 2r k
= /w— M (i ) ey = o (/_%p(x)e—wn”z dr)
B T k/2 1 n/4 —en
= (u+7/2) (£)" a+oem). (6.14)

(When 7 = 0, the last equality is the same as [75, Eq. (6.30)].)
For g # p in Y, since e, , =0 on Wy because U, N\W; =0 (Section 6.1.6), like in the
previous case, we get

/A e+ (Z;)*stm%,z =g 0.

q

O
Corollary 6.4. For every 7 € R, if u>> 0, then ®.1, : B, sy — C* is a linear”
isomorphism.
Proof. Apply Theorem 6.3 and Corollary 4.9. O

Remark 6.5. The argument of the proof of Theorem 6.3 shows that

N/2—n/4
W) +0(e™*)  (u— +00).

0., = (%
W
So @, : E, — C* is an isomorphism for z>> 0 (see also [20, Lemma 5.2]).

Let

~ 1 N/2—n/4
\Ilzz( ) U, :C* = E, .

T
Corollary 6.6. Consider \T/’; t B, sm — C®. As p— +o0,

T, — (g)“‘"/2+o(e—w) R (B

N—n/2
o)

+0(e™ ) .
Proof. This is a direct consequence of Equation (6.12). O

Corollary 6.7. For any 7 € R, consider @4 : E, g — C®. As p1 — +o00,

O, R e n\M
z+7* 2 0 (N+T/2) ) z*¥z+1 0 <,U+T/2) .

It is an isomorphism of complexes if 7 = 0.
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Proof. The first relation is a restatement of Theorem 6.3. The second relation follows by
conjugating the first one by ¥, and using Corollary 6.6. O

Corollary 6.8. As p— 400, \Tl;l =0 ®, on E, gm.
Proof. By Corollaries 6.6 and 6.7, on E, ¢,

U =0 U0, D, =D,

z

In the rest of this section, consider ®, : F, s, — C*® unless otherwise indicated.

Corollary 6.9. As p— +oo,

1, =, (Z)N_m 0.0 =, (Z)N_m.

z

Proof. We show the first relation, the other one being similar. By Corollaries 6.6 and
6.8, on E, ¢m,

(I):(I)Z =0 (E];l)*ﬁl—l — ({Iv/*)_l{lvl_l _ (\I/zlllz)_l — (z)an/Q.

z z

Corollary 6.10. As y— 400,

Proof. By Corollaries 6.7 and 6.9,

T, =, (H)anm@zq)zcb* =0 (H)Mﬂ@:.

™

Corollary 6.11. For every T € R, as p — 400,

~ N/2
<I>er‘r]Der‘r,sm\I]z =0 (ﬁm) +O(M_1)'

Proof. By Corollaries 6.7, 6.6 and 6.9 and Proposition 4.19,
(I)z-i-TPz-i-ﬂsm{Iv’z = q)z+T(Pz+T,sm - Pz7sm)\’1v/z + (I)z-l-T{Ivlz

=0 O(p™1) + (M+MT/2)N/2.

Corollary 6.12. As y— 400,
dz,sm =0 Ejzdz(I)z ) §z,sm =0 {I\}zdz@p
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Proof. By Theorem 4.10 and Corollary 6.7,
Ao =0 V. ®.d, o = V.d. D,
Now, taking adjoints and using Corollaries 6.6, 6.9 and 6.10, we obtain
Oz5m = P% 0 U=, 0.8,0,.
O
Let II, = ﬁg, ﬁi and ﬁz be the orthogonal projections of C*® to @, (ker A, o),
O, (imd, ¢m) and ®,(imJ, ¢m ), respectively. Note that f[i = ﬁil‘[i

Corollary 6.13. For j=0,1,2, as u — +o0,

QI oy <o IO, I, <o V. IL,®,, Hi’smlllz = ¥ Hz sm-
~ 2
Proof. We only prove the case of II_, the other cases being similar. Let a. 1,...,0; p,
be an orthonormal frame of ¢, (Ef"gr}ﬂ) So @, 1,...,P,0,,,. is a base of .6, (Ef"gr}ﬂ)

for > 0 by Corollary 6.4. Applying the Gram—Schmidt process to this base, we get an
orthonormal base f 1,...,f. ,_ of ®.6.(EX{)). By Corollary 6.9,

zZ,8m

(Poz 0, P00z ) =<0 (M)k n/2§abv

for 1 <a,b<p,. So

k/2—n/4
fza =0 ( ) 20z q-
™
Hence, by Corollary 6.9, for any 8 € EZ S
Pz D=z

~ 2 M k:—n/2
Héz = (I)z 7fzafzaX (*> (I)z a(I)z za(I)z z,a

25;<5,>,0W ;<5a,>0¢,

AOZ Broz,a) .0z o = OI12 | B.

This shows the first relation of the statement because dlmEZ sm < 00. Then the other
stated relations follow using Corollaries 6.6, 6.7 and 6.9. 0

According to Corollary 6.4, in the following corollaries, we take p > 0 so that @,
E, ¢m — C*® is an isomorphism.

Corollary 6.14. As p — 400,

N—n/2 N—n/2
@t (5) 7 ert@rty = (2)
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Proof. By Corollary 6.9, for e € C* with |le| =1,
)k/Q—n/4

@ ell =0 (& .22 = (£ :

k/2—n/4
-

yielding the first stated relation. The second one has a similar proof. O

Corollary 6.15. As p— +oo,
N—n/2
e I
I

Proof. By Corollaries 6.9 and 6.14,

-
U, =0 oL

z

N—n/2 ~ ~
=010, 0 ! =, (E) oL, U =00, =, 0.
i

z z

~1 ~2
Corollary 6.16. We have IT, = Hi for p>0, and I1, =< Hﬁ as pp — +00.

~1
Proof. Since ®,(imd, ¢n) =imd, for x>0, we get IT, = Hi.
~ 2
To prove II, =q Hg as u — 400, consider the notation of the proof of Corollary 6.13.

