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Compatibility of theta lifts and tempered
condition
Zhe Li and Shanwen Wang

Abstract. In this note, assuming the nonvanishing result of explicit theta correspondence for the
symplectic–orthogonal dual pair over quaternion algebra H, we show that, for metapletic–orthogonal
dual pair over R and the symplectic–orthogonal dual pair over quaternion algebra H, the theta
correspondence is compatible with tempered condition by directly estimating the matrix coefficients,
without using the classification theorem.

1 Introduction

Throughout this article, let ψ(x) = e2iπx be the nontrivial additive character of R.
Let dx be Lebesgue measure on R which is self-dual for Fourier transformation with
respect to ψ. Unless we explicitly mention the contrary, by a representation of Lie
group, we always mean a unitary Casselman–Wallach representation of finite length
(admissible smooth Fréchet representation of moderate growth and Z -finite; cf.
[18, Chapter XI]), where Z is the center of the universal enveloping algebra of its
complexified Lie algebra. An inner product on a representation is denoted by (−,−).
Let π be a representation. We denote by π∨ the space of continuous linear functionals
on π, and it is given the strong topology (uniform convergence on bounded subsets).
The smooth dual of π, i.e., the subspace of smooth vectors in π∨, is identified with π.

Let H be a real reductive group G or its double cover Ĝ (cf. [17, Section 2]). Among
the irreducible (genuine) representations of H, there is an important class of represen-
tations, whose matrix coefficients are controlled by the Harish-Chandra Ξ function.
Such representations are called irreducible tempered (genuine) representation.

Let (G , G′) be a reductive dual pair in Sp2m(R). Let Ĝ and Ĝ′ be the inverse images
of G and G′ in the metaplectic double covering group Ŝp2m(R) by the covering map.
For irreducible admissible representations π and π

′

of Ĝ and Ĝ′, respectively, we say
π and π′ correspond if π⊗̂π′ is a quotient of the Weil representation ω of Ŝp2m(R),
restricted to Ĝ × Ĝ′. Note that the Weil representation is not a representation by our
convention as it is not of finite length.

Let (W , V) be the underlying quadratic space over the field (K , ♯) of equal rank
n. In this paper, we consider the following two cases:
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Compatibility of theta lifts and tempered condition 61

(A) If K = R, then W is a 2n-dimensional real symplectic vector space and V is
a 2n + 1 real orthogonal spaces. Adams and Barbasch [1] show that the dual
pair (Sp(W), SO(p, q)) with p + q = 2n + 1 gives rise to a bijection between
the genuine representations of metaplectic group and the representations of odd
special orthogonal group of the same rank with certain discriminant. Note that
there are two extensions of an irreducible representation π′ of SO(V ′) to O(V ′)
and there are precisely only one of such extensions in the domain of metaplectic
theta correspondence.

The explicit theta correspondence is first introduced by Li [13], and in this
case, the nonvanishing result of explicit theta correspondence is proved by Gan,
Qiu, and Takeda in [5, Proposition 11.5] and by Ichino in [9, Proposition 7.1].

(B) If K is the quaternion algebra H, then W is a skew-Hermitian space over H of
rank n and V is a Hermitian over H of rank n or n + 1. As in [12, Theorem 5.1],
for any irreducible admissible representation of Sp(p, q) with p + q = n, there
are nonzero theta lifts to O(V) both for n and n + 1.

Note that the nonvanishing result for the explicit theta correspondence in
case (B) is not yet proved. Hence, we assume the nonvanishing result in this
case.

Moreover, in [1, 12], the authors explicitly determined the K-types of all the repre-
sentations on both sides of the theta correspondence. Together with the classification
of the irreducible tempered representations, one can deduce the following result.

Theorem 1.1 With the same notation as above. The theta correspondence sends the
tempered representations of Sp(W) to the tempered representations of O(V).

The main purpose of this article is to prove Theorem 1.1 by directly estimating
the matrix coefficients, without using the classification theorem. The approach of
estimating matrix coefficients is widely used. In fact, Gan and Ichino use the esti-
mations of matrix coefficients to prove the convergence of the inner product of two
matrix coefficients of representation obtained by the theta correspondence for the
dual pair (O4 , Sp4) over p-adic field (cf. [3, Section 9, Lemma 9.1]). In [4, Lemma D],
they extend this to other dual pairs over p-adic field: (U(n), U(m)), (Sp2n , O2m+1),
(Sp2n , O2m), and prove that in their setting, the discrete series condition is compatible
with the theta correspondence. In the unitary case overR, a corresponding estimation
is given by Xue (cf. [19, Lemma 3.2]). In this note, we adapt their estimations to
our case to prove that the temperedness of representations is compatible with theta
correspondence. Note that the dual pairs in this note are not considered by them.

Remark 1.2 (1) In [7], He proved that the theta correspondence is compatible
with unitary condition in the semistable range. Our setting, the equal rank case,
is contained in the semistable range. But since the category of tempered repre-
sentations is a subcategory of the category of unitary representations, we need
to refine the estimations of matrix coefficients given by He [7, Theorems 6.2.1,
6.3.1, and 6.4.1-3] to achieve our goal. More precisely, to show that the theta
correspondence is compatible with the tempered condition, we will need the
L2+ε-convergence of the matrix coefficients to prove our results.
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(2) In [4, Lemma D], Gan and Ichino only provide an estimation of the matrix
coefficient from a bigger group to a slightly smaller group over p-adic field. In
this note, we only provide an estimation from small group to big group over field
of real numbers. If we do not assume the symmetry of the theta correspondence,
our estimation can be viewed as a complement for the estimation of Gan and
Ichino.

