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Introductory Concepts

1.1 Overview of the Population Balance Methodology

1.1.1 Introduction

A number of physical problems are described by a population of entities with a
distribution of one or more properties. Some examples are the distributions of sizes
and shapes in crystals, molecular weights in polymers and ages in microbial cells.
The evolution of these properties may be shaped by processes such as particle
formation and aggregation, as well as by transport within a flow field.

There are several reasons why we may be interested in this distribution. It may
determine the properties of a product, as in the case of the size distribution of
purpose-made nanoparticles. By controlling it, we can tailor the product to par-
ticular applications. In other cases, it may determine the impact of the entities on
the environment or human health, as in the case of the size distribution of soot
and other aerosols, where the smaller particles can penetrate deeper into the body
when inhaled. Finally, it may be an important process variable and thus essential
for developing a model of the process; for instance, the surface area distribution
of crystals in a reaction crystallisation process determines the rate of a surface
reaction.

The population balance is a general methodology for describing systems with
distributed properties. We will often use the term ‘particle’ in the present book with
the understanding that it may refer to a solid particle, droplet or bubble. The objec-
tive of a population balance model is to predict the distribution of the properties
of interest by linking it to the physical and chemical processes that shape it. These
processes include interaction of particles between themselves, such as aggregation
into larger particles or fragmentation into smaller ones, interaction of particles with
their environment, such as particle formation from a precursor or disintegration into
it, and transport of particles by processes such as convection by a carrier fluid and
Brownian motion.
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2 Introductory Concepts

In problems involving transport in physical space, the population balance is intri-
cately connected with fluid dynamics. This is because fluid dynamics, apart from
controlling the transport of particles, also ‘set the stage’ for the physical and chem-
ical processes that appear in the population balance by, for example, determining
the local concentration of a chemical species that acts as a precursor for particle
formation.

The main purpose of this introductory chapter is to define the scope of the
population balance methodology and to introduce certain basic concepts and termi-
nology that will be used in the rest of the book. Before commencing, we first take a
brief look at some of the problems to which the population balance can be applied.

1.1.2 Applications of the Population Balance

The processes involved in the population balance, such as the merging of two units
into one or the breaking of a unit into fragments, appear in many different (and
sometimes seemingly unrelated) problems. While the laws governing these pro-
cesses may be problem specific, they share enough common features to allow a
unified description under the population balance framework. For example, depend-
ing on their size range, the aggregation of small aerosol particles may be governed
by a collision model based on the kinetic theory of gases, while the coalescence
of larger droplets may be due to a mechanism determined by the flow field. As we
will see in Chapter 3, both phenomena can be described with the same population
balance equation, with the different mechanistic models entering as constitutive
equations. A number of representative applications are briefly described below.
While only a few of these will feature in the present book, each of them has an
extensive literature of its own, and selected references are mentioned to provide an
entry point to that literature.

Atmospheric Aerosols

Aerosols are small solid particles or droplets suspended in a gas, with diameters
typically in the range of 1 nm–100 μm (although this is not strict). Atmospheric
aerosols arise from both natural sources and human activities. They can exhibit a
variety of sizes, morphologies and chemical compositions which determine their
physical and chemical properties and, consequently, their environmental impact,
which includes effects on both human health and climate change. Kreyling et al.
(2006) discuss the effect of particle size on particle–lung interactions, while Stettler
et al. (2013a,b) and Zhang et al. (2019) focus on aviation black carbon emissions
and the importance of particle size.

A number of significant questions about aerosols can be answered by the pop-
ulation balance – for example, how do the distributions of their properties evolve,
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1.1 Overview of the Population Balance Methodology 3

how are they dispersed in the atmosphere and what is their state when they reach the
ground and affect populated areas. The size distribution plays also a role on their
action in activating cloud condensation (Calderón et al., 2022). Population balance
models of aerosols constitute a major part of atmospheric dispersion simulations,
where they are coupled with models for atmospheric flow. Reviews of aerosol sci-
ence with emphasis on distributions and their modelling can be found in Hidy and
Brock (1970), Williams and Loyalka (1991), Friedlander (2000) and Seinfeld and
Pandis (2016).

Cloud and Rain Formation

Cloud and rain formation occurs via collision, coalescence and break-up of
droplets. The evolution of the drop size distribution in the atmosphere was thus
one of the first applications of population balance modelling, as exemplified by
early works such as Warshaw (1967). An account of research in this area can be
found in Chapter 15 of Pruppacher and Klett (1996). The interaction of aerosols
and clouds is also important, as mentioned in the previous paragraph.

Volcanic Ash

The ash resulting from volcanic eruptions poses a major hazard for aeroplanes, and
therefore the prediction of the evolution of ash clouds is a major task for meteorol-
ogists. Apart from the transport and dispersion of the ash plume in the atmosphere,
models have to account for aggregation, which gives rise to bigger particles with
different transport properties. The combination of aggregation with transport of
volcanic ash is a typical problem that involves coupled population balance and fluid
dynamics. Reviews of models for volcanic ash dispersion and aggregation can be
found in Brown et al. (2012) and Beckett et al. (2020), while Suman et al. (2019)
deal with the impact of ash (alongside that of other particles) on aircraft engines.
Fig. 1.1 shows images of volcanic ash particles, where the effect of aggregation is
evident.