We have a, o =0.0,6 (a=1,...,p,) for some base 5, 1,...,0:,p. of imd, ¢ . Hence, by
Corollaries 6.7, 6.9 and 6.12,

(I)zaz,a = (I)zézﬂz,a =0 (I)z{sz(szq)zﬂz,a =0 (Sz(pzﬂz,a ) (615)

and 6,9.06.1,...,0.9.08; . is a base of imé, ,41. Applying the Gram-Schmidt process
to this base, we get an orthonormal base g 1,...,8 ., of imd, ;41 satisfying g. o <o £, o
by Equation (6.15). Then, for any e € C* with |le| =1,

Pz Py
~2
HZe B Z<e’gz,a>gz7a =0 Z<e’fzva>fz,a = Hze.
a=1 !

Corollary 6.17. We have
Ao =710, dZl 0L =112 & 7'd 1@, 11)

z,sm~"z,sm z,sm * z z,sm”*

Proof. The first equality follows like the first relation of Corollary 6.12, using ! instead
of ¥,. To prove the second one, take any a € imd, 4. Since

dI2 . @ 'd'®,a=d.®;'d; ', a=d.'d.d] ' P.a=q

z,sm

with 12 . ®;1d;1®.a € imd, sm, we obtain

z,sm * z

m & 'd 'e.a=d;} a

z,sm z,sm
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6.4. Derivatives of some homomorphisms

Theorem 6.18. As u — +o0,
N N/2—n/4
0.(®.V.),0:(P.V.) = (ﬁ _ 7) (I) .
8u  4Au/ \pu

Proof. By Equation (6.13),

0,(9,V,e,) = Z eq( B ﬁ;eza; (Z;)*Pz,smep7z+/A e*ha (Z;)*@Z(Pmmepyz)) ,

qE€EVr W Wa
(6.16)
for every p € Y, (k=0,...,n). We estimate each of these integrals.
Like in the proof of Theorem 6.3, we get, for any q # p in Vg,
/A_ he € (i) (Prysm — 1)ep, = <0 0, (6.17)
/A_ hy €0 (i7)* Py smep, » =0 0. (6.18)

q

Moreover, by Proposition 4.1 (iii) and Equations (4.8)—(4.11) and (4.30),

- i k 2r 2 /s k—1 2 , »
/A hy € (i, ) ep,z = _2(1(/ p(x)e e/ dx) / plz)xe /2 dy
m

—2r —2r

k (77)3—% _
=——|- +O(e™ ). 6.19
L (%) (6.19)
On the other hand, by Equation (6.11) and Proposition 4.26,
_/,\ e*ha (Z;)*BZ (Ps,smép,= —€p,z) =00,
W,
for all ¢ € Vg. In the case ¢ = p, by Equation (6.14) and Lemma 4.24,

~ I n —c zA— A\ %
/,\_ e*o (iy )7 0zep, = (@4‘0(6 “)) /A e*hv (i) ep,=

P W,
n T\3-%
= (- +0(e e )(() +O(ee >
(5, o) ()
k n
n (7‘(‘)5‘1 e
=—- +0(e™H). 6.20
- () (6:20)
In the case q # p, using Lemma 4.24 and arguing again like in the proof of Theorem 6.3,
we get
/A e*ha (i) 0z€p2=00 (p— +00). (6.21)
Wy

Now, the result for 0, follows from Equations (6.16)—-(6.19), (6.20) and (6.21).
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If we consider 0z, the proof has to be modified as follows. In the analogue of Equation
(6.16), the first term of the right-hand side must be removed. In the analogue of Lemma
4.24, we get |z, |? instead of |z}|* by the right-hand side of Equations (4.1) and (4.33).
So 9z(®,¥,) has the same final expression as 0,(9,¥,) by Equation (6.19). O

Theorem 6.19. As p— +00,
9. (TE0,)*1),0: (V2 0.)F ) =0 ™).
Proof. We only show the case of 0,. Consider P, 4 : E, = E, ¢m, whose adjoint is P, :
E, sm — E.. Then, since J, : C* — E, is an isometry,
\I]zlpz = (Pz,stz)*Pz,stz = J,;lePz,stb
It follows that, for every p € Vi (k=0,...,n),
ViV, = Z (P sm€p,2,€q,2)€q.
qEYVx
Therefore,
0.(VV;)e,

- Z (<az(Pz,sm)ep,zaeq,z> + <Pz,smaz(€p,z)aeq,z> + <Pz,smep,zaai(eq,z)>)eq~
qEVk

Then, by Propositions 4.19 and 4.23, Lemma 4.24 and its analogue for 03,

. 1 e
0:(V2W.)e, =0 ) (g = 5 (1o Pepmsen.z) Jop + O(e™)
n 1 _
= (5~ 5 Pensens) Jep +0(u™").

But, by Equations (4.11) and (4.30),

2r ) n—1 o ,
<|$p|26p,z’ep,2> = (/ p(z)?e He dx) (n—k)/ Y2 p(y)2e " dy

—2r ) o
="K (2) o
Hence,
0:(VV.)e, = (% - nT;k (%) %)ep—l—O(,u*l) = O(,Lfl) ,

yielding the stated expression for 9, (\Ilzlllz)
Now, arguing like in the proof of Equation (4.27) and using Equation (6.12), we get

az((q/:\l’z)_l) = _(\Ijz\llz)_laz(\llzq/z)(\Dzwz)_l
= (OO (1 0= 4)) = O,
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7. Asymptotics of the large zeta invariant

7.1. Preliminaries on Quillen metrics

7.1.1. Case of a finite-dimensional complex. All vector spaces considered here
are over C. For a line ), its dual A\* is also denoted by A~!. For a vector space V of finite
dimension, recall that detV = A“™"Y V. For a graded vector space V* of finite dimension,
let det V® = ®, (det VF)(=D",

Now, consider a finite-dimensional cochain complex (V*,0), whose cohomology is
denoted by H*(V'). Then there is a canonical isomorphism [38], [8, Section 1 a)]

detV*® = det H*(V). (7.1)

Given a Hermitian metric on V'* so that the homogeneous components V* are orthogonal
one another, the corresponding norm || ||y« on V* induces a metric || ||gesve on det V',
which corresponds to a metric || ||qet 77+ (vy on det H*(V) via Equation (7.1).