2 Tempered (genuine) representations

Let G be a real reductive group, and let Ĝ be the double covering group of G. Let
AG be the maximal R-split torus of G of rank r (i.e., AG(R) ≅ (R×)r), and let M be
the centralizer of AG in G, which is exactly the Levi factor of a minimal parabolic
subgroup P of G. We will write an element a ∈ AG(R) by (a1 , . . . , ar). We denote by
Δ = R(AG , P) the set of roots of AG in the unipotent radical U of P. Set

A+G = {a ∈ AG(R) ∶ ∣α(a)∣ ≤ 1,∀α ∈ Δ}
= {(a1 , . . . , ar) ∶ 0 < ∣a1∣ ≤ ∣a2∣ ≤ . . . ≤ ∣ar ∣ ≤ 1}.

(2.1)

We denote by δP ,G the modulus character of P. We fix a special maximal compact
subgroup K of G(R), and we have a Cartan decomposition of G(R):

G(R) = KA+G K .

For any integrable function f on G(R), the following formula holds (cf. [10, Sec-
tion 4]):

∫
G(R)

f (g)dg = ∫
A+G

ν(a)∫
K×K

f (k1ak2)dk1dk2da,(2.2)

where ν is a positive function on A+G such that ν(a) ≤ C ⋅ δ−1
P ,G(a) for some constant C.

Harish-Chandra defined a special spherical function ΞG on G(R), which can be
used to control the growth of C∞-functions on G(R) with values in C. We recall
briefly its definition and some useful results.

We denote by C∞(G(R)) the space of all complex-valued C∞-functions on G(R).
Consider the normalized smooth-induced representation

iG
P (1)∞ ∶= { f ∈ C∞(G(R)) ∶ f (pg) = δP ,G(p)1/2 f (g),∀p ∈ P(R), g ∈ G(R)}

equipped with the scalar product

( f , f ′) = ∫
K

f (k) f ′(k)dk,∀ f , f ′ ∈ iG
P (1)∞.

Let eK ∈ iG
P (1)∞ be the unique function such that eK(k) = 1 for all k ∈ K. Then the

Harish-Chandra spherical function ΞG is defined by

ΞG(g) = (iG
P (1)(g)eK , eK),∀g ∈ G(R).

Note that if f and g are positive functions on a set X, we will say f is essential bounded
by g, if there exists a c > 0 such that f (x) ≤ cg(x) for all x ∈ X. We will denote it by
f ≪ g. We say f and g are equivalent if f is essentially bounded by g and g is essentially
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bounded by f. The function ΞG is a bi-K-invariant function, and it is independent of
the choice of the maximal compact subgroup K up to equivalence.

Fixing an embedding ι ∶ G(R) → GLm(R), we define the height function

σ(g) = 1 + sup{log ∣a i , j ∣, log ∣b i , j ∣},

where (a i , j) is the matrix ι(g) and (b i , j) is the corresponding matrix of ι(g−1). In
particular, if a = (a1 , . . . , ar) ∈ A+G , we have

σ(a) = 1 − log ∣a1∣ ≥ 1.(2.3)

We have the following well-known estimation of ΞG due to Harish-Chandra.

Lemma 2.1 [16, Theorem 30] There exist constants A, B > 0 such that for any a ∈ A+G ,
we have

A−1δ
1
2
P ,G(a) ≤ ΞG(a) ≤ Aδ

1
2
P ,G(a)σ(a)B .

The double covering group Ĝ of G is not an algebraic group, but behaves in many
way like an algebraic group. In particular, we have the Cartan decomposition for Ĝ,
i.e., Ĝ = KA+Ĝ K, where K is the inverse image of a special maximal compact subgroup
of G and A+Ĝ is the inverse image of A+G in Ĝ. We define the corresponding Harish-
Chandra spherical function by ΞĜ = ΞG ○ p, where p is the covering map.

Using Harish-Chandra’s Ξ-function, we have the following definition of tempered
representation for real reductive groups and metaplectic groups. Let H be the real
reductive group G or the double covering group Ĝ of G.

Definition 2.1 We say that a unitary representation (π, Hπ) of H is tempered if, for
any e , e′ ∈ π, we have an inequality

∣(π(g)e , e′)∣ ≤ A ⋅ ΞH(g)σ(g)B ,∀g ∈ H(R)
for some constants A, B.

Thanks to the work of Cowling, Haagerup, and Howe [2, 14], a representation of H
is tempered if and only if its matrix coefficients are almost square-integrable functions
(i.e., it belongs to L2+ε(H(R)) for all ε ∈ R>0).

Let π be a tempered representation of H. For any v , v′ ∈ π and g ∈ H(R), by
definition of tempered representation, there exist constants A1 , B1, such that

∣(π(g)v , v′)∣ ≤ A1 ⋅ ΞH(g)σ(g)B1 .

Moreover, a more precise estimation is given by Sun [14]: there is a continuous
seminorm νπ on π such that

∣(π(g)v , v′)∣ ≤ ΞH(g)νπ(v)νπ(v′),∀v , v′ ∈ π.(2.4)

We deduce, from Lemma 2.1 and the fact that the Harish-Chandra function ΞH is
bi-K-invariant, that for any g = k1ak2 ∈ KA+HK, we have

ΞH(g) = ΞH(k1ak2) = ΞH(a).
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If H = G, there exist two positive constants A2 and B2 such that

ΞH(a) ≤ A2δ1/2
P ,G(a)σ(a)B2 .