Soot and Carbonaceous Nanoparticles

Soot is particulate material consisting mainly of carbon (with a small amount of
H and other compounds present in the fuel). It is formed in combustion processes
such as engines, gas turbines and furnaces. Soot is a special case of aerosol par-
ticles and has severe impacts on human health that depend to a large extent on
particle size. Smaller particles penetrate into the lungs with potentially adverse
effects (Kreyling et al., 2006). For this reason, the minimisation of soot formation
is a major objective of designers of internal combustion engines and gas turbines.
At the same time, carbon black (another form of particulate carbon) is manu-
factured for use in tires, inks, batteries and solar cells, while new purpose-made
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4 Introductory Concepts

Figure 1.1 SEM images of ash aggregates: (a) a broken ash cluster and (b) an ash
cluster. Reprinted from Bonadonna et al. (2011).

carbonaceous nanoparticles can have exceptionally high value; these include car-
bon quantum dots and carbon-coated nanoparticles for use as magnetic biofluids
(Kelesidis et al., 2017). The size and morphology of such particles determine their
suitability for particular applications.

The formation of soot and carbonaceous nanoparticles is very complex and its
prediction requires a combination of fluid dynamics, chemistry and population bal-
ance modelling. Earlier work relied on simplified models and has been reviewed by
Kennedy (1997). More recently, detailed population balance models have started
to be incorporated into turbulent combustion models and reviews can be found in
Raman and Fox (2016) and Rigopoulos (2019).

Fig. 1.2 shows images of soot particles obtained from a laminar flame. It is evi-
dent that the particles exhibit a range of size and morphologies. The picture on the
right shows a close-up of an aggregate with a fractal structure, a feature that will
be discussed in Section 3.2.3. The simulation of sooting flames is the objective of
the case study in Section 6.2.

Nanoparticle Synthesis

Engineered nanoparticles such as silica and titania have multiple applications
such as in pigments and optical fibers, while carbonaceous nanoparticles were
discussed in the previous paragraph. The value of such products depends on par-
ticle size and morphology, and therefore the ability to control these properties
yields the potential for manufacturing tailor-made nanoparticles for specialised
uses. Population balance modelling can provide a predictive approach of the out-
come of aerosol synthesis based on the process and equipment design. Reviews
of nanoparticle synthesis can be found in Pratsinis (1998), Kruis et al. (1998),
Kodas and Hampden-Smith (1999) and Pratsinis (2010), while Raman and Fox
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1.1 Overview of the Population Balance Methodology 5

Figure 1.2 Micrographs of soot particles obtained via transmission electron
microscopy (TEM); large-scale view (left) and close-up on an aggregate (right).
Note that the big ‘holes’ are from the carbon film. Courtesy of Garcia Gonzalez
(2018).

(2016) discuss the modelling of the process based on population balance and fluid
dynamics.

The formation of silica particles via flame synthesis is the objective of the case
study in Section 6.1.

Metal Particles as Energy Carriers

Metal particles such as aluminium have many applications, including their use as
recyclable energy carriers and thus carbon-free alternatives to fossil fuels (Bergth-
orson, 2018). The size distribution of the oxide smoke is of primary importance,
both as a process variable and for its role in the design of the subsequent separation
processes. A comprehensive population balance model of this process can be found
in Finke and Sewerin (2023).

Crystallisation

Crystallisation and precipitation processes are widely employed in the chemical
and pharmaceutical industries for the formation of crystalline products from solu-
tions. The size distribution and morphology of the crystals produced determine their
properties and suitability for particular applications, as well as their behaviour dur-
ing separation processes. Fig. 1.3 shows images of CaCO3 crystals obtained from a
precipitation process; the presence of both single crystals and agglomerates can be
noted.

The modelling of crystallisation is one of the oldest applications of population
balance modelling, having received its first detailed exposition in Randolph and
Larson (1971) (see Randolph and Larson, 1988 for the latest edition). More recent
reviews can be found in Mersmann (2001), Mullin (2001), Lewis et al. (2015) and
Myerson et al. (2019). While the aforementioned literature refers to crystallisation
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6 Introductory Concepts

Figure 1.3 Scanning electron microscopy (SEM) images of CaCO3 crystals pro-
duced via gas–liquid precipitation at an early (left) and a late (right) stage of
the process. Reprinted from Rigopoulos and Jones (2003b) with permission from
American Chemical Society.

and precipitation from solution, there are also processes involving precipitation of
grains from supersaturated solutions, as discussed in the classic work of Lifshitz
and Slyozov (1961).

The application of population balance to crystallisation will be shown in detail
in the context of the case study in Section 6.3.

Spray Dynamics

Sprays are encountered in applications such as fuel injection and inhalation of
medicines. In combustion, the size of the droplets determines the surface area
and, therefore, the rate of evaporation, on which combustion depends. In medicinal
sprays, the droplet size distribution determines whether the spray will penetrate and
reach the targeted deposition sites in the lungs. The prediction of this distribution
requires population balance models of spray break-up and evaporation, coupled
with fluid dynamics that describe droplet dispersion. A comprehensive discussion
of sprays can be found in Sirignano (2010).