On the other hand, consider the induced Laplacian, (1= (9 + 9*)? = 99* + 9*0, whose
kernel is a graded vector subspace H®. Then finite-dimensional Hodge theory gives an
isomorphism H®(V) = H*, which induces an isomorphism

det H* (V) 2 det 1°. (7.2)

The restriction of || ||y« to H® induces a metric || ||qet e on det H®, which corresponds
to another metric | |qet ro(v) on det H*(V) via Equation (7.2).
Let [0’ denote the restriction 0 : im0 — im . For s € C, let

0(s) = 0(s,0) = —Str(N(O')~*). (7.3)
This defines a holomorphic function on C. Then the above metrics on det H* (V') satisfy
[8, Proposition 1.5], [10, Theorem 1.1], [11, Theorem 1.4]

I laet a1 vy = | lact zre vy @72, (7.4)

If H*(V) =0, then detH*(V) = C is canonically generated by 1, and we have
11| aet me(vy = ¢? (/2 Using the orthogonal projection I':V — imd, we can write
Equation (7.3) as

0(s) = —Str ((O")*I1"). (7.5)

Let (V*,8) be another finite-dimensional cochain complex, endowed with a Hermitian
metric so that the homogeneous components are orthogonal to each other, and let ¢ :
(V,0) — (17‘,5) be an isomorphism of cochain complexes, which may not be unitary.
Then (see the proof of [11, Theorem 6.17])

log (”ldﬁm) ’ = Str(log(¢*¢)) (76)

| [laet 2o (v)

7.1.2. Case of an elliptic complex. Some of the concepts of Section 7.1.1 extend
to the case where V* = C*°(M; E*), for some graded Hermitian vector bundle E*® over M,
and 0 is an elliptic differential complex of order one. Then det H*(V') is defined because
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dim H*(V) < oo. Moreover, Hodge theory for the Laplacian [J gives the isomorphism
(7.2). Thus, at least the norm | |get o (v is defined in this setting. Now, the expression
(7.3) only defines (s) = 0(s,0) when Rs > n/2, but it has a meromorphic extension to
C, denoted in the same way; indeed, Equation (7.3) becomes

0(s) =0(s,0) = —((s,0,Nw) ,

for ®s > n/2, and therefore this equality also holds for the meromorphic extensions.
Furthermore, 6(s) is smooth at s =0 [66], and 6'(0) can be considered as a renormalized
version of the supertrace of the operator Nlog([J'), which is not of trace class. Thus, the
right-hand side of Equation (7.4) is defined in this way and plays the role of an analytic
version of the metric || ||qet 7+ (vy, Which is not directly defined. This kind of metrics were
introduced by D. Quillen [60] for the case of the Dolbeault complex. The expression (7.5)
also holds in this case for s> 0; in fact, it becomes

0(s) = —C(&D,le) ,

where this zeta function can be shown to define a meromorphic function on C, even though
IT! is not a differential operator, and this equality holds as meromorphic functions.

7.1.3. Reidemeister, Milnor and Ray—Singer metrics. Let F be a flat vector
bundle over M, defined by a representation p of 7 M, and let V¥ denote its covariant
derivative. Consider a smooth triangulation K of M and the corresponding cochain
complex C*(K,F) with coefficients in F, whose cohomology is isomorphic to H*(M,F)
via the quasi-isomorphism

Q(M;F)— C*(K,F)=Co(K,F*)*

defined by integration of differential forms on smooth simplices. Given a Hermitian
structure g¥ on F, its restriction to the fibers over the barycenters of the simplices
induces a metric on C*(K,F'), and the concepts of Section 7.1.1 can be applied. In this
case, the left-hand side of Equation (7.4) is called the Reidemeister metric, denoted by
I e 220 (ar, )

If VFg! =0 (p is unitary) and H*(M,F) =0, then the Reidemeister torsion 7a;(p) is
defined using K, and it is a topological invariant of M [30, 62, 23]. Moreover, Tps(p) =
||1H<l}ccH'(M,F) is the exponential factor of the right-hand side of Equation (7.4) [61,
Proposition 1.7]. If we only assume Vg =0, then || ||dRetH.(M’F) is still a topological
invariant of M.

Next, given a vector field X on M satisfying (b), H®*(M,F) is also isomorphic to the
cohomology of (C*(—X,W~,F),d") via the quasi-isomorphism

X QM F) = C*(—X,W™,F) = Co(—X,W ™, F*)*.
This complex has a metric induced by ¢, like in Section 6.2.4, and the concepts of
Section 7.1.1 can be also applied. In this case, the left-hand side of Equation (7.4) is called

the Milnor metric, denoted by || ||g/i’t;1}f( M, ), and the metric factor of the right-hand
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side of Equation (7.4) is denoted by | \g/i’t}{)f(M py 1 Vgt =0, then || ||(1}/[e’t;{)f(M Py =
I ||§etH.(M)F) [50, Theorem 9.3].