If H = Ĝ, there exist two positive constants A3 and B3 such that

ΞH(a) = ΞG(p(a)) ≤ A3δ1/2
P ,G(p(a))σ(p(a))B3 .(2.5)

Thus, for any g = k1ak2 ∈ KA+HK, there exist two positive constants A and B such that

∣(π(g)v , v′)∣ ≤ Aδ1/2
P ,G(p(a))σ(p(a))B .(2.6)

3 Theta correspondence

In [13, Theorem 6.1], Li shows that if the dual pair (G1 , G2) is in the stable range, then
there is an explicit realization of the theta correspondence using the mixed model of
Weil representation [13, Section 4]. The explicit realization of theta correspondence
for unitary case is studied in [11], and for more general classical groups, it is studied in
[5] and used by Xue in [19]. The explicit theta correspondence for our dual pairs has
been described in [1, 12]. In this paragraph, we recall the explicit theta correspondence
using the mixed model of the Weil representation and study the matrix coefficients of
the explicit theta lift.

The Weil representations are depended on the choice of the additive character ψ.
Since we have fixed it, we may omit it from the subscript of the Weil representation.

3.1 Mixed model of Weil representations

The mixed models of Weil representations for our dual pairs in the introduction are
defined as follows:
(A) Let (W , ⟨, ⟩W) be a 2n-dimensional real symplectic vector space, and let

(V , ⟨, ⟩V) be a real quadratic space of dimension 2n + 1 with discriminant

disc(V) = (−1)ndet(V) > 0.

The space (W ⊗ V , ⟨−,−⟩W ⊗ ⟨−,−⟩V) is a real symplectic space. We have a
natural homomorphism

Ŝp(W) ×O(V) → Ŝp(W ⊗ V).(3.1)

Let ωψ be the Weil representation of Ŝp(W ⊗ V) associated with W ⊗ V . We
denote by ωW ,V the representation of Ŝp(W) ×O(V) by pulling back the Weil
representation ωψ by the homomorphism (3.1).

Let rV be the Witt index of V. Let V0 be the anisotropic kernel of V, which is
of dimension 2n + 1 − 2rV . Let PV = MV NV be a minimal parabolic subgroup
of O(V) stabilizing a full flag of V⊥. Let AV ≅ (R×)rV be the maximal split torus
in MV and define

A+V = {(b1 , . . . , brV )∣0 < b1 ≤ ⋯ ≤ brV ≤ 1}.
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We have two dual pairs (Sp(W), O(V)) and (Sp(W), O(V0)). Let S0
be the Schrödinger model of the Weil representation ωW ,V0 of the dual pair
(Sp(W), O(V0)). Let S = S (W rV )⊗̂S0. Then the Weil representation ωW ,V
for the dual pair (Sp(W), O(V)) can be realized on S , called the mixed model
of ωW ,V . We view elements in S as Schwartz functions on W rV valued in S0.

Since Sp(W) is split, the maximal split torus AW ≅ R
n and we define

A+W = {(a1 , . . . , an)∣0 < a1 ≤ ⋯ ≤ an ≤ 1}.

For any a ∈ A+W , b ∈ A+V , and ϕ ∈ S , we have

ωW ,V(a, b)ϕ(z, w) = det(a) 2n+1
2 ϕ(b−1za, wb).(3.2)

(B) Let (V , (, )♯) be an n-dimension Hermitian space over H, and let (W , ⟨, ⟩♯)
be an m-dimensional skew-Hermitian space W over (H, ♯) with m = n or
n − 1. The space (W ⊗H V , TrH/R(⟨, ⟩♯ ⊗ (, )♯)) is a real symplectic space of
dimension 4mn. This defines an embedding of dual pair (Sp(W), O(V)):

Sp(W) ×O(V) → Sp4nm(R).

Let ωW ,V be the oscillator representation for the dual pair (Sp(W), O(V)),
which is a representation of Ŝp4nm(R). Let rW and rV be the Witt index of W
and V, respectively. Let W0 and V0 be the corresponding anisotropic kernels of
W and V. Then we have

dimH(W0) = m − 2rW , and dimH(V0) = n − rV .

Let PW = MW NW be a minimal parabolic subgroup of Sp(W) stabilizing a full
flag of W⊥

0 . Then MW ≅ GL1(R)rW × Sp(W0). Let AW ≅ (R×)rW be the maximal
split torus in MW , and let

A+W = {(a1 , . . . , arW )∣0 < a1 ≤ ⋯ ≤ arW ≤ 1}.

We have three dual pairs

(Sp(W), O(V)), (Sp(W0), O(V)), and (Sp(W0), O(V0)).

Let S00 be the Schrödinger model of the Weil representation ωW0 ,V0 of the dual
pair (Sp(W0), O(V0)). Let S0 = S (W rV

0 )⊗̂S00. Then the Weil representation
ωW0 ,V for the dual pair (Sp(W0), O(V)) can be realized on S0. Finally, the
Weil representation ωW ,V of the dual pair (Sp(W), O(V)) can be realized on
S = S (V rW )⊗̂S0, called the mixed model of the Weil representation ωW ,V .
We view elements in S as Schwartz functions on V rW × W rV

0 valued in S00.
Define

A+V = {(b1 , . . . , brV )∣0 < b1 ≤ ⋯ ≤ brV ≤ 1}.

For any a ∈ A+W , b ∈ A+V , and ϕ ∈ S , we have

ωW ,V(a, b)ϕ(z, w) = det(a)n det(b)m−2rW ϕ(b−1za, wb).(3.3)
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3.2 Matrix coefficients of Weil representations

In this paragraph, we give the estimation of matrix coefficients of Weil representations
ωW ,V using the mixed model described in the previous paragraph.