Disease Transmission via Aerosol Droplets

The cloud of droplets resulting from a cough or sneeze is akin to a spray and can be
analysed with similar experimental and modelling tools. The droplet size distribu-
tion determines their transport properties and therefore how far they reach, which
is very important in the transmission of diseases such as COVID-19 (Bourouiba,
2020). For a modelling perspective on the link between droplet physics and disease
transmission, one may consult Stilianakis and Drossinos (2010), Robinson et al.
(2012), Drossinos and Stilianakis (2020), De Oliveira et al. (2021) and Drossinos
et al. (2022).
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1.1 Overview of the Population Balance Methodology 7

Colloid Dynamics and Flocculation

The flocculation of suspended matter in waterways and in water treatment plants
is of great importance for the destabilisation and treatment of particulate matter.
Flocculation is induced by particle collisions and the ensuing size distribution
determines the settling properties of the flocs. As such, it is a classical application
of population balance modelling and its coupling with hydrodynamics. Reviews
can be found in Thomas et al. (1999) and Partheniades (2009).

Asphaltene Fouling

Asphaltenes are carbonaceous compounds of moderately high molecular weight
that are present in crude oil. As these compounds aggregate into colloidal particles,
they form deposits that result in fouling of oil pipelines and result in heavy costs
to the oil industry. An analysis of the formation of asphaltenes with population
balance modelling can be found in Vilas Bôas Fávero et al. (2017).

Bubble Flows

In bubble flows, the population of bubble sizes determines the rates of interfacial
processes such as mass transfer, as well as the momentum exchange. Reviews of
population balance modelling of bubble column reactors can be found in Jakobsen
et al. (2005) and in Chapter 8 of Jakobsen (2014).

Nuclear Engineering

Nuclear accidents result in the emission of aerosols with significant amounts of
radioactivity. The prediction of such emissions and their impact is required for
assessing nuclear safety. Models for such predictions combine population balance
modelling with nuclear reactor thermal hydraulics. For an account of such models,
the reader may consult Chapter 8 of Williams and Loyalka (1991).

Granulation

Granulation is the process of producing a granular material with desired proper-
ties, which depend on the distribution of size and possibly other variables, such as
porosity or composition. Reviews of population balance modelling of granulation
can be found in Reynolds et al. (2005) and Abberger (2007).

Biology and Biochemical Engineering

Many biological and biochemical problems are described by a population balance.
Cell populations have distributed properties such as mass and age that deter-
mine various important process parameters. The application of population balance
modelling to biology and biochemical engineering has a long history, and one may
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8 Introductory Concepts

consult Ramkrishna (2000), Hjortsø (2004) or Ramkrishna and Singh (2014) for
more details.

Polymerisation

Polymerisation can be described as a population balance of molecules with a
distribution of molecular weights, starting from the monomers. Accounts of the
application of population balance modelling to polymerisation can be found in Ziff
(1980) and Wulkow (1996).

Another important problem is the design of polymerisation processes. Hetero-
geneous processes, in particular, such as emulsion polymerisation (Rawlings and
Ray, 1988), involve a dispersed phase with a distribution of one or more proper-
ties that are important for the process, and their prediction can be approached with
population balance modelling. For more information, one may consult the review
of Kiparissides (2006).

Astrophysics

Certain astrophysical problems, such as clustering of planets, stars and galax-
ies have been described with a population balance equation that accounts for the
dynamics of coagulation and fragmentation. Examples of such works can be found
in Lee (2000) and Lombart and Laibe (2021).

1.1.3 Scope and Methodology of Population Balance

Owing to its generality and wide range of applications, the population balance has
appeared in the literature under different guises, and one of the objectives of this
book is to present a unifying framework for them. In the context of aerosol science,
the population balance has more often been called the General Dynamic Equation
(GDE). In dispersed multiphase flow, multi-fluid models (cf. Section 2.7) are forms
of population balance for dispersed entities with a distribution of size and velocity.
In many fields, ad hoc models have been proposed for integral properties of distri-
butions, such as total number and volume of particles, and these are also forms of
population balance.

The population balance approach is built around the formulation of a popula-
tion balance equation (PBE), which links the dynamics of the distribution of the
property or properties under investigation to the physical and chemical models that
determine it. The PBE is a conservation equation akin to the equations of con-
servation of mass, momentum and energy. It includes source terms that account for
processes such as growth and aggregation, arising from interaction of particles with
their environment or with other particles, as well as terms that depict transport in
physical space, such as convection by a fluid flow.
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1.2 Distributions and Their Properties 9

The PBE must be complemented by expressions for the rates of the physical
and chemical processes considered, which play the role of constitutive relations.
For some processes and problems, these expressions are well established. In other
cases, considerable uncertainty may be present and experiments or simulations at
the microscopic level (where the dynamics of individual particles are simulated,
as opposed to the statistics of their population) may need to be combined with
a population balance study. The combination of microscopic methods, population
balance modelling and fluid dynamics yields a truly multiscale modelling approach.

The application of the population balance methodology can be summarised in
the following four steps:

Step 1: Formulation of the population balance model. This step involves the
choice of the appropriate form of the PBE and the identification of the physical
and chemical processes to be included.

Step 2: Selection of kinetic models.Once the processes involved have been iden-
tified, models and kinetic data for them must be selected. If such data are not
available in the literature, their determination may require further experiments
or microscopic simulations.

Step 3: Coupling with flow, species and energy transport. In some cases, this
coupling can take the form of an ideal reactor model, while in others, the
equations of fluid dynamics and transport phenomena have to be coupled with
the PBE. Turbulence, if present, may require additional modelling elements.

Step 4: Application of a solution method. In most cases, this will be a numer-
ical method, as analytical solutions are available only for a few special
cases. If the population balance is coupled with fluid dynamics, the solution
will involve combining the PBE solution method with computational fluid
dynamics (CFD).