Finally, the concepts of Section 7.1.2 can be applied to (Q(M,F),d""), whose cohomology
is again H*(M,F). In this case, the right-hand side of Equation (7.4) is called the Ray-
Singer metric, denoted by || |15 e (M, ) and the metric factor of the right-hand side of

Equation (7.4) is denoted by | |55 e, ) 1 H*(M,F) =0, then the exponential factor
of the right-hand side of Equation (7.4) is called the analytic torsion or Ray—Singer
torsion, denoted by Tps(p). These concepts were introduced by Ray and Singer [61], who
conjectured that Ths(p) = Tas(p) if VFg¥ =0 and H*(M,F) = 0. Independent proofs of
this conjecture were given by Cheeger [21] and Miiller [54]. This conjecture still holds true
if the induced Hermitian structure g4°t¥ on det F is flat, as shown at the same time by
Bismut and Zhang [10] and Miiller [54]. Actually, in [10], Bismut and Zhang reformulated

the conjecture in the form || ||§eStH.(M’F) = I%, e (, - Moreover, they also considered

the case where g9¢*F" is not assumed to be flat [10, 11], extending the above results by

introducing an additional term. The first ingredient of this extra term is the 1-form
9(F7gF) =tr ((gF)_lvFgF) , (7.7)

which vanishes if and only if g€t is flat. Moreover, 8(F,g"") is closed and its cohomology
class of (F,g*") is independent of the choice of g [10, Proposition 4.6]; this class measures
the obstruction to the existence of a flat Hermitian structure on det F'.

Let e(M,VM) be the representative of the Euler class of M given by the Chern-
Weil theory using ¢*; it belongs to Q"(M,o(M)) because M may not be oriented. Let
(M, VM) be the current of degree n—1 on T M constructed in [44] (see also [9, Section 3],
[10, Section 3], [19, Section 2], [20, Section 4]). Identify the image of the zero section of
TM with M, and identify the conormal bundle of M in T'M with T*M. Let d,; be the
current on T'M defined by integration on M, and let 7 : TM — M be the vector bundle
projection.

Proposition 7.1 (Bismut-Zhang [10, Theorem 3.7]). The following holds:
(i) For any smooth function \: TM — R*, under the mapping v~ \v, (M,VM) is
changed into (£1)"h(M,VM).
(ii) The current y(M,VM) is locally integrable, and its wave front set is contained in
T*M. Thus, (M,VM) is smooth on TM\ M.

(iii) The restriction of —i(M,V™M) to the fibers of TM \ M coincides with the solid
angle defined by g™ .

(iv) We have
dip(M, VM) = 7*e(M, V™) — 6.

Remark 7.2. In Proposition 7.1, observe that (i) and (iv) are compatible because
e(M,VM) =0 if n is odd. By (ii)—(iv), the restriction of »(M,V™) to TM\ M is induced
by a smooth differential form on the sphere bundle which transgresses e(M,V™) (such a
differential form was already defined and used in [22]).
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Theorem 7.3 (Bismut—Zhang [10, Theorem 0.2], [11, Theorem 0.2]). We have

<|| et e, F>> / O(F,g") X)* (M, VM),

I ez ar. )

Remark 7.4. By (b), X = —grad,, h for some Morse function h and some Riemannian
metric ¢’ on M, which may not be the given metric g . If we fix A, the right-hand side of
the equality in Theorem 7.3 is independent of the choice of X satisfying X = —grad, h
for some ¢’ [10, Proposition 6.1].

Theorem 7.3 will be applied to the case of the flat complex line bundle £* with a
Hermitian structure g“~ (Section 2.1.2). By Equations (2.13) and (7.7),

0(L%,9"") = —2un. (7.8)

7.2. Asymptotics of the large zeta invariant

We prove Theorem 1.2 (i) here. With the notation of Section 7.1.2, consider the
meromorphic function 6(s,z) = 0(s,A,), also defined in Equation (5.9), as well as its
components Oy, /1,(5,2) defined in Equation (5.10). Consider also the current Y(M, VM)
of degree n—1 on TM (Section 7.1.3). By Proposition 7.1 (i),

—21a(=1) = (=1)"21a(n)- (7.9)

Notation 7.5. Let <; be defined like <o in Notation 6.2, using O(|u|™!) instead of
O(eclnl).

Take some Morse function h on M such that Xh <0 on M\, and h is in standard form
with respect to X. Then X = —grad, h for some Riemannian metric g’ (Section 6.1.3),
which may not be the given metric g. Consider the flat complex line bundle £, _an
with the Hermitian structure g©=n—d» (Section 2.1.2). Note that ddﬁg”’dh =d., on
C* (X, W~ ,L,p—an) = C*(X). So, by Equation (7.8), Theorem 7.3 and Remark 7.4,

1168 e (o

log /(n dh) A (=X)* (M, VM) (7.10)
M

il e e o
where H?(M) = H?,(M). With the notation of Section 7.1.3, let

|| HRS sm (0,2 )/

det HS (M) — = | |detH'(IVI)e o
By Equation (7.4),
RS,sm
|| ||detH-(M) || Hdet;{-(M) 6,(0,2) (7.11)
|| ”detH'(JV[) || HdetH'(I\/I) 2
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By Equation (7.6) and Corollary 6.4, for u >0,

RS,sm 2

log (”‘“H(M)> = —Str(log(®:®.)) = — Str (log (VS 1010, ))
I aeezzs (ary

= —Str (log ((¥V0.) (2. V.)"®.T.)). (7.12)

From Equation (6.12) and Theorems 6.3, 6.18 and 6.19, we obtain

* —1 * *17 E %_N efcp,
(2 0,)" (2,0.)" P, 0.) 7(;) +0(e="),

D ((U5W,) N @ 0.) . 0,) =0, (P50.) ") (R 0.)* .U, +(VEW,) 1 (0:(D.0.))" D,

So
8. Str (log (Wi W,) (. V.) P, V.))
= Str (U2 0,) "1, 0.)* 3.0, ) 0, (V50,) (9. 0.)" P, T.)

=00 )+t (- %) LO(e ) =0(u ).

Then, by Equation (7.12),
RS,sm
Il

9. log —etZAD _ (1), (7.13)
|| HdetH' M)

By taking the derivative with respect to z of both sides of Equation (7.10) and using
Equations (7.11) and (7.13) and Corollary 5.10, we get (1.(1,2) <1 Z1., as stated in
Theorem 1.2 (i).