Lemma 3.1 For ϕ, ϕ′ ∈ S (R) and t ∈ R×, there exists some constant C such that

∣∫
R

ϕ(tx)ϕ′(x)dx∣ ≤ C ⋅ Υ(t),(3.4)

where C is a constant and Υ(t) =
⎧⎪⎪⎨⎪⎪⎩

1, if ∣t∣ ≤ 1,
∣t∣−1 , if ∣t∣ > 1.

Proof By changing of variable, one can reduce to show that for ϕ, ϕ′ ∈ S (R), there
exists a constant C such that

∣∫
R

ϕ(tx)ϕ′(x)dx∣ ≤ C ,

for all 0 < ∣t∣ ≤ 1. It follows from a direct estimation of the integration for three regions:
∣x∣ ≤ 1, 1 < ∣x∣ ≤ 1/t, and ∣x∣ ≥ 1/t. ∎

Using this lemma, we get the following important estimation.

Proposition 3.2 For our dual pairs (G1 , G2) over (K , ♯) of equal rank n with under-
lying spaces (W , V) as in the introduction, there exists a constant C, such that:
(A) If K = R, then for (ĝ , h) ∈ Ŝp(W) ×O(V) and ϕ, ϕ′ ∈ ωW ,V , we have

∣(ωW ,V(ĝ , h)ϕ, ϕ′)∣ ≤ C ⋅
n
∏
i=1

∣a i ∣
2n+1

2

n
∏
k=1

rV

∏
j=1

Υ(ak b−1
j ).(3.5)

(B) If K = H, then for (g , h) ∈ Sp(W) × O(V) and ϕ, ϕ′ ∈ ωW ,V , we have

∣(ωW ,V(g , h)ϕ, ϕ′)∣ ≤ C ⋅
rW

∏
i=1

∣a i ∣n
rV

∏
j=1

∣b j ∣m−2rW
rW

∏
i=1

rV

∏
j=1

Υ(a i b−1
j ).(3.6)

Proof The two cases can be proved by the same argument, and we only show
the case (A). For any (ĝ , h) ∈ Ŝp(W) ×O(V), by Cartan decomposition, we can
write (ĝ , h) = (k1ak2 , k

′

1bk
′

2), with k i in the inverse image KW of a special maximal
compact subgroup of Sp(W), k

′

i in a special maximal compact subgroup KV of
O(V), a ∈ A+W , and b ∈ A+V . Thus, for ϕ, ϕ′ ∈ ωW ,V , there exists some constant C1 such
that

∣(ωW ,V(ĝ , h)ϕ, ϕ′)∣ ≤ C1 ⋅ det(a) 2n+1
2 (ϕ(b−1 ⋅ a), ϕ′).

Together with the previous lemma, we get the desired estimation. ∎

In the unitary case, the above estimation is refined by Xue [19]. Similarly, we can
provide a more precise estimation for our dual pairs.

https://doi.org/10.4153/S0008439523000516 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000516


Compatibility of theta lifts and tempered condition 67

Proposition 3.3 Let (G1 , G2) be one of our dual pairs over (K , ♯) as in the introduc-
tion with underlying spaces (W , V). Then there exists a continuous seminorm νS on
ωW ,V such that:
(A) If K = R, then we have

∣(ωW ,V(ĝ , h)ϕ, ϕ′)∣ ≤
n
∏
i=1

∣a i ∣
2n+1

2

n
∏
k=1

rV

∏
j=1

Υ(ak b−1
j )νS (ϕ)νS (ϕ′).(3.7)

(B) If K = H, then we have

∣(ωW ,V(g , h)ϕ, ϕ′)∣ ≤
rW

∏
i=1

∣a i ∣n
rV

∏
j=1

∣b j ∣m−2rW
rW

∏
i=1

rV

∏
j=1

Υ(a i b−1
j )νS (ϕ)νS (ϕ′).

(3.8)

Proof Note that, in [19, Lemma 3.1], Xue proved a general result: let m be an integer
and take ϕ, ϕ′ ∈ S (Rm)⊗̂S00, viewed as Schwartz functions valued in S00, and λ =
(λ1 ,⋯, λm) ∈ Rm . Then there is a seminorm ν on S (Rm)⊗̂S00 such that

∣∫
Rm
⟨ϕ(λ1x1 , . . . , λm xm), ϕ′(x1 , . . . , xm)⟩dx1⋯dxm∣ ≤

m
∏
i=1

Υ(λ−1
i )ν(ϕ)ν(ϕ′).(3.9)

Together with the formulae (3.2) and (3.3), we can deduce our result. ∎

3.3 Weil representation and theta lifts

Let ω be the Weil representation of one of our dual pairs (G1 , G2) over (K , ♯). If K = R

(resp. H), let π be an irreducible genuine representation of the double cover Ĝ1 of G1
(resp. an irreducible representation of G1). Then the tensor product ω⊗̂π is a Ĝ1 × Ĝ2-
module, where Ĝ2 is the double covering group corresponding to G2 and acting by ω
and Ĝ1 acts by ω⊗̂π. The maximal isotropic quotient of ω with respect to π has the
form π ⊠ Θ(π) for some smooth representation Θ(π) of G2, which is either 0 or of
finite length. Let θ(π) be the maximal semisimple quotient of Θ(π). The topology on
θ(π) is induced from the projective topology of the projective tensor product ω⊗̂π.
It is known by Howe [8] that θ(π) is either zero or irreducible.

If K = H, we regard Sp(W) as a subgroup of Sp2m(C). We may denote

dim W =
⎧⎪⎪⎨⎪⎪⎩

2n, if K = R

2m, if K = H
and dim V =

⎧⎪⎪⎨⎪⎪⎩

2n + 1, if K = R,
2n, if K = H.