The execution of these steps will be explained in Chapters 2–5. In Chapter 6, a
number of case studies are presented where the procedure above is demonstrated.

1.2 Distributions and Their Properties

1.2.1 Discrete and Continuous Distributions

In the present section, we briefly review the basic features of distributions, with
focus on the issues relevant to the material in the present book. For more details,
one may consult a book on probability such as Papoulis (1991) or Grimmett and
Stirzaker (2001).

Both discrete and continuous distributions are used in the population bal-
ance framework, the choice depending on the nature of the problem. Discrete
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10 Introductory Concepts

distributions are suited to populations of particles comprising an integer number of
units, such as a population arising from the coagulation of a monodisperse colloid.
Continuous distributions are required for problems where a smallest building block
cannot be defined (e.g. a population of droplets or bubbles whose size can change
continuously via evaporation or dissolution respectively). Populations described by
discrete distributions can also be described by continuous distribution functions,
and this is often preferable for reasons that will be further explained in Section
2.2.4.

A discrete distribution of a single property is defined by a set of variables as
(n1, . . . ,nn), where ni is the number of particles comprising i units of that property.
A typical example is a population arising from coagulation of monodisperse parti-
cles, where n1 is the number of particles of volume v0 (the volume of the smallest
particle), n2 is the number of particles of volume 2v0 and so on.

For a distribution of a continuous variable, such as particle volume, v, we define
the number density function, n(v) (we will refer to it as simply number density),
as a continuous function such that the number of particles with volume within an
infinitesimally small range between v and v + dv is n(v)dv, as shown in Fig. 1.4.
The unit of the number density, therefore, is the inverse of particle volume (or
whichever independent variable is employed). If the distribution is evolving with
time, such as the one shown in Fig. 1.4, then the number density is time dependent.

A continuous distribution can be discretised to yield a set of particle numbers
(n1, . . . ,nn), each denoting the number of particles within intervals (dv1, . . . ,dvn),
not necessarily uniform. Such a discretisation is often employed in the measure-
ment of distributions and in numerical methods for solution of the PBE.

Figure 1.4 The continuous particle size distribution and its time evolution.
Reproduced from Rigopoulos (2019) under CC-BY 4.0 license.
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1.2 Distributions and Their Properties 11

Both discrete and continuous distributions can be extended to distributions
of several variables (multivariate distributions) in a straightforward manner. For
example, if α is the surface area of a particle, then n(v, α) is the number of particles
with volume between v and v + dv and surface area between α and α + dα.

1.2.2 Number Density and Probability Density Function

An associated concept is the probability density function (PDF). The PDF describ-
ing a distribution over particle volume, for example, is defined so that f (v)dv is
the probability of finding a particle with volume between v and v + dv. The num-
ber density function and PDF are closely related, the only difference being that the
integral of the number density is the total number of particles (also called the zeroth
moment of the distribution, m0):∫ ∞

0
n(v)dv =m0. (1.1)

By contrast, the PDF depicts a probability and therefore has the normalisation
property: ∫ ∞

0
f (v)dv = 1. (1.2)

Equations for the evolution of a probability distribution are used in numerous
areas of science. The Boltzmann equation is an equation for the PDF of velocities
and momenta of gas molecules. The Fokker–Planck equation is an equation for the
PDF of a random variable undergoing drift and diffusion processes. PDF transport
equations are used in turbulent flow and particularly in reacting flow as closure
models for the unclosed correlations involving velocities and scalars (cf. Section
5.5). The number density function and the probability density function are related
as follows:

n(v) =m0 f (v). (1.3)

In this book, an equation is termed a PBE if formulated in terms of a number den-
sity and a PDF transport equation if written in terms of a probability density func-
tion. It follows that a PBE can be converted to a PDF transport equation via normal-
isation with the zeroth moment of the number density function. PDF transport equa-
tions are employed when the number of particles is not relevant or has no meaning.
For example, in the description of turbulence, we may consider the PDF of velocity
as the probability of finding a fluid element with velocity within a range (u,u + du)
at a certain location and time. However, no meaning can be ascribed to the number
of fluid elements. An approach consisting of a combination of PDF and PBE will
be described in Section 5.5.2 for population balance modelling in turbulent flow.
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12 Introductory Concepts

1.2.3 Properties of Distributions

We will now summarise some important properties of distributions, with emphasis
on quantities relevant to population balance modelling.

The moments of a distribution are defined as follows. For a discrete distribution
of one variable, the k-th moment is:

mk =

∞∑
i=1

ikni. (1.4)

For the distribution of a continuous variable, such as the particle volume, moments
are defined via an integral over the whole range of values of this variable, which is
(0,∞) in this case:

mk =

∫ ∞

0
vkn(v)dv. (1.5)

The moments are defined in the same way for number and probability density
functions, while the zeroth moment of the latter is equal to one. Note also that
the moments, as defined above, are about the value zero. They may also be
defined about an arbitrary value; for example, the moments of the aforementioned
distribution about a value v0 are:

mk =

∫ ∞

0
(v − v0)kn(v)dv. (1.6)

However, only moments about zero will be used in the present book, and the term
‘moment’ will be always interpreted in this sense.