Remark 7.6. In the case where n = dh, Theorem 1.2 (i) agrees with Theorem 5.16. In
fact, by Proposition 7.1 (iv), Theorem 1.2 (i) and the Stokes formula,

Ga(1,2) =1 —/Mh(—X)*dw(M,VM):—/Mh(—X)*(w*e(M,VM)—éM)
/ he(M,VM)+> " (=1)"®)h(p).
M

peEY

8. Asymptotics of the small zeta invariant

8.1. Condition on the integrals along instantons
Let

My =My(1,X) = —max{n(y) |7 €T} (p€Vs),
Mp=Mi(n,X)=min M, (k=1,...,n).

PEVr
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Thus, (d) means that M, = My, for all k=1,...,n and p € Vi. The following result will
be proved in Appendix A.

Theorem 8.1. For every £ € H'(M,R) and numbers a, > --->a; >0 or a; > -+ >
an > 0, there is some n € &, satisfying (a) and (c) with the given X and some metric g,
such that Mp(n,X)=ay for allk=1,...,n and p € V.

Remark 8.2. If £ £ 0, for p€ Vi, ¢ € Yp—1 and 7,6 € T(p,q) C T,}, the period (£,70 1) =
1(y) —n(0) may not be zero. Hence, it may not be possible to get n(y) = —ay for all
v €T, contrary to the case where £ = 0.

From now on, we assume 7 satisfies (d), besides (a) and (c). By Theorem 8.1, this is
possible for any prescription of the class ¢ =[] € HY(M,R). Let ax = My(n,X) (k=
1,...,n). Then —n also satisfies (a), (c¢) and (d) with —X and g, and My(—n, — X) =
Qp—f+1- S0, if M is oriented, by Corollaries 4.15 and 4.16,

n

—Zsm (1) = _Z(_l)k(l_ea"*k“)m}szﬂ- (8.1)

k=1

8.2. Asymptotics of the perturbed Morse operators
Consider the notation of Section 6.2.4. By Equation (6.8),

d.p1=e **(d}_,+d7, 1), (8.2)
for k=1,...,n, where
dj_1eq = Z e(v)ep (8.3)
PEVK, YET(P,q), n(v)=—ak
d,z/,k—leq = Z ez(ak+n('y))€(’7)epa (8.4)

PEYVE, YET(p,q), n(v)<—ak

for g € Vi_1. Observe that
e d, o1 =dj_; +0(e™")  (u— 400). (8.5)
So

didi_y = lim (@007, yd. g =0.

Hence, the operator d’ =", d), on C*® satisfies (d’)? = 0. Taking adjoints in Equations
(8.2)=(8.4) or using Equation (6.9), we also get

0.k =€ (8, +07 ), (8.6)
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for k=1,...,n, where

;cep = Z () eq, (8.7)

q€YVk—1, YET(p,q), n(v)=—ak

/Z”kep - Z e?(ak+n(w))6(7)eq , (8.8)
9€YVk—1, YE€T(,q), n(v)=—ak

for p € Yi. Moreover, Equation (8.5) yields
€8, 1 =0, +0(e” ") (n— +00). (8.9)
Let ' =3, 8}, = (d')*, which satisfies (§")? =0, and let
D'=d +¢6, A'=D)=dd+6d.
We have
C* =kerA’®imd ®imd’,
imA’=imD’ =imd ®@imé’, kerA’=kerD’ =kerd Nkerd’.

The orthogonal projections of C® to ker A’, imd’ and imé’ are denoted by IT' = IT'°,
IT'! and IT'?, respectively. Like in Sections 2.1.2 and 6.2.6, the composition (d’)~'II'! is
defined on C*. From Equations (8.5) and (8.9), we easily get that, as p — +o0,

I, =10+ O(e™™") (j=0,1,2), (8.10)

e (dap1) L = (djp_y) I+ O(em ). (8.11)
By Equations (8.5) and (8.9), on imé, , ®imd, 1,
A =e2WEA+O(em BTy (1 +o0). (8.12)

Proposition 8.3. For k=0,...,n and >0, the spectrum of A, onimd, ; ®imd, 1
s contained in an interval of the form

[Ce™2mm Ce™2%k]  (C' > O).

Proof. The positive eigenvalues of A’ are contained in an interval [Co,C}] (C§ > Co > 0).
By Equation (8.12), for 4 >> 0 and e € imé, , imd, 1,

(Aee) > > (Aleje) — Cre P tIl|e)|2 > (Coe 24 — Cre~ Fator)|lg|2 |

(Aee) < (Alee) +Cre PutIl|e)|2 < (Che 2k + Cre~ Farton) |le|| 2,

Then result follows taking 0 < C < Cy and C’" > Cj. O
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8.3. Estimates of the nonzero small spectrum

Theorem 8.4. If >0, the spectrum of A, gm 01 iM6, gm p ®imd, sm k-1 15 contained
in an interval of the form

[Cue_Qak“,C/ue_Qak“] (C/ > C)

Proof. By the commutativity of the diagram of Equation (2.7), for every eigenvalue A
of A, ¢m on imé; gm i ®imd, gm k—1, there are normalized A-eigenforms, e € imd, ¢m i
and € € imd, gy r—1 so that d,e = A/2¢" and ¢/ = AY2e. So the maximum and
minimum of the spectrum of A, g, on imé, emx ®imd, smr—1 i ||dzsmi—1]|*> and

||dz sm, k— 1Hl , respectively. Similarly, the maximum and minimum of the spectrum

of A, on 1m52k@1mdzk 1 is ||dzk—1]|? and ||dZ]g 1 ;kH*Z, respectively. Then the
result follows from Corollaries 6.9, 6.14 and 6.17 and Proposition 8.3:

[y [ Loong [ Sy o ey

< (17 o) ogen ((5)F o)

I
< ' pe 2k

Hl ,sm, k— 1H 2>||'1) Jk— 1” 2||dzk 1 i,k||72||¢)27k||72

- (2) ™ ot m)ae (£ sore)