(3.10)

Lemma 3.4 Let (G1 , G2) be one of our dual pairs over (K , ♯) of equal rank n with
underlying spaces (W , V). Let π be an irreducible genuine tempered representation of
Ŝp(W) (if K = R) or an irreducible tempered representation of Sp(W) (if K = H). For
any v , v′ ∈ π and ϕ, ϕ′ ∈ ωW ,V , there exist continuous semi-norms νπ on π and νS on
ωW ,V such that

∣∫
Sp(W)

(ωW ,V(g , 1)ϕ, ϕ′)(π(g)v , v′)dg∣ ≤ νπ(v)νπ(v′)νS (ϕ)νS (ϕ′).
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Proof By estimations (3.6) and (2.5), there exist a continuous seminorm ν̃π and
positive constants A, B such that for any a ∈ A+W and v , v′ ∈ π,

∣(π(a)v , v′)∣ ≤ A1δ
1
2
P ,Sp(W)(a)σ(a)B1 ν̃π(v)ν̃π(v′).

By (3.7) and (3.8), there exists a continuous seminorm ν̃S such that for a ∈ A+W
and ϕ, ϕ′ ∈ ωW ,V ,

∣(ωW ,V(a, 1)ϕ, ϕ′)∣ ≤
rW

∏
i=1

∣a i ∣
dim V

2 ν̃S (ϕ)ν̃S (ϕ′).

Finally, by the formula (2.2), the integral is bounded by

∫
A+W

δP ,Sp(W)(a) 1
2 (1 + log ∣a i ∣)B

rW

∏
j=1

∣a j ∣
dim V

2 da,

∫
K1×K1

ν̃π(π(k1)v)ν̃π(π(k
′−1
1 )v′)ν̃S (ωW ,V(k1 , 1)ϕ)ν̃S (ωW ,V(k

′−1
1 , 1)ϕ′)dk1dk

′

1 ,

(3.11)

where B is a positive constant and ν̃π (resp. ν̃S ) is a continuous seminorm on π (resp.
ωW ,V ).

For any a ∈ A+W , δP ,Sp(W)(a) = ∏rW
i=1 ∣a i ∣2n+2−2i . The integral

∫
A+W

rW

∏
i=1

∣a i ∣−
1
2 (2n+2−2i) (1 −

rW

∑
i=1

log ∣a i ∣)
B rW

∏
j=1

∣a j ∣
dim V

2 da

converges. Since K1 is compact, the integral

∫
K1×K1

ν̃π(π(k1)v)ν̃π(π(k
′−1
1 , 1)v′)ν̃S (ωW ,V(k1 , 1)ϕ)ν̃S (ωW ,V(k

′−1
1 , 1)ϕ′)dk1dk

′

1

is bounded by

Vol(K1)2νπ(v)νπ(v′)νS (ϕ)νS (ϕ′),

where νπ(v) = supk1∈K1
ν̃π(π(k1)v) and νS (ϕ) = supk1∈K1

ν̃S (ωW ,V(k1 , 1)ϕ). Each
sup term defines a continuous seminorm on the corresponding space by the uniform
boundedness principle [15, Theorem 33.1]. ∎

Proposition 3.5 Let π be an irreducible genuine tempered representation of Ŝp(W) (if
K = R) or an irreducible tempered representation of Sp(W) (if K = H). Take v , v′ ∈ π
and ϕ, ϕ′ ∈ ωW ,V . The multilinear form on π ⊗ π ⊗ ωW ,V ⊗ ωW ,V

1

(v , v′ , ϕ, ϕ′) ↦ ∫
Sp(W)

(π′(g)v , v′) ⋅ (ωW ,V(g , 1)ϕ, ϕ′)dg(3.12)

is absolutely convergent and continuous.

Proof The absolute convergence and continuity follow from Lemma 3.4. ∎

1We ignore the identification of multilinear form and the linear form via the tensor product.
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If θW ,V ,ψ(π) ≠ 0, then the integral (3.12) is not identically zero.
Note that the integral (3.12) defines a Hermitian form on π ⊗ ωW ,V . In fact, for any

ϕ, ϕ′ ∈ ωW ,V and v , v′ ∈ π,

⟨v ⊗ ϕ, v′ ⊗ ϕ′⟩ =∫
Sp(W)

(π(g)v , v′) ⋅ (ωW ,V(g , 1)ϕ, ϕ′)dg

=∫
Sp(W)

(π(g)v , v′) ⋅ (ωW ,V(g , 1)ϕ, ϕ′)dg

=∫
Sp(W)

(v′ , π(g)v) ⋅ (ϕ′ , ωW ,V(g , 1)ϕ)dg

=∫
Sp(W)

(π(g−1)v′ , v) ⋅ (ωW ,V(g−1 , 1)ϕ′ , ϕ)dg

=∫
Sp(W)

(π(g)v′ , v) ⋅ (ωW ,V(g , 1)ϕ′ , ϕ)dg

=⟨v′ ⊗ ϕ′ , v ⊗ ϕ⟩,

(3.13)

which means (3.12) defines a Hermitian form on ΘW ,V(π). By [6, Theorem 1.1], this
form is semipositivity. Moreover, we have the fact that if q is a nonzero semipositive
definite Hermitian form on a vector space X, and L is the radical of q, then q descends
to an inner product on X/L, still denote by q. To prove this, if there exists an x ∉ L such
that q(x , x) = 0, then take some y ∈ X, which satisfies q(x , y) ≠ 0. For t ∈ C, then we
have

q(tx + y, tx + y) = q(y, y) + 2Re(t) ⋅ q(x , y).