Physical meaning can be ascribed to certain low order moments of number
density functions. As mentioned in Section 1.2.2, the zeroth moment represents
the total number of particles. Other moments may have a physical meaning that
depends on the choice of independent variable. In the case of a distribution of
particle volume, for example, the first moment represents the total volume of the
particles, as can be seen from its definition:

m1 =

∫ ∞

0
vn(v)dv. (1.7)

Moments of fractional order can also be defined. For example, the fractional
moment of order 2/3 of the volume distribution is proportional to the total surface
area (the constant of proportionality being a shape factor):

m2/3 =

∫ ∞

0
v

2/3n(v)dv. (1.8)
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1.2 Distributions and Their Properties 13

For a distribution in terms of measure of particle length, �, such as particle
diameter or radius, the second moment is proportional to total surface area:

m2 =

∫ ∞

0
�2n(�)d�, (1.9)

while the third moment is proportional to total volume:

m3 =

∫ ∞

0
�3n(�)d�. (1.10)

Shape factors will also have to be introduced in Eqs. 1.9 and 1.10 in order to obtain
the surface area and volume.

Joint moments of various orders can be defined for a multivariate discrete or con-
tinuous distribution. Again, certain moments have a physical meaning; for example,
in the case of a bivariate continuous distribution in terms of particle volume and
surface area, α, the first moment with respect to volume will be the total volume of
the particles:

m1,0 =

∫ ∞

0

∫ ∞

0
vn(v, α)dαdv. (1.11)

Certain important properties of distributions are defined in terms of moments. It
is instructive to define them first in context of probability density functions. The
mean (or expectation) of a PDF, μ, is defined as the first moment – for example,
for the PDF of particle volume, f (v), we have:

μ=

∫ ∞

0
vf (v)dv =m1. (1.12)

The variance of a PDF, σ2, is the second central moment (i.e. the second moment
about the mean):

σ2 =

∫ ∞

0
(v − μ)2f (v)dv. (1.13)

It can be shown1 that:

σ2 =m2 −m2
1. (1.14)

The standard deviation, σ, is the square root of the variance and a measure of the
spread of a distribution. Similar definitions hold for discrete distributions.

For a number density function, the mean and variance have the same values
as those of the corresponding PDF and can be obtained by normalising the above
equations with the zeroth moment:

1
∫ ∞
0 (v − μ)2f (v)dv =

∫ ∞
0 v2f (v)dv − 2μ ∫ ∞0 vf (v)dv + μ2

∫ ∞
0 f (v)dv =m2 −m2

1 .
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14 Introductory Concepts

μ=
1
m0

∫ ∞

0
vn(v)dv =

m1

m0
, (1.15)

σ2 =
1
m0

∫ ∞

0
(v − μ)2n(v)dv =

m2 −m2
1

m0
. (1.16)

1.3 Choice of Distributed Variables

The choice of the variables whose distribution is sought is very important for
the formulation of the population balance. Some common choices, along with the
considerations involved, are listed below.

• Number of discrete units. This choice is appropriate for problems described by
the discrete PBE, such as coagulation of initially monodispersed particles or
polymerisation. The smallest unit present in the system is called a monomer.

• A measure of particle length. This could be, for example, the diameter or radius
of spherical particles. This choice is particularly suitable for problems involv-
ing a surface growth rate independent of length (cf. Section 2.3.2), although it
makes the description of aggregation and fragmentation more complicated. Fur-
thermore, experimental measurements often report length distributions. Some
problems, such as crystal growth, may involve different faces growing with dif-
ferent rates, and in that case multiple length variables can be employed, thus
enabling the prediction of particle morphology.

• Particle volume or mass. This choice is particularly suitable for aggregation or
fragmentation problems, where the particle volume and mass are conserved. It
is also easy to accommodate surface growth with this description, so it will be
the default formulation for most of the examples in the present book. The final
results may be converted to a length distribution for the purpose of comparison,
as that is often reported in experiments. If the particle density is constant, the
formulations in terms of volume and mass are equivalent.

• Particle surface area. This variable can be used to described the morphology
of particles with irregular shapes, in addition with a variable describing particle
size (such as length or volume). In that case, particles with the same size may
have different surface areas.

• Number of primary particles. This is an alternative option for describing particle
morphology, where one distinguishes between primary particles and aggregates.
It is a special case of the first option, that is, a number of discrete units.

• Particle velocity. A population of particles with considerable inertia features
a distribution of particle velocities, as the particles deviate from the fluid
streamlines to a varying extent depending on their inertia.

• Temperature. This is needed for problems such spray combustion, which features
a population of droplets with different properties. The droplet temperature is
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1.4 Kinetic and Transport Processes 15

important for several purposes, such as the determination of the evaporation and
combustion rates.

• Concentration of chemical species. This is important, for example, in the case of
atmospheric aerosols that comprise various chemical species and the distribution
of their composition is important.

• Cell age. This is a variable relevant for biochemical problems, because important
processes such as growth or the probability of a division may depend on it.

In many population balance problems, the distributed property is a measure of
particle size (such as diameter or volume). In these cases, we speak of a particle size
distribution (PSD). In the case of crystals, this is often referred to as a crystal size
distribution (CSD). In polymers, the quantity of interest is the molecular weight
distribution (MWD).

1.4 Kinetic and Transport Processes

Having reviewed the basic features of distributions, we now turn to the physical,
chemical or biological processes that may be acting to bring changes into a popula-
tion of particles. The very purpose of a population balance model is to predict how
the distribution is shaped by the action of these processes. It is instructive to classify
them into two groups: kinetic processes, which bring changes to the distribution
due to interactions of particles with their environment or between themselves, and
transport processes, which result in changes of the distribution due to transport of
particles in physical space.