Vs
> Cpe=2h,

[

z,sm,k—1

8.4. Asymptotics of the small zeta invariant

Theorem 1.2 (ii) is proved here.
Theorem 8.5. As p— 400,
AL G =<1 (1 —e®)I0]

z,sm, k*

Proof. Consider the notation of Sections 6.3 and 8.2. By Corollaries 6.13 and 6.16, for
w>0,

ML, = U.IL®, o = V.11, ... (8.13)

Z,8m

For brevity, let S, = <I>Z\IJZ,1 and T, = (I)zflpzfl,smc:[}z on C*. By Corollaries 6.9 and
6.13,

S..T. =1 1. (8.14)

Moreover, by Proposition 4.19 and Corollary 6.7, and the definitions of ¥, and \T/Z,
considered as maps C®* — L?(M;A), we get
CI;ZSZ:\AI} O.P,_ 1sm\Ijz 1/\1\11 @ stm\pz 1
=1 Pz sm\Ilz 1 =1 Pz 1, sm\Ijz 1— \Iszl' (815)
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By Equations (8.5), (8.10), (8.11), and (8.13)—(8.15); Proposition 8.3; and Corollaries
4.20, 6.6, 6.7, 6.9, 6.11, 6.13 and 6.15 to 6.17; and Theorem 8.4,
eakniysmak =0 et Ejzni,kq)zysm =1 eak\i;zl_[;cl(pz,sm
:eak‘f’zd;c—l( %—1)711]21‘1)27-%
=1 e WL Sedi T (d) ) I s
=4 €ak\i’z—1d;g—1Tz( 1) T
=1 etr CI}z—leak(Zil)dz—1,k—11—‘.2670‘162(:12_i_l:l-_-[;k(pz,sm
= {i’z—ldz—l,k—szd;}gflni’k@z,sm
~ ~ 2 ~1
=0 \Ilz—1dz—l,k—szHZVk_ldz_}g_lnz,kq)z,sm
=0 (Ivlz—1dz—1,k—l(I)z—1Pz—l,smnik-lijzd;}c,1¢znl

Z,8m

- T 2 -1 3—-1 1
—~0 \I/zf1dzf1,k71q>zflpz71,smﬂz’k71®z dz7k,1<1)zH

z,sm
T —1 1 - —1y71
= l:[lzfl(I)zfldzfl,sm,kfld II k —0 dzfldz II

z,smy k—1""z,sm, z,sm,k*

Therefore,

nAd; 'L (ds —domy)dZ 'TIL g g =1 (1 — €)IIE

z,smyk T z,sm, k-

Theorem 1.2 (ii) follows from Corollaries 4.9 and 5.2 and Theorem 8.5.

Remark 8.6. Theorem 1.2 (ii) agrees with Corollaries 5.13 to 5.15 by Equation (8.1).

9. Prescription of the asymptotics of the zeta invariant

We prove Theorem 1.3 here. By Theorem 8.1, given a > 0, there is some 7y € £ and
some metric g satisfying (a) and (d) with the given X and so that My (19,X) = a for all
k=1,...,n. Using the notation of Section 4.1, we are going to modify 79 only in every U,

for pe YoUV,.
Fix any e > 0 such that, for every p € YyUY,,, the open ball B(p,3e¢) is contained in U,.
Let

v=|J B@me, V'= |J Bp2e).

PEVoUYn PEYoUVn

Take a smooth function o : [0,3¢] — [0,1] so that
o' <0, o([0,])=1, o([2¢3€])=0.

Let f; € C>°(M,R) (j =0,n) be the extension by zero of the combination of the functions
o(12y]) € O (B(p,36),R) (p € V). We have

suppdeCVj/\V], f](‘/]):]-a f](M\‘/}I):Ov XfOZov ango
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For any cg,c, >0, let n=n(co,cn) =10 — codfo + ¢n dfy,. This closed 1-form satisfies (a)
and (d) with X and g, and we have

MinX)=a+cy, M,(n.X)=a+c,, Mp(m,X)=a (A<k<n).
Hence, by Corollary 4.15,
Zsm (1) — Zsm (10) = € (€™ — l)m% +(=1)"e*(1- ecn)m}r (9.1)

By (a), e(M,V*) =0 on every U, (p € Y). So, using the Stokes formula,

Zla(ﬁ)*zla(no):/ (¢ dfn —codfo) A (—X)* (M, VM)

M

= [ cofy=eut) (=X a0 (M9
= [ cofy=euf) 7Y = 32 (1P o fy e )0

peY
= (=1)"cn|Vnl —co| Vol (9.2)
Combining Equations (9.1) and (9.2), we obtain
z(n) —z(no) = €*(e® — 1)my + (=1)"e (1 — e )my, + (=1)"cn|Vn| = col Vol.

Using local changes of X and applying [69, Lemmas 1.1 and 1.2], we can increase || or
| V| as much as desired. By Lemma 4.12 and Equation (4.21), we have

m} =Vl = BRos M =Vl — Bl (9.3)

which can be increased as much as desired. So, if n is even (resp., odd), given any 7 € R
(resp., 7> 0), we get z(n(co,cn)) =7 for some cg,c, > 0.

Now, assume n is even. To prove that +z(+n) =7, by Equations (7.9), (9.1) and (9.2),
it is enough to prove that we can choose |Ml, |Vul, co and ¢, so that

Zom (1) = Zom (10) + € (e — 1)my + (1 — e )m), =0,
21a(1) = Z1a(10) + cn| V| — co|Yo| = 7.

Using Equation (9.3) and writing u = —e ™ %zgy (1) and v =7 —z1,(1), the above system
becomes

(60 = 1) (190l = B2) + (1) (V] — B0) =
Cn|yn| _CO|y0| =v.