As t is an arbitrary complex number and q(x , y) ≠ 0, we conclude that for a well-
chosen complex number t, q(tx + y, tx + y) can be a negative real number, which is
a contradiction to the semipositivity of q.

Let R be the radical of semipositive Hermitian form defined by (3.12) as above.
Then the nonzero semipositive definite Hermitian form q defines an inner product
on ΘW ,V(π)/R. Therefore, ΘW ,V(π)/R must be semisimple, and thus coincides with
θW ,V(π).

The explicit theta correspondence allows us to give the explicit matrix coefficients
of θW ,V(π) as follows.

Proposition 3.6 Let (G1 , G2) be one of our dual pairs over (K , ♯) of equal rank n
with underlying spaces (W , V) as in the introduction. Let π be an irreducible genuine
tempered representation of Ŝp(W) (if K = R) or an irreducible tempered representation
of Sp(W) (if K = H). Then, for v , v′ ∈ π and ϕ, ϕ′ ∈ ωW ,V , the function

Φϕ ,ϕ′ ,v ,v′ ∶ h ∈ O(V) ↦ ∫
Sp(W)

(π(g)v , v′) ⋅ (ωW ,V(g , h)ϕ, ϕ′)dg

defines a matrix coefficient of θW ,V(π).

4 Theta lifts for tempered representations

In this paragraph, we use the estimations of the matrix coefficients of various rep-
resentations established in the previous sections to prove our main Theorem 1.1.
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To prove the theorem, it is suffices to show that the matrix coefficients of θW ,V(π)
are almost square-integrable functions. Moreover, since the representation θW ,V(π)
is irreducible, hence we only need to check that the matrix coefficients Φϕ ,ϕ′ ,v ,v′ with
ϕ, ϕ′ ∈ ωW ,V and v , v′ ∈ π are almost square-integrable.

Hence, we need to prove for any ε0 ∈ R>0, for any ϕ, ϕ′ ∈ ωW ,V , and for any
v , v′ ∈ π, the integral

∫
O(V)

∣Φϕ ,ϕ′ ,v ,v′(h)∣ 2+ε0 dh = ∫
O(V)

∣(∫
Sp(W)

(ωW ,V(g , h)ϕ, ϕ′)(π(g)v , v′)dg)∣ 2+ε0 dh

converges. In the following, we will prove a stronger condition: the integral

∫
O(V)

(∫
Sp(W)

∣(ωW ,V(g , h)ϕ, ϕ′)(π(g)v , v′)∣ dg)
2+ε0

dh(4.1)

converges.
Let rW and rV be the Witt index of W and V, respectively. Note that, for our dual

pair of type I of equal rank n, if K = H, the dimension of W over H can be n − 1 or
n. In the following, if K = H, we will assume dim W = dim V = n and the other case
works in the same way.

4.1 Reduction using the estimation of matrix coefficients

Let Sp(W) = K1A+W K1 and O(V) = K2A+V K2 be the Cartan decomposition of
Sp(W) and O(V), respectively. Let g ∈ Sp(W) and h ∈ O(V), then there exist
a = (a1 , . . . , arW ) ∈ A+W , b = (b1 , . . . , brV ) ∈ A+V , k1 , k′1 ∈ K1, and k2 , k′2 ∈ K2 such that
g = k1ak′1 and h = k2bk′2.

For any ϕ, ϕ′ ∈ ωW ,V and v , v′ ∈ π, by the estimations (2.6) and the estimation of
the matrix coefficient of Weil representation (see (3.5) and (3.6)), we deduce that there
exist positive constants A, B such that

∣(ωW ,V(g , h)ϕ, ϕ′)(π(g)v , v′)∣

≤Aδ
1
2
P ,Sp(W)(a)σ(a)B

rW

∏
i=1

∣a i ∣
dim V

2

rV

∏
j=1

∣b j ∣
dim W

2 −rW
rW

∏
i=1

rV

∏
j=1

Υ(a i b−1
j ).(4.2)

To simplify the notation, for a ∈ A+W and b ∈ A+V , we set

CW ,V(a, b) =
rW

∏
i=1

∣a i ∣
dim V

2

rV

∏
j=1

∣b j ∣
dim W

2 −rW
rW

∏
i=1

rV

∏
j=1

Υ(a i b−1
j ).

Together with equation (2.2), we have

∫
Sp(W)

∣(ωW ,V(g , h)ϕ, ϕ′)(π(g)v , v′)∣ dg

≤A∫
Sp(W)

δ
1
2
P ,Sp(W)(a)σ(a)BCW ,V(a, b)dg

≤A∫
A+W

δ−1
P ,Sp(W)(a)∫

K1×K1
δ

1
2
P ,Sp(W)(a)σ(a)BCW ,V(a, b)dk1dadk′1

=A ⋅ Vol(K1)2 ⋅ ∫
A+W

δ−
1
2

P ,Sp(W)(a)σ(a)BCW ,V(a, b)da.

(4.3)
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Hence, if we denote A ⋅ Vol(K1)2 by A′, then for any ε0 = 2ε > 0, using equation (2.2)
again, we have

∫
O(V)

(∫
Sp(W)

∣(ωW ,V(g , h)ϕ, ϕ′)(π(g)v , v′)∣ dg)
2(1+ε)

dh

≤A′ ∫
O(V)

(∫
A+W

δ−
1
2

P ,Sp(W)(a)σ(a)BCW ,V(a, b)da)
2(1+ε)

dh

≤A′ ∫
A+V

δ−1
P ,O(V)(b)∫

K2×K2
(∫

A+W
δ−

1
2

P ,Sp(W)(a)σ(a)BCW ,V(a, b)da)
2(1+ε)

dk2dbdk′2

=A′ ⋅ Vol(K2)2 ∫
A+V

δ−1
P ,O(V)(b)(∫

A+W
δ−

1
2

P ,Sp(W)(a)σ(a)BCW ,V(a, b)da)
2(1+ε)

db.