Kinetic processes include:

• Nucleation. This is the formation of new particles, or nuclei, from precursors in
the carrier fluid. The term inception is also used in the case of soot.

• Surface processes. This includes all processes taking place at the surface of the
particles and resulting in a continuous change of their size. Examples of such
processes are surface growth of crystals and aerosols, oxidation of soot particles,
evaporation of droplets and dissolution of bubbles.

• Aggregation. This is the formation of a particle from two other particles that
collide. Several other terms such as coagulation, coalescence, agglomeration
and flocculation are used in the literature for such processes, based on the nature
of the particular process (such as whether the resulting particle is spherical or
not) or on the field of application, although the definitions of these terms are not
universal and varies with subject. In the present book, the term ‘aggregation’ will
be used as a generic term, while other terms will also be used in more specific
contexts; more details on this are provided in Section 3.2.1.

• Fragmentation (or breakage). This is the process where particles break into
smaller ones. There are various special cases, such as binary fragmentation
(breaking into two fragments) or erosion (removal of a small fragment).
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16 Introductory Concepts

Transport processes may be described in a simplified way in problems where
spatial dependence is not considered. If the PBE is to be coupled with fluid
dynamics, however, a detailed account of them is needed. They include the
following:

• Convection. This is the transport of particles by the carrier fluid.
• Hydrodynamic forces. This includes forces such as drag and lift.
• Body forces. This includes forces due to external fields, such as the weight and

the Coulomb force, and forces due to non-inertial frames of reference, such as
the centrifugal and Coriolis forces. Other forces that may be included are par-
ticle migration due to temperature gradients (thermophoresis) or concentration
gradients (diffusiophoresis).

• Thermal motion. This is a mechanism relevant for small particles and may resem-
ble molecular motion or be induced by collisions with fluid molecules (Brownian
motion).

• Momentum exchange between particles or between particles and walls, and
momentum transfer from particles to flow.

The mechanisms and models for these processes will be considered in more
detail in Chapter 3.

1.5 Population Balance and Fluid Dynamics

Many of the processes that can be described by the population balance take place
within fluid flows. In these cases, the distribution is spatially non-uniform and the
independent variables include both distributed properties and spatial coordinates.
For example, a distribution of particle volume that is space and timedependent
would be represented by the number density n(v,x, t), such that the concentration
of particles with volume between v and v + dv contained in a fluid element located at
x at time instant t is ndv. Apart from the distribution, other important variables that
affect it, such as temperature or concentration of precursors, may also be spatially
variable. An example of a spatially non-uniform population balance problem is the
crystallisation process in a T-mixer shown in Fig. 1.5, where the spatial variation of
supersaturation results in different nucleation and growth rates and different crystal
size distributions throughout the reactor.

In a spatially non-uniform formulation, the number density must be considered
in the sense of a concentration, that is, number density of particles per unit volume
of fluid. Since this is a continuous function of space, the implicit assumption is
that the scale at which the flow is varying is considerably larger than the particles.
This requirement is easily satisfied for many problems that involve small parti-
cles such as aerosols, soot and crystallisation. For larger particles, the population
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1.5 Population Balance and Fluid Dynamics 17

Figure 1.5 Precipitation of BaSO4 in a T-mixer (cf. Section 6.3). Top row: spatial
distribution of supersaturation (top left: a cross-section around the inlets, top right:
a top view). Bottom: prediction of CSD with coupled CFD-population balance
modelling (Tang et al., 2022) and comparison with the experiments of Schwarzer
et al. (2006). Reproduced from Tang et al. (2022) under CC-BY 4.0 license.

balance must be applied to a sufficiently bigger volume. This may still be adequate
if the flow varies on an even larger scale, such as in the case of atmospheric flows.
Otherwise, either the PBE must be applied to a sufficiently large region that can be
considered as well mixed (via an ideal reactor or reactor network model as opposed
to a coupling with fluid dynamics) or a different approach must be pursued (such
as a multiphase flow or discrete element model).

In the case of probability density functions, we will denote spatial dependence by
f (v; x, t) (the symbol ‘;’ is used to indicate that the PDF is normalised with respect
to v but not with respect to x or t). On the other hand, a number density is not
normalised with respect to any of its arguments, hence the integration of n(v; x, t)
with respect to v yields the local value of the zeroth moment (which is also spatially
dependent): ∫ ∞

0
n(v,x, t)dv =m0(x, t). (1.17)
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18 Introductory Concepts

1.6 Two Examples of Population Balance in Flows

We will now show two examples of population balance models, in order to pro-
vide a ‘first taste’ of the issues to be discussed in the present book. Both cases
demonstrate also the role played by fluid dynamics, which will be a major features
throughout the book. For now, no equations will be shown, as the mathematical
framework and physical models have not been presented yet; this is only a first
look at these problems focussing on what the population balance approach can do
for each of these cases. Both problems will be discussed in detail in Chapter 6.

1.6.1 Precipitation of Crystals

Crystallisation is a process of producing a crystalline material from a solution. The
crystal size distribution (CSD) of the product is of great importance for its proper-
ties and its suitability to particular applications. Here, we are considering the case
of reaction crystallisation, or precipitation, which is driven by a chemical reaction
between species that are fed separately and mix into a reactor. For fast reactions,
the mixing is the controlling factor for the outcome of the process, thus presenting a
problem featuring strong coupling between population balance and fluid dynamics.