The following result states that these equalities are satisfied by some cg,c, > 0 and

Lemma 9.1. Given u,v € R and B,y > 0, there are ¢,d > 0 and integers p,q >0 such that

(e =Dp—B)+(1—eN)(a—7) =u,
dg—cp=n.

https://doi.org/10.1017/51474748024000343 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748024000343

62 J.A. Alvarez Lopez et al.
Proof. Taking ¢ > 0, we get
d=(ecp+v)/q.
Thus, ¢p+v > 0; that is, ¢ > —v/p. Let
Fpq(e) = (¢° =1)(p—B) + (1= !PT/ ) (g —7).

We have to find integers p,¢ > 0 and ¢ > 0, —v/p such that F, ,(c) = u.
Observe that

6<p<q:>cETOOFP"I(C) =+o00, (9.4)
7<Q<p§cEIJE>OFP"1(C) = —00. (9.5)

Note also that, if (¢,d,p,q) is a solution for some (u,v,,7), then (d,c,q,p) is a solution for
(—u, —v,7,0). So it is sufficient to consider the case v > 0. In this case, ¢ can reach 0 and

Fyq(0) = (1 _ev/q) (@=7),

which is independent of p. Choose ¢ > f,v; thus, F, 4(0) <0. If u > F}, 4(0), take p so
that 8 <« p < ¢, yielding u € im F,, , by Equation (9.4). If u < F,, 4(0), take p > ¢, yielding
u € im F), ;, by Equation (9.5). O

10. The switch of the order of integration

The proof of Theorem 1.4 is given in this section. Let S be the Schwartz space on R.
Recall that the space of tempered distributions is the continuous dual space S’, with
the strong topology. Suppose first that Equation (1.7) is used as definition of Z,,. By
Theorems 1.1 and 1.2, the expression (1.7) defines a tempered distribution Z,, for x> 0.
Moreover, using also the formula of the inverse Fourier transform, we get, for f € S,

)= o= [ i Z [~ jwa =),

as p — 4o, uniformly on v. For every C > 0, this convergence is also uniform on f € S
with |f(v)],[v2f(v)| < C. So Z, — zdy in S’ as u — +00. To get Theorem 1.4, it only
remains to prove the following.

Theorem 10.1. Both Equations (1.4) and (1.7) define the same tempered distribution
Z,, for p>>0.

Proposition 10.2. For 4>0,t>0 and f€ S,

/ / |Str (nAéze_“Az)
—ooJt

|f ()| dudy < co.
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Proof. By [26, Corollary XI.9.8 and Lemma XI1.9.9 (d)],
| Str (nAéze*“Az) < L <Al }5,267qu )
= [nllze Tr ((d.6:)"2e"%%) < |lnl|p= Tr (AL 2e"2<)
where | |; denotes the trace norm. Hence,
/ | Str (77/\ (5267qu) / Tr (Ai/Q(f“Az) du
t t
= ||| Tr (AZY/2etA111).
The operator (14 A)~ is of trace class for any N > n. Therefore,
Tr (A7 2e 2 00) < |(L+A) V| |1+ AN AT 2e 4TI
By Corollary 2.3 and Theorem 8.4, for >0 and « € L2(M;A),
|1+ A)NAZ 2T AT |
OO il O S
2N
— Gl Y DA e il < G Y Al
k=0 k=0
< C\z|2N(1 —i—t_N)eC“HozH.
Thus, since f € S,
/ / | Str (nAéze*“Az) F(v)] dudy
—oo Jt
o
< Clnllp= |(1+A)_N|1(1 +t_N)ec“/ |Z|2N|f(l/)|dl/ < 00.
—00
O

Proof of Theorem 10.1. We compute
s hin Str (nAd e tAzHi) f(w)dv

o0

__ 1 —1,—tALpl £
= Q—Igﬁ)l Str (nAd; IT) f(v)dv
%ltlﬁ)l/ / Str (nAd.e™"2%) f(v) dudy
= %]tlﬁ)l/ / Str (nAd.e” z)f(z/)dydu
= —/ / Str (nAéze_“Az)f(u) dv du.
™ Jo —00

Here, the first equality is given by the Lebesgue’s dominated convergence theorem, whose
hypothesis is satisfied because f € S and |Str(nAd; e tA=11L)| < C for all t >0, |u| >0
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and v € R by Theorems 1.1 and 1.2. The third equality is given by Fubini’s theorem,
whose hypothesis is satisfied by Proposition 10.2. O

A. Integrals along instantons

Theorem 8.1 is proved here. We show the case where a, > --- > a1 > 0. Then the case
where a; > -+ > a, > 0 follows by using —X and —¢.

By [69, Theorem B], there is some Morse function h on M such that h()y) = {k}
(k=0,...,n), Xh<0on M\Y, and h is in standard form with respect to X; in particular,
Critg(h) = Yx. Now, we proceed like in the proof of [18, Proposition 16 (i)]. Since Y is
finite, there is some 1’ € £ such that n’ =0 on some open neighborhood U, of every
p€ Y. Let Uy =U, ey, Up and U =J, Uy. We can assume h(Uy) C (k—1/4,k+1/4) for
all k=0,...,n. If C > 0, then the representative n” :=n’ + Cdh of £ satisfies ”/(X) <0
on M\ Y.

For £k =0,...,n, let I,;t C R be the closed interval with boundary points k+1/4
and k=£1/2. Since there are no critical values of h in I,;t, every Tki = hN(IF) is
compact submanifold with boundary of dimension n, every LF := h='(k+1/2) is a
closed submanifold of codimension 1, and there are identities T,;t = Ef x I ,;t given by
x = (mif(x),h(2)) (x € TE), where mf (z) is the unique point of i that meets the ¢-orbit
of z. Of course, &, =%} | (k=1,....n) and T, =%, =T, =%} =0. (See Figure 1.)