(4.4)

By the formula (2.3), we have

σ(a) ≤ 1 −
rW

∑
i=1

log ∣a i ∣ ≤ 1 −
rW

∑
i=1

log ∣a i ∣ −
rV

∑
j=1

log ∣b j ∣.

The modular characters δP ,Sp(W) and δP ,O(V) are given by the following formula:

δP ,Sp(W)(a) =
rW

∏
i=1

∣a i ∣2n+2−2i ,

δP ,O(V)(b) =
⎧⎪⎪⎨⎪⎪⎩

∏rV
j=1 ∣b j ∣2n+1−2 j , if K = R,

∏rV
j=1 ∣b j ∣2n−2 j , if K = H.

Thus, we have the integral

(4.4) =
∫

A+W×A+V

n
∏
i=1

∣a i ∣(2i−1)(1+ε)
rV

∏
j=1

∣b j ∣2 j−2n−1
n
∏
k=1

rV

∏
j=1

Υ(ak b−1
j )2+2ε

⎛
⎝

1 −
n
∑
i=1

log ∣a i ∣ −
rV

∑
j=1

log ∣b j ∣
⎞
⎠

B(2+2ε)

dadb,

(4.5)

if K = R, and

(4.4) =
∫

A+W×A+V

rW

∏
i=1

∣a i ∣2(i−1)(1+ε)
rV

∏
j=1

∣b j ∣(2 j−2n)+2(1+ε)(n−rW)
rW

∏
k=1

rV

∏
j=1

Υ(ak b−1
j )2+2ε

⎛
⎝

1 −
rW

∑
i=1

log ∣a i ∣ −
rV

∑
j=1

log ∣b j ∣
⎞
⎠

B(2+2ε)

dadb,

(4.6)

if K = H.
To prove the convergence of the integral (4.1), it suffices to show the integrals (4.5)

and (4.6) are convergent.
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4.2 Proof of the convergence of the integral (4.5)

We prove the convergence of the integral (4.5), this method also works for the con-
vergence of the integral (4.6). Let (p1 , . . . , prV+1) be an (rV + 1)-tuple of nonnegative
integers such that

p1 +⋯+ prV+1 = n.

Let Sp1 , . . . , prV+1 be the subset of A+W × A+V , defined by the condition

∣a1∣ ≤ ⋯ ≤ ∣ap1 ∣ ≤ ∣b1∣
≤∣ap1+1∣ ≤ ⋯ ≤ ∣ap1+p2 ∣ ≤ ∣b2∣ ≤ ∣ap1+p2+1∣ ≤ ⋯ ≤ ∣ap1+⋯+prV

∣
≤∣brV ∣ ≤ ∣ap1+⋯+prV +1∣ ≤ ⋯ ≤ ∣ap1+⋯+prV+1 ∣ ≤ 1.

(4.7)

We can break the domain A+W × A+V of the integral (4.5) by Sp1 , . . . , prV+1 , and it suffices
to show that over each region Sp1 , . . . , prV+1 , the integral (4.5) converges. We will use the
following simple lemma to conclude its convergence.

Lemma 4.1 Let N be a natural number. Let s1 , . . . , sN and B be real numbers. If
s1 +⋯+ s i > 0 for all 1 ≤ i ≤ N, then the integral

∫
∣x1 ∣≤⋯≤∣xN ∣≤1

∣x1∣s1⋯∣xN ∣sN (1 −
N
∑
i=1

log ∣x i ∣)
B

dx1⋯dxN

converges.

Note that in a fixed region Sp1 , . . . , prV+1 , we have

n
∏
i=1

rV

∏
j=1

Υ(a i b−1
j ) =

rV

∏
j=1

(∣
p j+1

∏
i=1

a i+∑ j
k=1 pk

∣ − j ⋅ ∣b j ∣ n−(∑ j
k=1 pk)) .

We rearrange the terms in the integral (4.5) with respect to the order given by the
condition (4.7). To prove that the integral (4.5) converges, it suffices to prove that the
integral (4.5) on region Sp1 , . . . , prV+1 satisfies the condition of Lemma 4.1 with respect
to this order.

For 0 ≤ t ≤ p j+1 , 1 ≤ j ≤ rV , we check the sum of the exponents in the integral (4.5)
up to ap1+⋯+p j+t :
(1) The sum of the exponents of a i(1 ≤ i ≤ p1 +⋯+ p j + t):

(1 + 3 +⋯+ (2(p1 +⋯+ p j + t) − 1))(1 + ε)
− (p2 + 2p3 +⋯+ ( j − 1)p j + jt)(2 + 2ε),

(2) The sum of the exponents of b i(1 ≤ i ≤ j):

2(1 +⋯+ j) − j(2n + 1) + ((n − p1) +⋯ + (n − p1 −⋯− p j))(2 + 2ε).

Summing these two terms, we get

(p1 +⋯+ p j + t)2 + ε((p1 +⋯+ p j + t)2 + 2 j(n − p1 −⋯− p j − t)) > 0.
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The same type of verification shows that the sum of the exponents up to b j is positive.
Hence, the integral (4.5) satisfies the condition of Lemma 4.1. As a consequence, the
integral (4.1) converges.