The case shown here involves two reactants are fed from two opposing streams
into a T-mixer. As the reactants are brought into contact, a supersaturated solution
is formed. Supersaturation is the driving force for crystallisation, and the processes
of nucleation and growth depend on it in a nonlinear manner, with nucleation
featuring a stronger dependence. Aggregation may also be present under certain
conditions. The balance between these two processes determines the CSD; a high
nucleation rate results in a large number of crystals and rapid consumption of the
reactants, thus yielding small crystals at the end, while a low nucleation rate is
followed by longer growth into bigger crystals. The population balance describes
the delicate balance between these processes, while the equations of fluid dynam-
ics and mass transfer describe the mixing of reactants. Fig. 1.5 shows the spatial
distribution of supersaturation and the CSD at the exit as measured by experiments
and predicted by population balance modelling. It is evident that the supersatu-
ration is highly non-uniform and strong gradients are present; thin zones of high
supersaturation can also be identified, which give rise to nucleation bursts. This
problem will be revisited in Section 6.3, where the methods developed in the book
will be employed to analyse the interaction between the processes of nucleation
and growth, as well as their interaction with turbulence.

1.6.2 Formation of Soot and Carbonaceous Nanoparticles

The simulation of soot formation is needed to assist in the design of combustion
devices. The soot particle size distribution is of increasing importance, as new
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1.7 A Brief Historical Survey 19

regulations require control of the number of particles (particularly the smaller ones,
which have far more harmful effects) as opposed to the mass of it, as was the
case in the past. Similarly, the production of carbonaceous nanoparticles can be
aided by modelling and simulation that permits tailoring of the product to appli-
cations. The dynamics of carbonaceous nanoparticles is a complex problem that
involves fluid mechanics, turbulence, transport phenomena, chemical kinetics and
population balance modelling.

Soot precursors are polyaromatic hydrocarbons (PAHs), which are themselves
formed from smaller compounds found in flames via complex chemical mecha-
nisms. Soot nucleation, or inception, involves heavy PAH molecules and is poorly
understood, partly due to the experimental difficulties in observing these molecules
or the soot nuclei. The evolution of soot particles involves surface growth by acety-
lene and consumption by oxidation, and the detailed description of these processes
is also complex as it involves surface chemistry. Aggregation and fusing of soot
aggregates also play a role in determining the distribution. Since chemistry is
involved in most of these processes, the soot particle size distribution is spatially
dependent and heavily influenced by the local concentrations of precursors and by
temperature. In flames, concentrations and temperature exhibit large gradients and
many species are present in thin zones, due to the interaction of fast chemical reac-
tions with turbulence. The prediction of soot in a turbulent flame is thus one of the
most complex challenges for population balance modelling, requiring coupling of
a CFD code with chemical kinetics, a turbulence–chemistry interaction model and
a population balance model.

Most practical combustion processes involve turbulent flows, which introduces
several further implications that will be studied further in Chapter 5. Fig. 1.6 shows
results from a CFDPBE simulation of a turbulent sooting flame that will be studied
in the case study of Section 6.2. The figure shows contour plots of temperature and
of two particle formation processes, nucleation and growth (more processes will be
shown in Fig. 6.20). A full discussion of these results will be undertaken in Chapter
6 but, for now, we note this as an example of complex spatial distribution of the
physical and chemical processes that are involved in the population balance and
shape the particle size distribution.

1.7 A Brief Historical Survey

The concept of describing physical systems with a probability density function and
linking the evolution of the latter to physical processes originates in Boltzmann and
his famous equation. However, in the present book we employ the term ‘popula-
tion balance’ in the more specific context of number density functions, for systems
where the concentration of the particles is important as well as their probability
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20 Introductory Concepts

Figure 1.6 Simulation of a turbulent sooting flame with a coupled fluid dynamics –
population balance formulation (cf. Section 6.2). Contour plots of the instanta-
neous (a) temperature, (b) nucleation rate and (c) growth rate. The iso-contour of
stoichiometric mixture fraction (cf. Section 5.4) is shown as a solid line in the
instantaneous plots. Reproduced from Sun and Rigopoulos (2022) under CC-BY
4.0 license.

distribution. In this sense, the origins of the subject can be traced to Smoluchowski
(1917), who formulated a discrete PBE for the coagulation of colloidal particles.
Smoluchowski was also able to derive the first solution for his equation, which will
be shown in Chapter 4.

Other notable works in the early twentieth century include those ofMüller (1928)
and Schumann (1940), who derived the continuous PBE for coagulation, although
the term ‘population balance’ was not used at that time. Schumann’s work was
motivated by atmospheric science and the need to predict the size distribution of
cloud and fog droplets. This was the case also for several of the works that followed,
including those of Scott (1968), who derived analytical solutions for coagulation
equations, and of Bleck (1970), who derived an early numerical method. Melzak
(1957a,b) extended the equation to include fragmentation; these two works are
not concerned with any particular application but rather with the mathematical
properties of the equation. Friedlander and Wang (1966) extended the coagulation
equation to include condensation, evaporation and homogeneous nucleation; his
work was motivated by the problem of the formation of aerosols. Friedlander and
his co-workers are also responsible for the early developments of similarity solu-
tions (Swift and Friedlander, 1964; Friedlander and Wang, 1966). The early works
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in the colloid, atmospheric and aerosol science communities have been reviewed
by Hidy and Brock (1970) and Drake (1972).