We have ¥ h (W) for p € Vi Let KX = i NeE(WE) and K= Upew, K, which
are closed submanifolds of Zf; K, is of codimension k in ¥, , and K ,': of codimension n —
kin E; Since the a- and w-limits of the orbits of X are zero points, the orbit of ¢ through
every point = € ¥} \ K;} meets ¥, \ K, at a unique point 1% (z) := ¢ (z) (73,(x) > 0).
This defines a diffeomorphism 1 : ¥ \ K — X, \ K, and a smooth function 7, : ;7\

Figure 1. A representation of the sets T, Ef, le'_l and Ty ,, taking Vi, = {p}.
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K; F — R*. Moreover, the sets K, * (p € V) have corresponding open neighborhoods Vi
in Ei with d15301nt closures, such that ¢ (V,F \ K, ) =V, \ K, . Take smooth functlons
AE (peVk) on ¥ so that 0 < A<, Supp)\i C Vi )\i =1on KF and Af =9\, on
Z+ \ K. Moreover, let

To=h""(k—1/2,k+1/2]), K,=T0( (W)U, (W,)),

Vo ={d'(@) |z € VK, 0<t <mi(a) JUE,

I?k: U IN{pa Vk: U ‘7p7 Mk:hil((foo7k+1/2])

PEVk PEYVk

Thus, My = To u- UT;c Note that Tk and M}, are compact submanifolds with boundary
of dimension n, and every V (resp., K. ») is open (resp., closed) in Tj. We also get smooth

functions A, (p € Vi) on Ty determined by the condition A ((bt( )) =XAf(z) for all x €
S\ K} and 0 <t < 7;,(z). They satisty 0 < A, < 1, supp X, C V, and )\p =1on K,
Let

Ay =max{[f(N||v€ T} (P€Vs),

Ap=maxA4, (k=1,...,n), A=max{A,..., 4.}
PEVk

We can suppose C > A and a; > C+ A > 0. For p€ Vi, g€ Vr—1 and v € T(p,q),
dh(y) = h(q) —h(p) = —1.

Therefore,
0>7"(y)=n'(y)+Cdh(y) > -A—~C>—a; (y€T"). (A1)
Claim 1. For k=0,...,n, there is a smooth function fr, on M such that
df(X) <0, (A2)
supp dfy C Mk , (A.3)
max{ (n" +dfe)(7) |y €T} Y =—ar (pe, 1<1<k), (A.4)
(0" +df)(0) > —ar, (6 € Tylyy)- (A.5)

The statement follows directly from Claim 1 taking n = n” +df,. So we only have to
prove this assertion.

We proceed by induction on k. For k =0, we choose fy = 0. Then Equation (A.4) is
vacuous, Equations (A.2) and (A.3) are trivial and Equation (A.5) is given by Equation
(A.1).

Now, take any k > 1 and assume fi_; is defined and satisfies Equations (A.2)—(A.5).
Let

by = —max{(n" +dfe-1)(N|vET, } (€ Vi), (A.6)
by =min{b, | p€ Vi }.
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For every p € Vi, we have b, < ax_1 < aj because f;_1 satisfies Equation (A.5). So
there is a smooth function h; on I~ such that (h,)" >0, h, =0 around k —1/2, and
h, = ay —b, around k—1/4. Let h, be the function on V= x [,” C X/ x I,” =T}  given
by h, (x,s) = h, (s). We have h —O around V= x {k—l/?} and h = ay, — b, around
V- x{k—1/4}. Thus, h has a smooth extension to V][,7 also denoted by h , which is
equal to a; — b, on Vp \Tk . The function )\php on V}J can be extended by zero to get a
smooth function on fk, also denoted by xpﬁ;. Let iL]: = Zpeyk Xpﬁ; on Tk.

On the other hand, let p; be a smooth function on I,j such that pj, >0, py, =0 around
k+1/4 and py =1 around k+1/2. Let jj be the smooth function on T, = X} x I, given

by pr(z,s) = pr(s), and let
it = hy, (1= pr) + (ar —bi) pr

on T;". This smooth function is equal to hk around X x {k+1/4}, and is equal to
ar, — by around X} x {k+1/2} = £ So the functions, h,; on Tk\T+ and h+ on T},
can be combined to produce a smooth function hy on Tk Since hy =0 around X, and
hk = ay — by, around Z , there is a smooth extension of hk to M, also denoted by hk,
which is constant on M \Tk.

Let fr = fr—1 + hy, on M. This smooth function satisfies Equation (A.2) because fr_1
satisfies Equation (A.2), and X induces the opposite of the standard orientation on every
fiber {z} x I,;t = I,;t of Tki (x e E,f) It also satisfies Equations (A.3) and (A.4) for p € Y
with 1 <[ < k because fi_1 satisfies these properties and dhy, is supported in the interior
of Tk.

Next, take any p € Vi, ¢ € Vi—1 and v € T(p,q) C T,'. We have yNT}. = {x} x I, for
some z € K, N K; cX, = 2;71’ and the orientation of yNT}~ agrees with the opposite
of the standard orientation of {x} x I,” =I,". Then

" +dfi)(7) = (0" + dfi—r +dhi) (7) < ~by+ A (x)dhy (7)
=—b, —/ dh, = —b, — (ap —by) = —ay.
Iy
Here, the equality holds when the maximum of Equation (A.6) is achieved at ~. Hence,
fr also satisfies Equation (A.4) for p € V.
Finally, take any p € Vi, u € Vi1 and 6 € T (u,p) C Tt C T,k ;. Thus, 6NT} = {y} x I}

for some y € K; NnK, C E: =3, 1, and the orientation of 50T,j agrees with the opposite
of the standard orientation of {y} x I} = I;". Then

(" +dfy)(8) = (" +df—1 +dhy) (8) =1 (8) + dhyf (9)

=" (&) + (i () — (ax — by)) / dpr

"(8) + Mo ()P, (y) +br — a
”((5) +ag —bp—|-bk —ap = 77“(5) + by, —bp > ’r]”((S) > —ay ,

n
n
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where the second equality is true because fi_; satisfies Equation (A.3), and the last
inequality holds by Equation (A.1). So fi satisfies Equation (A.5).
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