Acknowledgment This note is based on a discussion with Xue Hang. The authors
would like to express their gratitude to Xue Hang for explaining his works on unitary
groups to us. The second author would like to thank Wenwei Li and Fang Gao for
communications on representations of metaplectic groups.

References

[1] J. Adams and D. Barbasch, Genuine representation of the metaplectic group. Comp. Math.
113(1998), 23–66. https://doi.org/10.1023/A:1000450504919

[2] M. Cowling, U. Haagerup, and R. Howe, Almost L2 matrix coefficients. J. Reine Angew. Math.
387(1988), 97–110. https://doi.org/10.1515/crll.1988.387.97

[3] W. T. Gan and A. Ichino, On endoscopy and the refined Gross–Prasad conjecture for (SO5 , SO4).
J. Inst. Math. Jussieu 10(2011), 235–324. https://doi.org/10.1017/S1474748010000198

[4] W. T. Gan and A. Ichino, Formal degrees and local theta correspondence. Invent. Math.
195(2014), 509–672. https://doi.org/10.1007/s00222-013-0460-5

[5] W. T. Gan, Y. N. Qiu, and S. Takeda, The regularized Siegel–Weil formula (the second term
identity) and the Rallis inner product formula. Invent. Math. 198(2014), no. 3, 739–831.
https://doi.org/10.1007/s00222-014-0509-0

[6] H. He, Unitary representations and theta correspondence for type I classical groups. J. Funct. Anal.
199(2003), no. 1, 92–121. https://doi.org/10.1016/S0022-1236(02)00170-2

[7] H. He, Composition of theta correspondences. Adv. Math. 190(2005), 225–263.
https://doi.org/10.1016/j.aim.2004.01.001

[8] R. Howe, Transcending invariant theory. J. Amer. Math. Soc. 2(1989), no. 3, 535–552.
https://doi.org/10.1090/S0894-0347-1989-0985172-6

[9] A. Ichino, Theta lifting for tempered representations of real unitary groups. Adv. Math. 398(2022),
108188.

[10] A. Ichino and T. Ikeda, On the periods of automorphic forms on special orthogonal groups and the
Gan–Gross–Prasad conjecture. Geom. Funct. Anal. 19(2010), 1378–1425.
https://doi.org/10.1007/S00039-009-0040-4

[11] S. T. Lee and C. B. Zhu, Degenerate principal series and local theta correspondence. Trans. Amer.
Math. Soc. 350(1998), no. 12, 5017–5046. https://doi.org/10.1090/S0002-9947-98-02036-4

[12] J. Li, A. Paul, E. Tan, and C. Zhu, The explicit duality correspondence of (Sp (p, q) , O∗ (2n)). J.
Funct. Anal. 200(2003), 71–100.

[13] J. S. Li, Singular unitary representations of classical groups. Invent. Math. 97(1989),
237–255. https://doi.org/10.1007/BF01389041

[14] B. Sun, Bounding matrix coefficients for smooth vectors of tempered representations. Proc. Amer.
Math. Soc. 137(2009), no. 1, 353–357. https://doi.org/10.1090/S0002-9939-08-09598-1

[15] F. Trèvres, Topological vector spaces, distributions and kernels. Academic Press, New York,
1967. https://doi.org/10.1112/BLMS/1.3.444

[16] V. S. Varadarajan, Harmonic analysis on real reductive groups. Lecture Notes in Mathematics,
576, Springer, Berlin–Heidelberg, 1977. https://doi.org/10.1007/BF01390004

[17] N. R. Wallach, Real reductive groups I. Pure and Applied Mathematics, 132, Academic Press,
Boston, MA, 1988.

[18] N. R. Wallach, Real reductive groups II. Pure and Applied Mathematics, 132, Academic Press,
Boston, MA, 1992. https://doi.org/10.1016/0378-4754(92)90088-x

[19] H. Xue, Bessel model for real unitary groups: the tempered case. Duke Math. J. 172(2023), no. 5,
995–1031.

School of Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai, China
e-mail: zli17@fudan.edu.cn

School of Mathematics, Renmin University of China, No. 59, Zhongguancun Street, Haidian District, Beijing
100872, China
e-mail: s_wang@ruc.edu.cn

https://doi.org/10.4153/S0008439523000516 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000450504919
https://doi.org/10.1515/crll.1988.387.97
https://doi.org/10.1017/S1474748010000198
https://doi.org/10.1007/s00222-013-0460-5
https://doi.org/10.1007/s00222-014-0509-0
https://doi.org/10.1016/S0022-1236(02)00170-2
https://doi.org/10.1016/j.aim.2004.01.001
https://doi.org/10.1090/S0894-0347-1989-0985172-6
https://doi.org/10.1007/S00039-009-0040-4
https://doi.org/10.1090/S0002-9947-98-02036-4
https://doi.org/10.1007/BF01389041
https://doi.org/10.1090/S0002-9939-08-09598-1
https://doi.org/10.1112/BLMS/1.3.444
https://doi.org/10.1007/BF01390004
https://doi.org/10.1016/0378-4754(92)90088-x
mailto:zli17@fudan.edu.cn
mailto:s_wang@ruc.edu.cn
https://doi.org/10.4153/S0008439523000516

	1 Introduction
	2 Tempered (genuine) representations
	3 Theta correspondence
	3.1 Mixed model of Weil representations
	3.2 Matrix coefficients of Weil representations
	3.3 Weil representation and theta lifts

	4 Theta lifts for tempered representations
	4.1 Reduction using the estimation of matrix coefficients
	4.2 Proof of the convergence of the integral (4.5)