Another important stream of research originates in the pioneering works of Ran-
dolph and Larson (1962) and Hulburt and Katz (1964), which were motivated by
chemical engineering problems. The first of these works was concerned with the
problem of crystallisation and formulated an equation for a continuous reactor with
inlet and outlet; the term ‘population balance’ appeared, possibly for the first time,
in that paper. The second work emphasised the importance of spatial dependence
of the distribution and formulated a continuous PBE (termed a form of Liouville
equation) that included spatial transport as well as nucleation, growth and agglom-
eration; that paper was also responsible for some of the earliest developments in the
method of moments for the solution of the PBE. The introduction of the popula-
tion balance as a general transport equation that includes spatial transport was also
brought forward in a short note by Randolph (1964). Several works followed, and
this line of research was summarised in the book by Randolph and Larson (1971)
(see also Randolph and Larson, 1988, for the latest edition).

The application of the population balance to biochemical engineering com-
menced at about the same period with works such as Fredrickson and Tsuchiya
(1963) and Fredrickson et al. (1967). Early work is summarised in the review of
Tsuchiya et al. (1966), while Fredrickson et al. (1967) mention the term ‘pop-
ulation balance’ and the link of their work in this field with those of Randolph
(1964) and Hulburt and Katz (1964). Later reviews of this literature can be found
in Ramkrishna (1985, 2000).

With the fundamentals of the subject established, research in the following
decades focussed on expanding the range of applications and developing meth-
ods of solution. Apart from the work in the communities of aerosol science and
crystallisation, which largely fostered the subject’s initial growth, a wide range of
applications appeared in fields such as multiphase flow, fluidisation, granulation,
comminution and biochemical engineering; a comprehensive list of applications
up to 1985 can be found in the review by Ramkrishna (1985).

The seminal book of Ramkrishna (2000) was the first one to focus on the pop-
ulation balance as a methodology, while at the same time showcasing many of its
applications. Several other books include an account of the population balance (in
one of its many guises) in the context of a particular field of application. Williams
and Loyalka (1991) is a treatise on aerosol science but includes an extensive treat-
ment of the PBE (or GDE, in the context of that book) and a detailed account
of analytical solutions. The books by Friedlander (2000) and Seinfeld and Pandis
(2016) on aerosol science also include extensive discussions of the PBE (GDE).
Treatises focussing on dispersed multiphase flows from the population balance
point of view include Marchisio and Fox (2013) and Yeoh et al. (2014); the former,
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22 Introductory Concepts

furthermore, includes valuable material on kinetic theory and moment methods.
Hjortsø (2004) deals with biochemical problems. Jakobsen (2014) is a compre-
hensive treatise on chemical reactors that includes also an extensive section on
the population balance. Litster and Ennis (2004) is focussed on granulation and
includes a discussion of the PBE, while Litster (2016) deals with design and pro-
cessing of particulate products and includes a treatment of the PBE with focus is
on its application to particulate processes. Several review papers of a more general
nature are also available, including Hounslow (1998), Ramkrishna and Mahoney
(2002), Sporleder et al. (2012), Ramkrishna and Singh (2014) and Solsvik and
Jakobsen (2015).

While the link between population balance and fluid dynamics had been estab-
lished as early as in the work of Hulburt and Katz (1964), the computational power
at the time did not allow the application of numerical methods to the coupled fluid
dynamics-PBE problem. Therefore, applications prior to the nineties were based on
simplified flow models such as ideal reactors. CFD was developed in the seventies
and eighties and enabled the numerical solution of fluid dynamics and scalar trans-
port equations. The development of coupled CFD–PBE methods commenced in the
mid-nineties, initially with moment methods in order to minimise the storage and
computation time requirements and later with discretisation methods; more infor-
mation on these methods will be provided in Chapter 4. Methods for dealing with
the coupling of population balance and turbulent flow are among the most recent
developments at the time of writing. The focus on the coupling of fluid dynam-
ics and population balance is reflected in several recent books and reviews, such as
Rigopoulos (2010), Marchisio and Fox (2013), Yeoh et al. (2014), Jakobsen (2014),
Raman and Fox (2016) and Rigopoulos (2019).

1.8 Summary

In the present chapter, the population balance has been introduced as an approach
for modelling problems involving a population of particles with a distribution of
one or more properties. The distribution is determined by a number of processes
that can be classified into two groups: kinetic processes, which change the distribu-
tion due to interactions of particles with their environment or between themselves,
and transport processes, which involve motion of particles in physical space. A
number of problems to which the population balance approach can be applied
have been identified, as well as possible choices of distributed variables. In many
problems, the population balance must be coupled with fluid dynamics in order to
determine the spatially varying distribution.

Approaching a problem with the population balance framework involves formu-
lating the PBE for the distribution of the properties of interest, selecting models for
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1.8 Summary 23

the kinetic and transport processes involved, coupling the PBE with a flow model
(either a simplified one or a detailed solution of the equations of fluid dynamics),
and applying a solution method. The details of how these steps are to be carried
out will be the subject of the following chapters. In particular, the formulation of
the PBE and coupling with fluid dynamics will be addressed in Chapter 2, with the
case of turbulent flow receiving a more extensive treatment in Chapter 5. Models
for kinetic and transport processes will be discussed in Chapter 3, while solution
methods will be treated in Chapter 4. Finally, Chapter 6 will demonstrate the overall
population balance – fluid dynamics approach via three extensive case studies.
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